Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Antoniu Miclaus | 3798 | 99.92% | 1 | 50.00% |
Andy Shevchenko | 3 | 0.08% | 1 | 50.00% |
Total | 3801 | 2 |
// SPDX-License-Identifier: GPL-2.0-only /* * ADF4377 driver * * Copyright 2022 Analog Devices Inc. */ #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/clk.h> #include <linux/clkdev.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/gpio/consumer.h> #include <linux/module.h> #include <linux/notifier.h> #include <linux/property.h> #include <linux/spi/spi.h> #include <linux/iio/iio.h> #include <linux/regmap.h> #include <linux/units.h> #include <asm/unaligned.h> /* ADF4377 REG0000 Map */ #define ADF4377_0000_SOFT_RESET_R_MSK BIT(7) #define ADF4377_0000_LSB_FIRST_R_MSK BIT(6) #define ADF4377_0000_ADDRESS_ASC_R_MSK BIT(5) #define ADF4377_0000_SDO_ACTIVE_R_MSK BIT(4) #define ADF4377_0000_SDO_ACTIVE_MSK BIT(3) #define ADF4377_0000_ADDRESS_ASC_MSK BIT(2) #define ADF4377_0000_LSB_FIRST_MSK BIT(1) #define ADF4377_0000_SOFT_RESET_MSK BIT(0) /* ADF4377 REG0000 Bit Definition */ #define ADF4377_0000_SDO_ACTIVE_SPI_3W 0x0 #define ADF4377_0000_SDO_ACTIVE_SPI_4W 0x1 #define ADF4377_0000_ADDR_ASC_AUTO_DECR 0x0 #define ADF4377_0000_ADDR_ASC_AUTO_INCR 0x1 #define ADF4377_0000_LSB_FIRST_MSB 0x0 #define ADF4377_0000_LSB_FIRST_LSB 0x1 #define ADF4377_0000_SOFT_RESET_N_OP 0x0 #define ADF4377_0000_SOFT_RESET_EN 0x1 /* ADF4377 REG0001 Map */ #define ADF4377_0001_SINGLE_INSTR_MSK BIT(7) #define ADF4377_0001_MASTER_RB_CTRL_MSK BIT(5) /* ADF4377 REG0003 Bit Definition */ #define ADF4377_0003_CHIP_TYPE 0x06 /* ADF4377 REG0004 Bit Definition */ #define ADF4377_0004_PRODUCT_ID_LSB 0x0005 /* ADF4377 REG0005 Bit Definition */ #define ADF4377_0005_PRODUCT_ID_MSB 0x0005 /* ADF4377 REG000A Map */ #define ADF4377_000A_SCRATCHPAD_MSK GENMASK(7, 0) /* ADF4377 REG000C Bit Definition */ #define ADF4377_000C_VENDOR_ID_LSB 0x56 /* ADF4377 REG000D Bit Definition */ #define ADF4377_000D_VENDOR_ID_MSB 0x04 /* ADF4377 REG000F Bit Definition */ #define ADF4377_000F_R00F_RSV1_MSK GENMASK(7, 0) /* ADF4377 REG0010 Map*/ #define ADF4377_0010_N_INT_LSB_MSK GENMASK(7, 0) /* ADF4377 REG0011 Map*/ #define ADF4377_0011_EN_AUTOCAL_MSK BIT(7) #define ADF4377_0011_EN_RDBLR_MSK BIT(6) #define ADF4377_0011_DCLK_DIV2_MSK GENMASK(5, 4) #define ADF4377_0011_N_INT_MSB_MSK GENMASK(3, 0) /* ADF4377 REG0011 Bit Definition */ #define ADF4377_0011_DCLK_DIV2_1 0x0 #define ADF4377_0011_DCLK_DIV2_2 0x1 #define ADF4377_0011_DCLK_DIV2_4 0x2 #define ADF4377_0011_DCLK_DIV2_8 0x3 /* ADF4377 REG0012 Map*/ #define ADF4377_0012_CLKOUT_DIV_MSK GENMASK(7, 6) #define ADF4377_0012_R_DIV_MSK GENMASK(5, 0) /* ADF4377 REG0012 Bit Definition */ #define ADF4377_0012_CLKOUT_DIV_1 0x0 #define ADF4377_0012_CLKOUT_DIV_2 0x1 #define ADF4377_0012_CLKOUT_DIV_4 0x2 #define ADF4377_0012_CLKOUT_DIV_8 0x3 /* ADF4377 REG0013 Map */ #define ADF4377_0013_M_VCO_CORE_MSK GENMASK(5, 4) #define ADF4377_0013_VCO_BIAS_MSK GENMASK(3, 0) /* ADF4377 REG0013 Bit Definition */ #define ADF4377_0013_M_VCO_0 0x0 #define ADF4377_0013_M_VCO_1 0x1 #define ADF4377_0013_M_VCO_2 0x2 #define ADF4377_0013_M_VCO_3 0x3 /* ADF4377 REG0014 Map */ #define ADF4377_0014_M_VCO_BAND_MSK GENMASK(7, 0) /* ADF4377 REG0015 Map */ #define ADF4377_0015_BLEED_I_LSB_MSK GENMASK(7, 6) #define ADF4377_0015_BLEED_POL_MSK BIT(5) #define ADF4377_0015_EN_BLEED_MSK BIT(4) #define ADF4377_0015_CP_I_MSK GENMASK(3, 0) /* ADF4377 REG0015 Bit Definition */ #define ADF4377_CURRENT_SINK 0x0 #define ADF4377_CURRENT_SOURCE 0x1 #define ADF4377_0015_CP_0MA7 0x0 #define ADF4377_0015_CP_0MA9 0x1 #define ADF4377_0015_CP_1MA1 0x2 #define ADF4377_0015_CP_1MA3 0x3 #define ADF4377_0015_CP_1MA4 0x4 #define ADF4377_0015_CP_1MA8 0x5 #define ADF4377_0015_CP_2MA2 0x6 #define ADF4377_0015_CP_2MA5 0x7 #define ADF4377_0015_CP_2MA9 0x8 #define ADF4377_0015_CP_3MA6 0x9 #define ADF4377_0015_CP_4MA3 0xA #define ADF4377_0015_CP_5MA0 0xB #define ADF4377_0015_CP_5MA7 0xC #define ADF4377_0015_CP_7MA2 0xD #define ADF4377_0015_CP_8MA6 0xE #define ADF4377_0015_CP_10MA1 0xF /* ADF4377 REG0016 Map */ #define ADF4377_0016_BLEED_I_MSB_MSK GENMASK(7, 0) /* ADF4377 REG0017 Map */ #define ADF4377_0016_INV_CLKOUT_MSK BIT(7) #define ADF4377_0016_N_DEL_MSK GENMASK(6, 0) /* ADF4377 REG0018 Map */ #define ADF4377_0018_CMOS_OV_MSK BIT(7) #define ADF4377_0018_R_DEL_MSK GENMASK(6, 0) /* ADF4377 REG0018 Bit Definition */ #define ADF4377_0018_1V8_LOGIC 0x0 #define ADF4377_0018_3V3_LOGIC 0x1 /* ADF4377 REG0019 Map */ #define ADF4377_0019_CLKOUT2_OP_MSK GENMASK(7, 6) #define ADF4377_0019_CLKOUT1_OP_MSK GENMASK(5, 4) #define ADF4377_0019_PD_CLK_MSK BIT(3) #define ADF4377_0019_PD_RDET_MSK BIT(2) #define ADF4377_0019_PD_ADC_MSK BIT(1) #define ADF4377_0019_PD_CALADC_MSK BIT(0) /* ADF4377 REG0019 Bit Definition */ #define ADF4377_0019_CLKOUT_320MV 0x0 #define ADF4377_0019_CLKOUT_420MV 0x1 #define ADF4377_0019_CLKOUT_530MV 0x2 #define ADF4377_0019_CLKOUT_640MV 0x3 /* ADF4377 REG001A Map */ #define ADF4377_001A_PD_ALL_MSK BIT(7) #define ADF4377_001A_PD_RDIV_MSK BIT(6) #define ADF4377_001A_PD_NDIV_MSK BIT(5) #define ADF4377_001A_PD_VCO_MSK BIT(4) #define ADF4377_001A_PD_LD_MSK BIT(3) #define ADF4377_001A_PD_PFDCP_MSK BIT(2) #define ADF4377_001A_PD_CLKOUT1_MSK BIT(1) #define ADF4377_001A_PD_CLKOUT2_MSK BIT(0) /* ADF4377 REG001B Map */ #define ADF4377_001B_EN_LOL_MSK BIT(7) #define ADF4377_001B_LDWIN_PW_MSK BIT(6) #define ADF4377_001B_EN_LDWIN_MSK BIT(5) #define ADF4377_001B_LD_COUNT_MSK GENMASK(4, 0) /* ADF4377 REG001B Bit Definition */ #define ADF4377_001B_LDWIN_PW_NARROW 0x0 #define ADF4377_001B_LDWIN_PW_WIDE 0x1 /* ADF4377 REG001C Map */ #define ADF4377_001C_EN_DNCLK_MSK BIT(7) #define ADF4377_001C_EN_DRCLK_MSK BIT(6) #define ADF4377_001C_RST_LD_MSK BIT(2) #define ADF4377_001C_R01C_RSV1_MSK BIT(0) /* ADF4377 REG001C Bit Definition */ #define ADF4377_001C_RST_LD_INACTIVE 0x0 #define ADF4377_001C_RST_LD_ACTIVE 0x1 #define ADF4377_001C_R01C_RSV1 0x1 /* ADF4377 REG001D Map */ #define ADF4377_001D_MUXOUT_MSK GENMASK(7, 4) #define ADF4377_001D_EN_CPTEST_MSK BIT(2) #define ADF4377_001D_CP_DOWN_MSK BIT(1) #define ADF4377_001D_CP_UP_MSK BIT(0) #define ADF4377_001D_EN_CPTEST_OFF 0x0 #define ADF4377_001D_EN_CPTEST_ON 0x1 #define ADF4377_001D_CP_DOWN_OFF 0x0 #define ADF4377_001D_CP_DOWN_ON 0x1 #define ADF4377_001D_CP_UP_OFF 0x0 #define ADF4377_001D_CP_UP_ON 0x1 /* ADF4377 REG001F Map */ #define ADF4377_001F_BST_REF_MSK BIT(7) #define ADF4377_001F_FILT_REF_MSK BIT(6) #define ADF4377_001F_REF_SEL_MSK BIT(5) #define ADF4377_001F_R01F_RSV1_MSK GENMASK(4, 0) /* ADF4377 REG001F Bit Definition */ #define ADF4377_001F_BST_LARGE_REF_IN 0x0 #define ADF4377_001F_BST_SMALL_REF_IN 0x1 #define ADF4377_001F_FILT_REF_OFF 0x0 #define ADF4377_001F_FILT_REF_ON 0x1 #define ADF4377_001F_REF_SEL_DMA 0x0 #define ADF4377_001F_REF_SEL_LNA 0x1 #define ADF4377_001F_R01F_RSV1 0x7 /* ADF4377 REG0020 Map */ #define ADF4377_0020_RST_SYS_MSK BIT(4) #define ADF4377_0020_EN_ADC_CLK_MSK BIT(3) #define ADF4377_0020_R020_RSV1_MSK BIT(0) /* ADF4377 REG0021 Bit Definition */ #define ADF4377_0021_R021_RSV1 0xD3 /* ADF4377 REG0022 Bit Definition */ #define ADF4377_0022_R022_RSV1 0x32 /* ADF4377 REG0023 Map */ #define ADF4377_0023_CAT_CT_SEL BIT(7) #define ADF4377_0023_R023_RSV1_MSK GENMASK(6, 0) /* ADF4377 REG0023 Bit Definition */ #define ADF4377_0023_R023_RSV1 0x18 /* ADF4377 REG0024 Map */ #define ADF4377_0024_DCLK_MODE_MSK BIT(2) /* ADF4377 REG0025 Map */ #define ADF4377_0025_CLKODIV_DB_MSK BIT(7) #define ADF4377_0025_DCLK_DB_MSK BIT(6) #define ADF4377_0025_R025_RSV1_MSK GENMASK(5, 0) /* ADF4377 REG0025 Bit Definition */ #define ADF4377_0025_R025_RSV1 0x16 /* ADF4377 REG0026 Map */ #define ADF4377_0026_VCO_BAND_DIV_MSK GENMASK(7, 0) /* ADF4377 REG0027 Map */ #define ADF4377_0027_SYNTH_LOCK_TO_LSB_MSK GENMASK(7, 0) /* ADF4377 REG0028 Map */ #define ADF4377_0028_O_VCO_DB_MSK BIT(7) #define ADF4377_0028_SYNTH_LOCK_TO_MSB_MSK GENMASK(6, 0) /* ADF4377 REG0029 Map */ #define ADF4377_0029_VCO_ALC_TO_LSB_MSK GENMASK(7, 0) /* ADF4377 REG002A Map */ #define ADF4377_002A_DEL_CTRL_DB_MSK BIT(7) #define ADF4377_002A_VCO_ALC_TO_MSB_MSK GENMASK(6, 0) /* ADF4377 REG002C Map */ #define ADF4377_002C_R02C_RSV1 0xC0 /* ADF4377 REG002D Map */ #define ADF4377_002D_ADC_CLK_DIV_MSK GENMASK(7, 0) /* ADF4377 REG002E Map */ #define ADF4377_002E_EN_ADC_CNV_MSK BIT(7) #define ADF4377_002E_EN_ADC_MSK BIT(1) #define ADF4377_002E_ADC_A_CONV_MSK BIT(0) /* ADF4377 REG002E Bit Definition */ #define ADF4377_002E_ADC_A_CONV_ADC_ST_CNV 0x0 #define ADF4377_002E_ADC_A_CONV_VCO_CALIB 0x1 /* ADF4377 REG002F Map */ #define ADF4377_002F_DCLK_DIV1_MSK GENMASK(1, 0) /* ADF4377 REG002F Bit Definition */ #define ADF4377_002F_DCLK_DIV1_1 0x0 #define ADF4377_002F_DCLK_DIV1_2 0x1 #define ADF4377_002F_DCLK_DIV1_8 0x2 #define ADF4377_002F_DCLK_DIV1_32 0x3 /* ADF4377 REG0031 Bit Definition */ #define ADF4377_0031_R031_RSV1 0x09 /* ADF4377 REG0032 Map */ #define ADF4377_0032_ADC_CLK_SEL_MSK BIT(6) #define ADF4377_0032_R032_RSV1_MSK GENMASK(5, 0) /* ADF4377 REG0032 Bit Definition */ #define ADF4377_0032_ADC_CLK_SEL_N_OP 0x0 #define ADF4377_0032_ADC_CLK_SEL_SPI_CLK 0x1 #define ADF4377_0032_R032_RSV1 0x9 /* ADF4377 REG0033 Bit Definition */ #define ADF4377_0033_R033_RSV1 0x18 /* ADF4377 REG0034 Bit Definition */ #define ADF4377_0034_R034_RSV1 0x08 /* ADF4377 REG003A Bit Definition */ #define ADF4377_003A_R03A_RSV1 0x5D /* ADF4377 REG003B Bit Definition */ #define ADF4377_003B_R03B_RSV1 0x2B /* ADF4377 REG003D Map */ #define ADF4377_003D_O_VCO_BAND_MSK BIT(3) #define ADF4377_003D_O_VCO_CORE_MSK BIT(2) #define ADF4377_003D_O_VCO_BIAS_MSK BIT(1) /* ADF4377 REG003D Bit Definition */ #define ADF4377_003D_O_VCO_BAND_VCO_CALIB 0x0 #define ADF4377_003D_O_VCO_BAND_M_VCO 0x1 #define ADF4377_003D_O_VCO_CORE_VCO_CALIB 0x0 #define ADF4377_003D_O_VCO_CORE_M_VCO 0x1 #define ADF4377_003D_O_VCO_BIAS_VCO_CALIB 0x0 #define ADF4377_003D_O_VCO_BIAS_M_VCO 0x1 /* ADF4377 REG0042 Map */ #define ADF4377_0042_R042_RSV1 0x05 /* ADF4377 REG0045 Map */ #define ADF4377_0045_ADC_ST_CNV_MSK BIT(0) /* ADF4377 REG0049 Map */ #define ADF4377_0049_EN_CLK2_MSK BIT(7) #define ADF4377_0049_EN_CLK1_MSK BIT(6) #define ADF4377_0049_REF_OK_MSK BIT(3) #define ADF4377_0049_ADC_BUSY_MSK BIT(2) #define ADF4377_0049_FSM_BUSY_MSK BIT(1) #define ADF4377_0049_LOCKED_MSK BIT(0) /* ADF4377 REG004B Map */ #define ADF4377_004B_VCO_CORE_MSK GENMASK(1, 0) /* ADF4377 REG004C Map */ #define ADF4377_004C_CHIP_TEMP_LSB_MSK GENMASK(7, 0) /* ADF4377 REG004D Map */ #define ADF4377_004D_CHIP_TEMP_MSB_MSK BIT(0) /* ADF4377 REG004F Map */ #define ADF4377_004F_VCO_BAND_MSK GENMASK(7, 0) /* ADF4377 REG0051 Map */ #define ADF4377_0051_VCO_BIAS_MSK GENMASK(3, 0) /* ADF4377 REG0054 Map */ #define ADF4377_0054_CHIP_VERSION_MSK GENMASK(7, 0) /* Specifications */ #define ADF4377_SPI_READ_CMD BIT(7) #define ADF4377_MAX_VCO_FREQ (12800ULL * HZ_PER_MHZ) #define ADF4377_MIN_VCO_FREQ (6400ULL * HZ_PER_MHZ) #define ADF4377_MAX_REFIN_FREQ (1000 * HZ_PER_MHZ) #define ADF4377_MIN_REFIN_FREQ (10 * HZ_PER_MHZ) #define ADF4377_MAX_FREQ_PFD (500 * HZ_PER_MHZ) #define ADF4377_MIN_FREQ_PFD (3 * HZ_PER_MHZ) #define ADF4377_MAX_CLKPN_FREQ ADF4377_MAX_VCO_FREQ #define ADF4377_MIN_CLKPN_FREQ (ADF4377_MIN_VCO_FREQ / 8) #define ADF4377_FREQ_PFD_80MHZ (80 * HZ_PER_MHZ) #define ADF4377_FREQ_PFD_125MHZ (125 * HZ_PER_MHZ) #define ADF4377_FREQ_PFD_160MHZ (160 * HZ_PER_MHZ) #define ADF4377_FREQ_PFD_250MHZ (250 * HZ_PER_MHZ) #define ADF4377_FREQ_PFD_320MHZ (320 * HZ_PER_MHZ) enum { ADF4377_FREQ, }; enum muxout_select_mode { ADF4377_MUXOUT_HIGH_Z = 0x0, ADF4377_MUXOUT_LKDET = 0x1, ADF4377_MUXOUT_LOW = 0x2, ADF4377_MUXOUT_DIV_RCLK_2 = 0x4, ADF4377_MUXOUT_DIV_NCLK_2 = 0x5, ADF4377_MUXOUT_HIGH = 0x8, }; struct adf4377_state { struct spi_device *spi; struct regmap *regmap; struct clk *clkin; /* Protect against concurrent accesses to the device and data content */ struct mutex lock; struct notifier_block nb; /* Reference Divider */ unsigned int ref_div_factor; /* PFD Frequency */ unsigned int f_pfd; /* Input Reference Clock */ unsigned int clkin_freq; /* CLKOUT Divider */ u8 clkout_div_sel; /* Feedback Divider (N) */ u16 n_int; u16 synth_lock_timeout; u16 vco_alc_timeout; u16 adc_clk_div; u16 vco_band_div; u8 dclk_div1; u8 dclk_div2; u8 dclk_mode; unsigned int f_div_rclk; enum muxout_select_mode muxout_select; struct gpio_desc *gpio_ce; struct gpio_desc *gpio_enclk1; struct gpio_desc *gpio_enclk2; u8 buf[2] __aligned(IIO_DMA_MINALIGN); }; static const char * const adf4377_muxout_modes[] = { [ADF4377_MUXOUT_HIGH_Z] = "high_z", [ADF4377_MUXOUT_LKDET] = "lock_detect", [ADF4377_MUXOUT_LOW] = "muxout_low", [ADF4377_MUXOUT_DIV_RCLK_2] = "f_div_rclk_2", [ADF4377_MUXOUT_DIV_NCLK_2] = "f_div_nclk_2", [ADF4377_MUXOUT_HIGH] = "muxout_high", }; static const struct reg_sequence adf4377_reg_defaults[] = { { 0x42, ADF4377_0042_R042_RSV1 }, { 0x3B, ADF4377_003B_R03B_RSV1 }, { 0x3A, ADF4377_003A_R03A_RSV1 }, { 0x34, ADF4377_0034_R034_RSV1 }, { 0x33, ADF4377_0033_R033_RSV1 }, { 0x32, ADF4377_0032_R032_RSV1 }, { 0x31, ADF4377_0031_R031_RSV1 }, { 0x2C, ADF4377_002C_R02C_RSV1 }, { 0x25, ADF4377_0025_R025_RSV1 }, { 0x23, ADF4377_0023_R023_RSV1 }, { 0x22, ADF4377_0022_R022_RSV1 }, { 0x21, ADF4377_0021_R021_RSV1 }, { 0x1f, ADF4377_001F_R01F_RSV1 }, { 0x1c, ADF4377_001C_R01C_RSV1 }, }; static const struct regmap_config adf4377_regmap_config = { .reg_bits = 16, .val_bits = 8, .read_flag_mask = BIT(7), .max_register = 0x54, }; static int adf4377_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int write_val, unsigned int *read_val) { struct adf4377_state *st = iio_priv(indio_dev); if (read_val) return regmap_read(st->regmap, reg, read_val); return regmap_write(st->regmap, reg, write_val); } static const struct iio_info adf4377_info = { .debugfs_reg_access = &adf4377_reg_access, }; static int adf4377_soft_reset(struct adf4377_state *st) { unsigned int read_val; int ret; ret = regmap_update_bits(st->regmap, 0x0, ADF4377_0000_SOFT_RESET_MSK | ADF4377_0000_SOFT_RESET_R_MSK, FIELD_PREP(ADF4377_0000_SOFT_RESET_MSK, 1) | FIELD_PREP(ADF4377_0000_SOFT_RESET_R_MSK, 1)); if (ret) return ret; return regmap_read_poll_timeout(st->regmap, 0x0, read_val, !(read_val & (ADF4377_0000_SOFT_RESET_R_MSK | ADF4377_0000_SOFT_RESET_R_MSK)), 200, 200 * 100); } static int adf4377_get_freq(struct adf4377_state *st, u64 *freq) { unsigned int ref_div_factor, n_int; u64 clkin_freq; int ret; mutex_lock(&st->lock); ret = regmap_read(st->regmap, 0x12, &ref_div_factor); if (ret) goto exit; ret = regmap_bulk_read(st->regmap, 0x10, st->buf, sizeof(st->buf)); if (ret) goto exit; clkin_freq = clk_get_rate(st->clkin); ref_div_factor = FIELD_GET(ADF4377_0012_R_DIV_MSK, ref_div_factor); n_int = FIELD_GET(ADF4377_0010_N_INT_LSB_MSK | ADF4377_0011_N_INT_MSB_MSK, get_unaligned_le16(&st->buf)); *freq = div_u64(clkin_freq, ref_div_factor) * n_int; exit: mutex_unlock(&st->lock); return ret; } static int adf4377_set_freq(struct adf4377_state *st, u64 freq) { unsigned int read_val; u64 f_vco; int ret; mutex_lock(&st->lock); if (freq > ADF4377_MAX_CLKPN_FREQ || freq < ADF4377_MIN_CLKPN_FREQ) { ret = -EINVAL; goto exit; } ret = regmap_update_bits(st->regmap, 0x1C, ADF4377_001C_EN_DNCLK_MSK | ADF4377_001C_EN_DRCLK_MSK, FIELD_PREP(ADF4377_001C_EN_DNCLK_MSK, 1) | FIELD_PREP(ADF4377_001C_EN_DRCLK_MSK, 1)); if (ret) goto exit; ret = regmap_update_bits(st->regmap, 0x11, ADF4377_0011_EN_AUTOCAL_MSK | ADF4377_0011_DCLK_DIV2_MSK, FIELD_PREP(ADF4377_0011_EN_AUTOCAL_MSK, 1) | FIELD_PREP(ADF4377_0011_DCLK_DIV2_MSK, st->dclk_div2)); if (ret) goto exit; ret = regmap_update_bits(st->regmap, 0x2E, ADF4377_002E_EN_ADC_CNV_MSK | ADF4377_002E_EN_ADC_MSK | ADF4377_002E_ADC_A_CONV_MSK, FIELD_PREP(ADF4377_002E_EN_ADC_CNV_MSK, 1) | FIELD_PREP(ADF4377_002E_EN_ADC_MSK, 1) | FIELD_PREP(ADF4377_002E_ADC_A_CONV_MSK, ADF4377_002E_ADC_A_CONV_VCO_CALIB)); if (ret) goto exit; ret = regmap_update_bits(st->regmap, 0x20, ADF4377_0020_EN_ADC_CLK_MSK, FIELD_PREP(ADF4377_0020_EN_ADC_CLK_MSK, 1)); if (ret) goto exit; ret = regmap_update_bits(st->regmap, 0x2F, ADF4377_002F_DCLK_DIV1_MSK, FIELD_PREP(ADF4377_002F_DCLK_DIV1_MSK, st->dclk_div1)); if (ret) goto exit; ret = regmap_update_bits(st->regmap, 0x24, ADF4377_0024_DCLK_MODE_MSK, FIELD_PREP(ADF4377_0024_DCLK_MODE_MSK, st->dclk_mode)); if (ret) goto exit; ret = regmap_write(st->regmap, 0x27, FIELD_PREP(ADF4377_0027_SYNTH_LOCK_TO_LSB_MSK, st->synth_lock_timeout)); if (ret) goto exit; ret = regmap_update_bits(st->regmap, 0x28, ADF4377_0028_SYNTH_LOCK_TO_MSB_MSK, FIELD_PREP(ADF4377_0028_SYNTH_LOCK_TO_MSB_MSK, st->synth_lock_timeout >> 8)); if (ret) goto exit; ret = regmap_write(st->regmap, 0x29, FIELD_PREP(ADF4377_0029_VCO_ALC_TO_LSB_MSK, st->vco_alc_timeout)); if (ret) goto exit; ret = regmap_update_bits(st->regmap, 0x2A, ADF4377_002A_VCO_ALC_TO_MSB_MSK, FIELD_PREP(ADF4377_002A_VCO_ALC_TO_MSB_MSK, st->vco_alc_timeout >> 8)); if (ret) goto exit; ret = regmap_write(st->regmap, 0x26, FIELD_PREP(ADF4377_0026_VCO_BAND_DIV_MSK, st->vco_band_div)); if (ret) goto exit; ret = regmap_write(st->regmap, 0x2D, FIELD_PREP(ADF4377_002D_ADC_CLK_DIV_MSK, st->adc_clk_div)); if (ret) goto exit; st->clkout_div_sel = 0; f_vco = freq; while (f_vco < ADF4377_MIN_VCO_FREQ) { f_vco <<= 1; st->clkout_div_sel++; } st->n_int = div_u64(freq, st->f_pfd); ret = regmap_update_bits(st->regmap, 0x11, ADF4377_0011_EN_RDBLR_MSK | ADF4377_0011_N_INT_MSB_MSK, FIELD_PREP(ADF4377_0011_EN_RDBLR_MSK, 0) | FIELD_PREP(ADF4377_0011_N_INT_MSB_MSK, st->n_int >> 8)); if (ret) goto exit; ret = regmap_update_bits(st->regmap, 0x12, ADF4377_0012_R_DIV_MSK | ADF4377_0012_CLKOUT_DIV_MSK, FIELD_PREP(ADF4377_0012_CLKOUT_DIV_MSK, st->clkout_div_sel) | FIELD_PREP(ADF4377_0012_R_DIV_MSK, st->ref_div_factor)); if (ret) goto exit; ret = regmap_write(st->regmap, 0x10, FIELD_PREP(ADF4377_0010_N_INT_LSB_MSK, st->n_int)); if (ret) goto exit; ret = regmap_read_poll_timeout(st->regmap, 0x49, read_val, !(read_val & (ADF4377_0049_FSM_BUSY_MSK)), 200, 200 * 100); if (ret) goto exit; /* Disable EN_DNCLK, EN_DRCLK */ ret = regmap_update_bits(st->regmap, 0x1C, ADF4377_001C_EN_DNCLK_MSK | ADF4377_001C_EN_DRCLK_MSK, FIELD_PREP(ADF4377_001C_EN_DNCLK_MSK, 0) | FIELD_PREP(ADF4377_001C_EN_DRCLK_MSK, 0)); if (ret) goto exit; /* Disable EN_ADC_CLK */ ret = regmap_update_bits(st->regmap, 0x20, ADF4377_0020_EN_ADC_CLK_MSK, FIELD_PREP(ADF4377_0020_EN_ADC_CLK_MSK, 0)); if (ret) goto exit; /* Set output Amplitude */ ret = regmap_update_bits(st->regmap, 0x19, ADF4377_0019_CLKOUT2_OP_MSK | ADF4377_0019_CLKOUT1_OP_MSK, FIELD_PREP(ADF4377_0019_CLKOUT1_OP_MSK, ADF4377_0019_CLKOUT_420MV) | FIELD_PREP(ADF4377_0019_CLKOUT2_OP_MSK, ADF4377_0019_CLKOUT_420MV)); exit: mutex_unlock(&st->lock); return ret; } static void adf4377_gpio_init(struct adf4377_state *st) { if (st->gpio_ce) { gpiod_set_value(st->gpio_ce, 1); /* Delay for SPI register bits to settle to their power-on reset state */ fsleep(200); } if (st->gpio_enclk1) gpiod_set_value(st->gpio_enclk1, 1); if (st->gpio_enclk2) gpiod_set_value(st->gpio_enclk2, 1); } static int adf4377_init(struct adf4377_state *st) { struct spi_device *spi = st->spi; int ret; adf4377_gpio_init(st); ret = adf4377_soft_reset(st); if (ret) { dev_err(&spi->dev, "Failed to soft reset.\n"); return ret; } ret = regmap_multi_reg_write(st->regmap, adf4377_reg_defaults, ARRAY_SIZE(adf4377_reg_defaults)); if (ret) { dev_err(&spi->dev, "Failed to set default registers.\n"); return ret; } ret = regmap_update_bits(st->regmap, 0x00, ADF4377_0000_SDO_ACTIVE_MSK | ADF4377_0000_SDO_ACTIVE_R_MSK, FIELD_PREP(ADF4377_0000_SDO_ACTIVE_MSK, ADF4377_0000_SDO_ACTIVE_SPI_4W) | FIELD_PREP(ADF4377_0000_SDO_ACTIVE_R_MSK, ADF4377_0000_SDO_ACTIVE_SPI_4W)); if (ret) { dev_err(&spi->dev, "Failed to set 4-Wire Operation.\n"); return ret; } st->clkin_freq = clk_get_rate(st->clkin); /* Power Up */ ret = regmap_write(st->regmap, 0x1a, FIELD_PREP(ADF4377_001A_PD_ALL_MSK, 0) | FIELD_PREP(ADF4377_001A_PD_RDIV_MSK, 0) | FIELD_PREP(ADF4377_001A_PD_NDIV_MSK, 0) | FIELD_PREP(ADF4377_001A_PD_VCO_MSK, 0) | FIELD_PREP(ADF4377_001A_PD_LD_MSK, 0) | FIELD_PREP(ADF4377_001A_PD_PFDCP_MSK, 0) | FIELD_PREP(ADF4377_001A_PD_CLKOUT1_MSK, 0) | FIELD_PREP(ADF4377_001A_PD_CLKOUT2_MSK, 0)); if (ret) { dev_err(&spi->dev, "Failed to set power down registers.\n"); return ret; } /* Set Mux Output */ ret = regmap_update_bits(st->regmap, 0x1D, ADF4377_001D_MUXOUT_MSK, FIELD_PREP(ADF4377_001D_MUXOUT_MSK, st->muxout_select)); if (ret) return ret; /* Compute PFD */ st->ref_div_factor = 0; do { st->ref_div_factor++; st->f_pfd = st->clkin_freq / st->ref_div_factor; } while (st->f_pfd > ADF4377_MAX_FREQ_PFD); if (st->f_pfd > ADF4377_MAX_FREQ_PFD || st->f_pfd < ADF4377_MIN_FREQ_PFD) return -EINVAL; st->f_div_rclk = st->f_pfd; if (st->f_pfd <= ADF4377_FREQ_PFD_80MHZ) { st->dclk_div1 = ADF4377_002F_DCLK_DIV1_1; st->dclk_div2 = ADF4377_0011_DCLK_DIV2_1; st->dclk_mode = 0; } else if (st->f_pfd <= ADF4377_FREQ_PFD_125MHZ) { st->dclk_div1 = ADF4377_002F_DCLK_DIV1_1; st->dclk_div2 = ADF4377_0011_DCLK_DIV2_1; st->dclk_mode = 1; } else if (st->f_pfd <= ADF4377_FREQ_PFD_160MHZ) { st->dclk_div1 = ADF4377_002F_DCLK_DIV1_2; st->dclk_div2 = ADF4377_0011_DCLK_DIV2_1; st->dclk_mode = 0; st->f_div_rclk /= 2; } else if (st->f_pfd <= ADF4377_FREQ_PFD_250MHZ) { st->dclk_div1 = ADF4377_002F_DCLK_DIV1_2; st->dclk_div2 = ADF4377_0011_DCLK_DIV2_1; st->dclk_mode = 1; st->f_div_rclk /= 2; } else if (st->f_pfd <= ADF4377_FREQ_PFD_320MHZ) { st->dclk_div1 = ADF4377_002F_DCLK_DIV1_2; st->dclk_div2 = ADF4377_0011_DCLK_DIV2_2; st->dclk_mode = 0; st->f_div_rclk /= 4; } else { st->dclk_div1 = ADF4377_002F_DCLK_DIV1_2; st->dclk_div2 = ADF4377_0011_DCLK_DIV2_2; st->dclk_mode = 1; st->f_div_rclk /= 4; } st->synth_lock_timeout = DIV_ROUND_UP(st->f_div_rclk, 50000); st->vco_alc_timeout = DIV_ROUND_UP(st->f_div_rclk, 20000); st->vco_band_div = DIV_ROUND_UP(st->f_div_rclk, 150000 * 16 * (1 << st->dclk_mode)); st->adc_clk_div = DIV_ROUND_UP((st->f_div_rclk / 400000 - 2), 4); return 0; } static ssize_t adf4377_read(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, char *buf) { struct adf4377_state *st = iio_priv(indio_dev); u64 val = 0; int ret; switch ((u32)private) { case ADF4377_FREQ: ret = adf4377_get_freq(st, &val); if (ret) return ret; return sysfs_emit(buf, "%llu\n", val); default: return -EINVAL; } } static ssize_t adf4377_write(struct iio_dev *indio_dev, uintptr_t private, const struct iio_chan_spec *chan, const char *buf, size_t len) { struct adf4377_state *st = iio_priv(indio_dev); unsigned long long freq; int ret; switch ((u32)private) { case ADF4377_FREQ: ret = kstrtoull(buf, 10, &freq); if (ret) return ret; ret = adf4377_set_freq(st, freq); if (ret) return ret; return len; default: return -EINVAL; } } #define _ADF4377_EXT_INFO(_name, _shared, _ident) { \ .name = _name, \ .read = adf4377_read, \ .write = adf4377_write, \ .private = _ident, \ .shared = _shared, \ } static const struct iio_chan_spec_ext_info adf4377_ext_info[] = { /* * Usually we use IIO_CHAN_INFO_FREQUENCY, but there are * values > 2^32 in order to support the entire frequency range * in Hz. */ _ADF4377_EXT_INFO("frequency", IIO_SEPARATE, ADF4377_FREQ), { } }; static const struct iio_chan_spec adf4377_channels[] = { { .type = IIO_ALTVOLTAGE, .indexed = 1, .output = 1, .channel = 0, .ext_info = adf4377_ext_info, }, }; static int adf4377_properties_parse(struct adf4377_state *st) { struct spi_device *spi = st->spi; int ret; st->clkin = devm_clk_get_enabled(&spi->dev, "ref_in"); if (IS_ERR(st->clkin)) return dev_err_probe(&spi->dev, PTR_ERR(st->clkin), "failed to get the reference input clock\n"); st->gpio_ce = devm_gpiod_get_optional(&st->spi->dev, "chip-enable", GPIOD_OUT_LOW); if (IS_ERR(st->gpio_ce)) return dev_err_probe(&spi->dev, PTR_ERR(st->gpio_ce), "failed to get the CE GPIO\n"); st->gpio_enclk1 = devm_gpiod_get_optional(&st->spi->dev, "clk1-enable", GPIOD_OUT_LOW); if (IS_ERR(st->gpio_enclk1)) return dev_err_probe(&spi->dev, PTR_ERR(st->gpio_enclk1), "failed to get the CE GPIO\n"); st->gpio_enclk2 = devm_gpiod_get_optional(&st->spi->dev, "clk2-enable", GPIOD_OUT_LOW); if (IS_ERR(st->gpio_enclk2)) return dev_err_probe(&spi->dev, PTR_ERR(st->gpio_enclk2), "failed to get the CE GPIO\n"); ret = device_property_match_property_string(&spi->dev, "adi,muxout-select", adf4377_muxout_modes, ARRAY_SIZE(adf4377_muxout_modes)); if (ret >= 0) st->muxout_select = ret; else st->muxout_select = ADF4377_MUXOUT_HIGH_Z; return 0; } static int adf4377_freq_change(struct notifier_block *nb, unsigned long action, void *data) { struct adf4377_state *st = container_of(nb, struct adf4377_state, nb); int ret; if (action == POST_RATE_CHANGE) { mutex_lock(&st->lock); ret = notifier_from_errno(adf4377_init(st)); mutex_unlock(&st->lock); return ret; } return NOTIFY_OK; } static int adf4377_probe(struct spi_device *spi) { struct iio_dev *indio_dev; struct regmap *regmap; struct adf4377_state *st; int ret; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; regmap = devm_regmap_init_spi(spi, &adf4377_regmap_config); if (IS_ERR(regmap)) return PTR_ERR(regmap); st = iio_priv(indio_dev); indio_dev->info = &adf4377_info; indio_dev->name = "adf4377"; indio_dev->channels = adf4377_channels; indio_dev->num_channels = ARRAY_SIZE(adf4377_channels); st->regmap = regmap; st->spi = spi; mutex_init(&st->lock); ret = adf4377_properties_parse(st); if (ret) return ret; st->nb.notifier_call = adf4377_freq_change; ret = devm_clk_notifier_register(&spi->dev, st->clkin, &st->nb); if (ret) return ret; ret = adf4377_init(st); if (ret) return ret; return devm_iio_device_register(&spi->dev, indio_dev); } static const struct spi_device_id adf4377_id[] = { { "adf4377", 0 }, {} }; MODULE_DEVICE_TABLE(spi, adf4377_id); static const struct of_device_id adf4377_of_match[] = { { .compatible = "adi,adf4377" }, {} }; MODULE_DEVICE_TABLE(of, adf4377_of_match); static struct spi_driver adf4377_driver = { .driver = { .name = "adf4377", .of_match_table = adf4377_of_match, }, .probe = adf4377_probe, .id_table = adf4377_id, }; module_spi_driver(adf4377_driver); MODULE_AUTHOR("Antoniu Miclaus <antoniu.miclaus@analog.com>"); MODULE_DESCRIPTION("Analog Devices ADF4377"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1