Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Iwona Winiarska | 2823 | 96.35% | 1 | 12.50% |
Patrick Rudolph | 90 | 3.07% | 3 | 37.50% |
Guenter Roeck | 11 | 0.38% | 2 | 25.00% |
Christophe Jaillet | 5 | 0.17% | 1 | 12.50% |
Krzysztof Kozlowski | 1 | 0.03% | 1 | 12.50% |
Total | 2930 | 8 |
// SPDX-License-Identifier: GPL-2.0-only // Copyright (c) 2018-2021 Intel Corporation #include <linux/auxiliary_bus.h> #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/devm-helpers.h> #include <linux/hwmon.h> #include <linux/jiffies.h> #include <linux/module.h> #include <linux/peci.h> #include <linux/peci-cpu.h> #include <linux/units.h> #include <linux/workqueue.h> #include "common.h" #define DIMM_MASK_CHECK_DELAY_JIFFIES msecs_to_jiffies(5000) /* Max number of channel ranks and DIMM index per channel */ #define CHAN_RANK_MAX_ON_HSX 8 #define DIMM_IDX_MAX_ON_HSX 3 #define CHAN_RANK_MAX_ON_BDX 4 #define DIMM_IDX_MAX_ON_BDX 3 #define CHAN_RANK_MAX_ON_BDXD 2 #define DIMM_IDX_MAX_ON_BDXD 2 #define CHAN_RANK_MAX_ON_SKX 6 #define DIMM_IDX_MAX_ON_SKX 2 #define CHAN_RANK_MAX_ON_ICX 8 #define DIMM_IDX_MAX_ON_ICX 2 #define CHAN_RANK_MAX_ON_ICXD 4 #define DIMM_IDX_MAX_ON_ICXD 2 #define CHAN_RANK_MAX_ON_SPR 8 #define DIMM_IDX_MAX_ON_SPR 2 #define CHAN_RANK_MAX CHAN_RANK_MAX_ON_HSX #define DIMM_IDX_MAX DIMM_IDX_MAX_ON_HSX #define DIMM_NUMS_MAX (CHAN_RANK_MAX * DIMM_IDX_MAX) #define CPU_SEG_MASK GENMASK(23, 16) #define GET_CPU_SEG(x) (((x) & CPU_SEG_MASK) >> 16) #define CPU_BUS_MASK GENMASK(7, 0) #define GET_CPU_BUS(x) ((x) & CPU_BUS_MASK) #define DIMM_TEMP_MAX GENMASK(15, 8) #define DIMM_TEMP_CRIT GENMASK(23, 16) #define GET_TEMP_MAX(x) (((x) & DIMM_TEMP_MAX) >> 8) #define GET_TEMP_CRIT(x) (((x) & DIMM_TEMP_CRIT) >> 16) #define NO_DIMM_RETRY_COUNT_MAX 120 struct peci_dimmtemp; struct dimm_info { int chan_rank_max; int dimm_idx_max; u8 min_peci_revision; int (*read_thresholds)(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data); }; struct peci_dimm_thresholds { long temp_max; long temp_crit; struct peci_sensor_state state; }; enum peci_dimm_threshold_type { temp_max_type, temp_crit_type, }; struct peci_dimmtemp { struct peci_device *peci_dev; struct device *dev; const char *name; const struct dimm_info *gen_info; struct delayed_work detect_work; struct { struct peci_sensor_data temp; struct peci_dimm_thresholds thresholds; } dimm[DIMM_NUMS_MAX]; char **dimmtemp_label; DECLARE_BITMAP(dimm_mask, DIMM_NUMS_MAX); u8 no_dimm_retry_count; }; static u8 __dimm_temp(u32 reg, int dimm_order) { return (reg >> (dimm_order * 8)) & 0xff; } static int get_dimm_temp(struct peci_dimmtemp *priv, int dimm_no, long *val) { int dimm_order = dimm_no % priv->gen_info->dimm_idx_max; int chan_rank = dimm_no / priv->gen_info->dimm_idx_max; int ret = 0; u32 data; mutex_lock(&priv->dimm[dimm_no].temp.state.lock); if (!peci_sensor_need_update(&priv->dimm[dimm_no].temp.state)) goto skip_update; ret = peci_pcs_read(priv->peci_dev, PECI_PCS_DDR_DIMM_TEMP, chan_rank, &data); if (ret) goto unlock; priv->dimm[dimm_no].temp.value = __dimm_temp(data, dimm_order) * MILLIDEGREE_PER_DEGREE; peci_sensor_mark_updated(&priv->dimm[dimm_no].temp.state); skip_update: *val = priv->dimm[dimm_no].temp.value; unlock: mutex_unlock(&priv->dimm[dimm_no].temp.state.lock); return ret; } static int update_thresholds(struct peci_dimmtemp *priv, int dimm_no) { int dimm_order = dimm_no % priv->gen_info->dimm_idx_max; int chan_rank = dimm_no / priv->gen_info->dimm_idx_max; u32 data; int ret; if (!peci_sensor_need_update(&priv->dimm[dimm_no].thresholds.state)) return 0; ret = priv->gen_info->read_thresholds(priv, dimm_order, chan_rank, &data); if (ret == -ENODATA) /* Use default or previous value */ return 0; if (ret) return ret; priv->dimm[dimm_no].thresholds.temp_max = GET_TEMP_MAX(data) * MILLIDEGREE_PER_DEGREE; priv->dimm[dimm_no].thresholds.temp_crit = GET_TEMP_CRIT(data) * MILLIDEGREE_PER_DEGREE; peci_sensor_mark_updated(&priv->dimm[dimm_no].thresholds.state); return 0; } static int get_dimm_thresholds(struct peci_dimmtemp *priv, enum peci_dimm_threshold_type type, int dimm_no, long *val) { int ret; mutex_lock(&priv->dimm[dimm_no].thresholds.state.lock); ret = update_thresholds(priv, dimm_no); if (ret) goto unlock; switch (type) { case temp_max_type: *val = priv->dimm[dimm_no].thresholds.temp_max; break; case temp_crit_type: *val = priv->dimm[dimm_no].thresholds.temp_crit; break; default: ret = -EOPNOTSUPP; break; } unlock: mutex_unlock(&priv->dimm[dimm_no].thresholds.state.lock); return ret; } static int dimmtemp_read_string(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, const char **str) { struct peci_dimmtemp *priv = dev_get_drvdata(dev); if (attr != hwmon_temp_label) return -EOPNOTSUPP; *str = (const char *)priv->dimmtemp_label[channel]; return 0; } static int dimmtemp_read(struct device *dev, enum hwmon_sensor_types type, u32 attr, int channel, long *val) { struct peci_dimmtemp *priv = dev_get_drvdata(dev); switch (attr) { case hwmon_temp_input: return get_dimm_temp(priv, channel, val); case hwmon_temp_max: return get_dimm_thresholds(priv, temp_max_type, channel, val); case hwmon_temp_crit: return get_dimm_thresholds(priv, temp_crit_type, channel, val); default: break; } return -EOPNOTSUPP; } static umode_t dimmtemp_is_visible(const void *data, enum hwmon_sensor_types type, u32 attr, int channel) { const struct peci_dimmtemp *priv = data; if (test_bit(channel, priv->dimm_mask)) return 0444; return 0; } static const struct hwmon_ops peci_dimmtemp_ops = { .is_visible = dimmtemp_is_visible, .read_string = dimmtemp_read_string, .read = dimmtemp_read, }; static int check_populated_dimms(struct peci_dimmtemp *priv) { int chan_rank_max = priv->gen_info->chan_rank_max; int dimm_idx_max = priv->gen_info->dimm_idx_max; DECLARE_BITMAP(dimm_mask, DIMM_NUMS_MAX); DECLARE_BITMAP(chan_rank_empty, CHAN_RANK_MAX); int chan_rank, dimm_idx, ret, i; u32 pcs; if (chan_rank_max * dimm_idx_max > DIMM_NUMS_MAX) { WARN_ONCE(1, "Unsupported number of DIMMs - chan_rank_max: %d, dimm_idx_max: %d", chan_rank_max, dimm_idx_max); return -EINVAL; } bitmap_zero(dimm_mask, DIMM_NUMS_MAX); bitmap_zero(chan_rank_empty, CHAN_RANK_MAX); for (chan_rank = 0; chan_rank < chan_rank_max; chan_rank++) { ret = peci_pcs_read(priv->peci_dev, PECI_PCS_DDR_DIMM_TEMP, chan_rank, &pcs); if (ret) { /* * Overall, we expect either success or -EINVAL in * order to determine whether DIMM is populated or not. * For anything else we fall back to deferring the * detection to be performed at a later point in time. */ if (ret == -EINVAL) { bitmap_set(chan_rank_empty, chan_rank, 1); continue; } return -EAGAIN; } for (dimm_idx = 0; dimm_idx < dimm_idx_max; dimm_idx++) if (__dimm_temp(pcs, dimm_idx)) bitmap_set(dimm_mask, chan_rank * dimm_idx_max + dimm_idx, 1); } /* * If we got all -EINVALs, it means that the CPU doesn't have any * DIMMs. Unfortunately, it may also happen at the very start of * host platform boot. Retrying a couple of times lets us make sure * that the state is persistent. */ if (bitmap_full(chan_rank_empty, chan_rank_max)) { if (priv->no_dimm_retry_count < NO_DIMM_RETRY_COUNT_MAX) { priv->no_dimm_retry_count++; return -EAGAIN; } return -ENODEV; } /* * It's possible that memory training is not done yet. In this case we * defer the detection to be performed at a later point in time. */ if (bitmap_empty(dimm_mask, DIMM_NUMS_MAX)) { priv->no_dimm_retry_count = 0; return -EAGAIN; } for_each_set_bit(i, dimm_mask, DIMM_NUMS_MAX) { dev_dbg(priv->dev, "Found DIMM%#x\n", i); } bitmap_copy(priv->dimm_mask, dimm_mask, DIMM_NUMS_MAX); return 0; } static int create_dimm_temp_label(struct peci_dimmtemp *priv, int chan) { int rank = chan / priv->gen_info->dimm_idx_max; int idx = chan % priv->gen_info->dimm_idx_max; priv->dimmtemp_label[chan] = devm_kasprintf(priv->dev, GFP_KERNEL, "DIMM %c%d", 'A' + rank, idx + 1); if (!priv->dimmtemp_label[chan]) return -ENOMEM; return 0; } static const struct hwmon_channel_info * const peci_dimmtemp_temp_info[] = { HWMON_CHANNEL_INFO(temp, [0 ... DIMM_NUMS_MAX - 1] = HWMON_T_LABEL | HWMON_T_INPUT | HWMON_T_MAX | HWMON_T_CRIT), NULL }; static const struct hwmon_chip_info peci_dimmtemp_chip_info = { .ops = &peci_dimmtemp_ops, .info = peci_dimmtemp_temp_info, }; static int create_dimm_temp_info(struct peci_dimmtemp *priv) { int ret, i, channels; struct device *dev; /* * We expect to either find populated DIMMs and carry on with creating * sensors, or find out that there are no DIMMs populated. * All other states mean that the platform never reached the state that * allows to check DIMM state - causing us to retry later on. */ ret = check_populated_dimms(priv); if (ret == -ENODEV) { dev_dbg(priv->dev, "No DIMMs found\n"); return 0; } else if (ret) { schedule_delayed_work(&priv->detect_work, DIMM_MASK_CHECK_DELAY_JIFFIES); dev_dbg(priv->dev, "Deferred populating DIMM temp info\n"); return ret; } channels = priv->gen_info->chan_rank_max * priv->gen_info->dimm_idx_max; priv->dimmtemp_label = devm_kzalloc(priv->dev, channels * sizeof(char *), GFP_KERNEL); if (!priv->dimmtemp_label) return -ENOMEM; for_each_set_bit(i, priv->dimm_mask, DIMM_NUMS_MAX) { ret = create_dimm_temp_label(priv, i); if (ret) return ret; mutex_init(&priv->dimm[i].thresholds.state.lock); mutex_init(&priv->dimm[i].temp.state.lock); } dev = devm_hwmon_device_register_with_info(priv->dev, priv->name, priv, &peci_dimmtemp_chip_info, NULL); if (IS_ERR(dev)) { dev_err(priv->dev, "Failed to register hwmon device\n"); return PTR_ERR(dev); } dev_dbg(priv->dev, "%s: sensor '%s'\n", dev_name(dev), priv->name); return 0; } static void create_dimm_temp_info_delayed(struct work_struct *work) { struct peci_dimmtemp *priv = container_of(to_delayed_work(work), struct peci_dimmtemp, detect_work); int ret; ret = create_dimm_temp_info(priv); if (ret && ret != -EAGAIN) dev_err(priv->dev, "Failed to populate DIMM temp info\n"); } static int peci_dimmtemp_probe(struct auxiliary_device *adev, const struct auxiliary_device_id *id) { struct device *dev = &adev->dev; struct peci_device *peci_dev = to_peci_device(dev->parent); struct peci_dimmtemp *priv; int ret; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = devm_kasprintf(dev, GFP_KERNEL, "peci_dimmtemp.cpu%d", peci_dev->info.socket_id); if (!priv->name) return -ENOMEM; priv->dev = dev; priv->peci_dev = peci_dev; priv->gen_info = (const struct dimm_info *)id->driver_data; /* * This is just a sanity check. Since we're using commands that are * guaranteed to be supported on a given platform, we should never see * revision lower than expected. */ if (peci_dev->info.peci_revision < priv->gen_info->min_peci_revision) dev_warn(priv->dev, "Unexpected PECI revision %#x, some features may be unavailable\n", peci_dev->info.peci_revision); ret = devm_delayed_work_autocancel(priv->dev, &priv->detect_work, create_dimm_temp_info_delayed); if (ret) return ret; ret = create_dimm_temp_info(priv); if (ret && ret != -EAGAIN) { dev_err(dev, "Failed to populate DIMM temp info\n"); return ret; } return 0; } static int read_thresholds_hsx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data) { u8 dev, func; u16 reg; int ret; /* * Device 20, Function 0: IMC 0 channel 0 -> rank 0 * Device 20, Function 1: IMC 0 channel 1 -> rank 1 * Device 21, Function 0: IMC 0 channel 2 -> rank 2 * Device 21, Function 1: IMC 0 channel 3 -> rank 3 * Device 23, Function 0: IMC 1 channel 0 -> rank 4 * Device 23, Function 1: IMC 1 channel 1 -> rank 5 * Device 24, Function 0: IMC 1 channel 2 -> rank 6 * Device 24, Function 1: IMC 1 channel 3 -> rank 7 */ dev = 20 + chan_rank / 2 + chan_rank / 4; func = chan_rank % 2; reg = 0x120 + dimm_order * 4; ret = peci_pci_local_read(priv->peci_dev, 1, dev, func, reg, data); if (ret) return ret; return 0; } static int read_thresholds_bdxd(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data) { u8 dev, func; u16 reg; int ret; /* * Device 10, Function 2: IMC 0 channel 0 -> rank 0 * Device 10, Function 6: IMC 0 channel 1 -> rank 1 * Device 12, Function 2: IMC 1 channel 0 -> rank 2 * Device 12, Function 6: IMC 1 channel 1 -> rank 3 */ dev = 10 + chan_rank / 2 * 2; func = (chan_rank % 2) ? 6 : 2; reg = 0x120 + dimm_order * 4; ret = peci_pci_local_read(priv->peci_dev, 2, dev, func, reg, data); if (ret) return ret; return 0; } static int read_thresholds_skx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data) { u8 dev, func; u16 reg; int ret; /* * Device 10, Function 2: IMC 0 channel 0 -> rank 0 * Device 10, Function 6: IMC 0 channel 1 -> rank 1 * Device 11, Function 2: IMC 0 channel 2 -> rank 2 * Device 12, Function 2: IMC 1 channel 0 -> rank 3 * Device 12, Function 6: IMC 1 channel 1 -> rank 4 * Device 13, Function 2: IMC 1 channel 2 -> rank 5 */ dev = 10 + chan_rank / 3 * 2 + (chan_rank % 3 == 2 ? 1 : 0); func = chan_rank % 3 == 1 ? 6 : 2; reg = 0x120 + dimm_order * 4; ret = peci_pci_local_read(priv->peci_dev, 2, dev, func, reg, data); if (ret) return ret; return 0; } static int read_thresholds_icx(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data) { u32 reg_val; u64 offset; int ret; u8 dev; ret = peci_ep_pci_local_read(priv->peci_dev, 0, 13, 0, 2, 0xd4, ®_val); if (ret || !(reg_val & BIT(31))) return -ENODATA; /* Use default or previous value */ ret = peci_ep_pci_local_read(priv->peci_dev, 0, 13, 0, 2, 0xd0, ®_val); if (ret) return -ENODATA; /* Use default or previous value */ /* * Device 26, Offset 224e0: IMC 0 channel 0 -> rank 0 * Device 26, Offset 264e0: IMC 0 channel 1 -> rank 1 * Device 27, Offset 224e0: IMC 1 channel 0 -> rank 2 * Device 27, Offset 264e0: IMC 1 channel 1 -> rank 3 * Device 28, Offset 224e0: IMC 2 channel 0 -> rank 4 * Device 28, Offset 264e0: IMC 2 channel 1 -> rank 5 * Device 29, Offset 224e0: IMC 3 channel 0 -> rank 6 * Device 29, Offset 264e0: IMC 3 channel 1 -> rank 7 */ dev = 26 + chan_rank / 2; offset = 0x224e0 + dimm_order * 4 + (chan_rank % 2) * 0x4000; ret = peci_mmio_read(priv->peci_dev, 0, GET_CPU_SEG(reg_val), GET_CPU_BUS(reg_val), dev, 0, offset, data); if (ret) return ret; return 0; } static int read_thresholds_spr(struct peci_dimmtemp *priv, int dimm_order, int chan_rank, u32 *data) { u32 reg_val; u64 offset; int ret; u8 dev; ret = peci_ep_pci_local_read(priv->peci_dev, 0, 30, 0, 2, 0xd4, ®_val); if (ret || !(reg_val & BIT(31))) return -ENODATA; /* Use default or previous value */ ret = peci_ep_pci_local_read(priv->peci_dev, 0, 30, 0, 2, 0xd0, ®_val); if (ret) return -ENODATA; /* Use default or previous value */ /* * Device 26, Offset 219a8: IMC 0 channel 0 -> rank 0 * Device 26, Offset 299a8: IMC 0 channel 1 -> rank 1 * Device 27, Offset 219a8: IMC 1 channel 0 -> rank 2 * Device 27, Offset 299a8: IMC 1 channel 1 -> rank 3 * Device 28, Offset 219a8: IMC 2 channel 0 -> rank 4 * Device 28, Offset 299a8: IMC 2 channel 1 -> rank 5 * Device 29, Offset 219a8: IMC 3 channel 0 -> rank 6 * Device 29, Offset 299a8: IMC 3 channel 1 -> rank 7 */ dev = 26 + chan_rank / 2; offset = 0x219a8 + dimm_order * 4 + (chan_rank % 2) * 0x8000; ret = peci_mmio_read(priv->peci_dev, 0, GET_CPU_SEG(reg_val), GET_CPU_BUS(reg_val), dev, 0, offset, data); if (ret) return ret; return 0; } static const struct dimm_info dimm_hsx = { .chan_rank_max = CHAN_RANK_MAX_ON_HSX, .dimm_idx_max = DIMM_IDX_MAX_ON_HSX, .min_peci_revision = 0x33, .read_thresholds = &read_thresholds_hsx, }; static const struct dimm_info dimm_bdx = { .chan_rank_max = CHAN_RANK_MAX_ON_BDX, .dimm_idx_max = DIMM_IDX_MAX_ON_BDX, .min_peci_revision = 0x33, .read_thresholds = &read_thresholds_hsx, }; static const struct dimm_info dimm_bdxd = { .chan_rank_max = CHAN_RANK_MAX_ON_BDXD, .dimm_idx_max = DIMM_IDX_MAX_ON_BDXD, .min_peci_revision = 0x33, .read_thresholds = &read_thresholds_bdxd, }; static const struct dimm_info dimm_skx = { .chan_rank_max = CHAN_RANK_MAX_ON_SKX, .dimm_idx_max = DIMM_IDX_MAX_ON_SKX, .min_peci_revision = 0x33, .read_thresholds = &read_thresholds_skx, }; static const struct dimm_info dimm_icx = { .chan_rank_max = CHAN_RANK_MAX_ON_ICX, .dimm_idx_max = DIMM_IDX_MAX_ON_ICX, .min_peci_revision = 0x40, .read_thresholds = &read_thresholds_icx, }; static const struct dimm_info dimm_icxd = { .chan_rank_max = CHAN_RANK_MAX_ON_ICXD, .dimm_idx_max = DIMM_IDX_MAX_ON_ICXD, .min_peci_revision = 0x40, .read_thresholds = &read_thresholds_icx, }; static const struct dimm_info dimm_spr = { .chan_rank_max = CHAN_RANK_MAX_ON_SPR, .dimm_idx_max = DIMM_IDX_MAX_ON_SPR, .min_peci_revision = 0x40, .read_thresholds = &read_thresholds_spr, }; static const struct auxiliary_device_id peci_dimmtemp_ids[] = { { .name = "peci_cpu.dimmtemp.hsx", .driver_data = (kernel_ulong_t)&dimm_hsx, }, { .name = "peci_cpu.dimmtemp.bdx", .driver_data = (kernel_ulong_t)&dimm_bdx, }, { .name = "peci_cpu.dimmtemp.bdxd", .driver_data = (kernel_ulong_t)&dimm_bdxd, }, { .name = "peci_cpu.dimmtemp.skx", .driver_data = (kernel_ulong_t)&dimm_skx, }, { .name = "peci_cpu.dimmtemp.icx", .driver_data = (kernel_ulong_t)&dimm_icx, }, { .name = "peci_cpu.dimmtemp.icxd", .driver_data = (kernel_ulong_t)&dimm_icxd, }, { .name = "peci_cpu.dimmtemp.spr", .driver_data = (kernel_ulong_t)&dimm_spr, }, { } }; MODULE_DEVICE_TABLE(auxiliary, peci_dimmtemp_ids); static struct auxiliary_driver peci_dimmtemp_driver = { .probe = peci_dimmtemp_probe, .id_table = peci_dimmtemp_ids, }; module_auxiliary_driver(peci_dimmtemp_driver); MODULE_AUTHOR("Jae Hyun Yoo <jae.hyun.yoo@linux.intel.com>"); MODULE_AUTHOR("Iwona Winiarska <iwona.winiarska@intel.com>"); MODULE_DESCRIPTION("PECI dimmtemp driver"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(PECI_CPU);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1