Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Kevin Lo | 2511 | 70.38% | 1 | 4.55% |
Axel Lin | 799 | 22.39% | 4 | 18.18% |
Guenter Roeck | 142 | 3.98% | 4 | 18.18% |
Jean Delvare | 102 | 2.86% | 5 | 22.73% |
Paul Fertser | 3 | 0.08% | 1 | 4.55% |
Darrick J. Wong | 3 | 0.08% | 1 | 4.55% |
Brian Carnes | 2 | 0.06% | 1 | 4.55% |
Thomas Gleixner | 2 | 0.06% | 1 | 4.55% |
Uwe Kleine-König | 1 | 0.03% | 1 | 4.55% |
Wolfram Sang | 1 | 0.03% | 1 | 4.55% |
Rusty Russell | 1 | 0.03% | 1 | 4.55% |
Mark M. Hoffman | 1 | 0.03% | 1 | 4.55% |
Total | 3568 | 22 |
// SPDX-License-Identifier: GPL-2.0-only /* * w83l786ng.c - Linux kernel driver for hardware monitoring * Copyright (c) 2007 Kevin Lo <kevlo@kevlo.org> */ /* * Supports following chips: * * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA * w83l786ng 3 2 2 2 0x7b 0x5ca3 yes no */ #include <linux/module.h> #include <linux/init.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/hwmon.h> #include <linux/hwmon-sysfs.h> #include <linux/err.h> #include <linux/mutex.h> #include <linux/jiffies.h> /* Addresses to scan */ static const unsigned short normal_i2c[] = { 0x2e, 0x2f, I2C_CLIENT_END }; /* Insmod parameters */ static bool reset; module_param(reset, bool, 0); MODULE_PARM_DESC(reset, "Set to 1 to reset chip, not recommended"); #define W83L786NG_REG_IN_MIN(nr) (0x2C + (nr) * 2) #define W83L786NG_REG_IN_MAX(nr) (0x2B + (nr) * 2) #define W83L786NG_REG_IN(nr) ((nr) + 0x20) #define W83L786NG_REG_FAN(nr) ((nr) + 0x28) #define W83L786NG_REG_FAN_MIN(nr) ((nr) + 0x3B) #define W83L786NG_REG_CONFIG 0x40 #define W83L786NG_REG_ALARM1 0x41 #define W83L786NG_REG_ALARM2 0x42 #define W83L786NG_REG_GPIO_EN 0x47 #define W83L786NG_REG_MAN_ID2 0x4C #define W83L786NG_REG_MAN_ID1 0x4D #define W83L786NG_REG_CHIP_ID 0x4E #define W83L786NG_REG_DIODE 0x53 #define W83L786NG_REG_FAN_DIV 0x54 #define W83L786NG_REG_FAN_CFG 0x80 #define W83L786NG_REG_TOLERANCE 0x8D static const u8 W83L786NG_REG_TEMP[2][3] = { { 0x25, /* TEMP 0 in DataSheet */ 0x35, /* TEMP 0 Over in DataSheet */ 0x36 }, /* TEMP 0 Hyst in DataSheet */ { 0x26, /* TEMP 1 in DataSheet */ 0x37, /* TEMP 1 Over in DataSheet */ 0x38 } /* TEMP 1 Hyst in DataSheet */ }; static const u8 W83L786NG_PWM_MODE_SHIFT[] = {6, 7}; static const u8 W83L786NG_PWM_ENABLE_SHIFT[] = {2, 4}; /* FAN Duty Cycle, be used to control */ static const u8 W83L786NG_REG_PWM[] = {0x81, 0x87}; static inline u8 FAN_TO_REG(long rpm, int div) { if (rpm == 0) return 255; rpm = clamp_val(rpm, 1, 1000000); return clamp_val((1350000 + rpm * div / 2) / (rpm * div), 1, 254); } #define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \ ((val) == 255 ? 0 : \ 1350000 / ((val) * (div)))) /* for temp */ #define TEMP_TO_REG(val) (clamp_val(((val) < 0 ? (val) + 0x100 * 1000 \ : (val)) / 1000, 0, 0xff)) #define TEMP_FROM_REG(val) (((val) & 0x80 ? \ (val) - 0x100 : (val)) * 1000) /* * The analog voltage inputs have 8mV LSB. Since the sysfs output is * in mV as would be measured on the chip input pin, need to just * multiply/divide by 8 to translate from/to register values. */ #define IN_TO_REG(val) (clamp_val((((val) + 4) / 8), 0, 255)) #define IN_FROM_REG(val) ((val) * 8) #define DIV_FROM_REG(val) (1 << (val)) static inline u8 DIV_TO_REG(long val) { int i; val = clamp_val(val, 1, 128) >> 1; for (i = 0; i < 7; i++) { if (val == 0) break; val >>= 1; } return (u8)i; } struct w83l786ng_data { struct i2c_client *client; struct mutex update_lock; bool valid; /* true if following fields are valid */ unsigned long last_updated; /* In jiffies */ unsigned long last_nonvolatile; /* In jiffies, last time we update the * nonvolatile registers */ u8 in[3]; u8 in_max[3]; u8 in_min[3]; u8 fan[2]; u8 fan_div[2]; u8 fan_min[2]; u8 temp_type[2]; u8 temp[2][3]; u8 pwm[2]; u8 pwm_mode[2]; /* 0->DC variable voltage * 1->PWM variable duty cycle */ u8 pwm_enable[2]; /* 1->manual * 2->thermal cruise (also called SmartFan I) */ u8 tolerance[2]; }; static u8 w83l786ng_read_value(struct i2c_client *client, u8 reg) { return i2c_smbus_read_byte_data(client, reg); } static int w83l786ng_write_value(struct i2c_client *client, u8 reg, u8 value) { return i2c_smbus_write_byte_data(client, reg, value); } static struct w83l786ng_data *w83l786ng_update_device(struct device *dev) { struct w83l786ng_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; int i, j; u8 reg_tmp, pwmcfg; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ + HZ / 2) || !data->valid) { dev_dbg(&client->dev, "Updating w83l786ng data.\n"); /* Update the voltages measured value and limits */ for (i = 0; i < 3; i++) { data->in[i] = w83l786ng_read_value(client, W83L786NG_REG_IN(i)); data->in_min[i] = w83l786ng_read_value(client, W83L786NG_REG_IN_MIN(i)); data->in_max[i] = w83l786ng_read_value(client, W83L786NG_REG_IN_MAX(i)); } /* Update the fan counts and limits */ for (i = 0; i < 2; i++) { data->fan[i] = w83l786ng_read_value(client, W83L786NG_REG_FAN(i)); data->fan_min[i] = w83l786ng_read_value(client, W83L786NG_REG_FAN_MIN(i)); } /* Update the fan divisor */ reg_tmp = w83l786ng_read_value(client, W83L786NG_REG_FAN_DIV); data->fan_div[0] = reg_tmp & 0x07; data->fan_div[1] = (reg_tmp >> 4) & 0x07; pwmcfg = w83l786ng_read_value(client, W83L786NG_REG_FAN_CFG); for (i = 0; i < 2; i++) { data->pwm_mode[i] = ((pwmcfg >> W83L786NG_PWM_MODE_SHIFT[i]) & 1) ? 0 : 1; data->pwm_enable[i] = ((pwmcfg >> W83L786NG_PWM_ENABLE_SHIFT[i]) & 3) + 1; data->pwm[i] = (w83l786ng_read_value(client, W83L786NG_REG_PWM[i]) & 0x0f) * 0x11; } /* Update the temperature sensors */ for (i = 0; i < 2; i++) { for (j = 0; j < 3; j++) { data->temp[i][j] = w83l786ng_read_value(client, W83L786NG_REG_TEMP[i][j]); } } /* Update Smart Fan I/II tolerance */ reg_tmp = w83l786ng_read_value(client, W83L786NG_REG_TOLERANCE); data->tolerance[0] = reg_tmp & 0x0f; data->tolerance[1] = (reg_tmp >> 4) & 0x0f; data->last_updated = jiffies; data->valid = true; } mutex_unlock(&data->update_lock); return data; } /* following are the sysfs callback functions */ #define show_in_reg(reg) \ static ssize_t \ show_##reg(struct device *dev, struct device_attribute *attr, \ char *buf) \ { \ int nr = to_sensor_dev_attr(attr)->index; \ struct w83l786ng_data *data = w83l786ng_update_device(dev); \ return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \ } show_in_reg(in) show_in_reg(in_min) show_in_reg(in_max) #define store_in_reg(REG, reg) \ static ssize_t \ store_in_##reg(struct device *dev, struct device_attribute *attr, \ const char *buf, size_t count) \ { \ int nr = to_sensor_dev_attr(attr)->index; \ struct w83l786ng_data *data = dev_get_drvdata(dev); \ struct i2c_client *client = data->client; \ unsigned long val; \ int err = kstrtoul(buf, 10, &val); \ if (err) \ return err; \ mutex_lock(&data->update_lock); \ data->in_##reg[nr] = IN_TO_REG(val); \ w83l786ng_write_value(client, W83L786NG_REG_IN_##REG(nr), \ data->in_##reg[nr]); \ mutex_unlock(&data->update_lock); \ return count; \ } store_in_reg(MIN, min) store_in_reg(MAX, max) static struct sensor_device_attribute sda_in_input[] = { SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0), SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1), SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2), }; static struct sensor_device_attribute sda_in_min[] = { SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0), SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1), SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2), }; static struct sensor_device_attribute sda_in_max[] = { SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0), SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1), SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2), }; #define show_fan_reg(reg) \ static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ char *buf) \ { \ int nr = to_sensor_dev_attr(attr)->index; \ struct w83l786ng_data *data = w83l786ng_update_device(dev); \ return sprintf(buf, "%d\n", \ FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \ } show_fan_reg(fan); show_fan_reg(fan_min); static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct w83l786ng_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->fan_min[nr] = FAN_TO_REG(val, DIV_FROM_REG(data->fan_div[nr])); w83l786ng_write_value(client, W83L786NG_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct w83l786ng_data *data = w83l786ng_update_device(dev); return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr])); } /* * Note: we save and restore the fan minimum here, because its value is * determined in part by the fan divisor. This follows the principle of * least surprise; the user doesn't expect the fan minimum to change just * because the divisor changed. */ static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct w83l786ng_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long min; u8 tmp_fan_div; u8 fan_div_reg; u8 keep_mask = 0; u8 new_shift = 0; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; /* Save fan_min */ mutex_lock(&data->update_lock); min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr])); data->fan_div[nr] = DIV_TO_REG(val); switch (nr) { case 0: keep_mask = 0xf8; new_shift = 0; break; case 1: keep_mask = 0x8f; new_shift = 4; break; } fan_div_reg = w83l786ng_read_value(client, W83L786NG_REG_FAN_DIV) & keep_mask; tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask; w83l786ng_write_value(client, W83L786NG_REG_FAN_DIV, fan_div_reg | tmp_fan_div); /* Restore fan_min */ data->fan_min[nr] = FAN_TO_REG(min, DIV_FROM_REG(data->fan_div[nr])); w83l786ng_write_value(client, W83L786NG_REG_FAN_MIN(nr), data->fan_min[nr]); mutex_unlock(&data->update_lock); return count; } static struct sensor_device_attribute sda_fan_input[] = { SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0), SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1), }; static struct sensor_device_attribute sda_fan_min[] = { SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO, show_fan_min, store_fan_min, 0), SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO, show_fan_min, store_fan_min, 1), }; static struct sensor_device_attribute sda_fan_div[] = { SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO, show_fan_div, store_fan_div, 0), SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO, show_fan_div, store_fan_div, 1), }; /* read/write the temperature, includes measured value and limits */ static ssize_t show_temp(struct device *dev, struct device_attribute *attr, char *buf) { struct sensor_device_attribute_2 *sensor_attr = to_sensor_dev_attr_2(attr); int nr = sensor_attr->nr; int index = sensor_attr->index; struct w83l786ng_data *data = w83l786ng_update_device(dev); return sprintf(buf, "%d\n", TEMP_FROM_REG(data->temp[nr][index])); } static ssize_t store_temp(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct sensor_device_attribute_2 *sensor_attr = to_sensor_dev_attr_2(attr); int nr = sensor_attr->nr; int index = sensor_attr->index; struct w83l786ng_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; long val; int err; err = kstrtol(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); data->temp[nr][index] = TEMP_TO_REG(val); w83l786ng_write_value(client, W83L786NG_REG_TEMP[nr][index], data->temp[nr][index]); mutex_unlock(&data->update_lock); return count; } static struct sensor_device_attribute_2 sda_temp_input[] = { SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp, NULL, 0, 0), SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp, NULL, 1, 0), }; static struct sensor_device_attribute_2 sda_temp_max[] = { SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR, show_temp, store_temp, 0, 1), SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR, show_temp, store_temp, 1, 1), }; static struct sensor_device_attribute_2 sda_temp_max_hyst[] = { SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR, show_temp, store_temp, 0, 2), SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR, show_temp, store_temp, 1, 2), }; #define show_pwm_reg(reg) \ static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \ char *buf) \ { \ struct w83l786ng_data *data = w83l786ng_update_device(dev); \ int nr = to_sensor_dev_attr(attr)->index; \ return sprintf(buf, "%d\n", data->reg[nr]); \ } show_pwm_reg(pwm_mode) show_pwm_reg(pwm_enable) show_pwm_reg(pwm) static ssize_t store_pwm_mode(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct w83l786ng_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; u8 reg; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; if (val > 1) return -EINVAL; mutex_lock(&data->update_lock); data->pwm_mode[nr] = val; reg = w83l786ng_read_value(client, W83L786NG_REG_FAN_CFG); reg &= ~(1 << W83L786NG_PWM_MODE_SHIFT[nr]); if (!val) reg |= 1 << W83L786NG_PWM_MODE_SHIFT[nr]; w83l786ng_write_value(client, W83L786NG_REG_FAN_CFG, reg); mutex_unlock(&data->update_lock); return count; } static ssize_t store_pwm(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct w83l786ng_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; val = clamp_val(val, 0, 255); val = DIV_ROUND_CLOSEST(val, 0x11); mutex_lock(&data->update_lock); data->pwm[nr] = val * 0x11; val |= w83l786ng_read_value(client, W83L786NG_REG_PWM[nr]) & 0xf0; w83l786ng_write_value(client, W83L786NG_REG_PWM[nr], val); mutex_unlock(&data->update_lock); return count; } static ssize_t store_pwm_enable(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct w83l786ng_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; u8 reg; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; if (!val || val > 2) /* only modes 1 and 2 are supported */ return -EINVAL; mutex_lock(&data->update_lock); reg = w83l786ng_read_value(client, W83L786NG_REG_FAN_CFG); data->pwm_enable[nr] = val; reg &= ~(0x03 << W83L786NG_PWM_ENABLE_SHIFT[nr]); reg |= (val - 1) << W83L786NG_PWM_ENABLE_SHIFT[nr]; w83l786ng_write_value(client, W83L786NG_REG_FAN_CFG, reg); mutex_unlock(&data->update_lock); return count; } static struct sensor_device_attribute sda_pwm[] = { SENSOR_ATTR(pwm1, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 0), SENSOR_ATTR(pwm2, S_IWUSR | S_IRUGO, show_pwm, store_pwm, 1), }; static struct sensor_device_attribute sda_pwm_mode[] = { SENSOR_ATTR(pwm1_mode, S_IWUSR | S_IRUGO, show_pwm_mode, store_pwm_mode, 0), SENSOR_ATTR(pwm2_mode, S_IWUSR | S_IRUGO, show_pwm_mode, store_pwm_mode, 1), }; static struct sensor_device_attribute sda_pwm_enable[] = { SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO, show_pwm_enable, store_pwm_enable, 0), SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO, show_pwm_enable, store_pwm_enable, 1), }; /* For Smart Fan I/Thermal Cruise and Smart Fan II */ static ssize_t show_tolerance(struct device *dev, struct device_attribute *attr, char *buf) { int nr = to_sensor_dev_attr(attr)->index; struct w83l786ng_data *data = w83l786ng_update_device(dev); return sprintf(buf, "%ld\n", (long)data->tolerance[nr]); } static ssize_t store_tolerance(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int nr = to_sensor_dev_attr(attr)->index; struct w83l786ng_data *data = dev_get_drvdata(dev); struct i2c_client *client = data->client; u8 tol_tmp, tol_mask; unsigned long val; int err; err = kstrtoul(buf, 10, &val); if (err) return err; mutex_lock(&data->update_lock); tol_mask = w83l786ng_read_value(client, W83L786NG_REG_TOLERANCE) & ((nr == 1) ? 0x0f : 0xf0); tol_tmp = clamp_val(val, 0, 15); tol_tmp &= 0x0f; data->tolerance[nr] = tol_tmp; if (nr == 1) tol_tmp <<= 4; w83l786ng_write_value(client, W83L786NG_REG_TOLERANCE, tol_mask | tol_tmp); mutex_unlock(&data->update_lock); return count; } static struct sensor_device_attribute sda_tolerance[] = { SENSOR_ATTR(pwm1_tolerance, S_IWUSR | S_IRUGO, show_tolerance, store_tolerance, 0), SENSOR_ATTR(pwm2_tolerance, S_IWUSR | S_IRUGO, show_tolerance, store_tolerance, 1), }; #define IN_UNIT_ATTRS(X) \ &sda_in_input[X].dev_attr.attr, \ &sda_in_min[X].dev_attr.attr, \ &sda_in_max[X].dev_attr.attr #define FAN_UNIT_ATTRS(X) \ &sda_fan_input[X].dev_attr.attr, \ &sda_fan_min[X].dev_attr.attr, \ &sda_fan_div[X].dev_attr.attr #define TEMP_UNIT_ATTRS(X) \ &sda_temp_input[X].dev_attr.attr, \ &sda_temp_max[X].dev_attr.attr, \ &sda_temp_max_hyst[X].dev_attr.attr #define PWM_UNIT_ATTRS(X) \ &sda_pwm[X].dev_attr.attr, \ &sda_pwm_mode[X].dev_attr.attr, \ &sda_pwm_enable[X].dev_attr.attr #define TOLERANCE_UNIT_ATTRS(X) \ &sda_tolerance[X].dev_attr.attr static struct attribute *w83l786ng_attrs[] = { IN_UNIT_ATTRS(0), IN_UNIT_ATTRS(1), IN_UNIT_ATTRS(2), FAN_UNIT_ATTRS(0), FAN_UNIT_ATTRS(1), TEMP_UNIT_ATTRS(0), TEMP_UNIT_ATTRS(1), PWM_UNIT_ATTRS(0), PWM_UNIT_ATTRS(1), TOLERANCE_UNIT_ATTRS(0), TOLERANCE_UNIT_ATTRS(1), NULL }; ATTRIBUTE_GROUPS(w83l786ng); static int w83l786ng_detect(struct i2c_client *client, struct i2c_board_info *info) { struct i2c_adapter *adapter = client->adapter; u16 man_id; u8 chip_id; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -ENODEV; /* Detection */ if ((w83l786ng_read_value(client, W83L786NG_REG_CONFIG) & 0x80)) { dev_dbg(&adapter->dev, "W83L786NG detection failed at 0x%02x\n", client->addr); return -ENODEV; } /* Identification */ man_id = (w83l786ng_read_value(client, W83L786NG_REG_MAN_ID1) << 8) + w83l786ng_read_value(client, W83L786NG_REG_MAN_ID2); chip_id = w83l786ng_read_value(client, W83L786NG_REG_CHIP_ID); if (man_id != 0x5CA3 || /* Winbond */ chip_id != 0x80) { /* W83L786NG */ dev_dbg(&adapter->dev, "Unsupported chip (man_id=0x%04X, chip_id=0x%02X)\n", man_id, chip_id); return -ENODEV; } strscpy(info->type, "w83l786ng", I2C_NAME_SIZE); return 0; } static void w83l786ng_init_client(struct i2c_client *client) { u8 tmp; if (reset) w83l786ng_write_value(client, W83L786NG_REG_CONFIG, 0x80); /* Start monitoring */ tmp = w83l786ng_read_value(client, W83L786NG_REG_CONFIG); if (!(tmp & 0x01)) w83l786ng_write_value(client, W83L786NG_REG_CONFIG, tmp | 0x01); } static int w83l786ng_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct w83l786ng_data *data; struct device *hwmon_dev; int i; u8 reg_tmp; data = devm_kzalloc(dev, sizeof(struct w83l786ng_data), GFP_KERNEL); if (!data) return -ENOMEM; data->client = client; mutex_init(&data->update_lock); /* Initialize the chip */ w83l786ng_init_client(client); /* A few vars need to be filled upon startup */ for (i = 0; i < 2; i++) { data->fan_min[i] = w83l786ng_read_value(client, W83L786NG_REG_FAN_MIN(i)); } /* Update the fan divisor */ reg_tmp = w83l786ng_read_value(client, W83L786NG_REG_FAN_DIV); data->fan_div[0] = reg_tmp & 0x07; data->fan_div[1] = (reg_tmp >> 4) & 0x07; hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name, data, w83l786ng_groups); return PTR_ERR_OR_ZERO(hwmon_dev); } static const struct i2c_device_id w83l786ng_id[] = { { "w83l786ng" }, { } }; MODULE_DEVICE_TABLE(i2c, w83l786ng_id); static struct i2c_driver w83l786ng_driver = { .class = I2C_CLASS_HWMON, .driver = { .name = "w83l786ng", }, .probe = w83l786ng_probe, .id_table = w83l786ng_id, .detect = w83l786ng_detect, .address_list = normal_i2c, }; module_i2c_driver(w83l786ng_driver); MODULE_AUTHOR("Kevin Lo"); MODULE_DESCRIPTION("w83l786ng driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1