Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nuno Sá | 2324 | 56.79% | 9 | 45.00% |
Michael Hennerich | 1671 | 40.84% | 4 | 20.00% |
Wei Yongjun | 45 | 1.10% | 1 | 5.00% |
Alexandru Ardelean | 44 | 1.08% | 2 | 10.00% |
Jonathan Cameron | 4 | 0.10% | 1 | 5.00% |
David Lechner | 2 | 0.05% | 1 | 5.00% |
Rob Herring | 1 | 0.02% | 1 | 5.00% |
Uwe Kleine-König | 1 | 0.02% | 1 | 5.00% |
Total | 4092 | 20 |
// SPDX-License-Identifier: GPL-2.0-only /* * Analog Devices AD9467 SPI ADC driver * * Copyright 2012-2020 Analog Devices Inc. */ #include <linux/bitmap.h> #include <linux/bitops.h> #include <linux/cleanup.h> #include <linux/debugfs.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/spi/spi.h> #include <linux/err.h> #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/of.h> #include <linux/iio/backend.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #include <linux/clk.h> /* * ADI High-Speed ADC common spi interface registers * See Application-Note AN-877: * https://www.analog.com/media/en/technical-documentation/application-notes/AN-877.pdf */ #define AN877_ADC_REG_CHIP_PORT_CONF 0x00 #define AN877_ADC_REG_CHIP_ID 0x01 #define AN877_ADC_REG_CHIP_GRADE 0x02 #define AN877_ADC_REG_CHAN_INDEX 0x05 #define AN877_ADC_REG_TRANSFER 0xFF #define AN877_ADC_REG_MODES 0x08 #define AN877_ADC_REG_TEST_IO 0x0D #define AN877_ADC_REG_ADC_INPUT 0x0F #define AN877_ADC_REG_OFFSET 0x10 #define AN877_ADC_REG_OUTPUT_MODE 0x14 #define AN877_ADC_REG_OUTPUT_ADJUST 0x15 #define AN877_ADC_REG_OUTPUT_PHASE 0x16 #define AN877_ADC_REG_OUTPUT_DELAY 0x17 #define AN877_ADC_REG_VREF 0x18 #define AN877_ADC_REG_ANALOG_INPUT 0x2C /* AN877_ADC_REG_TEST_IO */ #define AN877_ADC_TESTMODE_OFF 0x0 #define AN877_ADC_TESTMODE_MIDSCALE_SHORT 0x1 #define AN877_ADC_TESTMODE_POS_FULLSCALE 0x2 #define AN877_ADC_TESTMODE_NEG_FULLSCALE 0x3 #define AN877_ADC_TESTMODE_ALT_CHECKERBOARD 0x4 #define AN877_ADC_TESTMODE_PN23_SEQ 0x5 #define AN877_ADC_TESTMODE_PN9_SEQ 0x6 #define AN877_ADC_TESTMODE_ONE_ZERO_TOGGLE 0x7 #define AN877_ADC_TESTMODE_USER 0x8 #define AN877_ADC_TESTMODE_BIT_TOGGLE 0x9 #define AN877_ADC_TESTMODE_SYNC 0xA #define AN877_ADC_TESTMODE_ONE_BIT_HIGH 0xB #define AN877_ADC_TESTMODE_MIXED_BIT_FREQUENCY 0xC #define AN877_ADC_TESTMODE_RAMP 0xF /* AN877_ADC_REG_TRANSFER */ #define AN877_ADC_TRANSFER_SYNC 0x1 /* AN877_ADC_REG_OUTPUT_MODE */ #define AN877_ADC_OUTPUT_MODE_OFFSET_BINARY 0x0 #define AN877_ADC_OUTPUT_MODE_TWOS_COMPLEMENT 0x1 #define AN877_ADC_OUTPUT_MODE_GRAY_CODE 0x2 /* AN877_ADC_REG_OUTPUT_PHASE */ #define AN877_ADC_OUTPUT_EVEN_ODD_MODE_EN 0x20 #define AN877_ADC_INVERT_DCO_CLK 0x80 /* AN877_ADC_REG_OUTPUT_DELAY */ #define AN877_ADC_DCO_DELAY_ENABLE 0x80 /* * Analog Devices AD9265 16-Bit, 125/105/80 MSPS ADC */ #define CHIPID_AD9265 0x64 #define AD9265_DEF_OUTPUT_MODE 0x40 #define AD9265_REG_VREF_MASK 0xC0 /* * Analog Devices AD9434 12-Bit, 370/500 MSPS ADC */ #define CHIPID_AD9434 0x6A #define AD9434_DEF_OUTPUT_MODE 0x00 #define AD9434_REG_VREF_MASK 0xC0 /* * Analog Devices AD9467 16-Bit, 200/250 MSPS ADC */ #define CHIPID_AD9467 0x50 #define AD9467_DEF_OUTPUT_MODE 0x08 #define AD9467_REG_VREF_MASK 0x0F #define AD9647_MAX_TEST_POINTS 32 struct ad9467_chip_info { const char *name; unsigned int id; const struct iio_chan_spec *channels; unsigned int num_channels; const unsigned int (*scale_table)[2]; int num_scales; unsigned long max_rate; unsigned int default_output_mode; unsigned int vref_mask; unsigned int num_lanes; /* data clock output */ bool has_dco; }; struct ad9467_state { const struct ad9467_chip_info *info; struct iio_backend *back; struct spi_device *spi; struct clk *clk; unsigned int output_mode; unsigned int (*scales)[2]; /* * Times 2 because we may also invert the signal polarity and run the * calibration again. For some reference on the test points (ad9265) see: * https://www.analog.com/media/en/technical-documentation/data-sheets/ad9265.pdf * at page 38 for the dco output delay. On devices as ad9467, the * calibration is done at the backend level. For the ADI axi-adc: * https://wiki.analog.com/resources/fpga/docs/axi_adc_ip * at the io delay control section. */ DECLARE_BITMAP(calib_map, AD9647_MAX_TEST_POINTS * 2); struct gpio_desc *pwrdown_gpio; /* ensure consistent state obtained on multiple related accesses */ struct mutex lock; }; static int ad9467_spi_read(struct spi_device *spi, unsigned int reg) { unsigned char tbuf[2], rbuf[1]; int ret; tbuf[0] = 0x80 | (reg >> 8); tbuf[1] = reg & 0xFF; ret = spi_write_then_read(spi, tbuf, ARRAY_SIZE(tbuf), rbuf, ARRAY_SIZE(rbuf)); if (ret < 0) return ret; return rbuf[0]; } static int ad9467_spi_write(struct spi_device *spi, unsigned int reg, unsigned int val) { unsigned char buf[3]; buf[0] = reg >> 8; buf[1] = reg & 0xFF; buf[2] = val; return spi_write(spi, buf, ARRAY_SIZE(buf)); } static int ad9467_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct ad9467_state *st = iio_priv(indio_dev); struct spi_device *spi = st->spi; int ret; if (!readval) { guard(mutex)(&st->lock); ret = ad9467_spi_write(spi, reg, writeval); if (ret) return ret; return ad9467_spi_write(spi, AN877_ADC_REG_TRANSFER, AN877_ADC_TRANSFER_SYNC); } ret = ad9467_spi_read(spi, reg); if (ret < 0) return ret; *readval = ret; return 0; } static const unsigned int ad9265_scale_table[][2] = { {1250, 0x00}, {1500, 0x40}, {1750, 0x80}, {2000, 0xC0}, }; static const unsigned int ad9434_scale_table[][2] = { {1600, 0x1C}, {1580, 0x1D}, {1550, 0x1E}, {1520, 0x1F}, {1500, 0x00}, {1470, 0x01}, {1440, 0x02}, {1420, 0x03}, {1390, 0x04}, {1360, 0x05}, {1340, 0x06}, {1310, 0x07}, {1280, 0x08}, {1260, 0x09}, {1230, 0x0A}, {1200, 0x0B}, {1180, 0x0C}, }; static const unsigned int ad9467_scale_table[][2] = { {2000, 0}, {2100, 6}, {2200, 7}, {2300, 8}, {2400, 9}, {2500, 10}, }; static void __ad9467_get_scale(struct ad9467_state *st, int index, unsigned int *val, unsigned int *val2) { const struct ad9467_chip_info *info = st->info; const struct iio_chan_spec *chan = &info->channels[0]; unsigned int tmp; tmp = (info->scale_table[index][0] * 1000000ULL) >> chan->scan_type.realbits; *val = tmp / 1000000; *val2 = tmp % 1000000; } #define AD9467_CHAN(_chan, _si, _bits, _sign) \ { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .channel = _chan, \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .info_mask_shared_by_type_available = BIT(IIO_CHAN_INFO_SCALE), \ .scan_index = _si, \ .scan_type = { \ .sign = _sign, \ .realbits = _bits, \ .storagebits = 16, \ }, \ } static const struct iio_chan_spec ad9434_channels[] = { AD9467_CHAN(0, 0, 12, 's'), }; static const struct iio_chan_spec ad9467_channels[] = { AD9467_CHAN(0, 0, 16, 's'), }; static const struct ad9467_chip_info ad9467_chip_tbl = { .name = "ad9467", .id = CHIPID_AD9467, .max_rate = 250000000UL, .scale_table = ad9467_scale_table, .num_scales = ARRAY_SIZE(ad9467_scale_table), .channels = ad9467_channels, .num_channels = ARRAY_SIZE(ad9467_channels), .default_output_mode = AD9467_DEF_OUTPUT_MODE, .vref_mask = AD9467_REG_VREF_MASK, .num_lanes = 8, }; static const struct ad9467_chip_info ad9434_chip_tbl = { .name = "ad9434", .id = CHIPID_AD9434, .max_rate = 500000000UL, .scale_table = ad9434_scale_table, .num_scales = ARRAY_SIZE(ad9434_scale_table), .channels = ad9434_channels, .num_channels = ARRAY_SIZE(ad9434_channels), .default_output_mode = AD9434_DEF_OUTPUT_MODE, .vref_mask = AD9434_REG_VREF_MASK, .num_lanes = 6, }; static const struct ad9467_chip_info ad9265_chip_tbl = { .name = "ad9265", .id = CHIPID_AD9265, .max_rate = 125000000UL, .scale_table = ad9265_scale_table, .num_scales = ARRAY_SIZE(ad9265_scale_table), .channels = ad9467_channels, .num_channels = ARRAY_SIZE(ad9467_channels), .default_output_mode = AD9265_DEF_OUTPUT_MODE, .vref_mask = AD9265_REG_VREF_MASK, .has_dco = true, }; static int ad9467_get_scale(struct ad9467_state *st, int *val, int *val2) { const struct ad9467_chip_info *info = st->info; unsigned int i, vref_val; int ret; ret = ad9467_spi_read(st->spi, AN877_ADC_REG_VREF); if (ret < 0) return ret; vref_val = ret & info->vref_mask; for (i = 0; i < info->num_scales; i++) { if (vref_val == info->scale_table[i][1]) break; } if (i == info->num_scales) return -ERANGE; __ad9467_get_scale(st, i, val, val2); return IIO_VAL_INT_PLUS_MICRO; } static int ad9467_set_scale(struct ad9467_state *st, int val, int val2) { const struct ad9467_chip_info *info = st->info; unsigned int scale_val[2]; unsigned int i; int ret; if (val != 0) return -EINVAL; for (i = 0; i < info->num_scales; i++) { __ad9467_get_scale(st, i, &scale_val[0], &scale_val[1]); if (scale_val[0] != val || scale_val[1] != val2) continue; guard(mutex)(&st->lock); ret = ad9467_spi_write(st->spi, AN877_ADC_REG_VREF, info->scale_table[i][1]); if (ret < 0) return ret; return ad9467_spi_write(st->spi, AN877_ADC_REG_TRANSFER, AN877_ADC_TRANSFER_SYNC); } return -EINVAL; } static int ad9467_outputmode_set(struct spi_device *spi, unsigned int mode) { int ret; ret = ad9467_spi_write(spi, AN877_ADC_REG_OUTPUT_MODE, mode); if (ret < 0) return ret; return ad9467_spi_write(spi, AN877_ADC_REG_TRANSFER, AN877_ADC_TRANSFER_SYNC); } static int ad9647_calibrate_prepare(const struct ad9467_state *st) { struct iio_backend_data_fmt data = { .enable = false, }; unsigned int c; int ret; ret = ad9467_spi_write(st->spi, AN877_ADC_REG_TEST_IO, AN877_ADC_TESTMODE_PN9_SEQ); if (ret) return ret; ret = ad9467_spi_write(st->spi, AN877_ADC_REG_TRANSFER, AN877_ADC_TRANSFER_SYNC); if (ret) return ret; ret = ad9467_outputmode_set(st->spi, st->info->default_output_mode); if (ret) return ret; for (c = 0; c < st->info->num_channels; c++) { ret = iio_backend_data_format_set(st->back, c, &data); if (ret) return ret; } ret = iio_backend_test_pattern_set(st->back, 0, IIO_BACKEND_ADI_PRBS_9A); if (ret) return ret; return iio_backend_chan_enable(st->back, 0); } static int ad9647_calibrate_polarity_set(const struct ad9467_state *st, bool invert) { enum iio_backend_sample_trigger trigger; if (st->info->has_dco) { unsigned int phase = AN877_ADC_OUTPUT_EVEN_ODD_MODE_EN; if (invert) phase |= AN877_ADC_INVERT_DCO_CLK; return ad9467_spi_write(st->spi, AN877_ADC_REG_OUTPUT_PHASE, phase); } if (invert) trigger = IIO_BACKEND_SAMPLE_TRIGGER_EDGE_FALLING; else trigger = IIO_BACKEND_SAMPLE_TRIGGER_EDGE_RISING; return iio_backend_data_sample_trigger(st->back, trigger); } /* * The idea is pretty simple. Find the max number of successful points in a row * and get the one in the middle. */ static unsigned int ad9467_find_optimal_point(const unsigned long *calib_map, unsigned int start, unsigned int nbits, unsigned int *val) { unsigned int bit = start, end, start_cnt, cnt = 0; for_each_clear_bitrange_from(bit, end, calib_map, nbits + start) { if (end - bit > cnt) { cnt = end - bit; start_cnt = bit; } } if (cnt) *val = start_cnt + cnt / 2; return cnt; } static int ad9467_calibrate_apply(const struct ad9467_state *st, unsigned int val) { unsigned int lane; int ret; if (st->info->has_dco) { ret = ad9467_spi_write(st->spi, AN877_ADC_REG_OUTPUT_DELAY, val); if (ret) return ret; return ad9467_spi_write(st->spi, AN877_ADC_REG_TRANSFER, AN877_ADC_TRANSFER_SYNC); } for (lane = 0; lane < st->info->num_lanes; lane++) { ret = iio_backend_iodelay_set(st->back, lane, val); if (ret) return ret; } return 0; } static int ad9647_calibrate_stop(const struct ad9467_state *st) { struct iio_backend_data_fmt data = { .sign_extend = true, .enable = true, }; unsigned int c, mode; int ret; ret = iio_backend_chan_disable(st->back, 0); if (ret) return ret; ret = iio_backend_test_pattern_set(st->back, 0, IIO_BACKEND_NO_TEST_PATTERN); if (ret) return ret; for (c = 0; c < st->info->num_channels; c++) { ret = iio_backend_data_format_set(st->back, c, &data); if (ret) return ret; } mode = st->info->default_output_mode | AN877_ADC_OUTPUT_MODE_TWOS_COMPLEMENT; ret = ad9467_outputmode_set(st->spi, mode); if (ret) return ret; ret = ad9467_spi_write(st->spi, AN877_ADC_REG_TEST_IO, AN877_ADC_TESTMODE_OFF); if (ret) return ret; return ad9467_spi_write(st->spi, AN877_ADC_REG_TRANSFER, AN877_ADC_TRANSFER_SYNC); } static int ad9467_calibrate(struct ad9467_state *st) { unsigned int point, val, inv_val, cnt, inv_cnt = 0; /* * Half of the bitmap is for the inverted signal. The number of test * points is the same though... */ unsigned int test_points = AD9647_MAX_TEST_POINTS; unsigned long sample_rate = clk_get_rate(st->clk); struct device *dev = &st->spi->dev; bool invert = false, stat; int ret; /* all points invalid */ bitmap_fill(st->calib_map, BITS_PER_TYPE(st->calib_map)); ret = ad9647_calibrate_prepare(st); if (ret) return ret; retune: ret = ad9647_calibrate_polarity_set(st, invert); if (ret) return ret; for (point = 0; point < test_points; point++) { ret = ad9467_calibrate_apply(st, point); if (ret) return ret; ret = iio_backend_chan_status(st->back, 0, &stat); if (ret) return ret; __assign_bit(point + invert * test_points, st->calib_map, stat); } if (!invert) { cnt = ad9467_find_optimal_point(st->calib_map, 0, test_points, &val); /* * We're happy if we find, at least, three good test points in * a row. */ if (cnt < 3) { invert = true; goto retune; } } else { inv_cnt = ad9467_find_optimal_point(st->calib_map, test_points, test_points, &inv_val); if (!inv_cnt && !cnt) return -EIO; } if (inv_cnt < cnt) { ret = ad9647_calibrate_polarity_set(st, false); if (ret) return ret; } else { /* * polarity inverted is the last test to run. Hence, there's no * need to re-do any configuration. We just need to "normalize" * the selected value. */ val = inv_val - test_points; } if (st->info->has_dco) dev_dbg(dev, "%sDCO 0x%X CLK %lu Hz\n", inv_cnt >= cnt ? "INVERT " : "", val, sample_rate); else dev_dbg(dev, "%sIDELAY 0x%x\n", inv_cnt >= cnt ? "INVERT " : "", val); ret = ad9467_calibrate_apply(st, val); if (ret) return ret; /* finally apply the optimal value */ return ad9647_calibrate_stop(st); } static int ad9467_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long m) { struct ad9467_state *st = iio_priv(indio_dev); switch (m) { case IIO_CHAN_INFO_SCALE: return ad9467_get_scale(st, val, val2); case IIO_CHAN_INFO_SAMP_FREQ: *val = clk_get_rate(st->clk); return IIO_VAL_INT; default: return -EINVAL; } } static int ad9467_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct ad9467_state *st = iio_priv(indio_dev); const struct ad9467_chip_info *info = st->info; unsigned long sample_rate; long r_clk; int ret; switch (mask) { case IIO_CHAN_INFO_SCALE: return ad9467_set_scale(st, val, val2); case IIO_CHAN_INFO_SAMP_FREQ: r_clk = clk_round_rate(st->clk, val); if (r_clk < 0 || r_clk > info->max_rate) { dev_warn(&st->spi->dev, "Error setting ADC sample rate %ld", r_clk); return -EINVAL; } sample_rate = clk_get_rate(st->clk); /* * clk_set_rate() would also do this but since we would still * need it for avoiding an unnecessary calibration, do it now. */ if (sample_rate == r_clk) return 0; iio_device_claim_direct_scoped(return -EBUSY, indio_dev) { ret = clk_set_rate(st->clk, r_clk); if (ret) return ret; guard(mutex)(&st->lock); ret = ad9467_calibrate(st); } return ret; default: return -EINVAL; } } static int ad9467_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct ad9467_state *st = iio_priv(indio_dev); const struct ad9467_chip_info *info = st->info; switch (mask) { case IIO_CHAN_INFO_SCALE: *vals = (const int *)st->scales; *type = IIO_VAL_INT_PLUS_MICRO; /* Values are stored in a 2D matrix */ *length = info->num_scales * 2; return IIO_AVAIL_LIST; default: return -EINVAL; } } static int ad9467_update_scan_mode(struct iio_dev *indio_dev, const unsigned long *scan_mask) { struct ad9467_state *st = iio_priv(indio_dev); unsigned int c; int ret; for (c = 0; c < st->info->num_channels; c++) { if (test_bit(c, scan_mask)) ret = iio_backend_chan_enable(st->back, c); else ret = iio_backend_chan_disable(st->back, c); if (ret) return ret; } return 0; } static const struct iio_info ad9467_info = { .read_raw = ad9467_read_raw, .write_raw = ad9467_write_raw, .update_scan_mode = ad9467_update_scan_mode, .debugfs_reg_access = ad9467_reg_access, .read_avail = ad9467_read_avail, }; static int ad9467_scale_fill(struct ad9467_state *st) { const struct ad9467_chip_info *info = st->info; unsigned int i, val1, val2; st->scales = devm_kmalloc_array(&st->spi->dev, info->num_scales, sizeof(*st->scales), GFP_KERNEL); if (!st->scales) return -ENOMEM; for (i = 0; i < info->num_scales; i++) { __ad9467_get_scale(st, i, &val1, &val2); st->scales[i][0] = val1; st->scales[i][1] = val2; } return 0; } static int ad9467_reset(struct device *dev) { struct gpio_desc *gpio; gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR_OR_NULL(gpio)) return PTR_ERR_OR_ZERO(gpio); fsleep(1); gpiod_set_value_cansleep(gpio, 0); fsleep(10 * USEC_PER_MSEC); return 0; } static int ad9467_iio_backend_get(struct ad9467_state *st) { struct device *dev = &st->spi->dev; struct device_node *__back; st->back = devm_iio_backend_get(dev, NULL); if (!IS_ERR(st->back)) return 0; /* If not found, don't error out as we might have legacy DT property */ if (PTR_ERR(st->back) != -ENOENT) return PTR_ERR(st->back); /* * if we don't get the backend using the normal API's, use the legacy * 'adi,adc-dev' property. So we get all nodes with that property, and * look for the one pointing at us. Then we directly lookup that fwnode * on the backend list of registered devices. This is done so we don't * make io-backends mandatory which would break DT ABI. */ for_each_node_with_property(__back, "adi,adc-dev") { struct device_node *__me; __me = of_parse_phandle(__back, "adi,adc-dev", 0); if (!__me) continue; if (!device_match_of_node(dev, __me)) { of_node_put(__me); continue; } of_node_put(__me); st->back = __devm_iio_backend_get_from_fwnode_lookup(dev, of_fwnode_handle(__back)); of_node_put(__back); return PTR_ERR_OR_ZERO(st->back); } return -ENODEV; } static ssize_t ad9467_dump_calib_table(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct ad9467_state *st = file->private_data; unsigned int bit, size = BITS_PER_TYPE(st->calib_map); /* +2 for the newline and +1 for the string termination */ unsigned char map[AD9647_MAX_TEST_POINTS * 2 + 3]; ssize_t len = 0; guard(mutex)(&st->lock); if (*ppos) goto out_read; for (bit = 0; bit < size; bit++) { if (bit == size / 2) len += scnprintf(map + len, sizeof(map) - len, "\n"); len += scnprintf(map + len, sizeof(map) - len, "%c", test_bit(bit, st->calib_map) ? 'x' : 'o'); } len += scnprintf(map + len, sizeof(map) - len, "\n"); out_read: return simple_read_from_buffer(userbuf, count, ppos, map, len); } static const struct file_operations ad9467_calib_table_fops = { .open = simple_open, .read = ad9467_dump_calib_table, .llseek = default_llseek, .owner = THIS_MODULE, }; static void ad9467_debugfs_init(struct iio_dev *indio_dev) { struct dentry *d = iio_get_debugfs_dentry(indio_dev); struct ad9467_state *st = iio_priv(indio_dev); if (!IS_ENABLED(CONFIG_DEBUG_FS)) return; debugfs_create_file("calibration_table_dump", 0400, d, st, &ad9467_calib_table_fops); } static int ad9467_probe(struct spi_device *spi) { struct iio_dev *indio_dev; struct ad9467_state *st; unsigned int id; int ret; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); st->spi = spi; st->info = spi_get_device_match_data(spi); if (!st->info) return -ENODEV; st->clk = devm_clk_get_enabled(&spi->dev, "adc-clk"); if (IS_ERR(st->clk)) return PTR_ERR(st->clk); st->pwrdown_gpio = devm_gpiod_get_optional(&spi->dev, "powerdown", GPIOD_OUT_LOW); if (IS_ERR(st->pwrdown_gpio)) return PTR_ERR(st->pwrdown_gpio); ret = ad9467_reset(&spi->dev); if (ret) return ret; ret = ad9467_scale_fill(st); if (ret) return ret; id = ad9467_spi_read(spi, AN877_ADC_REG_CHIP_ID); if (id != st->info->id) { dev_err(&spi->dev, "Mismatch CHIP_ID, got 0x%X, expected 0x%X\n", id, st->info->id); return -ENODEV; } indio_dev->name = st->info->name; indio_dev->channels = st->info->channels; indio_dev->num_channels = st->info->num_channels; indio_dev->info = &ad9467_info; ret = ad9467_iio_backend_get(st); if (ret) return ret; ret = devm_iio_backend_request_buffer(&spi->dev, st->back, indio_dev); if (ret) return ret; ret = devm_iio_backend_enable(&spi->dev, st->back); if (ret) return ret; ret = ad9467_calibrate(st); if (ret) return ret; ret = devm_iio_device_register(&spi->dev, indio_dev); if (ret) return ret; ad9467_debugfs_init(indio_dev); return 0; } static const struct of_device_id ad9467_of_match[] = { { .compatible = "adi,ad9265", .data = &ad9265_chip_tbl, }, { .compatible = "adi,ad9434", .data = &ad9434_chip_tbl, }, { .compatible = "adi,ad9467", .data = &ad9467_chip_tbl, }, {} }; MODULE_DEVICE_TABLE(of, ad9467_of_match); static const struct spi_device_id ad9467_ids[] = { { "ad9265", (kernel_ulong_t)&ad9265_chip_tbl }, { "ad9434", (kernel_ulong_t)&ad9434_chip_tbl }, { "ad9467", (kernel_ulong_t)&ad9467_chip_tbl }, {} }; MODULE_DEVICE_TABLE(spi, ad9467_ids); static struct spi_driver ad9467_driver = { .driver = { .name = "ad9467", .of_match_table = ad9467_of_match, }, .probe = ad9467_probe, .id_table = ad9467_ids, }; module_spi_driver(ad9467_driver); MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>"); MODULE_DESCRIPTION("Analog Devices AD9467 ADC driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_BACKEND);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1