Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Li peiyu | 1926 | 51.91% | 1 | 14.29% |
Dimitri Fedrau | 1499 | 40.40% | 3 | 42.86% |
Javier Carrasco | 284 | 7.65% | 2 | 28.57% |
Greg Kroah-Hartman | 1 | 0.03% | 1 | 14.29% |
Total | 3710 | 7 |
// SPDX-License-Identifier: GPL-2.0+ /* * hdc3020.c - Support for the TI HDC3020,HDC3021 and HDC3022 * temperature + relative humidity sensors * * Copyright (C) 2023 * * Copyright (C) 2024 Liebherr-Electronics and Drives GmbH * * Datasheet: https://www.ti.com/lit/ds/symlink/hdc3020.pdf */ #include <linux/bitfield.h> #include <linux/bitops.h> #include <linux/cleanup.h> #include <linux/crc8.h> #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/init.h> #include <linux/interrupt.h> #include <linux/math64.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/pm.h> #include <linux/regulator/consumer.h> #include <linux/units.h> #include <asm/unaligned.h> #include <linux/iio/events.h> #include <linux/iio/iio.h> #define HDC3020_S_AUTO_10HZ_MOD0 0x2737 #define HDC3020_S_STATUS 0x3041 #define HDC3020_HEATER_DISABLE 0x3066 #define HDC3020_HEATER_ENABLE 0x306D #define HDC3020_HEATER_CONFIG 0x306E #define HDC3020_EXIT_AUTO 0x3093 #define HDC3020_S_T_RH_THRESH_LOW 0x6100 #define HDC3020_S_T_RH_THRESH_LOW_CLR 0x610B #define HDC3020_S_T_RH_THRESH_HIGH_CLR 0x6116 #define HDC3020_S_T_RH_THRESH_HIGH 0x611D #define HDC3020_R_T_RH_AUTO 0xE000 #define HDC3020_R_T_LOW_AUTO 0xE002 #define HDC3020_R_T_HIGH_AUTO 0xE003 #define HDC3020_R_RH_LOW_AUTO 0xE004 #define HDC3020_R_RH_HIGH_AUTO 0xE005 #define HDC3020_R_T_RH_THRESH_LOW 0xE102 #define HDC3020_R_T_RH_THRESH_LOW_CLR 0xE109 #define HDC3020_R_T_RH_THRESH_HIGH_CLR 0xE114 #define HDC3020_R_T_RH_THRESH_HIGH 0xE11F #define HDC3020_R_STATUS 0xF32D #define HDC3020_THRESH_TEMP_MASK GENMASK(8, 0) #define HDC3020_THRESH_TEMP_TRUNC_SHIFT 7 #define HDC3020_THRESH_HUM_MASK GENMASK(15, 9) #define HDC3020_THRESH_HUM_TRUNC_SHIFT 9 #define HDC3020_STATUS_T_LOW_ALERT BIT(6) #define HDC3020_STATUS_T_HIGH_ALERT BIT(7) #define HDC3020_STATUS_RH_LOW_ALERT BIT(8) #define HDC3020_STATUS_RH_HIGH_ALERT BIT(9) #define HDC3020_READ_RETRY_TIMES 10 #define HDC3020_BUSY_DELAY_MS 10 #define HDC3020_CRC8_POLYNOMIAL 0x31 #define HDC3020_MIN_TEMP_MICRO -39872968 #define HDC3020_MAX_TEMP_MICRO 124875639 #define HDC3020_MAX_TEMP_HYST_MICRO 164748607 #define HDC3020_MAX_HUM_MICRO 99220264 struct hdc3020_data { struct i2c_client *client; struct gpio_desc *reset_gpio; struct regulator *vdd_supply; /* * Ensure that the sensor configuration (currently only heater is * supported) will not be changed during the process of reading * sensor data (this driver will try HDC3020_READ_RETRY_TIMES times * if the device does not respond). */ struct mutex lock; }; static const int hdc3020_heater_vals[] = {0, 1, 0x3FFF}; static const struct iio_event_spec hdc3020_t_rh_event[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_HYSTERESIS), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE) | BIT(IIO_EV_INFO_HYSTERESIS), }, }; static const struct iio_chan_spec hdc3020_channels[] = { { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_PEAK) | BIT(IIO_CHAN_INFO_TROUGH) | BIT(IIO_CHAN_INFO_OFFSET), .event_spec = hdc3020_t_rh_event, .num_event_specs = ARRAY_SIZE(hdc3020_t_rh_event), }, { .type = IIO_HUMIDITYRELATIVE, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE) | BIT(IIO_CHAN_INFO_PEAK) | BIT(IIO_CHAN_INFO_TROUGH), .event_spec = hdc3020_t_rh_event, .num_event_specs = ARRAY_SIZE(hdc3020_t_rh_event), }, { /* * For setting the internal heater, which can be switched on to * prevent or remove any condensation that may develop when the * ambient environment approaches its dew point temperature. */ .type = IIO_CURRENT, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_separate_available = BIT(IIO_CHAN_INFO_RAW), .output = 1, }, }; DECLARE_CRC8_TABLE(hdc3020_crc8_table); static int hdc3020_write_bytes(struct hdc3020_data *data, u8 *buf, u8 len) { struct i2c_client *client = data->client; struct i2c_msg msg; int ret, cnt; msg.addr = client->addr; msg.flags = 0; msg.buf = buf; msg.len = len; /* * During the measurement process, HDC3020 will not return data. * So wait for a while and try again */ for (cnt = 0; cnt < HDC3020_READ_RETRY_TIMES; cnt++) { ret = i2c_transfer(client->adapter, &msg, 1); if (ret == 1) return 0; mdelay(HDC3020_BUSY_DELAY_MS); } dev_err(&client->dev, "Could not write sensor command\n"); return -ETIMEDOUT; } static int hdc3020_read_bytes(struct hdc3020_data *data, u16 reg, u8 *buf, int len) { u8 reg_buf[2]; int ret, cnt; struct i2c_client *client = data->client; struct i2c_msg msg[2] = { [0] = { .addr = client->addr, .flags = 0, .buf = reg_buf, .len = 2, }, [1] = { .addr = client->addr, .flags = I2C_M_RD, .buf = buf, .len = len, }, }; put_unaligned_be16(reg, reg_buf); /* * During the measurement process, HDC3020 will not return data. * So wait for a while and try again */ for (cnt = 0; cnt < HDC3020_READ_RETRY_TIMES; cnt++) { ret = i2c_transfer(client->adapter, msg, 2); if (ret == 2) return 0; mdelay(HDC3020_BUSY_DELAY_MS); } dev_err(&client->dev, "Could not read sensor data\n"); return -ETIMEDOUT; } static int hdc3020_read_be16(struct hdc3020_data *data, u16 reg) { u8 crc, buf[3]; int ret; ret = hdc3020_read_bytes(data, reg, buf, 3); if (ret < 0) return ret; crc = crc8(hdc3020_crc8_table, buf, 2, CRC8_INIT_VALUE); if (crc != buf[2]) return -EINVAL; return get_unaligned_be16(buf); } static int hdc3020_exec_cmd(struct hdc3020_data *data, u16 reg) { u8 reg_buf[2]; put_unaligned_be16(reg, reg_buf); return hdc3020_write_bytes(data, reg_buf, 2); } static int hdc3020_read_measurement(struct hdc3020_data *data, enum iio_chan_type type, int *val) { u8 crc, buf[6]; int ret; ret = hdc3020_read_bytes(data, HDC3020_R_T_RH_AUTO, buf, 6); if (ret < 0) return ret; /* CRC check of the temperature measurement */ crc = crc8(hdc3020_crc8_table, buf, 2, CRC8_INIT_VALUE); if (crc != buf[2]) return -EINVAL; /* CRC check of the relative humidity measurement */ crc = crc8(hdc3020_crc8_table, buf + 3, 2, CRC8_INIT_VALUE); if (crc != buf[5]) return -EINVAL; if (type == IIO_TEMP) *val = get_unaligned_be16(buf); else if (type == IIO_HUMIDITYRELATIVE) *val = get_unaligned_be16(&buf[3]); else return -EINVAL; return 0; } static int hdc3020_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct hdc3020_data *data = iio_priv(indio_dev); int ret; if (chan->type != IIO_TEMP && chan->type != IIO_HUMIDITYRELATIVE) return -EINVAL; switch (mask) { case IIO_CHAN_INFO_RAW: { guard(mutex)(&data->lock); ret = hdc3020_read_measurement(data, chan->type, val); if (ret < 0) return ret; return IIO_VAL_INT; } case IIO_CHAN_INFO_PEAK: { guard(mutex)(&data->lock); if (chan->type == IIO_TEMP) ret = hdc3020_read_be16(data, HDC3020_R_T_HIGH_AUTO); else ret = hdc3020_read_be16(data, HDC3020_R_RH_HIGH_AUTO); if (ret < 0) return ret; *val = ret; return IIO_VAL_INT; } case IIO_CHAN_INFO_TROUGH: { guard(mutex)(&data->lock); if (chan->type == IIO_TEMP) ret = hdc3020_read_be16(data, HDC3020_R_T_LOW_AUTO); else ret = hdc3020_read_be16(data, HDC3020_R_RH_LOW_AUTO); if (ret < 0) return ret; *val = ret; return IIO_VAL_INT; } case IIO_CHAN_INFO_SCALE: *val2 = 65536; if (chan->type == IIO_TEMP) *val = 175; else *val = 100; return IIO_VAL_FRACTIONAL; case IIO_CHAN_INFO_OFFSET: if (chan->type != IIO_TEMP) return -EINVAL; *val = -16852; return IIO_VAL_INT; default: return -EINVAL; } } static int hdc3020_read_available(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { if (mask != IIO_CHAN_INFO_RAW || chan->type != IIO_CURRENT) return -EINVAL; *vals = hdc3020_heater_vals; *type = IIO_VAL_INT; return IIO_AVAIL_RANGE; } static int hdc3020_update_heater(struct hdc3020_data *data, int val) { u8 buf[5]; int ret; if (val < hdc3020_heater_vals[0] || val > hdc3020_heater_vals[2]) return -EINVAL; if (!val) hdc3020_exec_cmd(data, HDC3020_HEATER_DISABLE); put_unaligned_be16(HDC3020_HEATER_CONFIG, buf); put_unaligned_be16(val & GENMASK(13, 0), &buf[2]); buf[4] = crc8(hdc3020_crc8_table, buf + 2, 2, CRC8_INIT_VALUE); ret = hdc3020_write_bytes(data, buf, 5); if (ret < 0) return ret; return hdc3020_exec_cmd(data, HDC3020_HEATER_ENABLE); } static int hdc3020_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct hdc3020_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: if (chan->type != IIO_CURRENT) return -EINVAL; guard(mutex)(&data->lock); return hdc3020_update_heater(data, val); } return -EINVAL; } static int hdc3020_thresh_get_temp(u16 thresh) { int temp; /* * Get the temperature threshold from 9 LSBs, shift them to get * the truncated temperature threshold representation and * calculate the threshold according to the formula in the * datasheet. Result is degree celsius scaled by 65535. */ temp = FIELD_GET(HDC3020_THRESH_TEMP_MASK, thresh) << HDC3020_THRESH_TEMP_TRUNC_SHIFT; return -2949075 + (175 * temp); } static int hdc3020_thresh_get_hum(u16 thresh) { int hum; /* * Get the humidity threshold from 7 MSBs, shift them to get the * truncated humidity threshold representation and calculate the * threshold according to the formula in the datasheet. Result is * percent scaled by 65535. */ hum = FIELD_GET(HDC3020_THRESH_HUM_MASK, thresh) << HDC3020_THRESH_HUM_TRUNC_SHIFT; return hum * 100; } static u16 hdc3020_thresh_set_temp(int s_temp, u16 curr_thresh) { u64 temp; u16 thresh; /* * Calculate temperature threshold, shift it down to get the * truncated threshold representation in the 9LSBs while keeping * the current humidity threshold in the 7 MSBs. */ temp = (u64)(s_temp + 45000000) * 65535ULL; temp = div_u64(temp, 1000000 * 175) >> HDC3020_THRESH_TEMP_TRUNC_SHIFT; thresh = FIELD_PREP(HDC3020_THRESH_TEMP_MASK, temp); thresh |= (FIELD_GET(HDC3020_THRESH_HUM_MASK, curr_thresh) << HDC3020_THRESH_HUM_TRUNC_SHIFT); return thresh; } static u16 hdc3020_thresh_set_hum(int s_hum, u16 curr_thresh) { u64 hum; u16 thresh; /* * Calculate humidity threshold, shift it down and up to get the * truncated threshold representation in the 7MSBs while keeping * the current temperature threshold in the 9 LSBs. */ hum = (u64)(s_hum) * 65535ULL; hum = div_u64(hum, 1000000 * 100) >> HDC3020_THRESH_HUM_TRUNC_SHIFT; thresh = FIELD_PREP(HDC3020_THRESH_HUM_MASK, hum); thresh |= FIELD_GET(HDC3020_THRESH_TEMP_MASK, curr_thresh); return thresh; } static int hdc3020_thresh_clr(s64 s_thresh, s64 s_hyst, enum iio_event_direction dir) { s64 s_clr; /* * Include directions when calculation the clear value, * since hysteresis is unsigned by definition and the * clear value is an absolute value which is signed. */ if (dir == IIO_EV_DIR_RISING) s_clr = s_thresh - s_hyst; else s_clr = s_thresh + s_hyst; /* Divide by 65535 to get units of micro */ return div_s64(s_clr, 65535); } static int _hdc3020_write_thresh(struct hdc3020_data *data, u16 reg, u16 val) { u8 buf[5]; put_unaligned_be16(reg, buf); put_unaligned_be16(val, buf + 2); buf[4] = crc8(hdc3020_crc8_table, buf + 2, 2, CRC8_INIT_VALUE); return hdc3020_write_bytes(data, buf, 5); } static int hdc3020_write_thresh(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct hdc3020_data *data = iio_priv(indio_dev); u16 reg, reg_val, reg_thresh_rd, reg_clr_rd, reg_thresh_wr, reg_clr_wr; s64 s_thresh, s_hyst, s_clr; int s_val, thresh, clr, ret; /* Select threshold registers */ if (dir == IIO_EV_DIR_RISING) { reg_thresh_rd = HDC3020_R_T_RH_THRESH_HIGH; reg_thresh_wr = HDC3020_S_T_RH_THRESH_HIGH; reg_clr_rd = HDC3020_R_T_RH_THRESH_HIGH_CLR; reg_clr_wr = HDC3020_S_T_RH_THRESH_HIGH_CLR; } else { reg_thresh_rd = HDC3020_R_T_RH_THRESH_LOW; reg_thresh_wr = HDC3020_S_T_RH_THRESH_LOW; reg_clr_rd = HDC3020_R_T_RH_THRESH_LOW_CLR; reg_clr_wr = HDC3020_S_T_RH_THRESH_LOW_CLR; } guard(mutex)(&data->lock); ret = hdc3020_read_be16(data, reg_thresh_rd); if (ret < 0) return ret; thresh = ret; ret = hdc3020_read_be16(data, reg_clr_rd); if (ret < 0) return ret; clr = ret; /* Scale value to include decimal part into calculations */ s_val = (val < 0) ? (val * 1000000 - val2) : (val * 1000000 + val2); switch (chan->type) { case IIO_TEMP: switch (info) { case IIO_EV_INFO_VALUE: s_val = max(s_val, HDC3020_MIN_TEMP_MICRO); s_val = min(s_val, HDC3020_MAX_TEMP_MICRO); reg = reg_thresh_wr; reg_val = hdc3020_thresh_set_temp(s_val, thresh); ret = _hdc3020_write_thresh(data, reg, reg_val); if (ret < 0) return ret; /* Calculate old hysteresis */ s_thresh = (s64)hdc3020_thresh_get_temp(thresh) * 1000000; s_clr = (s64)hdc3020_thresh_get_temp(clr) * 1000000; s_hyst = div_s64(abs(s_thresh - s_clr), 65535); /* Set new threshold */ thresh = reg_val; /* Set old hysteresis */ s_val = s_hyst; fallthrough; case IIO_EV_INFO_HYSTERESIS: /* * Function hdc3020_thresh_get_temp returns temperature * in degree celsius scaled by 65535. Scale by 1000000 * to be able to subtract scaled hysteresis value. */ s_thresh = (s64)hdc3020_thresh_get_temp(thresh) * 1000000; /* * Units of s_val are in micro degree celsius, scale by * 65535 to get same units as s_thresh. */ s_val = min(abs(s_val), HDC3020_MAX_TEMP_HYST_MICRO); s_hyst = (s64)s_val * 65535; s_clr = hdc3020_thresh_clr(s_thresh, s_hyst, dir); s_clr = max(s_clr, HDC3020_MIN_TEMP_MICRO); s_clr = min(s_clr, HDC3020_MAX_TEMP_MICRO); reg = reg_clr_wr; reg_val = hdc3020_thresh_set_temp(s_clr, clr); break; default: return -EOPNOTSUPP; } break; case IIO_HUMIDITYRELATIVE: s_val = (s_val < 0) ? 0 : min(s_val, HDC3020_MAX_HUM_MICRO); switch (info) { case IIO_EV_INFO_VALUE: reg = reg_thresh_wr; reg_val = hdc3020_thresh_set_hum(s_val, thresh); ret = _hdc3020_write_thresh(data, reg, reg_val); if (ret < 0) return ret; /* Calculate old hysteresis */ s_thresh = (s64)hdc3020_thresh_get_hum(thresh) * 1000000; s_clr = (s64)hdc3020_thresh_get_hum(clr) * 1000000; s_hyst = div_s64(abs(s_thresh - s_clr), 65535); /* Set new threshold */ thresh = reg_val; /* Try to set old hysteresis */ s_val = min(abs(s_hyst), HDC3020_MAX_HUM_MICRO); fallthrough; case IIO_EV_INFO_HYSTERESIS: /* * Function hdc3020_thresh_get_hum returns relative * humidity in percent scaled by 65535. Scale by 1000000 * to be able to subtract scaled hysteresis value. */ s_thresh = (s64)hdc3020_thresh_get_hum(thresh) * 1000000; /* * Units of s_val are in micro percent, scale by 65535 * to get same units as s_thresh. */ s_hyst = (s64)s_val * 65535; s_clr = hdc3020_thresh_clr(s_thresh, s_hyst, dir); s_clr = max(s_clr, 0); s_clr = min(s_clr, HDC3020_MAX_HUM_MICRO); reg = reg_clr_wr; reg_val = hdc3020_thresh_set_hum(s_clr, clr); break; default: return -EOPNOTSUPP; } break; default: return -EOPNOTSUPP; } return _hdc3020_write_thresh(data, reg, reg_val); } static int hdc3020_read_thresh(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct hdc3020_data *data = iio_priv(indio_dev); u16 reg_thresh, reg_clr; int thresh, clr, ret; /* Select threshold registers */ if (dir == IIO_EV_DIR_RISING) { reg_thresh = HDC3020_R_T_RH_THRESH_HIGH; reg_clr = HDC3020_R_T_RH_THRESH_HIGH_CLR; } else { reg_thresh = HDC3020_R_T_RH_THRESH_LOW; reg_clr = HDC3020_R_T_RH_THRESH_LOW_CLR; } guard(mutex)(&data->lock); ret = hdc3020_read_be16(data, reg_thresh); if (ret < 0) return ret; switch (chan->type) { case IIO_TEMP: thresh = hdc3020_thresh_get_temp(ret); switch (info) { case IIO_EV_INFO_VALUE: *val = thresh; break; case IIO_EV_INFO_HYSTERESIS: ret = hdc3020_read_be16(data, reg_clr); if (ret < 0) return ret; clr = hdc3020_thresh_get_temp(ret); *val = abs(thresh - clr); break; default: return -EOPNOTSUPP; } *val2 = 65535; return IIO_VAL_FRACTIONAL; case IIO_HUMIDITYRELATIVE: thresh = hdc3020_thresh_get_hum(ret); switch (info) { case IIO_EV_INFO_VALUE: *val = thresh; break; case IIO_EV_INFO_HYSTERESIS: ret = hdc3020_read_be16(data, reg_clr); if (ret < 0) return ret; clr = hdc3020_thresh_get_hum(ret); *val = abs(thresh - clr); break; default: return -EOPNOTSUPP; } *val2 = 65535; return IIO_VAL_FRACTIONAL; default: return -EOPNOTSUPP; } } static irqreturn_t hdc3020_interrupt_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct hdc3020_data *data; s64 time; int ret; data = iio_priv(indio_dev); ret = hdc3020_read_be16(data, HDC3020_R_STATUS); if (ret < 0) return IRQ_HANDLED; if (!(ret & (HDC3020_STATUS_T_HIGH_ALERT | HDC3020_STATUS_T_LOW_ALERT | HDC3020_STATUS_RH_HIGH_ALERT | HDC3020_STATUS_RH_LOW_ALERT))) return IRQ_NONE; time = iio_get_time_ns(indio_dev); if (ret & HDC3020_STATUS_T_HIGH_ALERT) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_TEMP, 0, IIO_NO_MOD, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), time); if (ret & HDC3020_STATUS_T_LOW_ALERT) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_TEMP, 0, IIO_NO_MOD, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING), time); if (ret & HDC3020_STATUS_RH_HIGH_ALERT) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_HUMIDITYRELATIVE, 0, IIO_NO_MOD, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), time); if (ret & HDC3020_STATUS_RH_LOW_ALERT) iio_push_event(indio_dev, IIO_MOD_EVENT_CODE(IIO_HUMIDITYRELATIVE, 0, IIO_NO_MOD, IIO_EV_TYPE_THRESH, IIO_EV_DIR_FALLING), time); return IRQ_HANDLED; } static const struct iio_info hdc3020_info = { .read_raw = hdc3020_read_raw, .write_raw = hdc3020_write_raw, .read_avail = hdc3020_read_available, .read_event_value = hdc3020_read_thresh, .write_event_value = hdc3020_write_thresh, }; static int hdc3020_power_off(struct hdc3020_data *data) { hdc3020_exec_cmd(data, HDC3020_EXIT_AUTO); if (data->reset_gpio) gpiod_set_value_cansleep(data->reset_gpio, 1); return regulator_disable(data->vdd_supply); } static int hdc3020_power_on(struct hdc3020_data *data) { int ret; ret = regulator_enable(data->vdd_supply); if (ret) return ret; fsleep(5000); if (data->reset_gpio) { gpiod_set_value_cansleep(data->reset_gpio, 0); fsleep(3000); } if (data->client->irq) { /* * The alert output is activated by default upon power up, * hardware reset, and soft reset. Clear the status register. */ ret = hdc3020_exec_cmd(data, HDC3020_S_STATUS); if (ret) { hdc3020_power_off(data); return ret; } } ret = hdc3020_exec_cmd(data, HDC3020_S_AUTO_10HZ_MOD0); if (ret) hdc3020_power_off(data); return ret; } static void hdc3020_exit(void *data) { hdc3020_power_off(data); } static int hdc3020_probe(struct i2c_client *client) { struct iio_dev *indio_dev; struct hdc3020_data *data; int ret; if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) return -EOPNOTSUPP; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; dev_set_drvdata(&client->dev, indio_dev); data = iio_priv(indio_dev); data->client = client; mutex_init(&data->lock); crc8_populate_msb(hdc3020_crc8_table, HDC3020_CRC8_POLYNOMIAL); indio_dev->name = "hdc3020"; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &hdc3020_info; indio_dev->channels = hdc3020_channels; indio_dev->num_channels = ARRAY_SIZE(hdc3020_channels); data->vdd_supply = devm_regulator_get(&client->dev, "vdd"); if (IS_ERR(data->vdd_supply)) return dev_err_probe(&client->dev, PTR_ERR(data->vdd_supply), "Unable to get VDD regulator\n"); data->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(data->reset_gpio)) return dev_err_probe(&client->dev, PTR_ERR(data->reset_gpio), "Cannot get reset GPIO\n"); ret = hdc3020_power_on(data); if (ret) return dev_err_probe(&client->dev, ret, "Power on failed\n"); ret = devm_add_action_or_reset(&data->client->dev, hdc3020_exit, data); if (ret) return ret; if (client->irq) { ret = devm_request_threaded_irq(&client->dev, client->irq, NULL, hdc3020_interrupt_handler, IRQF_ONESHOT, "hdc3020", indio_dev); if (ret) return dev_err_probe(&client->dev, ret, "Failed to request IRQ\n"); } ret = devm_iio_device_register(&data->client->dev, indio_dev); if (ret) return dev_err_probe(&client->dev, ret, "Failed to add device"); return 0; } static int hdc3020_suspend(struct device *dev) { struct iio_dev *iio_dev = dev_get_drvdata(dev); struct hdc3020_data *data = iio_priv(iio_dev); return hdc3020_power_off(data); } static int hdc3020_resume(struct device *dev) { struct iio_dev *iio_dev = dev_get_drvdata(dev); struct hdc3020_data *data = iio_priv(iio_dev); return hdc3020_power_on(data); } static DEFINE_SIMPLE_DEV_PM_OPS(hdc3020_pm_ops, hdc3020_suspend, hdc3020_resume); static const struct i2c_device_id hdc3020_id[] = { { "hdc3020" }, { "hdc3021" }, { "hdc3022" }, { } }; MODULE_DEVICE_TABLE(i2c, hdc3020_id); static const struct of_device_id hdc3020_dt_ids[] = { { .compatible = "ti,hdc3020" }, { .compatible = "ti,hdc3021" }, { .compatible = "ti,hdc3022" }, { } }; MODULE_DEVICE_TABLE(of, hdc3020_dt_ids); static struct i2c_driver hdc3020_driver = { .driver = { .name = "hdc3020", .pm = pm_sleep_ptr(&hdc3020_pm_ops), .of_match_table = hdc3020_dt_ids, }, .probe = hdc3020_probe, .id_table = hdc3020_id, }; module_i2c_driver(hdc3020_driver); MODULE_AUTHOR("Javier Carrasco <javier.carrasco.cruz@gmail.com>"); MODULE_AUTHOR("Li peiyu <579lpy@gmail.com>"); MODULE_DESCRIPTION("TI HDC3020 humidity and temperature sensor driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1