Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Brendan Higgins | 3836 | 86.79% | 5 | 16.67% |
Jae Hyun Yoo | 410 | 9.28% | 7 | 23.33% |
Quan Nguyen | 42 | 0.95% | 2 | 6.67% |
Joel Stanley | 42 | 0.95% | 1 | 3.33% |
Andrew Jeffery | 27 | 0.61% | 1 | 3.33% |
Guenter Roeck | 15 | 0.34% | 1 | 3.33% |
Edward A. James | 13 | 0.29% | 2 | 6.67% |
Tommy Haung | 11 | 0.25% | 2 | 6.67% |
Ryan Chen | 6 | 0.14% | 1 | 3.33% |
Gustavo A. R. Silva | 4 | 0.09% | 1 | 3.33% |
ye xingchen | 4 | 0.09% | 1 | 3.33% |
Peter Rosin | 3 | 0.07% | 1 | 3.33% |
Uwe Kleine-König | 2 | 0.05% | 1 | 3.33% |
Thomas Gleixner | 2 | 0.05% | 1 | 3.33% |
Andy Shevchenko | 1 | 0.02% | 1 | 3.33% |
Wolfram Sang | 1 | 0.02% | 1 | 3.33% |
Zev Weiss | 1 | 0.02% | 1 | 3.33% |
Total | 4420 | 30 |
// SPDX-License-Identifier: GPL-2.0-only /* * Aspeed 24XX/25XX I2C Controller. * * Copyright (C) 2012-2017 ASPEED Technology Inc. * Copyright 2017 IBM Corporation * Copyright 2017 Google, Inc. */ #include <linux/clk.h> #include <linux/completion.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/i2c.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/reset.h> #include <linux/slab.h> /* I2C Register */ #define ASPEED_I2C_FUN_CTRL_REG 0x00 #define ASPEED_I2C_AC_TIMING_REG1 0x04 #define ASPEED_I2C_AC_TIMING_REG2 0x08 #define ASPEED_I2C_INTR_CTRL_REG 0x0c #define ASPEED_I2C_INTR_STS_REG 0x10 #define ASPEED_I2C_CMD_REG 0x14 #define ASPEED_I2C_DEV_ADDR_REG 0x18 #define ASPEED_I2C_BYTE_BUF_REG 0x20 /* Global Register Definition */ /* 0x00 : I2C Interrupt Status Register */ /* 0x08 : I2C Interrupt Target Assignment */ /* Device Register Definition */ /* 0x00 : I2CD Function Control Register */ #define ASPEED_I2CD_MULTI_MASTER_DIS BIT(15) #define ASPEED_I2CD_SDA_DRIVE_1T_EN BIT(8) #define ASPEED_I2CD_M_SDA_DRIVE_1T_EN BIT(7) #define ASPEED_I2CD_M_HIGH_SPEED_EN BIT(6) #define ASPEED_I2CD_SLAVE_EN BIT(1) #define ASPEED_I2CD_MASTER_EN BIT(0) /* 0x04 : I2CD Clock and AC Timing Control Register #1 */ #define ASPEED_I2CD_TIME_TBUF_MASK GENMASK(31, 28) #define ASPEED_I2CD_TIME_THDSTA_MASK GENMASK(27, 24) #define ASPEED_I2CD_TIME_TACST_MASK GENMASK(23, 20) #define ASPEED_I2CD_TIME_SCL_HIGH_SHIFT 16 #define ASPEED_I2CD_TIME_SCL_HIGH_MASK GENMASK(19, 16) #define ASPEED_I2CD_TIME_SCL_LOW_SHIFT 12 #define ASPEED_I2CD_TIME_SCL_LOW_MASK GENMASK(15, 12) #define ASPEED_I2CD_TIME_BASE_DIVISOR_MASK GENMASK(3, 0) #define ASPEED_I2CD_TIME_SCL_REG_MAX GENMASK(3, 0) /* 0x08 : I2CD Clock and AC Timing Control Register #2 */ #define ASPEED_NO_TIMEOUT_CTRL 0 /* 0x0c : I2CD Interrupt Control Register & * 0x10 : I2CD Interrupt Status Register * * These share bit definitions, so use the same values for the enable & * status bits. */ #define ASPEED_I2CD_INTR_RECV_MASK 0xf000ffff #define ASPEED_I2CD_INTR_SDA_DL_TIMEOUT BIT(14) #define ASPEED_I2CD_INTR_BUS_RECOVER_DONE BIT(13) #define ASPEED_I2CD_INTR_SLAVE_MATCH BIT(7) #define ASPEED_I2CD_INTR_SCL_TIMEOUT BIT(6) #define ASPEED_I2CD_INTR_ABNORMAL BIT(5) #define ASPEED_I2CD_INTR_NORMAL_STOP BIT(4) #define ASPEED_I2CD_INTR_ARBIT_LOSS BIT(3) #define ASPEED_I2CD_INTR_RX_DONE BIT(2) #define ASPEED_I2CD_INTR_TX_NAK BIT(1) #define ASPEED_I2CD_INTR_TX_ACK BIT(0) #define ASPEED_I2CD_INTR_MASTER_ERRORS \ (ASPEED_I2CD_INTR_SDA_DL_TIMEOUT | \ ASPEED_I2CD_INTR_SCL_TIMEOUT | \ ASPEED_I2CD_INTR_ABNORMAL | \ ASPEED_I2CD_INTR_ARBIT_LOSS) #define ASPEED_I2CD_INTR_ALL \ (ASPEED_I2CD_INTR_SDA_DL_TIMEOUT | \ ASPEED_I2CD_INTR_BUS_RECOVER_DONE | \ ASPEED_I2CD_INTR_SCL_TIMEOUT | \ ASPEED_I2CD_INTR_ABNORMAL | \ ASPEED_I2CD_INTR_NORMAL_STOP | \ ASPEED_I2CD_INTR_ARBIT_LOSS | \ ASPEED_I2CD_INTR_RX_DONE | \ ASPEED_I2CD_INTR_TX_NAK | \ ASPEED_I2CD_INTR_TX_ACK) /* 0x14 : I2CD Command/Status Register */ #define ASPEED_I2CD_SCL_LINE_STS BIT(18) #define ASPEED_I2CD_SDA_LINE_STS BIT(17) #define ASPEED_I2CD_BUS_BUSY_STS BIT(16) #define ASPEED_I2CD_BUS_RECOVER_CMD BIT(11) /* Command Bit */ #define ASPEED_I2CD_M_STOP_CMD BIT(5) #define ASPEED_I2CD_M_S_RX_CMD_LAST BIT(4) #define ASPEED_I2CD_M_RX_CMD BIT(3) #define ASPEED_I2CD_S_TX_CMD BIT(2) #define ASPEED_I2CD_M_TX_CMD BIT(1) #define ASPEED_I2CD_M_START_CMD BIT(0) #define ASPEED_I2CD_MASTER_CMDS_MASK \ (ASPEED_I2CD_M_STOP_CMD | \ ASPEED_I2CD_M_S_RX_CMD_LAST | \ ASPEED_I2CD_M_RX_CMD | \ ASPEED_I2CD_M_TX_CMD | \ ASPEED_I2CD_M_START_CMD) /* 0x18 : I2CD Slave Device Address Register */ #define ASPEED_I2CD_DEV_ADDR_MASK GENMASK(6, 0) enum aspeed_i2c_master_state { ASPEED_I2C_MASTER_INACTIVE, ASPEED_I2C_MASTER_PENDING, ASPEED_I2C_MASTER_START, ASPEED_I2C_MASTER_TX_FIRST, ASPEED_I2C_MASTER_TX, ASPEED_I2C_MASTER_RX_FIRST, ASPEED_I2C_MASTER_RX, ASPEED_I2C_MASTER_STOP, }; enum aspeed_i2c_slave_state { ASPEED_I2C_SLAVE_INACTIVE, ASPEED_I2C_SLAVE_START, ASPEED_I2C_SLAVE_READ_REQUESTED, ASPEED_I2C_SLAVE_READ_PROCESSED, ASPEED_I2C_SLAVE_WRITE_REQUESTED, ASPEED_I2C_SLAVE_WRITE_RECEIVED, ASPEED_I2C_SLAVE_STOP, }; struct aspeed_i2c_bus { struct i2c_adapter adap; struct device *dev; void __iomem *base; struct reset_control *rst; /* Synchronizes I/O mem access to base. */ spinlock_t lock; struct completion cmd_complete; u32 (*get_clk_reg_val)(struct device *dev, u32 divisor); unsigned long parent_clk_frequency; u32 bus_frequency; /* Transaction state. */ enum aspeed_i2c_master_state master_state; struct i2c_msg *msgs; size_t buf_index; size_t msgs_index; size_t msgs_count; bool send_stop; int cmd_err; /* Protected only by i2c_lock_bus */ int master_xfer_result; /* Multi-master */ bool multi_master; #if IS_ENABLED(CONFIG_I2C_SLAVE) struct i2c_client *slave; enum aspeed_i2c_slave_state slave_state; #endif /* CONFIG_I2C_SLAVE */ }; static int aspeed_i2c_reset(struct aspeed_i2c_bus *bus); static int aspeed_i2c_recover_bus(struct aspeed_i2c_bus *bus) { unsigned long time_left, flags; int ret = 0; u32 command; spin_lock_irqsave(&bus->lock, flags); command = readl(bus->base + ASPEED_I2C_CMD_REG); if (command & ASPEED_I2CD_SDA_LINE_STS) { /* Bus is idle: no recovery needed. */ if (command & ASPEED_I2CD_SCL_LINE_STS) goto out; dev_dbg(bus->dev, "SCL hung (state %x), attempting recovery\n", command); reinit_completion(&bus->cmd_complete); writel(ASPEED_I2CD_M_STOP_CMD, bus->base + ASPEED_I2C_CMD_REG); spin_unlock_irqrestore(&bus->lock, flags); time_left = wait_for_completion_timeout( &bus->cmd_complete, bus->adap.timeout); spin_lock_irqsave(&bus->lock, flags); if (time_left == 0) goto reset_out; else if (bus->cmd_err) goto reset_out; /* Recovery failed. */ else if (!(readl(bus->base + ASPEED_I2C_CMD_REG) & ASPEED_I2CD_SCL_LINE_STS)) goto reset_out; /* Bus error. */ } else { dev_dbg(bus->dev, "SDA hung (state %x), attempting recovery\n", command); reinit_completion(&bus->cmd_complete); /* Writes 1 to 8 SCL clock cycles until SDA is released. */ writel(ASPEED_I2CD_BUS_RECOVER_CMD, bus->base + ASPEED_I2C_CMD_REG); spin_unlock_irqrestore(&bus->lock, flags); time_left = wait_for_completion_timeout( &bus->cmd_complete, bus->adap.timeout); spin_lock_irqsave(&bus->lock, flags); if (time_left == 0) goto reset_out; else if (bus->cmd_err) goto reset_out; /* Recovery failed. */ else if (!(readl(bus->base + ASPEED_I2C_CMD_REG) & ASPEED_I2CD_SDA_LINE_STS)) goto reset_out; } out: spin_unlock_irqrestore(&bus->lock, flags); return ret; reset_out: spin_unlock_irqrestore(&bus->lock, flags); return aspeed_i2c_reset(bus); } #if IS_ENABLED(CONFIG_I2C_SLAVE) static u32 aspeed_i2c_slave_irq(struct aspeed_i2c_bus *bus, u32 irq_status) { u32 command, irq_handled = 0; struct i2c_client *slave = bus->slave; u8 value; int ret; if (!slave) return 0; /* * Handle stop conditions early, prior to SLAVE_MATCH. Some masters may drive * transfers with low enough latency between the nak/stop phase of the current * command and the start/address phase of the following command that the * interrupts are coalesced by the time we process them. */ if (irq_status & ASPEED_I2CD_INTR_NORMAL_STOP) { irq_handled |= ASPEED_I2CD_INTR_NORMAL_STOP; bus->slave_state = ASPEED_I2C_SLAVE_STOP; } if (irq_status & ASPEED_I2CD_INTR_TX_NAK && bus->slave_state == ASPEED_I2C_SLAVE_READ_PROCESSED) { irq_handled |= ASPEED_I2CD_INTR_TX_NAK; bus->slave_state = ASPEED_I2C_SLAVE_STOP; } /* Propagate any stop conditions to the slave implementation. */ if (bus->slave_state == ASPEED_I2C_SLAVE_STOP) { i2c_slave_event(slave, I2C_SLAVE_STOP, &value); bus->slave_state = ASPEED_I2C_SLAVE_INACTIVE; } /* * Now that we've dealt with any potentially coalesced stop conditions, * address any start conditions. */ if (irq_status & ASPEED_I2CD_INTR_SLAVE_MATCH) { irq_handled |= ASPEED_I2CD_INTR_SLAVE_MATCH; bus->slave_state = ASPEED_I2C_SLAVE_START; } /* * If the slave has been stopped and not started then slave interrupt * handling is complete. */ if (bus->slave_state == ASPEED_I2C_SLAVE_INACTIVE) return irq_handled; command = readl(bus->base + ASPEED_I2C_CMD_REG); dev_dbg(bus->dev, "slave irq status 0x%08x, cmd 0x%08x\n", irq_status, command); /* Slave was sent something. */ if (irq_status & ASPEED_I2CD_INTR_RX_DONE) { value = readl(bus->base + ASPEED_I2C_BYTE_BUF_REG) >> 8; /* Handle address frame. */ if (bus->slave_state == ASPEED_I2C_SLAVE_START) { if (value & 0x1) bus->slave_state = ASPEED_I2C_SLAVE_READ_REQUESTED; else bus->slave_state = ASPEED_I2C_SLAVE_WRITE_REQUESTED; } irq_handled |= ASPEED_I2CD_INTR_RX_DONE; } switch (bus->slave_state) { case ASPEED_I2C_SLAVE_READ_REQUESTED: if (unlikely(irq_status & ASPEED_I2CD_INTR_TX_ACK)) dev_err(bus->dev, "Unexpected ACK on read request.\n"); bus->slave_state = ASPEED_I2C_SLAVE_READ_PROCESSED; i2c_slave_event(slave, I2C_SLAVE_READ_REQUESTED, &value); writel(value, bus->base + ASPEED_I2C_BYTE_BUF_REG); writel(ASPEED_I2CD_S_TX_CMD, bus->base + ASPEED_I2C_CMD_REG); break; case ASPEED_I2C_SLAVE_READ_PROCESSED: if (unlikely(!(irq_status & ASPEED_I2CD_INTR_TX_ACK))) { dev_err(bus->dev, "Expected ACK after processed read.\n"); break; } irq_handled |= ASPEED_I2CD_INTR_TX_ACK; i2c_slave_event(slave, I2C_SLAVE_READ_PROCESSED, &value); writel(value, bus->base + ASPEED_I2C_BYTE_BUF_REG); writel(ASPEED_I2CD_S_TX_CMD, bus->base + ASPEED_I2C_CMD_REG); break; case ASPEED_I2C_SLAVE_WRITE_REQUESTED: bus->slave_state = ASPEED_I2C_SLAVE_WRITE_RECEIVED; ret = i2c_slave_event(slave, I2C_SLAVE_WRITE_REQUESTED, &value); /* * Slave ACK's on this address phase already but as the backend driver * returns an errno, the bus driver should nack the next incoming byte. */ if (ret < 0) writel(ASPEED_I2CD_M_S_RX_CMD_LAST, bus->base + ASPEED_I2C_CMD_REG); break; case ASPEED_I2C_SLAVE_WRITE_RECEIVED: i2c_slave_event(slave, I2C_SLAVE_WRITE_RECEIVED, &value); break; case ASPEED_I2C_SLAVE_STOP: /* Stop event handling is done early. Unreachable. */ break; case ASPEED_I2C_SLAVE_START: /* Slave was just started. Waiting for the next event. */; break; default: dev_err(bus->dev, "unknown slave_state: %d\n", bus->slave_state); bus->slave_state = ASPEED_I2C_SLAVE_INACTIVE; break; } return irq_handled; } #endif /* CONFIG_I2C_SLAVE */ /* precondition: bus.lock has been acquired. */ static void aspeed_i2c_do_start(struct aspeed_i2c_bus *bus) { u32 command = ASPEED_I2CD_M_START_CMD | ASPEED_I2CD_M_TX_CMD; struct i2c_msg *msg = &bus->msgs[bus->msgs_index]; u8 slave_addr = i2c_8bit_addr_from_msg(msg); #if IS_ENABLED(CONFIG_I2C_SLAVE) /* * If it's requested in the middle of a slave session, set the master * state to 'pending' then H/W will continue handling this master * command when the bus comes back to the idle state. */ if (bus->slave_state != ASPEED_I2C_SLAVE_INACTIVE) { bus->master_state = ASPEED_I2C_MASTER_PENDING; return; } #endif /* CONFIG_I2C_SLAVE */ bus->master_state = ASPEED_I2C_MASTER_START; bus->buf_index = 0; if (msg->flags & I2C_M_RD) { command |= ASPEED_I2CD_M_RX_CMD; /* Need to let the hardware know to NACK after RX. */ if (msg->len == 1 && !(msg->flags & I2C_M_RECV_LEN)) command |= ASPEED_I2CD_M_S_RX_CMD_LAST; } writel(slave_addr, bus->base + ASPEED_I2C_BYTE_BUF_REG); writel(command, bus->base + ASPEED_I2C_CMD_REG); } /* precondition: bus.lock has been acquired. */ static void aspeed_i2c_do_stop(struct aspeed_i2c_bus *bus) { bus->master_state = ASPEED_I2C_MASTER_STOP; writel(ASPEED_I2CD_M_STOP_CMD, bus->base + ASPEED_I2C_CMD_REG); } /* precondition: bus.lock has been acquired. */ static void aspeed_i2c_next_msg_or_stop(struct aspeed_i2c_bus *bus) { if (bus->msgs_index + 1 < bus->msgs_count) { bus->msgs_index++; aspeed_i2c_do_start(bus); } else { aspeed_i2c_do_stop(bus); } } static int aspeed_i2c_is_irq_error(u32 irq_status) { if (irq_status & ASPEED_I2CD_INTR_ARBIT_LOSS) return -EAGAIN; if (irq_status & (ASPEED_I2CD_INTR_SDA_DL_TIMEOUT | ASPEED_I2CD_INTR_SCL_TIMEOUT)) return -EBUSY; if (irq_status & (ASPEED_I2CD_INTR_ABNORMAL)) return -EPROTO; return 0; } static u32 aspeed_i2c_master_irq(struct aspeed_i2c_bus *bus, u32 irq_status) { u32 irq_handled = 0, command = 0; struct i2c_msg *msg; u8 recv_byte; int ret; if (irq_status & ASPEED_I2CD_INTR_BUS_RECOVER_DONE) { bus->master_state = ASPEED_I2C_MASTER_INACTIVE; irq_handled |= ASPEED_I2CD_INTR_BUS_RECOVER_DONE; goto out_complete; } /* * We encountered an interrupt that reports an error: the hardware * should clear the command queue effectively taking us back to the * INACTIVE state. */ ret = aspeed_i2c_is_irq_error(irq_status); if (ret) { dev_dbg(bus->dev, "received error interrupt: 0x%08x\n", irq_status); irq_handled |= (irq_status & ASPEED_I2CD_INTR_MASTER_ERRORS); if (bus->master_state != ASPEED_I2C_MASTER_INACTIVE) { irq_handled = irq_status; bus->cmd_err = ret; bus->master_state = ASPEED_I2C_MASTER_INACTIVE; goto out_complete; } } /* Master is not currently active, irq was for someone else. */ if (bus->master_state == ASPEED_I2C_MASTER_INACTIVE || bus->master_state == ASPEED_I2C_MASTER_PENDING) goto out_no_complete; /* We are in an invalid state; reset bus to a known state. */ if (!bus->msgs) { dev_err(bus->dev, "bus in unknown state. irq_status: 0x%x\n", irq_status); bus->cmd_err = -EIO; if (bus->master_state != ASPEED_I2C_MASTER_STOP && bus->master_state != ASPEED_I2C_MASTER_INACTIVE) aspeed_i2c_do_stop(bus); goto out_no_complete; } msg = &bus->msgs[bus->msgs_index]; /* * START is a special case because we still have to handle a subsequent * TX or RX immediately after we handle it, so we handle it here and * then update the state and handle the new state below. */ if (bus->master_state == ASPEED_I2C_MASTER_START) { #if IS_ENABLED(CONFIG_I2C_SLAVE) /* * If a peer master starts a xfer immediately after it queues a * master command, clear the queued master command and change * its state to 'pending'. To simplify handling of pending * cases, it uses S/W solution instead of H/W command queue * handling. */ if (unlikely(irq_status & ASPEED_I2CD_INTR_SLAVE_MATCH)) { writel(readl(bus->base + ASPEED_I2C_CMD_REG) & ~ASPEED_I2CD_MASTER_CMDS_MASK, bus->base + ASPEED_I2C_CMD_REG); bus->master_state = ASPEED_I2C_MASTER_PENDING; dev_dbg(bus->dev, "master goes pending due to a slave start\n"); goto out_no_complete; } #endif /* CONFIG_I2C_SLAVE */ if (unlikely(!(irq_status & ASPEED_I2CD_INTR_TX_ACK))) { if (unlikely(!(irq_status & ASPEED_I2CD_INTR_TX_NAK))) { bus->cmd_err = -ENXIO; bus->master_state = ASPEED_I2C_MASTER_INACTIVE; goto out_complete; } pr_devel("no slave present at %02x\n", msg->addr); irq_handled |= ASPEED_I2CD_INTR_TX_NAK; bus->cmd_err = -ENXIO; aspeed_i2c_do_stop(bus); goto out_no_complete; } irq_handled |= ASPEED_I2CD_INTR_TX_ACK; if (msg->len == 0) { /* SMBUS_QUICK */ aspeed_i2c_do_stop(bus); goto out_no_complete; } if (msg->flags & I2C_M_RD) bus->master_state = ASPEED_I2C_MASTER_RX_FIRST; else bus->master_state = ASPEED_I2C_MASTER_TX_FIRST; } switch (bus->master_state) { case ASPEED_I2C_MASTER_TX: if (unlikely(irq_status & ASPEED_I2CD_INTR_TX_NAK)) { dev_dbg(bus->dev, "slave NACKed TX\n"); irq_handled |= ASPEED_I2CD_INTR_TX_NAK; goto error_and_stop; } else if (unlikely(!(irq_status & ASPEED_I2CD_INTR_TX_ACK))) { dev_err(bus->dev, "slave failed to ACK TX\n"); goto error_and_stop; } irq_handled |= ASPEED_I2CD_INTR_TX_ACK; fallthrough; case ASPEED_I2C_MASTER_TX_FIRST: if (bus->buf_index < msg->len) { bus->master_state = ASPEED_I2C_MASTER_TX; writel(msg->buf[bus->buf_index++], bus->base + ASPEED_I2C_BYTE_BUF_REG); writel(ASPEED_I2CD_M_TX_CMD, bus->base + ASPEED_I2C_CMD_REG); } else { aspeed_i2c_next_msg_or_stop(bus); } goto out_no_complete; case ASPEED_I2C_MASTER_RX_FIRST: /* RX may not have completed yet (only address cycle) */ if (!(irq_status & ASPEED_I2CD_INTR_RX_DONE)) goto out_no_complete; fallthrough; case ASPEED_I2C_MASTER_RX: if (unlikely(!(irq_status & ASPEED_I2CD_INTR_RX_DONE))) { dev_err(bus->dev, "master failed to RX\n"); goto error_and_stop; } irq_handled |= ASPEED_I2CD_INTR_RX_DONE; recv_byte = readl(bus->base + ASPEED_I2C_BYTE_BUF_REG) >> 8; msg->buf[bus->buf_index++] = recv_byte; if (msg->flags & I2C_M_RECV_LEN) { if (unlikely(recv_byte > I2C_SMBUS_BLOCK_MAX)) { bus->cmd_err = -EPROTO; aspeed_i2c_do_stop(bus); goto out_no_complete; } msg->len = recv_byte + ((msg->flags & I2C_CLIENT_PEC) ? 2 : 1); msg->flags &= ~I2C_M_RECV_LEN; } if (bus->buf_index < msg->len) { bus->master_state = ASPEED_I2C_MASTER_RX; command = ASPEED_I2CD_M_RX_CMD; if (bus->buf_index + 1 == msg->len) command |= ASPEED_I2CD_M_S_RX_CMD_LAST; writel(command, bus->base + ASPEED_I2C_CMD_REG); } else { aspeed_i2c_next_msg_or_stop(bus); } goto out_no_complete; case ASPEED_I2C_MASTER_STOP: if (unlikely(!(irq_status & ASPEED_I2CD_INTR_NORMAL_STOP))) { dev_err(bus->dev, "master failed to STOP. irq_status:0x%x\n", irq_status); bus->cmd_err = -EIO; /* Do not STOP as we have already tried. */ } else { irq_handled |= ASPEED_I2CD_INTR_NORMAL_STOP; } bus->master_state = ASPEED_I2C_MASTER_INACTIVE; goto out_complete; case ASPEED_I2C_MASTER_INACTIVE: dev_err(bus->dev, "master received interrupt 0x%08x, but is inactive\n", irq_status); bus->cmd_err = -EIO; /* Do not STOP as we should be inactive. */ goto out_complete; default: WARN(1, "unknown master state\n"); bus->master_state = ASPEED_I2C_MASTER_INACTIVE; bus->cmd_err = -EINVAL; goto out_complete; } error_and_stop: bus->cmd_err = -EIO; aspeed_i2c_do_stop(bus); goto out_no_complete; out_complete: bus->msgs = NULL; if (bus->cmd_err) bus->master_xfer_result = bus->cmd_err; else bus->master_xfer_result = bus->msgs_index + 1; complete(&bus->cmd_complete); out_no_complete: return irq_handled; } static irqreturn_t aspeed_i2c_bus_irq(int irq, void *dev_id) { struct aspeed_i2c_bus *bus = dev_id; u32 irq_received, irq_remaining, irq_handled; spin_lock(&bus->lock); irq_received = readl(bus->base + ASPEED_I2C_INTR_STS_REG); /* Ack all interrupts except for Rx done */ writel(irq_received & ~ASPEED_I2CD_INTR_RX_DONE, bus->base + ASPEED_I2C_INTR_STS_REG); readl(bus->base + ASPEED_I2C_INTR_STS_REG); irq_received &= ASPEED_I2CD_INTR_RECV_MASK; irq_remaining = irq_received; #if IS_ENABLED(CONFIG_I2C_SLAVE) /* * In most cases, interrupt bits will be set one by one, although * multiple interrupt bits could be set at the same time. It's also * possible that master interrupt bits could be set along with slave * interrupt bits. Each case needs to be handled using corresponding * handlers depending on the current state. */ if (bus->master_state != ASPEED_I2C_MASTER_INACTIVE && bus->master_state != ASPEED_I2C_MASTER_PENDING) { irq_handled = aspeed_i2c_master_irq(bus, irq_remaining); irq_remaining &= ~irq_handled; if (irq_remaining) irq_handled |= aspeed_i2c_slave_irq(bus, irq_remaining); } else { irq_handled = aspeed_i2c_slave_irq(bus, irq_remaining); irq_remaining &= ~irq_handled; if (irq_remaining) irq_handled |= aspeed_i2c_master_irq(bus, irq_remaining); } /* * Start a pending master command at here if a slave operation is * completed. */ if (bus->master_state == ASPEED_I2C_MASTER_PENDING && bus->slave_state == ASPEED_I2C_SLAVE_INACTIVE) aspeed_i2c_do_start(bus); #else irq_handled = aspeed_i2c_master_irq(bus, irq_remaining); #endif /* CONFIG_I2C_SLAVE */ irq_remaining &= ~irq_handled; if (irq_remaining) dev_err(bus->dev, "irq handled != irq. expected 0x%08x, but was 0x%08x\n", irq_received, irq_handled); /* Ack Rx done */ if (irq_received & ASPEED_I2CD_INTR_RX_DONE) { writel(ASPEED_I2CD_INTR_RX_DONE, bus->base + ASPEED_I2C_INTR_STS_REG); readl(bus->base + ASPEED_I2C_INTR_STS_REG); } spin_unlock(&bus->lock); return irq_remaining ? IRQ_NONE : IRQ_HANDLED; } static int aspeed_i2c_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct aspeed_i2c_bus *bus = i2c_get_adapdata(adap); unsigned long time_left, flags; spin_lock_irqsave(&bus->lock, flags); bus->cmd_err = 0; /* If bus is busy in a single master environment, attempt recovery. */ if (!bus->multi_master && (readl(bus->base + ASPEED_I2C_CMD_REG) & ASPEED_I2CD_BUS_BUSY_STS)) { int ret; spin_unlock_irqrestore(&bus->lock, flags); ret = aspeed_i2c_recover_bus(bus); if (ret) return ret; spin_lock_irqsave(&bus->lock, flags); } bus->cmd_err = 0; bus->msgs = msgs; bus->msgs_index = 0; bus->msgs_count = num; reinit_completion(&bus->cmd_complete); aspeed_i2c_do_start(bus); spin_unlock_irqrestore(&bus->lock, flags); time_left = wait_for_completion_timeout(&bus->cmd_complete, bus->adap.timeout); if (time_left == 0) { /* * In a multi-master setup, if a timeout occurs, attempt * recovery. But if the bus is idle, we still need to reset the * i2c controller to clear the remaining interrupts. */ if (bus->multi_master && (readl(bus->base + ASPEED_I2C_CMD_REG) & ASPEED_I2CD_BUS_BUSY_STS)) aspeed_i2c_recover_bus(bus); else aspeed_i2c_reset(bus); /* * If timed out and the state is still pending, drop the pending * master command. */ spin_lock_irqsave(&bus->lock, flags); if (bus->master_state == ASPEED_I2C_MASTER_PENDING) bus->master_state = ASPEED_I2C_MASTER_INACTIVE; spin_unlock_irqrestore(&bus->lock, flags); return -ETIMEDOUT; } return bus->master_xfer_result; } static u32 aspeed_i2c_functionality(struct i2c_adapter *adap) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_SMBUS_BLOCK_DATA; } #if IS_ENABLED(CONFIG_I2C_SLAVE) /* precondition: bus.lock has been acquired. */ static void __aspeed_i2c_reg_slave(struct aspeed_i2c_bus *bus, u16 slave_addr) { u32 addr_reg_val, func_ctrl_reg_val; /* * Set slave addr. Reserved bits can all safely be written with zeros * on all of ast2[456]00, so zero everything else to ensure we only * enable a single slave address (ast2500 has two, ast2600 has three, * the enable bits for which are also in this register) so that we don't * end up with additional phantom devices responding on the bus. */ addr_reg_val = slave_addr & ASPEED_I2CD_DEV_ADDR_MASK; writel(addr_reg_val, bus->base + ASPEED_I2C_DEV_ADDR_REG); /* Turn on slave mode. */ func_ctrl_reg_val = readl(bus->base + ASPEED_I2C_FUN_CTRL_REG); func_ctrl_reg_val |= ASPEED_I2CD_SLAVE_EN; writel(func_ctrl_reg_val, bus->base + ASPEED_I2C_FUN_CTRL_REG); bus->slave_state = ASPEED_I2C_SLAVE_INACTIVE; } static int aspeed_i2c_reg_slave(struct i2c_client *client) { struct aspeed_i2c_bus *bus = i2c_get_adapdata(client->adapter); unsigned long flags; spin_lock_irqsave(&bus->lock, flags); if (bus->slave) { spin_unlock_irqrestore(&bus->lock, flags); return -EINVAL; } __aspeed_i2c_reg_slave(bus, client->addr); bus->slave = client; spin_unlock_irqrestore(&bus->lock, flags); return 0; } static int aspeed_i2c_unreg_slave(struct i2c_client *client) { struct aspeed_i2c_bus *bus = i2c_get_adapdata(client->adapter); u32 func_ctrl_reg_val; unsigned long flags; spin_lock_irqsave(&bus->lock, flags); if (!bus->slave) { spin_unlock_irqrestore(&bus->lock, flags); return -EINVAL; } /* Turn off slave mode. */ func_ctrl_reg_val = readl(bus->base + ASPEED_I2C_FUN_CTRL_REG); func_ctrl_reg_val &= ~ASPEED_I2CD_SLAVE_EN; writel(func_ctrl_reg_val, bus->base + ASPEED_I2C_FUN_CTRL_REG); bus->slave = NULL; spin_unlock_irqrestore(&bus->lock, flags); return 0; } #endif /* CONFIG_I2C_SLAVE */ static const struct i2c_algorithm aspeed_i2c_algo = { .master_xfer = aspeed_i2c_master_xfer, .functionality = aspeed_i2c_functionality, #if IS_ENABLED(CONFIG_I2C_SLAVE) .reg_slave = aspeed_i2c_reg_slave, .unreg_slave = aspeed_i2c_unreg_slave, #endif /* CONFIG_I2C_SLAVE */ }; static u32 aspeed_i2c_get_clk_reg_val(struct device *dev, u32 clk_high_low_mask, u32 divisor) { u32 base_clk_divisor, clk_high_low_max, clk_high, clk_low, tmp; /* * SCL_high and SCL_low represent a value 1 greater than what is stored * since a zero divider is meaningless. Thus, the max value each can * store is every bit set + 1. Since SCL_high and SCL_low are added * together (see below), the max value of both is the max value of one * them times two. */ clk_high_low_max = (clk_high_low_mask + 1) * 2; /* * The actual clock frequency of SCL is: * SCL_freq = APB_freq / (base_freq * (SCL_high + SCL_low)) * = APB_freq / divisor * where base_freq is a programmable clock divider; its value is * base_freq = 1 << base_clk_divisor * SCL_high is the number of base_freq clock cycles that SCL stays high * and SCL_low is the number of base_freq clock cycles that SCL stays * low for a period of SCL. * The actual register has a minimum SCL_high and SCL_low minimum of 1; * thus, they start counting at zero. So * SCL_high = clk_high + 1 * SCL_low = clk_low + 1 * Thus, * SCL_freq = APB_freq / * ((1 << base_clk_divisor) * (clk_high + 1 + clk_low + 1)) * The documentation recommends clk_high >= clk_high_max / 2 and * clk_low >= clk_low_max / 2 - 1 when possible; this last constraint * gives us the following solution: */ base_clk_divisor = divisor > clk_high_low_max ? ilog2((divisor - 1) / clk_high_low_max) + 1 : 0; if (base_clk_divisor > ASPEED_I2CD_TIME_BASE_DIVISOR_MASK) { base_clk_divisor = ASPEED_I2CD_TIME_BASE_DIVISOR_MASK; clk_low = clk_high_low_mask; clk_high = clk_high_low_mask; dev_err(dev, "clamping clock divider: divider requested, %u, is greater than largest possible divider, %u.\n", divisor, (1 << base_clk_divisor) * clk_high_low_max); } else { tmp = (divisor + (1 << base_clk_divisor) - 1) >> base_clk_divisor; clk_low = tmp / 2; clk_high = tmp - clk_low; if (clk_high) clk_high--; if (clk_low) clk_low--; } return ((clk_high << ASPEED_I2CD_TIME_SCL_HIGH_SHIFT) & ASPEED_I2CD_TIME_SCL_HIGH_MASK) | ((clk_low << ASPEED_I2CD_TIME_SCL_LOW_SHIFT) & ASPEED_I2CD_TIME_SCL_LOW_MASK) | (base_clk_divisor & ASPEED_I2CD_TIME_BASE_DIVISOR_MASK); } static u32 aspeed_i2c_24xx_get_clk_reg_val(struct device *dev, u32 divisor) { /* * clk_high and clk_low are each 3 bits wide, so each can hold a max * value of 8 giving a clk_high_low_max of 16. */ return aspeed_i2c_get_clk_reg_val(dev, GENMASK(2, 0), divisor); } static u32 aspeed_i2c_25xx_get_clk_reg_val(struct device *dev, u32 divisor) { /* * clk_high and clk_low are each 4 bits wide, so each can hold a max * value of 16 giving a clk_high_low_max of 32. */ return aspeed_i2c_get_clk_reg_val(dev, GENMASK(3, 0), divisor); } /* precondition: bus.lock has been acquired. */ static int aspeed_i2c_init_clk(struct aspeed_i2c_bus *bus) { u32 divisor, clk_reg_val; divisor = DIV_ROUND_UP(bus->parent_clk_frequency, bus->bus_frequency); clk_reg_val = readl(bus->base + ASPEED_I2C_AC_TIMING_REG1); clk_reg_val &= (ASPEED_I2CD_TIME_TBUF_MASK | ASPEED_I2CD_TIME_THDSTA_MASK | ASPEED_I2CD_TIME_TACST_MASK); clk_reg_val |= bus->get_clk_reg_val(bus->dev, divisor); writel(clk_reg_val, bus->base + ASPEED_I2C_AC_TIMING_REG1); writel(ASPEED_NO_TIMEOUT_CTRL, bus->base + ASPEED_I2C_AC_TIMING_REG2); return 0; } /* precondition: bus.lock has been acquired. */ static int aspeed_i2c_init(struct aspeed_i2c_bus *bus, struct platform_device *pdev) { u32 fun_ctrl_reg = ASPEED_I2CD_MASTER_EN; int ret; /* Disable everything. */ writel(0, bus->base + ASPEED_I2C_FUN_CTRL_REG); ret = aspeed_i2c_init_clk(bus); if (ret < 0) return ret; if (of_property_read_bool(pdev->dev.of_node, "multi-master")) bus->multi_master = true; else fun_ctrl_reg |= ASPEED_I2CD_MULTI_MASTER_DIS; /* Enable Master Mode */ writel(readl(bus->base + ASPEED_I2C_FUN_CTRL_REG) | fun_ctrl_reg, bus->base + ASPEED_I2C_FUN_CTRL_REG); #if IS_ENABLED(CONFIG_I2C_SLAVE) /* If slave has already been registered, re-enable it. */ if (bus->slave) __aspeed_i2c_reg_slave(bus, bus->slave->addr); #endif /* CONFIG_I2C_SLAVE */ /* Set interrupt generation of I2C controller */ writel(ASPEED_I2CD_INTR_ALL, bus->base + ASPEED_I2C_INTR_CTRL_REG); return 0; } static int aspeed_i2c_reset(struct aspeed_i2c_bus *bus) { struct platform_device *pdev = to_platform_device(bus->dev); unsigned long flags; int ret; spin_lock_irqsave(&bus->lock, flags); /* Disable and ack all interrupts. */ writel(0, bus->base + ASPEED_I2C_INTR_CTRL_REG); writel(0xffffffff, bus->base + ASPEED_I2C_INTR_STS_REG); ret = aspeed_i2c_init(bus, pdev); spin_unlock_irqrestore(&bus->lock, flags); return ret; } static const struct of_device_id aspeed_i2c_bus_of_table[] = { { .compatible = "aspeed,ast2400-i2c-bus", .data = aspeed_i2c_24xx_get_clk_reg_val, }, { .compatible = "aspeed,ast2500-i2c-bus", .data = aspeed_i2c_25xx_get_clk_reg_val, }, { .compatible = "aspeed,ast2600-i2c-bus", .data = aspeed_i2c_25xx_get_clk_reg_val, }, { }, }; MODULE_DEVICE_TABLE(of, aspeed_i2c_bus_of_table); static int aspeed_i2c_probe_bus(struct platform_device *pdev) { const struct of_device_id *match; struct aspeed_i2c_bus *bus; struct clk *parent_clk; int irq, ret; bus = devm_kzalloc(&pdev->dev, sizeof(*bus), GFP_KERNEL); if (!bus) return -ENOMEM; bus->base = devm_platform_get_and_ioremap_resource(pdev, 0, NULL); if (IS_ERR(bus->base)) return PTR_ERR(bus->base); parent_clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(parent_clk)) return PTR_ERR(parent_clk); bus->parent_clk_frequency = clk_get_rate(parent_clk); /* We just need the clock rate, we don't actually use the clk object. */ devm_clk_put(&pdev->dev, parent_clk); bus->rst = devm_reset_control_get_shared(&pdev->dev, NULL); if (IS_ERR(bus->rst)) { dev_err(&pdev->dev, "missing or invalid reset controller device tree entry\n"); return PTR_ERR(bus->rst); } reset_control_deassert(bus->rst); ret = of_property_read_u32(pdev->dev.of_node, "bus-frequency", &bus->bus_frequency); if (ret < 0) { dev_err(&pdev->dev, "Could not read bus-frequency property\n"); bus->bus_frequency = I2C_MAX_STANDARD_MODE_FREQ; } match = of_match_node(aspeed_i2c_bus_of_table, pdev->dev.of_node); if (!match) bus->get_clk_reg_val = aspeed_i2c_24xx_get_clk_reg_val; else bus->get_clk_reg_val = (u32 (*)(struct device *, u32)) match->data; /* Initialize the I2C adapter */ spin_lock_init(&bus->lock); init_completion(&bus->cmd_complete); bus->adap.owner = THIS_MODULE; bus->adap.retries = 0; bus->adap.algo = &aspeed_i2c_algo; bus->adap.dev.parent = &pdev->dev; bus->adap.dev.of_node = pdev->dev.of_node; strscpy(bus->adap.name, pdev->name, sizeof(bus->adap.name)); i2c_set_adapdata(&bus->adap, bus); bus->dev = &pdev->dev; /* Clean up any left over interrupt state. */ writel(0, bus->base + ASPEED_I2C_INTR_CTRL_REG); writel(0xffffffff, bus->base + ASPEED_I2C_INTR_STS_REG); /* * bus.lock does not need to be held because the interrupt handler has * not been enabled yet. */ ret = aspeed_i2c_init(bus, pdev); if (ret < 0) return ret; irq = irq_of_parse_and_map(pdev->dev.of_node, 0); ret = devm_request_irq(&pdev->dev, irq, aspeed_i2c_bus_irq, 0, dev_name(&pdev->dev), bus); if (ret < 0) return ret; ret = i2c_add_adapter(&bus->adap); if (ret < 0) return ret; platform_set_drvdata(pdev, bus); dev_info(bus->dev, "i2c bus %d registered, irq %d\n", bus->adap.nr, irq); return 0; } static void aspeed_i2c_remove_bus(struct platform_device *pdev) { struct aspeed_i2c_bus *bus = platform_get_drvdata(pdev); unsigned long flags; spin_lock_irqsave(&bus->lock, flags); /* Disable everything. */ writel(0, bus->base + ASPEED_I2C_FUN_CTRL_REG); writel(0, bus->base + ASPEED_I2C_INTR_CTRL_REG); spin_unlock_irqrestore(&bus->lock, flags); reset_control_assert(bus->rst); i2c_del_adapter(&bus->adap); } static struct platform_driver aspeed_i2c_bus_driver = { .probe = aspeed_i2c_probe_bus, .remove_new = aspeed_i2c_remove_bus, .driver = { .name = "aspeed-i2c-bus", .of_match_table = aspeed_i2c_bus_of_table, }, }; module_platform_driver(aspeed_i2c_bus_driver); MODULE_AUTHOR("Brendan Higgins <brendanhiggins@google.com>"); MODULE_DESCRIPTION("Aspeed I2C Bus Driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1