Contributors: 5
Author Tokens Token Proportion Commits Commit Proportion
Antoniu Miclaus 2610 98.27% 3 42.86%
David Lechner 27 1.02% 1 14.29%
Uwe Kleine-König 11 0.41% 1 14.29%
Jonathan Cameron 5 0.19% 1 14.29%
Dan Carpenter 3 0.11% 1 14.29%
Total 2656 7


// SPDX-License-Identifier: GPL-2.0-only
/*
 * ADMV1013 driver
 *
 * Copyright 2021 Analog Devices Inc.
 */

#include <linux/bitfield.h>
#include <linux/bits.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/iio/iio.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/notifier.h>
#include <linux/property.h>
#include <linux/regulator/consumer.h>
#include <linux/spi/spi.h>
#include <linux/units.h>

#include <asm/unaligned.h>

/* ADMV1013 Register Map */
#define ADMV1013_REG_SPI_CONTROL		0x00
#define ADMV1013_REG_ALARM			0x01
#define ADMV1013_REG_ALARM_MASKS		0x02
#define ADMV1013_REG_ENABLE			0x03
#define ADMV1013_REG_LO_AMP_I			0x05
#define ADMV1013_REG_LO_AMP_Q			0x06
#define ADMV1013_REG_OFFSET_ADJUST_I		0x07
#define ADMV1013_REG_OFFSET_ADJUST_Q		0x08
#define ADMV1013_REG_QUAD			0x09
#define ADMV1013_REG_VVA_TEMP_COMP		0x0A

/* ADMV1013_REG_SPI_CONTROL Map */
#define ADMV1013_PARITY_EN_MSK			BIT(15)
#define ADMV1013_SPI_SOFT_RESET_MSK		BIT(14)
#define ADMV1013_CHIP_ID_MSK			GENMASK(11, 4)
#define ADMV1013_CHIP_ID			0xA
#define ADMV1013_REVISION_ID_MSK		GENMASK(3, 0)

/* ADMV1013_REG_ALARM Map */
#define ADMV1013_PARITY_ERROR_MSK		BIT(15)
#define ADMV1013_TOO_FEW_ERRORS_MSK		BIT(14)
#define ADMV1013_TOO_MANY_ERRORS_MSK		BIT(13)
#define ADMV1013_ADDRESS_RANGE_ERROR_MSK	BIT(12)

/* ADMV1013_REG_ENABLE Map */
#define ADMV1013_VGA_PD_MSK			BIT(15)
#define ADMV1013_MIXER_PD_MSK			BIT(14)
#define ADMV1013_QUAD_PD_MSK			GENMASK(13, 11)
#define ADMV1013_BG_PD_MSK			BIT(10)
#define ADMV1013_MIXER_IF_EN_MSK		BIT(7)
#define ADMV1013_DET_EN_MSK			BIT(5)

/* ADMV1013_REG_LO_AMP Map */
#define ADMV1013_LOAMP_PH_ADJ_FINE_MSK		GENMASK(13, 7)
#define ADMV1013_MIXER_VGATE_MSK		GENMASK(6, 0)

/* ADMV1013_REG_OFFSET_ADJUST Map */
#define ADMV1013_MIXER_OFF_ADJ_P_MSK		GENMASK(15, 9)
#define ADMV1013_MIXER_OFF_ADJ_N_MSK		GENMASK(8, 2)

/* ADMV1013_REG_QUAD Map */
#define ADMV1013_QUAD_SE_MODE_MSK		GENMASK(9, 6)
#define ADMV1013_QUAD_FILTERS_MSK		GENMASK(3, 0)

/* ADMV1013_REG_VVA_TEMP_COMP Map */
#define ADMV1013_VVA_TEMP_COMP_MSK		GENMASK(15, 0)

/* ADMV1013 Miscellaneous Defines */
#define ADMV1013_READ				BIT(7)
#define ADMV1013_REG_ADDR_READ_MSK		GENMASK(6, 1)
#define ADMV1013_REG_ADDR_WRITE_MSK		GENMASK(22, 17)
#define ADMV1013_REG_DATA_MSK			GENMASK(16, 1)

enum {
	ADMV1013_IQ_MODE,
	ADMV1013_IF_MODE
};

enum {
	ADMV1013_RFMOD_I_CALIBPHASE,
	ADMV1013_RFMOD_Q_CALIBPHASE,
};

enum {
	ADMV1013_SE_MODE_POS = 6,
	ADMV1013_SE_MODE_NEG = 9,
	ADMV1013_SE_MODE_DIFF = 12
};

struct admv1013_state {
	struct spi_device	*spi;
	struct clk		*clkin;
	/* Protect against concurrent accesses to the device and to data */
	struct mutex		lock;
	struct notifier_block	nb;
	unsigned int		input_mode;
	unsigned int		quad_se_mode;
	bool			det_en;
	u8			data[3] __aligned(IIO_DMA_MINALIGN);
};

static int __admv1013_spi_read(struct admv1013_state *st, unsigned int reg,
			       unsigned int *val)
{
	int ret;
	struct spi_transfer t = {0};

	st->data[0] = ADMV1013_READ | FIELD_PREP(ADMV1013_REG_ADDR_READ_MSK, reg);
	st->data[1] = 0x0;
	st->data[2] = 0x0;

	t.rx_buf = &st->data[0];
	t.tx_buf = &st->data[0];
	t.len = 3;

	ret = spi_sync_transfer(st->spi, &t, 1);
	if (ret)
		return ret;

	*val = FIELD_GET(ADMV1013_REG_DATA_MSK, get_unaligned_be24(&st->data[0]));

	return ret;
}

static int admv1013_spi_read(struct admv1013_state *st, unsigned int reg,
			     unsigned int *val)
{
	int ret;

	mutex_lock(&st->lock);
	ret = __admv1013_spi_read(st, reg, val);
	mutex_unlock(&st->lock);

	return ret;
}

static int __admv1013_spi_write(struct admv1013_state *st,
				unsigned int reg,
				unsigned int val)
{
	put_unaligned_be24(FIELD_PREP(ADMV1013_REG_DATA_MSK, val) |
			   FIELD_PREP(ADMV1013_REG_ADDR_WRITE_MSK, reg), &st->data[0]);

	return spi_write(st->spi, &st->data[0], 3);
}

static int admv1013_spi_write(struct admv1013_state *st, unsigned int reg,
			      unsigned int val)
{
	int ret;

	mutex_lock(&st->lock);
	ret = __admv1013_spi_write(st, reg, val);
	mutex_unlock(&st->lock);

	return ret;
}

static int __admv1013_spi_update_bits(struct admv1013_state *st, unsigned int reg,
				      unsigned int mask, unsigned int val)
{
	int ret;
	unsigned int data, temp;

	ret = __admv1013_spi_read(st, reg, &data);
	if (ret)
		return ret;

	temp = (data & ~mask) | (val & mask);

	return __admv1013_spi_write(st, reg, temp);
}

static int admv1013_spi_update_bits(struct admv1013_state *st, unsigned int reg,
				    unsigned int mask, unsigned int val)
{
	int ret;

	mutex_lock(&st->lock);
	ret = __admv1013_spi_update_bits(st, reg, mask, val);
	mutex_unlock(&st->lock);

	return ret;
}

static int admv1013_read_raw(struct iio_dev *indio_dev,
			     struct iio_chan_spec const *chan,
			     int *val, int *val2, long info)
{
	struct admv1013_state *st = iio_priv(indio_dev);
	unsigned int data, addr;
	int ret;

	switch (info) {
	case IIO_CHAN_INFO_CALIBBIAS:
		switch (chan->channel) {
		case IIO_MOD_I:
			addr = ADMV1013_REG_OFFSET_ADJUST_I;
			break;
		case IIO_MOD_Q:
			addr = ADMV1013_REG_OFFSET_ADJUST_Q;
			break;
		default:
			return -EINVAL;
		}

		ret = admv1013_spi_read(st, addr, &data);
		if (ret)
			return ret;

		if (!chan->channel)
			*val = FIELD_GET(ADMV1013_MIXER_OFF_ADJ_P_MSK, data);
		else
			*val = FIELD_GET(ADMV1013_MIXER_OFF_ADJ_N_MSK, data);

		return IIO_VAL_INT;
	default:
		return -EINVAL;
	}
}

static int admv1013_write_raw(struct iio_dev *indio_dev,
			      struct iio_chan_spec const *chan,
			      int val, int val2, long info)
{
	struct admv1013_state *st = iio_priv(indio_dev);
	unsigned int addr, data, msk;

	switch (info) {
	case IIO_CHAN_INFO_CALIBBIAS:
		switch (chan->channel2) {
		case IIO_MOD_I:
			addr = ADMV1013_REG_OFFSET_ADJUST_I;
			break;
		case IIO_MOD_Q:
			addr = ADMV1013_REG_OFFSET_ADJUST_Q;
			break;
		default:
			return -EINVAL;
		}

		if (!chan->channel) {
			msk = ADMV1013_MIXER_OFF_ADJ_P_MSK;
			data = FIELD_PREP(ADMV1013_MIXER_OFF_ADJ_P_MSK, val);
		} else {
			msk = ADMV1013_MIXER_OFF_ADJ_N_MSK;
			data = FIELD_PREP(ADMV1013_MIXER_OFF_ADJ_N_MSK, val);
		}

		return admv1013_spi_update_bits(st, addr, msk, data);
	default:
		return -EINVAL;
	}
}

static ssize_t admv1013_read(struct iio_dev *indio_dev,
			     uintptr_t private,
			     const struct iio_chan_spec *chan,
			     char *buf)
{
	struct admv1013_state *st = iio_priv(indio_dev);
	unsigned int data, addr;
	int ret;

	switch ((u32)private) {
	case ADMV1013_RFMOD_I_CALIBPHASE:
		addr = ADMV1013_REG_LO_AMP_I;
		break;
	case ADMV1013_RFMOD_Q_CALIBPHASE:
		addr = ADMV1013_REG_LO_AMP_Q;
		break;
	default:
		return -EINVAL;
	}

	ret = admv1013_spi_read(st, addr, &data);
	if (ret)
		return ret;

	data = FIELD_GET(ADMV1013_LOAMP_PH_ADJ_FINE_MSK, data);

	return sysfs_emit(buf, "%u\n", data);
}

static ssize_t admv1013_write(struct iio_dev *indio_dev,
			      uintptr_t private,
			      const struct iio_chan_spec *chan,
			      const char *buf, size_t len)
{
	struct admv1013_state *st = iio_priv(indio_dev);
	unsigned int data;
	int ret;

	ret = kstrtou32(buf, 10, &data);
	if (ret)
		return ret;

	data = FIELD_PREP(ADMV1013_LOAMP_PH_ADJ_FINE_MSK, data);

	switch ((u32)private) {
	case ADMV1013_RFMOD_I_CALIBPHASE:
		ret = admv1013_spi_update_bits(st, ADMV1013_REG_LO_AMP_I,
					       ADMV1013_LOAMP_PH_ADJ_FINE_MSK,
					       data);
		if (ret)
			return ret;
		break;
	case ADMV1013_RFMOD_Q_CALIBPHASE:
		ret = admv1013_spi_update_bits(st, ADMV1013_REG_LO_AMP_Q,
					       ADMV1013_LOAMP_PH_ADJ_FINE_MSK,
					       data);
		if (ret)
			return ret;
		break;
	default:
		return -EINVAL;
	}

	return ret ? ret : len;
}

static int admv1013_update_quad_filters(struct admv1013_state *st)
{
	unsigned int filt_raw;
	u64 rate = clk_get_rate(st->clkin);

	if (rate >= (5400 * HZ_PER_MHZ) && rate <= (7000 * HZ_PER_MHZ))
		filt_raw = 15;
	else if (rate >= (5400 * HZ_PER_MHZ) && rate <= (8000 * HZ_PER_MHZ))
		filt_raw = 10;
	else if (rate >= (6600 * HZ_PER_MHZ) && rate <= (9200 * HZ_PER_MHZ))
		filt_raw = 5;
	else
		filt_raw = 0;

	return __admv1013_spi_update_bits(st, ADMV1013_REG_QUAD,
					ADMV1013_QUAD_FILTERS_MSK,
					FIELD_PREP(ADMV1013_QUAD_FILTERS_MSK, filt_raw));
}

static int admv1013_update_mixer_vgate(struct admv1013_state *st, int vcm)
{
	unsigned int mixer_vgate;

	if (vcm <= 1800000)
		mixer_vgate = (2389 * vcm / 1000000 + 8100) / 100;
	else if (vcm > 1800000 && vcm <= 2600000)
		mixer_vgate = (2375 * vcm / 1000000 + 125) / 100;
	else
		return -EINVAL;

	return __admv1013_spi_update_bits(st, ADMV1013_REG_LO_AMP_I,
				 ADMV1013_MIXER_VGATE_MSK,
				 FIELD_PREP(ADMV1013_MIXER_VGATE_MSK, mixer_vgate));
}

static int admv1013_reg_access(struct iio_dev *indio_dev,
			       unsigned int reg,
			       unsigned int write_val,
			       unsigned int *read_val)
{
	struct admv1013_state *st = iio_priv(indio_dev);

	if (read_val)
		return admv1013_spi_read(st, reg, read_val);
	else
		return admv1013_spi_write(st, reg, write_val);
}

static const struct iio_info admv1013_info = {
	.read_raw = admv1013_read_raw,
	.write_raw = admv1013_write_raw,
	.debugfs_reg_access = &admv1013_reg_access,
};

static const char * const admv1013_vcc_regs[] = {
	 "vcc-drv", "vcc2-drv", "vcc-vva", "vcc-amp1", "vcc-amp2",
	 "vcc-env", "vcc-bg", "vcc-bg2", "vcc-mixer", "vcc-quad"
};

static int admv1013_freq_change(struct notifier_block *nb, unsigned long action, void *data)
{
	struct admv1013_state *st = container_of(nb, struct admv1013_state, nb);
	int ret;

	if (action == POST_RATE_CHANGE) {
		mutex_lock(&st->lock);
		ret = notifier_from_errno(admv1013_update_quad_filters(st));
		mutex_unlock(&st->lock);
		return ret;
	}

	return NOTIFY_OK;
}

#define _ADMV1013_EXT_INFO(_name, _shared, _ident) { \
		.name = _name, \
		.read = admv1013_read, \
		.write = admv1013_write, \
		.private = _ident, \
		.shared = _shared, \
}

static const struct iio_chan_spec_ext_info admv1013_ext_info[] = {
	_ADMV1013_EXT_INFO("i_calibphase", IIO_SEPARATE, ADMV1013_RFMOD_I_CALIBPHASE),
	_ADMV1013_EXT_INFO("q_calibphase", IIO_SEPARATE, ADMV1013_RFMOD_Q_CALIBPHASE),
	{ },
};

#define ADMV1013_CHAN_PHASE(_channel, _channel2, _admv1013_ext_info) {		\
	.type = IIO_ALTVOLTAGE,					\
	.output = 0,						\
	.indexed = 1,						\
	.channel2 = _channel2,					\
	.channel = _channel,					\
	.differential = 1,					\
	.ext_info = _admv1013_ext_info,				\
	}

#define ADMV1013_CHAN_CALIB(_channel, rf_comp) {	\
	.type = IIO_ALTVOLTAGE,					\
	.output = 0,						\
	.indexed = 1,						\
	.channel = _channel,					\
	.channel2 = IIO_MOD_##rf_comp,				\
	.info_mask_separate = BIT(IIO_CHAN_INFO_CALIBBIAS),	\
	}

static const struct iio_chan_spec admv1013_channels[] = {
	ADMV1013_CHAN_PHASE(0, 1, admv1013_ext_info),
	ADMV1013_CHAN_CALIB(0, I),
	ADMV1013_CHAN_CALIB(0, Q),
	ADMV1013_CHAN_CALIB(1, I),
	ADMV1013_CHAN_CALIB(1, Q),
};

static int admv1013_init(struct admv1013_state *st, int vcm_uv)
{
	int ret;
	unsigned int data;
	struct spi_device *spi = st->spi;

	/* Perform a software reset */
	ret = __admv1013_spi_update_bits(st, ADMV1013_REG_SPI_CONTROL,
					 ADMV1013_SPI_SOFT_RESET_MSK,
					 FIELD_PREP(ADMV1013_SPI_SOFT_RESET_MSK, 1));
	if (ret)
		return ret;

	ret = __admv1013_spi_update_bits(st, ADMV1013_REG_SPI_CONTROL,
					 ADMV1013_SPI_SOFT_RESET_MSK,
					 FIELD_PREP(ADMV1013_SPI_SOFT_RESET_MSK, 0));
	if (ret)
		return ret;

	ret = __admv1013_spi_read(st, ADMV1013_REG_SPI_CONTROL, &data);
	if (ret)
		return ret;

	data = FIELD_GET(ADMV1013_CHIP_ID_MSK, data);
	if (data != ADMV1013_CHIP_ID) {
		dev_err(&spi->dev, "Invalid Chip ID.\n");
		return -EINVAL;
	}

	ret = __admv1013_spi_write(st, ADMV1013_REG_VVA_TEMP_COMP, 0xE700);
	if (ret)
		return ret;

	data = FIELD_PREP(ADMV1013_QUAD_SE_MODE_MSK, st->quad_se_mode);

	ret = __admv1013_spi_update_bits(st, ADMV1013_REG_QUAD,
					 ADMV1013_QUAD_SE_MODE_MSK, data);
	if (ret)
		return ret;

	ret = admv1013_update_mixer_vgate(st, vcm_uv);
	if (ret)
		return ret;

	ret = admv1013_update_quad_filters(st);
	if (ret)
		return ret;

	return __admv1013_spi_update_bits(st, ADMV1013_REG_ENABLE,
					  ADMV1013_DET_EN_MSK |
					  ADMV1013_MIXER_IF_EN_MSK,
					  st->det_en |
					  st->input_mode);
}

static void admv1013_powerdown(void *data)
{
	unsigned int enable_reg, enable_reg_msk;

	/* Disable all components in the Enable Register */
	enable_reg_msk = ADMV1013_VGA_PD_MSK |
			ADMV1013_MIXER_PD_MSK |
			ADMV1013_QUAD_PD_MSK |
			ADMV1013_BG_PD_MSK |
			ADMV1013_MIXER_IF_EN_MSK |
			ADMV1013_DET_EN_MSK;

	enable_reg = FIELD_PREP(ADMV1013_VGA_PD_MSK, 1) |
			FIELD_PREP(ADMV1013_MIXER_PD_MSK, 1) |
			FIELD_PREP(ADMV1013_QUAD_PD_MSK, 7) |
			FIELD_PREP(ADMV1013_BG_PD_MSK, 1) |
			FIELD_PREP(ADMV1013_MIXER_IF_EN_MSK, 0) |
			FIELD_PREP(ADMV1013_DET_EN_MSK, 0);

	admv1013_spi_update_bits(data, ADMV1013_REG_ENABLE, enable_reg_msk, enable_reg);
}

static int admv1013_properties_parse(struct admv1013_state *st)
{
	int ret;
	const char *str;
	struct spi_device *spi = st->spi;

	st->det_en = device_property_read_bool(&spi->dev, "adi,detector-enable");

	ret = device_property_read_string(&spi->dev, "adi,input-mode", &str);
	if (ret)
		st->input_mode = ADMV1013_IQ_MODE;

	if (!strcmp(str, "iq"))
		st->input_mode = ADMV1013_IQ_MODE;
	else if (!strcmp(str, "if"))
		st->input_mode = ADMV1013_IF_MODE;
	else
		return -EINVAL;

	ret = device_property_read_string(&spi->dev, "adi,quad-se-mode", &str);
	if (ret)
		st->quad_se_mode = ADMV1013_SE_MODE_DIFF;

	if (!strcmp(str, "diff"))
		st->quad_se_mode = ADMV1013_SE_MODE_DIFF;
	else if (!strcmp(str, "se-pos"))
		st->quad_se_mode = ADMV1013_SE_MODE_POS;
	else if (!strcmp(str, "se-neg"))
		st->quad_se_mode = ADMV1013_SE_MODE_NEG;
	else
		return -EINVAL;

	ret = devm_regulator_bulk_get_enable(&st->spi->dev,
					     ARRAY_SIZE(admv1013_vcc_regs),
					     admv1013_vcc_regs);
	if (ret) {
		dev_err_probe(&spi->dev, ret,
			      "Failed to request VCC regulators\n");
		return ret;
	}

	return 0;
}

static int admv1013_probe(struct spi_device *spi)
{
	struct iio_dev *indio_dev;
	struct admv1013_state *st;
	int ret, vcm_uv;

	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
	if (!indio_dev)
		return -ENOMEM;

	st = iio_priv(indio_dev);

	indio_dev->info = &admv1013_info;
	indio_dev->name = "admv1013";
	indio_dev->channels = admv1013_channels;
	indio_dev->num_channels = ARRAY_SIZE(admv1013_channels);

	st->spi = spi;

	ret = admv1013_properties_parse(st);
	if (ret)
		return ret;

	ret = devm_regulator_get_enable_read_voltage(&spi->dev, "vcm");
	if (ret < 0)
		return dev_err_probe(&spi->dev, ret,
				     "failed to get the common-mode voltage\n");

	vcm_uv = ret;

	st->clkin = devm_clk_get_enabled(&spi->dev, "lo_in");
	if (IS_ERR(st->clkin))
		return dev_err_probe(&spi->dev, PTR_ERR(st->clkin),
				     "failed to get the LO input clock\n");

	st->nb.notifier_call = admv1013_freq_change;
	ret = devm_clk_notifier_register(&spi->dev, st->clkin, &st->nb);
	if (ret)
		return ret;

	mutex_init(&st->lock);

	ret = admv1013_init(st, vcm_uv);
	if (ret) {
		dev_err(&spi->dev, "admv1013 init failed\n");
		return ret;
	}

	ret = devm_add_action_or_reset(&spi->dev, admv1013_powerdown, st);
	if (ret)
		return ret;

	return devm_iio_device_register(&spi->dev, indio_dev);
}

static const struct spi_device_id admv1013_id[] = {
	{ "admv1013", 0 },
	{}
};
MODULE_DEVICE_TABLE(spi, admv1013_id);

static const struct of_device_id admv1013_of_match[] = {
	{ .compatible = "adi,admv1013" },
	{},
};
MODULE_DEVICE_TABLE(of, admv1013_of_match);

static struct spi_driver admv1013_driver = {
	.driver = {
		.name = "admv1013",
		.of_match_table = admv1013_of_match,
	},
	.probe = admv1013_probe,
	.id_table = admv1013_id,
};
module_spi_driver(admv1013_driver);

MODULE_AUTHOR("Antoniu Miclaus <antoniu.miclaus@analog.com");
MODULE_DESCRIPTION("Analog Devices ADMV1013");
MODULE_LICENSE("GPL v2");