Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Boris Brezillon | 8012 | 97.45% | 1 | 7.69% |
Przemyslaw Gaj | 130 | 1.58% | 2 | 15.38% |
Andy Shevchenko | 42 | 0.51% | 1 | 7.69% |
Joshua Yeong | 11 | 0.13% | 1 | 7.69% |
Harshit Shah | 7 | 0.09% | 1 | 7.69% |
Jing Xiangfeng | 7 | 0.09% | 1 | 7.69% |
Kees Cook | 5 | 0.06% | 1 | 7.69% |
Uwe Kleine-König | 2 | 0.02% | 1 | 7.69% |
Gustavo A. R. Silva | 2 | 0.02% | 2 | 15.38% |
Yangtao Li | 2 | 0.02% | 1 | 7.69% |
Christophe Jaillet | 2 | 0.02% | 1 | 7.69% |
Total | 8222 | 13 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2018 Cadence Design Systems Inc. * * Author: Boris Brezillon <boris.brezillon@bootlin.com> */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/errno.h> #include <linux/i3c/master.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/ioport.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/module.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/workqueue.h> #define DEV_ID 0x0 #define DEV_ID_I3C_MASTER 0x5034 #define CONF_STATUS0 0x4 #define CONF_STATUS0_CMDR_DEPTH(x) (4 << (((x) & GENMASK(31, 29)) >> 29)) #define CONF_STATUS0_ECC_CHK BIT(28) #define CONF_STATUS0_INTEG_CHK BIT(27) #define CONF_STATUS0_CSR_DAP_CHK BIT(26) #define CONF_STATUS0_TRANS_TOUT_CHK BIT(25) #define CONF_STATUS0_PROT_FAULTS_CHK BIT(24) #define CONF_STATUS0_GPO_NUM(x) (((x) & GENMASK(23, 16)) >> 16) #define CONF_STATUS0_GPI_NUM(x) (((x) & GENMASK(15, 8)) >> 8) #define CONF_STATUS0_IBIR_DEPTH(x) (4 << (((x) & GENMASK(7, 6)) >> 7)) #define CONF_STATUS0_SUPPORTS_DDR BIT(5) #define CONF_STATUS0_SEC_MASTER BIT(4) #define CONF_STATUS0_DEVS_NUM(x) ((x) & GENMASK(3, 0)) #define CONF_STATUS1 0x8 #define CONF_STATUS1_IBI_HW_RES(x) ((((x) & GENMASK(31, 28)) >> 28) + 1) #define CONF_STATUS1_CMD_DEPTH(x) (4 << (((x) & GENMASK(27, 26)) >> 26)) #define CONF_STATUS1_SLVDDR_RX_DEPTH(x) (8 << (((x) & GENMASK(25, 21)) >> 21)) #define CONF_STATUS1_SLVDDR_TX_DEPTH(x) (8 << (((x) & GENMASK(20, 16)) >> 16)) #define CONF_STATUS1_IBI_DEPTH(x) (2 << (((x) & GENMASK(12, 10)) >> 10)) #define CONF_STATUS1_RX_DEPTH(x) (8 << (((x) & GENMASK(9, 5)) >> 5)) #define CONF_STATUS1_TX_DEPTH(x) (8 << ((x) & GENMASK(4, 0))) #define REV_ID 0xc #define REV_ID_VID(id) (((id) & GENMASK(31, 20)) >> 20) #define REV_ID_PID(id) (((id) & GENMASK(19, 8)) >> 8) #define REV_ID_REV_MAJOR(id) (((id) & GENMASK(7, 4)) >> 4) #define REV_ID_REV_MINOR(id) ((id) & GENMASK(3, 0)) #define CTRL 0x10 #define CTRL_DEV_EN BIT(31) #define CTRL_HALT_EN BIT(30) #define CTRL_MCS BIT(29) #define CTRL_MCS_EN BIT(28) #define CTRL_THD_DELAY(x) (((x) << 24) & GENMASK(25, 24)) #define CTRL_HJ_DISEC BIT(8) #define CTRL_MST_ACK BIT(7) #define CTRL_HJ_ACK BIT(6) #define CTRL_HJ_INIT BIT(5) #define CTRL_MST_INIT BIT(4) #define CTRL_AHDR_OPT BIT(3) #define CTRL_PURE_BUS_MODE 0 #define CTRL_MIXED_FAST_BUS_MODE 2 #define CTRL_MIXED_SLOW_BUS_MODE 3 #define CTRL_BUS_MODE_MASK GENMASK(1, 0) #define THD_DELAY_MAX 3 #define PRESCL_CTRL0 0x14 #define PRESCL_CTRL0_I2C(x) ((x) << 16) #define PRESCL_CTRL0_I3C(x) (x) #define PRESCL_CTRL0_I3C_MAX GENMASK(9, 0) #define PRESCL_CTRL0_I2C_MAX GENMASK(15, 0) #define PRESCL_CTRL1 0x18 #define PRESCL_CTRL1_PP_LOW_MASK GENMASK(15, 8) #define PRESCL_CTRL1_PP_LOW(x) ((x) << 8) #define PRESCL_CTRL1_OD_LOW_MASK GENMASK(7, 0) #define PRESCL_CTRL1_OD_LOW(x) (x) #define MST_IER 0x20 #define MST_IDR 0x24 #define MST_IMR 0x28 #define MST_ICR 0x2c #define MST_ISR 0x30 #define MST_INT_HALTED BIT(18) #define MST_INT_MR_DONE BIT(17) #define MST_INT_IMM_COMP BIT(16) #define MST_INT_TX_THR BIT(15) #define MST_INT_TX_OVF BIT(14) #define MST_INT_IBID_THR BIT(12) #define MST_INT_IBID_UNF BIT(11) #define MST_INT_IBIR_THR BIT(10) #define MST_INT_IBIR_UNF BIT(9) #define MST_INT_IBIR_OVF BIT(8) #define MST_INT_RX_THR BIT(7) #define MST_INT_RX_UNF BIT(6) #define MST_INT_CMDD_EMP BIT(5) #define MST_INT_CMDD_THR BIT(4) #define MST_INT_CMDD_OVF BIT(3) #define MST_INT_CMDR_THR BIT(2) #define MST_INT_CMDR_UNF BIT(1) #define MST_INT_CMDR_OVF BIT(0) #define MST_STATUS0 0x34 #define MST_STATUS0_IDLE BIT(18) #define MST_STATUS0_HALTED BIT(17) #define MST_STATUS0_MASTER_MODE BIT(16) #define MST_STATUS0_TX_FULL BIT(13) #define MST_STATUS0_IBID_FULL BIT(12) #define MST_STATUS0_IBIR_FULL BIT(11) #define MST_STATUS0_RX_FULL BIT(10) #define MST_STATUS0_CMDD_FULL BIT(9) #define MST_STATUS0_CMDR_FULL BIT(8) #define MST_STATUS0_TX_EMP BIT(5) #define MST_STATUS0_IBID_EMP BIT(4) #define MST_STATUS0_IBIR_EMP BIT(3) #define MST_STATUS0_RX_EMP BIT(2) #define MST_STATUS0_CMDD_EMP BIT(1) #define MST_STATUS0_CMDR_EMP BIT(0) #define CMDR 0x38 #define CMDR_NO_ERROR 0 #define CMDR_DDR_PREAMBLE_ERROR 1 #define CMDR_DDR_PARITY_ERROR 2 #define CMDR_DDR_RX_FIFO_OVF 3 #define CMDR_DDR_TX_FIFO_UNF 4 #define CMDR_M0_ERROR 5 #define CMDR_M1_ERROR 6 #define CMDR_M2_ERROR 7 #define CMDR_MST_ABORT 8 #define CMDR_NACK_RESP 9 #define CMDR_INVALID_DA 10 #define CMDR_DDR_DROPPED 11 #define CMDR_ERROR(x) (((x) & GENMASK(27, 24)) >> 24) #define CMDR_XFER_BYTES(x) (((x) & GENMASK(19, 8)) >> 8) #define CMDR_CMDID_HJACK_DISEC 0xfe #define CMDR_CMDID_HJACK_ENTDAA 0xff #define CMDR_CMDID(x) ((x) & GENMASK(7, 0)) #define IBIR 0x3c #define IBIR_ACKED BIT(12) #define IBIR_SLVID(x) (((x) & GENMASK(11, 8)) >> 8) #define IBIR_ERROR BIT(7) #define IBIR_XFER_BYTES(x) (((x) & GENMASK(6, 2)) >> 2) #define IBIR_TYPE_IBI 0 #define IBIR_TYPE_HJ 1 #define IBIR_TYPE_MR 2 #define IBIR_TYPE(x) ((x) & GENMASK(1, 0)) #define SLV_IER 0x40 #define SLV_IDR 0x44 #define SLV_IMR 0x48 #define SLV_ICR 0x4c #define SLV_ISR 0x50 #define SLV_INT_TM BIT(20) #define SLV_INT_ERROR BIT(19) #define SLV_INT_EVENT_UP BIT(18) #define SLV_INT_HJ_DONE BIT(17) #define SLV_INT_MR_DONE BIT(16) #define SLV_INT_DA_UPD BIT(15) #define SLV_INT_SDR_FAIL BIT(14) #define SLV_INT_DDR_FAIL BIT(13) #define SLV_INT_M_RD_ABORT BIT(12) #define SLV_INT_DDR_RX_THR BIT(11) #define SLV_INT_DDR_TX_THR BIT(10) #define SLV_INT_SDR_RX_THR BIT(9) #define SLV_INT_SDR_TX_THR BIT(8) #define SLV_INT_DDR_RX_UNF BIT(7) #define SLV_INT_DDR_TX_OVF BIT(6) #define SLV_INT_SDR_RX_UNF BIT(5) #define SLV_INT_SDR_TX_OVF BIT(4) #define SLV_INT_DDR_RD_COMP BIT(3) #define SLV_INT_DDR_WR_COMP BIT(2) #define SLV_INT_SDR_RD_COMP BIT(1) #define SLV_INT_SDR_WR_COMP BIT(0) #define SLV_STATUS0 0x54 #define SLV_STATUS0_REG_ADDR(s) (((s) & GENMASK(23, 16)) >> 16) #define SLV_STATUS0_XFRD_BYTES(s) ((s) & GENMASK(15, 0)) #define SLV_STATUS1 0x58 #define SLV_STATUS1_AS(s) (((s) & GENMASK(21, 20)) >> 20) #define SLV_STATUS1_VEN_TM BIT(19) #define SLV_STATUS1_HJ_DIS BIT(18) #define SLV_STATUS1_MR_DIS BIT(17) #define SLV_STATUS1_PROT_ERR BIT(16) #define SLV_STATUS1_DA(s) (((s) & GENMASK(15, 9)) >> 9) #define SLV_STATUS1_HAS_DA BIT(8) #define SLV_STATUS1_DDR_RX_FULL BIT(7) #define SLV_STATUS1_DDR_TX_FULL BIT(6) #define SLV_STATUS1_DDR_RX_EMPTY BIT(5) #define SLV_STATUS1_DDR_TX_EMPTY BIT(4) #define SLV_STATUS1_SDR_RX_FULL BIT(3) #define SLV_STATUS1_SDR_TX_FULL BIT(2) #define SLV_STATUS1_SDR_RX_EMPTY BIT(1) #define SLV_STATUS1_SDR_TX_EMPTY BIT(0) #define CMD0_FIFO 0x60 #define CMD0_FIFO_IS_DDR BIT(31) #define CMD0_FIFO_IS_CCC BIT(30) #define CMD0_FIFO_BCH BIT(29) #define XMIT_BURST_STATIC_SUBADDR 0 #define XMIT_SINGLE_INC_SUBADDR 1 #define XMIT_SINGLE_STATIC_SUBADDR 2 #define XMIT_BURST_WITHOUT_SUBADDR 3 #define CMD0_FIFO_PRIV_XMIT_MODE(m) ((m) << 27) #define CMD0_FIFO_SBCA BIT(26) #define CMD0_FIFO_RSBC BIT(25) #define CMD0_FIFO_IS_10B BIT(24) #define CMD0_FIFO_PL_LEN(l) ((l) << 12) #define CMD0_FIFO_PL_LEN_MAX 4095 #define CMD0_FIFO_DEV_ADDR(a) ((a) << 1) #define CMD0_FIFO_RNW BIT(0) #define CMD1_FIFO 0x64 #define CMD1_FIFO_CMDID(id) ((id) << 24) #define CMD1_FIFO_CSRADDR(a) (a) #define CMD1_FIFO_CCC(id) (id) #define TX_FIFO 0x68 #define IMD_CMD0 0x70 #define IMD_CMD0_PL_LEN(l) ((l) << 12) #define IMD_CMD0_DEV_ADDR(a) ((a) << 1) #define IMD_CMD0_RNW BIT(0) #define IMD_CMD1 0x74 #define IMD_CMD1_CCC(id) (id) #define IMD_DATA 0x78 #define RX_FIFO 0x80 #define IBI_DATA_FIFO 0x84 #define SLV_DDR_TX_FIFO 0x88 #define SLV_DDR_RX_FIFO 0x8c #define CMD_IBI_THR_CTRL 0x90 #define IBIR_THR(t) ((t) << 24) #define CMDR_THR(t) ((t) << 16) #define IBI_THR(t) ((t) << 8) #define CMD_THR(t) (t) #define TX_RX_THR_CTRL 0x94 #define RX_THR(t) ((t) << 16) #define TX_THR(t) (t) #define SLV_DDR_TX_RX_THR_CTRL 0x98 #define SLV_DDR_RX_THR(t) ((t) << 16) #define SLV_DDR_TX_THR(t) (t) #define FLUSH_CTRL 0x9c #define FLUSH_IBI_RESP BIT(23) #define FLUSH_CMD_RESP BIT(22) #define FLUSH_SLV_DDR_RX_FIFO BIT(22) #define FLUSH_SLV_DDR_TX_FIFO BIT(21) #define FLUSH_IMM_FIFO BIT(20) #define FLUSH_IBI_FIFO BIT(19) #define FLUSH_RX_FIFO BIT(18) #define FLUSH_TX_FIFO BIT(17) #define FLUSH_CMD_FIFO BIT(16) #define TTO_PRESCL_CTRL0 0xb0 #define TTO_PRESCL_CTRL0_DIVB(x) ((x) << 16) #define TTO_PRESCL_CTRL0_DIVA(x) (x) #define TTO_PRESCL_CTRL1 0xb4 #define TTO_PRESCL_CTRL1_DIVB(x) ((x) << 16) #define TTO_PRESCL_CTRL1_DIVA(x) (x) #define DEVS_CTRL 0xb8 #define DEVS_CTRL_DEV_CLR_SHIFT 16 #define DEVS_CTRL_DEV_CLR_ALL GENMASK(31, 16) #define DEVS_CTRL_DEV_CLR(dev) BIT(16 + (dev)) #define DEVS_CTRL_DEV_ACTIVE(dev) BIT(dev) #define DEVS_CTRL_DEVS_ACTIVE_MASK GENMASK(15, 0) #define MAX_DEVS 16 #define DEV_ID_RR0(d) (0xc0 + ((d) * 0x10)) #define DEV_ID_RR0_LVR_EXT_ADDR BIT(11) #define DEV_ID_RR0_HDR_CAP BIT(10) #define DEV_ID_RR0_IS_I3C BIT(9) #define DEV_ID_RR0_DEV_ADDR_MASK (GENMASK(6, 0) | GENMASK(15, 13)) #define DEV_ID_RR0_SET_DEV_ADDR(a) (((a) & GENMASK(6, 0)) | \ (((a) & GENMASK(9, 7)) << 6)) #define DEV_ID_RR0_GET_DEV_ADDR(x) ((((x) >> 1) & GENMASK(6, 0)) | \ (((x) >> 6) & GENMASK(9, 7))) #define DEV_ID_RR1(d) (0xc4 + ((d) * 0x10)) #define DEV_ID_RR1_PID_MSB(pid) (pid) #define DEV_ID_RR2(d) (0xc8 + ((d) * 0x10)) #define DEV_ID_RR2_PID_LSB(pid) ((pid) << 16) #define DEV_ID_RR2_BCR(bcr) ((bcr) << 8) #define DEV_ID_RR2_DCR(dcr) (dcr) #define DEV_ID_RR2_LVR(lvr) (lvr) #define SIR_MAP(x) (0x180 + ((x) * 4)) #define SIR_MAP_DEV_REG(d) SIR_MAP((d) / 2) #define SIR_MAP_DEV_SHIFT(d, fs) ((fs) + (((d) % 2) ? 16 : 0)) #define SIR_MAP_DEV_CONF_MASK(d) (GENMASK(15, 0) << (((d) % 2) ? 16 : 0)) #define SIR_MAP_DEV_CONF(d, c) ((c) << (((d) % 2) ? 16 : 0)) #define DEV_ROLE_SLAVE 0 #define DEV_ROLE_MASTER 1 #define SIR_MAP_DEV_ROLE(role) ((role) << 14) #define SIR_MAP_DEV_SLOW BIT(13) #define SIR_MAP_DEV_PL(l) ((l) << 8) #define SIR_MAP_PL_MAX GENMASK(4, 0) #define SIR_MAP_DEV_DA(a) ((a) << 1) #define SIR_MAP_DEV_ACK BIT(0) #define GPIR_WORD(x) (0x200 + ((x) * 4)) #define GPI_REG(val, id) \ (((val) >> (((id) % 4) * 8)) & GENMASK(7, 0)) #define GPOR_WORD(x) (0x220 + ((x) * 4)) #define GPO_REG(val, id) \ (((val) >> (((id) % 4) * 8)) & GENMASK(7, 0)) #define ASF_INT_STATUS 0x300 #define ASF_INT_RAW_STATUS 0x304 #define ASF_INT_MASK 0x308 #define ASF_INT_TEST 0x30c #define ASF_INT_FATAL_SELECT 0x310 #define ASF_INTEGRITY_ERR BIT(6) #define ASF_PROTOCOL_ERR BIT(5) #define ASF_TRANS_TIMEOUT_ERR BIT(4) #define ASF_CSR_ERR BIT(3) #define ASF_DAP_ERR BIT(2) #define ASF_SRAM_UNCORR_ERR BIT(1) #define ASF_SRAM_CORR_ERR BIT(0) #define ASF_SRAM_CORR_FAULT_STATUS 0x320 #define ASF_SRAM_UNCORR_FAULT_STATUS 0x324 #define ASF_SRAM_CORR_FAULT_INSTANCE(x) ((x) >> 24) #define ASF_SRAM_CORR_FAULT_ADDR(x) ((x) & GENMASK(23, 0)) #define ASF_SRAM_FAULT_STATS 0x328 #define ASF_SRAM_FAULT_UNCORR_STATS(x) ((x) >> 16) #define ASF_SRAM_FAULT_CORR_STATS(x) ((x) & GENMASK(15, 0)) #define ASF_TRANS_TOUT_CTRL 0x330 #define ASF_TRANS_TOUT_EN BIT(31) #define ASF_TRANS_TOUT_VAL(x) (x) #define ASF_TRANS_TOUT_FAULT_MASK 0x334 #define ASF_TRANS_TOUT_FAULT_STATUS 0x338 #define ASF_TRANS_TOUT_FAULT_APB BIT(3) #define ASF_TRANS_TOUT_FAULT_SCL_LOW BIT(2) #define ASF_TRANS_TOUT_FAULT_SCL_HIGH BIT(1) #define ASF_TRANS_TOUT_FAULT_FSCL_HIGH BIT(0) #define ASF_PROTO_FAULT_MASK 0x340 #define ASF_PROTO_FAULT_STATUS 0x344 #define ASF_PROTO_FAULT_SLVSDR_RD_ABORT BIT(31) #define ASF_PROTO_FAULT_SLVDDR_FAIL BIT(30) #define ASF_PROTO_FAULT_S(x) BIT(16 + (x)) #define ASF_PROTO_FAULT_MSTSDR_RD_ABORT BIT(15) #define ASF_PROTO_FAULT_MSTDDR_FAIL BIT(14) #define ASF_PROTO_FAULT_M(x) BIT(x) struct cdns_i3c_master_caps { u32 cmdfifodepth; u32 cmdrfifodepth; u32 txfifodepth; u32 rxfifodepth; u32 ibirfifodepth; }; struct cdns_i3c_cmd { u32 cmd0; u32 cmd1; u32 tx_len; const void *tx_buf; u32 rx_len; void *rx_buf; u32 error; }; struct cdns_i3c_xfer { struct list_head node; struct completion comp; int ret; unsigned int ncmds; struct cdns_i3c_cmd cmds[] __counted_by(ncmds); }; struct cdns_i3c_data { u8 thd_delay_ns; }; struct cdns_i3c_master { struct work_struct hj_work; struct i3c_master_controller base; u32 free_rr_slots; unsigned int maxdevs; struct { unsigned int num_slots; struct i3c_dev_desc **slots; spinlock_t lock; } ibi; struct { struct list_head list; struct cdns_i3c_xfer *cur; spinlock_t lock; } xferqueue; void __iomem *regs; struct clk *sysclk; struct clk *pclk; struct cdns_i3c_master_caps caps; unsigned long i3c_scl_lim; const struct cdns_i3c_data *devdata; }; static inline struct cdns_i3c_master * to_cdns_i3c_master(struct i3c_master_controller *master) { return container_of(master, struct cdns_i3c_master, base); } static void cdns_i3c_master_wr_to_tx_fifo(struct cdns_i3c_master *master, const u8 *bytes, int nbytes) { writesl(master->regs + TX_FIFO, bytes, nbytes / 4); if (nbytes & 3) { u32 tmp = 0; memcpy(&tmp, bytes + (nbytes & ~3), nbytes & 3); writesl(master->regs + TX_FIFO, &tmp, 1); } } static void cdns_i3c_master_rd_from_rx_fifo(struct cdns_i3c_master *master, u8 *bytes, int nbytes) { readsl(master->regs + RX_FIFO, bytes, nbytes / 4); if (nbytes & 3) { u32 tmp; readsl(master->regs + RX_FIFO, &tmp, 1); memcpy(bytes + (nbytes & ~3), &tmp, nbytes & 3); } } static bool cdns_i3c_master_supports_ccc_cmd(struct i3c_master_controller *m, const struct i3c_ccc_cmd *cmd) { if (cmd->ndests > 1) return false; switch (cmd->id) { case I3C_CCC_ENEC(true): case I3C_CCC_ENEC(false): case I3C_CCC_DISEC(true): case I3C_CCC_DISEC(false): case I3C_CCC_ENTAS(0, true): case I3C_CCC_ENTAS(0, false): case I3C_CCC_RSTDAA(true): case I3C_CCC_RSTDAA(false): case I3C_CCC_ENTDAA: case I3C_CCC_SETMWL(true): case I3C_CCC_SETMWL(false): case I3C_CCC_SETMRL(true): case I3C_CCC_SETMRL(false): case I3C_CCC_DEFSLVS: case I3C_CCC_ENTHDR(0): case I3C_CCC_SETDASA: case I3C_CCC_SETNEWDA: case I3C_CCC_GETMWL: case I3C_CCC_GETMRL: case I3C_CCC_GETPID: case I3C_CCC_GETBCR: case I3C_CCC_GETDCR: case I3C_CCC_GETSTATUS: case I3C_CCC_GETACCMST: case I3C_CCC_GETMXDS: case I3C_CCC_GETHDRCAP: return true; default: break; } return false; } static int cdns_i3c_master_disable(struct cdns_i3c_master *master) { u32 status; writel(readl(master->regs + CTRL) & ~CTRL_DEV_EN, master->regs + CTRL); return readl_poll_timeout(master->regs + MST_STATUS0, status, status & MST_STATUS0_IDLE, 10, 1000000); } static void cdns_i3c_master_enable(struct cdns_i3c_master *master) { writel(readl(master->regs + CTRL) | CTRL_DEV_EN, master->regs + CTRL); } static struct cdns_i3c_xfer * cdns_i3c_master_alloc_xfer(struct cdns_i3c_master *master, unsigned int ncmds) { struct cdns_i3c_xfer *xfer; xfer = kzalloc(struct_size(xfer, cmds, ncmds), GFP_KERNEL); if (!xfer) return NULL; INIT_LIST_HEAD(&xfer->node); xfer->ncmds = ncmds; xfer->ret = -ETIMEDOUT; return xfer; } static void cdns_i3c_master_free_xfer(struct cdns_i3c_xfer *xfer) { kfree(xfer); } static void cdns_i3c_master_start_xfer_locked(struct cdns_i3c_master *master) { struct cdns_i3c_xfer *xfer = master->xferqueue.cur; unsigned int i; if (!xfer) return; writel(MST_INT_CMDD_EMP, master->regs + MST_ICR); for (i = 0; i < xfer->ncmds; i++) { struct cdns_i3c_cmd *cmd = &xfer->cmds[i]; cdns_i3c_master_wr_to_tx_fifo(master, cmd->tx_buf, cmd->tx_len); } for (i = 0; i < xfer->ncmds; i++) { struct cdns_i3c_cmd *cmd = &xfer->cmds[i]; writel(cmd->cmd1 | CMD1_FIFO_CMDID(i), master->regs + CMD1_FIFO); writel(cmd->cmd0, master->regs + CMD0_FIFO); } writel(readl(master->regs + CTRL) | CTRL_MCS, master->regs + CTRL); writel(MST_INT_CMDD_EMP, master->regs + MST_IER); } static void cdns_i3c_master_end_xfer_locked(struct cdns_i3c_master *master, u32 isr) { struct cdns_i3c_xfer *xfer = master->xferqueue.cur; int i, ret = 0; u32 status0; if (!xfer) return; if (!(isr & MST_INT_CMDD_EMP)) return; writel(MST_INT_CMDD_EMP, master->regs + MST_IDR); for (status0 = readl(master->regs + MST_STATUS0); !(status0 & MST_STATUS0_CMDR_EMP); status0 = readl(master->regs + MST_STATUS0)) { struct cdns_i3c_cmd *cmd; u32 cmdr, rx_len, id; cmdr = readl(master->regs + CMDR); id = CMDR_CMDID(cmdr); if (id == CMDR_CMDID_HJACK_DISEC || id == CMDR_CMDID_HJACK_ENTDAA || WARN_ON(id >= xfer->ncmds)) continue; cmd = &xfer->cmds[CMDR_CMDID(cmdr)]; rx_len = min_t(u32, CMDR_XFER_BYTES(cmdr), cmd->rx_len); cdns_i3c_master_rd_from_rx_fifo(master, cmd->rx_buf, rx_len); cmd->error = CMDR_ERROR(cmdr); } for (i = 0; i < xfer->ncmds; i++) { switch (xfer->cmds[i].error) { case CMDR_NO_ERROR: break; case CMDR_DDR_PREAMBLE_ERROR: case CMDR_DDR_PARITY_ERROR: case CMDR_M0_ERROR: case CMDR_M1_ERROR: case CMDR_M2_ERROR: case CMDR_MST_ABORT: case CMDR_NACK_RESP: case CMDR_DDR_DROPPED: ret = -EIO; break; case CMDR_DDR_RX_FIFO_OVF: case CMDR_DDR_TX_FIFO_UNF: ret = -ENOSPC; break; case CMDR_INVALID_DA: default: ret = -EINVAL; break; } } xfer->ret = ret; complete(&xfer->comp); xfer = list_first_entry_or_null(&master->xferqueue.list, struct cdns_i3c_xfer, node); if (xfer) list_del_init(&xfer->node); master->xferqueue.cur = xfer; cdns_i3c_master_start_xfer_locked(master); } static void cdns_i3c_master_queue_xfer(struct cdns_i3c_master *master, struct cdns_i3c_xfer *xfer) { unsigned long flags; init_completion(&xfer->comp); spin_lock_irqsave(&master->xferqueue.lock, flags); if (master->xferqueue.cur) { list_add_tail(&xfer->node, &master->xferqueue.list); } else { master->xferqueue.cur = xfer; cdns_i3c_master_start_xfer_locked(master); } spin_unlock_irqrestore(&master->xferqueue.lock, flags); } static void cdns_i3c_master_unqueue_xfer(struct cdns_i3c_master *master, struct cdns_i3c_xfer *xfer) { unsigned long flags; spin_lock_irqsave(&master->xferqueue.lock, flags); if (master->xferqueue.cur == xfer) { u32 status; writel(readl(master->regs + CTRL) & ~CTRL_DEV_EN, master->regs + CTRL); readl_poll_timeout_atomic(master->regs + MST_STATUS0, status, status & MST_STATUS0_IDLE, 10, 1000000); master->xferqueue.cur = NULL; writel(FLUSH_RX_FIFO | FLUSH_TX_FIFO | FLUSH_CMD_FIFO | FLUSH_CMD_RESP, master->regs + FLUSH_CTRL); writel(MST_INT_CMDD_EMP, master->regs + MST_IDR); writel(readl(master->regs + CTRL) | CTRL_DEV_EN, master->regs + CTRL); } else { list_del_init(&xfer->node); } spin_unlock_irqrestore(&master->xferqueue.lock, flags); } static enum i3c_error_code cdns_i3c_cmd_get_err(struct cdns_i3c_cmd *cmd) { switch (cmd->error) { case CMDR_M0_ERROR: return I3C_ERROR_M0; case CMDR_M1_ERROR: return I3C_ERROR_M1; case CMDR_M2_ERROR: case CMDR_NACK_RESP: return I3C_ERROR_M2; default: break; } return I3C_ERROR_UNKNOWN; } static int cdns_i3c_master_send_ccc_cmd(struct i3c_master_controller *m, struct i3c_ccc_cmd *cmd) { struct cdns_i3c_master *master = to_cdns_i3c_master(m); struct cdns_i3c_xfer *xfer; struct cdns_i3c_cmd *ccmd; int ret; xfer = cdns_i3c_master_alloc_xfer(master, 1); if (!xfer) return -ENOMEM; ccmd = xfer->cmds; ccmd->cmd1 = CMD1_FIFO_CCC(cmd->id); ccmd->cmd0 = CMD0_FIFO_IS_CCC | CMD0_FIFO_PL_LEN(cmd->dests[0].payload.len); if (cmd->id & I3C_CCC_DIRECT) ccmd->cmd0 |= CMD0_FIFO_DEV_ADDR(cmd->dests[0].addr); if (cmd->rnw) { ccmd->cmd0 |= CMD0_FIFO_RNW; ccmd->rx_buf = cmd->dests[0].payload.data; ccmd->rx_len = cmd->dests[0].payload.len; } else { ccmd->tx_buf = cmd->dests[0].payload.data; ccmd->tx_len = cmd->dests[0].payload.len; } cdns_i3c_master_queue_xfer(master, xfer); if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000))) cdns_i3c_master_unqueue_xfer(master, xfer); ret = xfer->ret; cmd->err = cdns_i3c_cmd_get_err(&xfer->cmds[0]); cdns_i3c_master_free_xfer(xfer); return ret; } static int cdns_i3c_master_priv_xfers(struct i3c_dev_desc *dev, struct i3c_priv_xfer *xfers, int nxfers) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct cdns_i3c_master *master = to_cdns_i3c_master(m); int txslots = 0, rxslots = 0, i, ret; struct cdns_i3c_xfer *cdns_xfer; for (i = 0; i < nxfers; i++) { if (xfers[i].len > CMD0_FIFO_PL_LEN_MAX) return -ENOTSUPP; } if (!nxfers) return 0; if (nxfers > master->caps.cmdfifodepth || nxfers > master->caps.cmdrfifodepth) return -ENOTSUPP; /* * First make sure that all transactions (block of transfers separated * by a STOP marker) fit in the FIFOs. */ for (i = 0; i < nxfers; i++) { if (xfers[i].rnw) rxslots += DIV_ROUND_UP(xfers[i].len, 4); else txslots += DIV_ROUND_UP(xfers[i].len, 4); } if (rxslots > master->caps.rxfifodepth || txslots > master->caps.txfifodepth) return -ENOTSUPP; cdns_xfer = cdns_i3c_master_alloc_xfer(master, nxfers); if (!cdns_xfer) return -ENOMEM; for (i = 0; i < nxfers; i++) { struct cdns_i3c_cmd *ccmd = &cdns_xfer->cmds[i]; u32 pl_len = xfers[i].len; ccmd->cmd0 = CMD0_FIFO_DEV_ADDR(dev->info.dyn_addr) | CMD0_FIFO_PRIV_XMIT_MODE(XMIT_BURST_WITHOUT_SUBADDR); if (xfers[i].rnw) { ccmd->cmd0 |= CMD0_FIFO_RNW; ccmd->rx_buf = xfers[i].data.in; ccmd->rx_len = xfers[i].len; pl_len++; } else { ccmd->tx_buf = xfers[i].data.out; ccmd->tx_len = xfers[i].len; } ccmd->cmd0 |= CMD0_FIFO_PL_LEN(pl_len); if (i < nxfers - 1) ccmd->cmd0 |= CMD0_FIFO_RSBC; if (!i) ccmd->cmd0 |= CMD0_FIFO_BCH; } cdns_i3c_master_queue_xfer(master, cdns_xfer); if (!wait_for_completion_timeout(&cdns_xfer->comp, msecs_to_jiffies(1000))) cdns_i3c_master_unqueue_xfer(master, cdns_xfer); ret = cdns_xfer->ret; for (i = 0; i < nxfers; i++) xfers[i].err = cdns_i3c_cmd_get_err(&cdns_xfer->cmds[i]); cdns_i3c_master_free_xfer(cdns_xfer); return ret; } static int cdns_i3c_master_i2c_xfers(struct i2c_dev_desc *dev, const struct i2c_msg *xfers, int nxfers) { struct i3c_master_controller *m = i2c_dev_get_master(dev); struct cdns_i3c_master *master = to_cdns_i3c_master(m); unsigned int nrxwords = 0, ntxwords = 0; struct cdns_i3c_xfer *xfer; int i, ret = 0; if (nxfers > master->caps.cmdfifodepth) return -ENOTSUPP; for (i = 0; i < nxfers; i++) { if (xfers[i].len > CMD0_FIFO_PL_LEN_MAX) return -ENOTSUPP; if (xfers[i].flags & I2C_M_RD) nrxwords += DIV_ROUND_UP(xfers[i].len, 4); else ntxwords += DIV_ROUND_UP(xfers[i].len, 4); } if (ntxwords > master->caps.txfifodepth || nrxwords > master->caps.rxfifodepth) return -ENOTSUPP; xfer = cdns_i3c_master_alloc_xfer(master, nxfers); if (!xfer) return -ENOMEM; for (i = 0; i < nxfers; i++) { struct cdns_i3c_cmd *ccmd = &xfer->cmds[i]; ccmd->cmd0 = CMD0_FIFO_DEV_ADDR(xfers[i].addr) | CMD0_FIFO_PL_LEN(xfers[i].len) | CMD0_FIFO_PRIV_XMIT_MODE(XMIT_BURST_WITHOUT_SUBADDR); if (xfers[i].flags & I2C_M_TEN) ccmd->cmd0 |= CMD0_FIFO_IS_10B; if (xfers[i].flags & I2C_M_RD) { ccmd->cmd0 |= CMD0_FIFO_RNW; ccmd->rx_buf = xfers[i].buf; ccmd->rx_len = xfers[i].len; } else { ccmd->tx_buf = xfers[i].buf; ccmd->tx_len = xfers[i].len; } } cdns_i3c_master_queue_xfer(master, xfer); if (!wait_for_completion_timeout(&xfer->comp, msecs_to_jiffies(1000))) cdns_i3c_master_unqueue_xfer(master, xfer); ret = xfer->ret; cdns_i3c_master_free_xfer(xfer); return ret; } struct cdns_i3c_i2c_dev_data { u16 id; s16 ibi; struct i3c_generic_ibi_pool *ibi_pool; }; static u32 prepare_rr0_dev_address(u32 addr) { u32 ret = (addr << 1) & 0xff; /* RR0[7:1] = addr[6:0] */ ret |= (addr & GENMASK(6, 0)) << 1; /* RR0[15:13] = addr[9:7] */ ret |= (addr & GENMASK(9, 7)) << 6; /* RR0[0] = ~XOR(addr[6:0]) */ if (!(hweight8(addr & 0x7f) & 1)) ret |= 1; return ret; } static void cdns_i3c_master_upd_i3c_addr(struct i3c_dev_desc *dev) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct cdns_i3c_master *master = to_cdns_i3c_master(m); struct cdns_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); u32 rr; rr = prepare_rr0_dev_address(dev->info.dyn_addr ? dev->info.dyn_addr : dev->info.static_addr); writel(DEV_ID_RR0_IS_I3C | rr, master->regs + DEV_ID_RR0(data->id)); } static int cdns_i3c_master_get_rr_slot(struct cdns_i3c_master *master, u8 dyn_addr) { unsigned long activedevs; u32 rr; int i; if (!dyn_addr) { if (!master->free_rr_slots) return -ENOSPC; return ffs(master->free_rr_slots) - 1; } activedevs = readl(master->regs + DEVS_CTRL) & DEVS_CTRL_DEVS_ACTIVE_MASK; activedevs &= ~BIT(0); for_each_set_bit(i, &activedevs, master->maxdevs + 1) { rr = readl(master->regs + DEV_ID_RR0(i)); if (!(rr & DEV_ID_RR0_IS_I3C) || DEV_ID_RR0_GET_DEV_ADDR(rr) != dyn_addr) continue; return i; } return -EINVAL; } static int cdns_i3c_master_reattach_i3c_dev(struct i3c_dev_desc *dev, u8 old_dyn_addr) { cdns_i3c_master_upd_i3c_addr(dev); return 0; } static int cdns_i3c_master_attach_i3c_dev(struct i3c_dev_desc *dev) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct cdns_i3c_master *master = to_cdns_i3c_master(m); struct cdns_i3c_i2c_dev_data *data; int slot; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; slot = cdns_i3c_master_get_rr_slot(master, dev->info.dyn_addr); if (slot < 0) { kfree(data); return slot; } data->ibi = -1; data->id = slot; i3c_dev_set_master_data(dev, data); master->free_rr_slots &= ~BIT(slot); if (!dev->info.dyn_addr) { cdns_i3c_master_upd_i3c_addr(dev); writel(readl(master->regs + DEVS_CTRL) | DEVS_CTRL_DEV_ACTIVE(data->id), master->regs + DEVS_CTRL); } return 0; } static void cdns_i3c_master_detach_i3c_dev(struct i3c_dev_desc *dev) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct cdns_i3c_master *master = to_cdns_i3c_master(m); struct cdns_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); writel(readl(master->regs + DEVS_CTRL) | DEVS_CTRL_DEV_CLR(data->id), master->regs + DEVS_CTRL); i3c_dev_set_master_data(dev, NULL); master->free_rr_slots |= BIT(data->id); kfree(data); } static int cdns_i3c_master_attach_i2c_dev(struct i2c_dev_desc *dev) { struct i3c_master_controller *m = i2c_dev_get_master(dev); struct cdns_i3c_master *master = to_cdns_i3c_master(m); struct cdns_i3c_i2c_dev_data *data; int slot; slot = cdns_i3c_master_get_rr_slot(master, 0); if (slot < 0) return slot; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) return -ENOMEM; data->id = slot; master->free_rr_slots &= ~BIT(slot); i2c_dev_set_master_data(dev, data); writel(prepare_rr0_dev_address(dev->addr), master->regs + DEV_ID_RR0(data->id)); writel(dev->lvr, master->regs + DEV_ID_RR2(data->id)); writel(readl(master->regs + DEVS_CTRL) | DEVS_CTRL_DEV_ACTIVE(data->id), master->regs + DEVS_CTRL); return 0; } static void cdns_i3c_master_detach_i2c_dev(struct i2c_dev_desc *dev) { struct i3c_master_controller *m = i2c_dev_get_master(dev); struct cdns_i3c_master *master = to_cdns_i3c_master(m); struct cdns_i3c_i2c_dev_data *data = i2c_dev_get_master_data(dev); writel(readl(master->regs + DEVS_CTRL) | DEVS_CTRL_DEV_CLR(data->id), master->regs + DEVS_CTRL); master->free_rr_slots |= BIT(data->id); i2c_dev_set_master_data(dev, NULL); kfree(data); } static void cdns_i3c_master_bus_cleanup(struct i3c_master_controller *m) { struct cdns_i3c_master *master = to_cdns_i3c_master(m); cdns_i3c_master_disable(master); } static void cdns_i3c_master_dev_rr_to_info(struct cdns_i3c_master *master, unsigned int slot, struct i3c_device_info *info) { u32 rr; memset(info, 0, sizeof(*info)); rr = readl(master->regs + DEV_ID_RR0(slot)); info->dyn_addr = DEV_ID_RR0_GET_DEV_ADDR(rr); rr = readl(master->regs + DEV_ID_RR2(slot)); info->dcr = rr; info->bcr = rr >> 8; info->pid = rr >> 16; info->pid |= (u64)readl(master->regs + DEV_ID_RR1(slot)) << 16; } static void cdns_i3c_master_upd_i3c_scl_lim(struct cdns_i3c_master *master) { struct i3c_master_controller *m = &master->base; unsigned long i3c_lim_period, pres_step, ncycles; struct i3c_bus *bus = i3c_master_get_bus(m); unsigned long new_i3c_scl_lim = 0; struct i3c_dev_desc *dev; u32 prescl1, ctrl; i3c_bus_for_each_i3cdev(bus, dev) { unsigned long max_fscl; max_fscl = max(I3C_CCC_MAX_SDR_FSCL(dev->info.max_read_ds), I3C_CCC_MAX_SDR_FSCL(dev->info.max_write_ds)); switch (max_fscl) { case I3C_SDR1_FSCL_8MHZ: max_fscl = 8000000; break; case I3C_SDR2_FSCL_6MHZ: max_fscl = 6000000; break; case I3C_SDR3_FSCL_4MHZ: max_fscl = 4000000; break; case I3C_SDR4_FSCL_2MHZ: max_fscl = 2000000; break; case I3C_SDR0_FSCL_MAX: default: max_fscl = 0; break; } if (max_fscl && (new_i3c_scl_lim > max_fscl || !new_i3c_scl_lim)) new_i3c_scl_lim = max_fscl; } /* Only update PRESCL_CTRL1 if the I3C SCL limitation has changed. */ if (new_i3c_scl_lim == master->i3c_scl_lim) return; master->i3c_scl_lim = new_i3c_scl_lim; if (!new_i3c_scl_lim) return; pres_step = 1000000000UL / (bus->scl_rate.i3c * 4); /* Configure PP_LOW to meet I3C slave limitations. */ prescl1 = readl(master->regs + PRESCL_CTRL1) & ~PRESCL_CTRL1_PP_LOW_MASK; ctrl = readl(master->regs + CTRL); i3c_lim_period = DIV_ROUND_UP(1000000000, master->i3c_scl_lim); ncycles = DIV_ROUND_UP(i3c_lim_period, pres_step); if (ncycles < 4) ncycles = 0; else ncycles -= 4; prescl1 |= PRESCL_CTRL1_PP_LOW(ncycles); /* Disable I3C master before updating PRESCL_CTRL1. */ if (ctrl & CTRL_DEV_EN) cdns_i3c_master_disable(master); writel(prescl1, master->regs + PRESCL_CTRL1); if (ctrl & CTRL_DEV_EN) cdns_i3c_master_enable(master); } static int cdns_i3c_master_do_daa(struct i3c_master_controller *m) { struct cdns_i3c_master *master = to_cdns_i3c_master(m); unsigned long olddevs, newdevs; int ret, slot; u8 addrs[MAX_DEVS] = { }; u8 last_addr = 0; olddevs = readl(master->regs + DEVS_CTRL) & DEVS_CTRL_DEVS_ACTIVE_MASK; olddevs |= BIT(0); /* Prepare RR slots before launching DAA. */ for_each_clear_bit(slot, &olddevs, master->maxdevs + 1) { ret = i3c_master_get_free_addr(m, last_addr + 1); if (ret < 0) return -ENOSPC; last_addr = ret; addrs[slot] = last_addr; writel(prepare_rr0_dev_address(last_addr) | DEV_ID_RR0_IS_I3C, master->regs + DEV_ID_RR0(slot)); writel(0, master->regs + DEV_ID_RR1(slot)); writel(0, master->regs + DEV_ID_RR2(slot)); } ret = i3c_master_entdaa_locked(&master->base); if (ret && ret != I3C_ERROR_M2) return ret; newdevs = readl(master->regs + DEVS_CTRL) & DEVS_CTRL_DEVS_ACTIVE_MASK; newdevs &= ~olddevs; /* * Clear all retaining registers filled during DAA. We already * have the addressed assigned to them in the addrs array. */ for_each_set_bit(slot, &newdevs, master->maxdevs + 1) i3c_master_add_i3c_dev_locked(m, addrs[slot]); /* * Clear slots that ended up not being used. Can be caused by I3C * device creation failure or when the I3C device was already known * by the system but with a different address (in this case the device * already has a slot and does not need a new one). */ writel(readl(master->regs + DEVS_CTRL) | master->free_rr_slots << DEVS_CTRL_DEV_CLR_SHIFT, master->regs + DEVS_CTRL); i3c_master_defslvs_locked(&master->base); cdns_i3c_master_upd_i3c_scl_lim(master); /* Unmask Hot-Join and Mastership request interrupts. */ i3c_master_enec_locked(m, I3C_BROADCAST_ADDR, I3C_CCC_EVENT_HJ | I3C_CCC_EVENT_MR); return 0; } static u8 cdns_i3c_master_calculate_thd_delay(struct cdns_i3c_master *master) { unsigned long sysclk_rate = clk_get_rate(master->sysclk); u8 thd_delay = DIV_ROUND_UP(master->devdata->thd_delay_ns, (NSEC_PER_SEC / sysclk_rate)); /* Every value greater than 3 is not valid. */ if (thd_delay > THD_DELAY_MAX) thd_delay = THD_DELAY_MAX; /* CTLR_THD_DEL value is encoded. */ return (THD_DELAY_MAX - thd_delay); } static int cdns_i3c_master_bus_init(struct i3c_master_controller *m) { struct cdns_i3c_master *master = to_cdns_i3c_master(m); unsigned long pres_step, sysclk_rate, max_i2cfreq; struct i3c_bus *bus = i3c_master_get_bus(m); u32 ctrl, prescl0, prescl1, pres, low; struct i3c_device_info info = { }; int ret, ncycles; switch (bus->mode) { case I3C_BUS_MODE_PURE: ctrl = CTRL_PURE_BUS_MODE; break; case I3C_BUS_MODE_MIXED_FAST: ctrl = CTRL_MIXED_FAST_BUS_MODE; break; case I3C_BUS_MODE_MIXED_SLOW: ctrl = CTRL_MIXED_SLOW_BUS_MODE; break; default: return -EINVAL; } sysclk_rate = clk_get_rate(master->sysclk); if (!sysclk_rate) return -EINVAL; pres = DIV_ROUND_UP(sysclk_rate, (bus->scl_rate.i3c * 4)) - 1; if (pres > PRESCL_CTRL0_I3C_MAX) return -ERANGE; bus->scl_rate.i3c = sysclk_rate / ((pres + 1) * 4); prescl0 = PRESCL_CTRL0_I3C(pres); low = ((I3C_BUS_TLOW_OD_MIN_NS * sysclk_rate) / (pres + 1)) - 2; prescl1 = PRESCL_CTRL1_OD_LOW(low); max_i2cfreq = bus->scl_rate.i2c; pres = (sysclk_rate / (max_i2cfreq * 5)) - 1; if (pres > PRESCL_CTRL0_I2C_MAX) return -ERANGE; bus->scl_rate.i2c = sysclk_rate / ((pres + 1) * 5); prescl0 |= PRESCL_CTRL0_I2C(pres); writel(prescl0, master->regs + PRESCL_CTRL0); /* Calculate OD and PP low. */ pres_step = 1000000000 / (bus->scl_rate.i3c * 4); ncycles = DIV_ROUND_UP(I3C_BUS_TLOW_OD_MIN_NS, pres_step) - 2; if (ncycles < 0) ncycles = 0; prescl1 = PRESCL_CTRL1_OD_LOW(ncycles); writel(prescl1, master->regs + PRESCL_CTRL1); /* Get an address for the master. */ ret = i3c_master_get_free_addr(m, 0); if (ret < 0) return ret; writel(prepare_rr0_dev_address(ret) | DEV_ID_RR0_IS_I3C, master->regs + DEV_ID_RR0(0)); cdns_i3c_master_dev_rr_to_info(master, 0, &info); if (info.bcr & I3C_BCR_HDR_CAP) info.hdr_cap = I3C_CCC_HDR_MODE(I3C_HDR_DDR); ret = i3c_master_set_info(&master->base, &info); if (ret) return ret; /* * Enable Hot-Join, and, when a Hot-Join request happens, disable all * events coming from this device. * * We will issue ENTDAA afterwards from the threaded IRQ handler. */ ctrl |= CTRL_HJ_ACK | CTRL_HJ_DISEC | CTRL_HALT_EN | CTRL_MCS_EN; /* * Configure data hold delay based on device-specific data. * * MIPI I3C Specification 1.0 defines non-zero minimal tHD_PP timing on * master output. This setting allows to meet this timing on master's * SoC outputs, regardless of PCB balancing. */ ctrl |= CTRL_THD_DELAY(cdns_i3c_master_calculate_thd_delay(master)); writel(ctrl, master->regs + CTRL); cdns_i3c_master_enable(master); return 0; } static void cdns_i3c_master_handle_ibi(struct cdns_i3c_master *master, u32 ibir) { struct cdns_i3c_i2c_dev_data *data; bool data_consumed = false; struct i3c_ibi_slot *slot; u32 id = IBIR_SLVID(ibir); struct i3c_dev_desc *dev; size_t nbytes; u8 *buf; /* * FIXME: maybe we should report the FIFO OVF errors to the upper * layer. */ if (id >= master->ibi.num_slots || (ibir & IBIR_ERROR)) goto out; dev = master->ibi.slots[id]; spin_lock(&master->ibi.lock); data = i3c_dev_get_master_data(dev); slot = i3c_generic_ibi_get_free_slot(data->ibi_pool); if (!slot) goto out_unlock; buf = slot->data; nbytes = IBIR_XFER_BYTES(ibir); readsl(master->regs + IBI_DATA_FIFO, buf, nbytes / 4); if (nbytes % 3) { u32 tmp = __raw_readl(master->regs + IBI_DATA_FIFO); memcpy(buf + (nbytes & ~3), &tmp, nbytes & 3); } slot->len = min_t(unsigned int, IBIR_XFER_BYTES(ibir), dev->ibi->max_payload_len); i3c_master_queue_ibi(dev, slot); data_consumed = true; out_unlock: spin_unlock(&master->ibi.lock); out: /* Consume data from the FIFO if it's not been done already. */ if (!data_consumed) { int i; for (i = 0; i < IBIR_XFER_BYTES(ibir); i += 4) readl(master->regs + IBI_DATA_FIFO); } } static void cnds_i3c_master_demux_ibis(struct cdns_i3c_master *master) { u32 status0; writel(MST_INT_IBIR_THR, master->regs + MST_ICR); for (status0 = readl(master->regs + MST_STATUS0); !(status0 & MST_STATUS0_IBIR_EMP); status0 = readl(master->regs + MST_STATUS0)) { u32 ibir = readl(master->regs + IBIR); switch (IBIR_TYPE(ibir)) { case IBIR_TYPE_IBI: cdns_i3c_master_handle_ibi(master, ibir); break; case IBIR_TYPE_HJ: WARN_ON(IBIR_XFER_BYTES(ibir) || (ibir & IBIR_ERROR)); queue_work(master->base.wq, &master->hj_work); break; case IBIR_TYPE_MR: WARN_ON(IBIR_XFER_BYTES(ibir) || (ibir & IBIR_ERROR)); break; default: break; } } } static irqreturn_t cdns_i3c_master_interrupt(int irq, void *data) { struct cdns_i3c_master *master = data; u32 status; status = readl(master->regs + MST_ISR); if (!(status & readl(master->regs + MST_IMR))) return IRQ_NONE; spin_lock(&master->xferqueue.lock); cdns_i3c_master_end_xfer_locked(master, status); spin_unlock(&master->xferqueue.lock); if (status & MST_INT_IBIR_THR) cnds_i3c_master_demux_ibis(master); return IRQ_HANDLED; } static int cdns_i3c_master_disable_ibi(struct i3c_dev_desc *dev) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct cdns_i3c_master *master = to_cdns_i3c_master(m); struct cdns_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); unsigned long flags; u32 sirmap; int ret; ret = i3c_master_disec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR); if (ret) return ret; spin_lock_irqsave(&master->ibi.lock, flags); sirmap = readl(master->regs + SIR_MAP_DEV_REG(data->ibi)); sirmap &= ~SIR_MAP_DEV_CONF_MASK(data->ibi); sirmap |= SIR_MAP_DEV_CONF(data->ibi, SIR_MAP_DEV_DA(I3C_BROADCAST_ADDR)); writel(sirmap, master->regs + SIR_MAP_DEV_REG(data->ibi)); spin_unlock_irqrestore(&master->ibi.lock, flags); return ret; } static int cdns_i3c_master_enable_ibi(struct i3c_dev_desc *dev) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct cdns_i3c_master *master = to_cdns_i3c_master(m); struct cdns_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); unsigned long flags; u32 sircfg, sirmap; int ret; spin_lock_irqsave(&master->ibi.lock, flags); sirmap = readl(master->regs + SIR_MAP_DEV_REG(data->ibi)); sirmap &= ~SIR_MAP_DEV_CONF_MASK(data->ibi); sircfg = SIR_MAP_DEV_ROLE(dev->info.bcr >> 6) | SIR_MAP_DEV_DA(dev->info.dyn_addr) | SIR_MAP_DEV_PL(dev->info.max_ibi_len) | SIR_MAP_DEV_ACK; if (dev->info.bcr & I3C_BCR_MAX_DATA_SPEED_LIM) sircfg |= SIR_MAP_DEV_SLOW; sirmap |= SIR_MAP_DEV_CONF(data->ibi, sircfg); writel(sirmap, master->regs + SIR_MAP_DEV_REG(data->ibi)); spin_unlock_irqrestore(&master->ibi.lock, flags); ret = i3c_master_enec_locked(m, dev->info.dyn_addr, I3C_CCC_EVENT_SIR); if (ret) { spin_lock_irqsave(&master->ibi.lock, flags); sirmap = readl(master->regs + SIR_MAP_DEV_REG(data->ibi)); sirmap &= ~SIR_MAP_DEV_CONF_MASK(data->ibi); sirmap |= SIR_MAP_DEV_CONF(data->ibi, SIR_MAP_DEV_DA(I3C_BROADCAST_ADDR)); writel(sirmap, master->regs + SIR_MAP_DEV_REG(data->ibi)); spin_unlock_irqrestore(&master->ibi.lock, flags); } return ret; } static int cdns_i3c_master_request_ibi(struct i3c_dev_desc *dev, const struct i3c_ibi_setup *req) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct cdns_i3c_master *master = to_cdns_i3c_master(m); struct cdns_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); unsigned long flags; unsigned int i; data->ibi_pool = i3c_generic_ibi_alloc_pool(dev, req); if (IS_ERR(data->ibi_pool)) return PTR_ERR(data->ibi_pool); spin_lock_irqsave(&master->ibi.lock, flags); for (i = 0; i < master->ibi.num_slots; i++) { if (!master->ibi.slots[i]) { data->ibi = i; master->ibi.slots[i] = dev; break; } } spin_unlock_irqrestore(&master->ibi.lock, flags); if (i < master->ibi.num_slots) return 0; i3c_generic_ibi_free_pool(data->ibi_pool); data->ibi_pool = NULL; return -ENOSPC; } static void cdns_i3c_master_free_ibi(struct i3c_dev_desc *dev) { struct i3c_master_controller *m = i3c_dev_get_master(dev); struct cdns_i3c_master *master = to_cdns_i3c_master(m); struct cdns_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); unsigned long flags; spin_lock_irqsave(&master->ibi.lock, flags); master->ibi.slots[data->ibi] = NULL; data->ibi = -1; spin_unlock_irqrestore(&master->ibi.lock, flags); i3c_generic_ibi_free_pool(data->ibi_pool); } static void cdns_i3c_master_recycle_ibi_slot(struct i3c_dev_desc *dev, struct i3c_ibi_slot *slot) { struct cdns_i3c_i2c_dev_data *data = i3c_dev_get_master_data(dev); i3c_generic_ibi_recycle_slot(data->ibi_pool, slot); } static const struct i3c_master_controller_ops cdns_i3c_master_ops = { .bus_init = cdns_i3c_master_bus_init, .bus_cleanup = cdns_i3c_master_bus_cleanup, .do_daa = cdns_i3c_master_do_daa, .attach_i3c_dev = cdns_i3c_master_attach_i3c_dev, .reattach_i3c_dev = cdns_i3c_master_reattach_i3c_dev, .detach_i3c_dev = cdns_i3c_master_detach_i3c_dev, .attach_i2c_dev = cdns_i3c_master_attach_i2c_dev, .detach_i2c_dev = cdns_i3c_master_detach_i2c_dev, .supports_ccc_cmd = cdns_i3c_master_supports_ccc_cmd, .send_ccc_cmd = cdns_i3c_master_send_ccc_cmd, .priv_xfers = cdns_i3c_master_priv_xfers, .i2c_xfers = cdns_i3c_master_i2c_xfers, .enable_ibi = cdns_i3c_master_enable_ibi, .disable_ibi = cdns_i3c_master_disable_ibi, .request_ibi = cdns_i3c_master_request_ibi, .free_ibi = cdns_i3c_master_free_ibi, .recycle_ibi_slot = cdns_i3c_master_recycle_ibi_slot, }; static void cdns_i3c_master_hj(struct work_struct *work) { struct cdns_i3c_master *master = container_of(work, struct cdns_i3c_master, hj_work); i3c_master_do_daa(&master->base); } static struct cdns_i3c_data cdns_i3c_devdata = { .thd_delay_ns = 10, }; static const struct of_device_id cdns_i3c_master_of_ids[] = { { .compatible = "cdns,i3c-master", .data = &cdns_i3c_devdata }, { /* sentinel */ }, }; static int cdns_i3c_master_probe(struct platform_device *pdev) { struct cdns_i3c_master *master; int ret, irq; u32 val; master = devm_kzalloc(&pdev->dev, sizeof(*master), GFP_KERNEL); if (!master) return -ENOMEM; master->devdata = of_device_get_match_data(&pdev->dev); if (!master->devdata) return -EINVAL; master->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(master->regs)) return PTR_ERR(master->regs); master->pclk = devm_clk_get(&pdev->dev, "pclk"); if (IS_ERR(master->pclk)) return PTR_ERR(master->pclk); master->sysclk = devm_clk_get(&pdev->dev, "sysclk"); if (IS_ERR(master->sysclk)) return PTR_ERR(master->sysclk); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = clk_prepare_enable(master->pclk); if (ret) return ret; ret = clk_prepare_enable(master->sysclk); if (ret) goto err_disable_pclk; if (readl(master->regs + DEV_ID) != DEV_ID_I3C_MASTER) { ret = -EINVAL; goto err_disable_sysclk; } spin_lock_init(&master->xferqueue.lock); INIT_LIST_HEAD(&master->xferqueue.list); INIT_WORK(&master->hj_work, cdns_i3c_master_hj); writel(0xffffffff, master->regs + MST_IDR); writel(0xffffffff, master->regs + SLV_IDR); ret = devm_request_irq(&pdev->dev, irq, cdns_i3c_master_interrupt, 0, dev_name(&pdev->dev), master); if (ret) goto err_disable_sysclk; platform_set_drvdata(pdev, master); val = readl(master->regs + CONF_STATUS0); /* Device ID0 is reserved to describe this master. */ master->maxdevs = CONF_STATUS0_DEVS_NUM(val); master->free_rr_slots = GENMASK(master->maxdevs, 1); master->caps.ibirfifodepth = CONF_STATUS0_IBIR_DEPTH(val); master->caps.cmdrfifodepth = CONF_STATUS0_CMDR_DEPTH(val); val = readl(master->regs + CONF_STATUS1); master->caps.cmdfifodepth = CONF_STATUS1_CMD_DEPTH(val); master->caps.rxfifodepth = CONF_STATUS1_RX_DEPTH(val); master->caps.txfifodepth = CONF_STATUS1_TX_DEPTH(val); spin_lock_init(&master->ibi.lock); master->ibi.num_slots = CONF_STATUS1_IBI_HW_RES(val); master->ibi.slots = devm_kcalloc(&pdev->dev, master->ibi.num_slots, sizeof(*master->ibi.slots), GFP_KERNEL); if (!master->ibi.slots) { ret = -ENOMEM; goto err_disable_sysclk; } writel(IBIR_THR(1), master->regs + CMD_IBI_THR_CTRL); writel(MST_INT_IBIR_THR, master->regs + MST_IER); writel(DEVS_CTRL_DEV_CLR_ALL, master->regs + DEVS_CTRL); ret = i3c_master_register(&master->base, &pdev->dev, &cdns_i3c_master_ops, false); if (ret) goto err_disable_sysclk; return 0; err_disable_sysclk: clk_disable_unprepare(master->sysclk); err_disable_pclk: clk_disable_unprepare(master->pclk); return ret; } static void cdns_i3c_master_remove(struct platform_device *pdev) { struct cdns_i3c_master *master = platform_get_drvdata(pdev); i3c_master_unregister(&master->base); clk_disable_unprepare(master->sysclk); clk_disable_unprepare(master->pclk); } static struct platform_driver cdns_i3c_master = { .probe = cdns_i3c_master_probe, .remove_new = cdns_i3c_master_remove, .driver = { .name = "cdns-i3c-master", .of_match_table = cdns_i3c_master_of_ids, }, }; module_platform_driver(cdns_i3c_master); MODULE_AUTHOR("Boris Brezillon <boris.brezillon@bootlin.com>"); MODULE_DESCRIPTION("Cadence I3C master driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:cdns-i3c-master");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1