Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matti Vaittinen | 5232 | 99.98% | 5 | 83.33% |
Uwe Kleine-König | 1 | 0.02% | 1 | 16.67% |
Total | 5233 | 6 |
// SPDX-License-Identifier: GPL-2.0-only /* * BU27034 ROHM Ambient Light Sensor * * Copyright (c) 2023, ROHM Semiconductor. * https://fscdn.rohm.com/en/products/databook/datasheet/ic/sensor/light/bu27034nuc-e.pdf */ #include <linux/bitfield.h> #include <linux/bits.h> #include <linux/device.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/units.h> #include <linux/iio/buffer.h> #include <linux/iio/iio.h> #include <linux/iio/iio-gts-helper.h> #include <linux/iio/kfifo_buf.h> #define BU27034_REG_SYSTEM_CONTROL 0x40 #define BU27034_MASK_SW_RESET BIT(7) #define BU27034_MASK_PART_ID GENMASK(5, 0) #define BU27034_ID 0x19 #define BU27034_REG_MODE_CONTROL1 0x41 #define BU27034_MASK_MEAS_MODE GENMASK(2, 0) #define BU27034_REG_MODE_CONTROL2 0x42 #define BU27034_MASK_D01_GAIN GENMASK(7, 3) #define BU27034_MASK_D2_GAIN_HI GENMASK(7, 6) #define BU27034_MASK_D2_GAIN_LO GENMASK(2, 0) #define BU27034_REG_MODE_CONTROL3 0x43 #define BU27034_REG_MODE_CONTROL4 0x44 #define BU27034_MASK_MEAS_EN BIT(0) #define BU27034_MASK_VALID BIT(7) #define BU27034_REG_DATA0_LO 0x50 #define BU27034_REG_DATA1_LO 0x52 #define BU27034_REG_DATA2_LO 0x54 #define BU27034_REG_DATA2_HI 0x55 #define BU27034_REG_MANUFACTURER_ID 0x92 #define BU27034_REG_MAX BU27034_REG_MANUFACTURER_ID /* * The BU27034 does not have interrupt to trigger the data read when a * measurement has finished. Hence we poll the VALID bit in a thread. We will * try to wake the thread BU27034_MEAS_WAIT_PREMATURE_MS milliseconds before * the expected sampling time to prevent the drifting. * * If we constantly wake up a bit too late we would eventually skip a sample. * And because the sleep can't wake up _exactly_ at given time this would be * inevitable even if the sensor clock would be perfectly phase-locked to CPU * clock - which we can't say is the case. * * This is still fragile. No matter how big advance do we have, we will still * risk of losing a sample because things can in a rainy-day scenario be * delayed a lot. Yet, more we reserve the time for polling, more we also lose * the performance by spending cycles polling the register. So, selecting this * value is a balancing dance between severity of wasting CPU time and severity * of losing samples. * * In most cases losing the samples is not _that_ crucial because light levels * tend to change slowly. * * Other option that was pointed to me would be always sleeping 1/2 of the * measurement time, checking the VALID bit and just sleeping again if the bit * was not set. That should be pretty tolerant against missing samples due to * the scheduling delays while also not wasting much of cycles for polling. * Downside is that the time-stamps would be very inaccurate as the wake-up * would not really be tied to the sensor toggling the valid bit. This would also * result 'jumps' in the time-stamps when the delay drifted so that wake-up was * performed during the consecutive wake-ups (Or, when sensor and CPU clocks * were very different and scheduling the wake-ups was very close to given * timeout - and when the time-outs were very close to the actual sensor * sampling, Eg. once in a blue moon, two consecutive time-outs would occur * without having a sample ready). */ #define BU27034_MEAS_WAIT_PREMATURE_MS 5 #define BU27034_DATA_WAIT_TIME_US 1000 #define BU27034_TOTAL_DATA_WAIT_TIME_US (BU27034_MEAS_WAIT_PREMATURE_MS * 1000) #define BU27034_RETRY_LIMIT 18 enum { BU27034_CHAN_ALS, BU27034_CHAN_DATA0, BU27034_CHAN_DATA1, BU27034_CHAN_DATA2, BU27034_NUM_CHANS }; static const unsigned long bu27034_scan_masks[] = { GENMASK(BU27034_CHAN_DATA2, BU27034_CHAN_ALS), 0 }; /* * Available scales with gain 1x - 4096x, timings 55, 100, 200, 400 mS * Time impacts to gain: 1x, 2x, 4x, 8x. * * => Max total gain is HWGAIN * gain by integration time (8 * 4096) = 32768 * * Using NANO precision for scale we must use scale 64x corresponding gain 1x * to avoid precision loss. (32x would result scale 976 562.5(nanos). */ #define BU27034_SCALE_1X 64 /* See the data sheet for the "Gain Setting" table */ #define BU27034_GSEL_1X 0x00 /* 00000 */ #define BU27034_GSEL_4X 0x08 /* 01000 */ #define BU27034_GSEL_16X 0x0a /* 01010 */ #define BU27034_GSEL_32X 0x0b /* 01011 */ #define BU27034_GSEL_64X 0x0c /* 01100 */ #define BU27034_GSEL_256X 0x18 /* 11000 */ #define BU27034_GSEL_512X 0x19 /* 11001 */ #define BU27034_GSEL_1024X 0x1a /* 11010 */ #define BU27034_GSEL_2048X 0x1b /* 11011 */ #define BU27034_GSEL_4096X 0x1c /* 11100 */ /* Available gain settings */ static const struct iio_gain_sel_pair bu27034_gains[] = { GAIN_SCALE_GAIN(1, BU27034_GSEL_1X), GAIN_SCALE_GAIN(4, BU27034_GSEL_4X), GAIN_SCALE_GAIN(16, BU27034_GSEL_16X), GAIN_SCALE_GAIN(32, BU27034_GSEL_32X), GAIN_SCALE_GAIN(64, BU27034_GSEL_64X), GAIN_SCALE_GAIN(256, BU27034_GSEL_256X), GAIN_SCALE_GAIN(512, BU27034_GSEL_512X), GAIN_SCALE_GAIN(1024, BU27034_GSEL_1024X), GAIN_SCALE_GAIN(2048, BU27034_GSEL_2048X), GAIN_SCALE_GAIN(4096, BU27034_GSEL_4096X), }; /* * The IC has 5 modes for sampling time. 5 mS mode is exceptional as it limits * the data collection to data0-channel only and cuts the supported range to * 10 bit. It is not supported by the driver. * * "normal" modes are 55, 100, 200 and 400 mS modes - which do have direct * multiplying impact to the register values (similar to gain). * * This means that if meas-mode is changed for example from 400 => 200, * the scale is doubled. Eg, time impact to total gain is x1, x2, x4, x8. */ #define BU27034_MEAS_MODE_100MS 0 #define BU27034_MEAS_MODE_55MS 1 #define BU27034_MEAS_MODE_200MS 2 #define BU27034_MEAS_MODE_400MS 4 static const struct iio_itime_sel_mul bu27034_itimes[] = { GAIN_SCALE_ITIME_US(400000, BU27034_MEAS_MODE_400MS, 8), GAIN_SCALE_ITIME_US(200000, BU27034_MEAS_MODE_200MS, 4), GAIN_SCALE_ITIME_US(100000, BU27034_MEAS_MODE_100MS, 2), GAIN_SCALE_ITIME_US(55000, BU27034_MEAS_MODE_55MS, 1), }; #define BU27034_CHAN_DATA(_name, _ch2) \ { \ .type = IIO_INTENSITY, \ .channel = BU27034_CHAN_##_name, \ .channel2 = (_ch2), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_separate_available = BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_INT_TIME), \ .info_mask_shared_by_all_available = \ BIT(IIO_CHAN_INFO_INT_TIME), \ .address = BU27034_REG_##_name##_LO, \ .scan_index = BU27034_CHAN_##_name, \ .scan_type = { \ .sign = 'u', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_LE, \ }, \ .indexed = 1, \ } static const struct iio_chan_spec bu27034_channels[] = { { .type = IIO_LIGHT, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE), .channel = BU27034_CHAN_ALS, .scan_index = BU27034_CHAN_ALS, .scan_type = { .sign = 'u', .realbits = 32, .storagebits = 32, .endianness = IIO_CPU, }, }, /* * The BU27034 DATA0 and DATA1 channels are both on the visible light * area (mostly). The data0 sensitivity peaks at 500nm, DATA1 at 600nm. * These wave lengths are pretty much on the border of colours making * these a poor candidates for R/G/B standardization. Hence they're both * marked as clear channels */ BU27034_CHAN_DATA(DATA0, IIO_MOD_LIGHT_CLEAR), BU27034_CHAN_DATA(DATA1, IIO_MOD_LIGHT_CLEAR), BU27034_CHAN_DATA(DATA2, IIO_MOD_LIGHT_IR), IIO_CHAN_SOFT_TIMESTAMP(4), }; struct bu27034_data { struct regmap *regmap; struct device *dev; /* * Protect gain and time during scale adjustment and data reading. * Protect measurement enabling/disabling. */ struct mutex mutex; struct iio_gts gts; struct task_struct *task; __le16 raw[3]; struct { u32 mlux; __le16 channels[3]; s64 ts __aligned(8); } scan; }; struct bu27034_result { u16 ch0; u16 ch1; u16 ch2; }; static const struct regmap_range bu27034_volatile_ranges[] = { { .range_min = BU27034_REG_SYSTEM_CONTROL, .range_max = BU27034_REG_SYSTEM_CONTROL, }, { .range_min = BU27034_REG_MODE_CONTROL4, .range_max = BU27034_REG_MODE_CONTROL4, }, { .range_min = BU27034_REG_DATA0_LO, .range_max = BU27034_REG_DATA2_HI, }, }; static const struct regmap_access_table bu27034_volatile_regs = { .yes_ranges = &bu27034_volatile_ranges[0], .n_yes_ranges = ARRAY_SIZE(bu27034_volatile_ranges), }; static const struct regmap_range bu27034_read_only_ranges[] = { { .range_min = BU27034_REG_DATA0_LO, .range_max = BU27034_REG_DATA2_HI, }, { .range_min = BU27034_REG_MANUFACTURER_ID, .range_max = BU27034_REG_MANUFACTURER_ID, } }; static const struct regmap_access_table bu27034_ro_regs = { .no_ranges = &bu27034_read_only_ranges[0], .n_no_ranges = ARRAY_SIZE(bu27034_read_only_ranges), }; static const struct regmap_config bu27034_regmap = { .reg_bits = 8, .val_bits = 8, .max_register = BU27034_REG_MAX, .cache_type = REGCACHE_RBTREE, .volatile_table = &bu27034_volatile_regs, .wr_table = &bu27034_ro_regs, }; struct bu27034_gain_check { int old_gain; int new_gain; int chan; }; static int bu27034_get_gain_sel(struct bu27034_data *data, int chan) { int ret, val; switch (chan) { case BU27034_CHAN_DATA0: case BU27034_CHAN_DATA1: { int reg[] = { [BU27034_CHAN_DATA0] = BU27034_REG_MODE_CONTROL2, [BU27034_CHAN_DATA1] = BU27034_REG_MODE_CONTROL3, }; ret = regmap_read(data->regmap, reg[chan], &val); if (ret) return ret; return FIELD_GET(BU27034_MASK_D01_GAIN, val); } case BU27034_CHAN_DATA2: { int d2_lo_bits = fls(BU27034_MASK_D2_GAIN_LO); ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL2, &val); if (ret) return ret; /* * The data2 channel gain is composed by 5 non continuous bits * [7:6], [2:0]. Thus when we combine the 5-bit 'selector' * from register value we must right shift the high bits by 3. */ return FIELD_GET(BU27034_MASK_D2_GAIN_HI, val) << d2_lo_bits | FIELD_GET(BU27034_MASK_D2_GAIN_LO, val); } default: return -EINVAL; } } static int bu27034_get_gain(struct bu27034_data *data, int chan, int *gain) { int ret, sel; ret = bu27034_get_gain_sel(data, chan); if (ret < 0) return ret; sel = ret; ret = iio_gts_find_gain_by_sel(&data->gts, sel); if (ret < 0) { dev_err(data->dev, "chan %u: unknown gain value 0x%x\n", chan, sel); return ret; } *gain = ret; return 0; } static int bu27034_get_int_time(struct bu27034_data *data) { int ret, sel; ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &sel); if (ret) return ret; return iio_gts_find_int_time_by_sel(&data->gts, sel & BU27034_MASK_MEAS_MODE); } static int _bu27034_get_scale(struct bu27034_data *data, int channel, int *val, int *val2) { int gain, ret; ret = bu27034_get_gain(data, channel, &gain); if (ret) return ret; ret = bu27034_get_int_time(data); if (ret < 0) return ret; return iio_gts_get_scale(&data->gts, gain, ret, val, val2); } static int bu27034_get_scale(struct bu27034_data *data, int channel, int *val, int *val2) { int ret; if (channel == BU27034_CHAN_ALS) { *val = 0; *val2 = 1000; return IIO_VAL_INT_PLUS_MICRO; } mutex_lock(&data->mutex); ret = _bu27034_get_scale(data, channel, val, val2); mutex_unlock(&data->mutex); if (ret) return ret; return IIO_VAL_INT_PLUS_NANO; } /* Caller should hold the lock to protect lux reading */ static int bu27034_write_gain_sel(struct bu27034_data *data, int chan, int sel) { static const int reg[] = { [BU27034_CHAN_DATA0] = BU27034_REG_MODE_CONTROL2, [BU27034_CHAN_DATA1] = BU27034_REG_MODE_CONTROL3, }; int mask, val; if (chan != BU27034_CHAN_DATA0 && chan != BU27034_CHAN_DATA1) return -EINVAL; val = FIELD_PREP(BU27034_MASK_D01_GAIN, sel); mask = BU27034_MASK_D01_GAIN; if (chan == BU27034_CHAN_DATA0) { /* * We keep the same gain for channel 2 as we set for channel 0 * We can't allow them to be individually controlled because * setting one will impact also the other. Also, if we don't * always update both gains we may result unsupported bit * combinations. * * This is not nice but this is yet another place where the * user space must be prepared to surprizes. Namely, see chan 2 * gain changed when chan 0 gain is changed. * * This is not fatal for most users though. I don't expect the * channel 2 to be used in any generic cases - the intensity * values provided by the sensor for IR area are not openly * documented. Also, channel 2 is not used for visible light. * * So, if there is application which is written to utilize the * channel 2 - then it is probably specifically targeted to this * sensor and knows how to utilize those values. It is safe to * hope such user can also cope with the gain changes. */ mask |= BU27034_MASK_D2_GAIN_LO; /* * The D2 gain bits are directly the lowest bits of selector. * Just do add those bits to the value */ val |= sel & BU27034_MASK_D2_GAIN_LO; } return regmap_update_bits(data->regmap, reg[chan], mask, val); } static int bu27034_set_gain(struct bu27034_data *data, int chan, int gain) { int ret; /* * We don't allow setting channel 2 gain as it messes up the * gain for channel 0 - which shares the high bits */ if (chan != BU27034_CHAN_DATA0 && chan != BU27034_CHAN_DATA1) return -EINVAL; ret = iio_gts_find_sel_by_gain(&data->gts, gain); if (ret < 0) return ret; return bu27034_write_gain_sel(data, chan, ret); } /* Caller should hold the lock to protect data->int_time */ static int bu27034_set_int_time(struct bu27034_data *data, int time) { int ret; ret = iio_gts_find_sel_by_int_time(&data->gts, time); if (ret < 0) return ret; return regmap_update_bits(data->regmap, BU27034_REG_MODE_CONTROL1, BU27034_MASK_MEAS_MODE, ret); } /* * We try to change the time in such way that the scale is maintained for * given channels by adjusting gain so that it compensates the time change. */ static int bu27034_try_set_int_time(struct bu27034_data *data, int time_us) { struct bu27034_gain_check gains[] = { { .chan = BU27034_CHAN_DATA0 }, { .chan = BU27034_CHAN_DATA1 }, }; int numg = ARRAY_SIZE(gains); int ret, int_time_old, i; mutex_lock(&data->mutex); ret = bu27034_get_int_time(data); if (ret < 0) goto unlock_out; int_time_old = ret; if (!iio_gts_valid_time(&data->gts, time_us)) { dev_err(data->dev, "Unsupported integration time %u\n", time_us); ret = -EINVAL; goto unlock_out; } if (time_us == int_time_old) { ret = 0; goto unlock_out; } for (i = 0; i < numg; i++) { ret = bu27034_get_gain(data, gains[i].chan, &gains[i].old_gain); if (ret) goto unlock_out; ret = iio_gts_find_new_gain_by_old_gain_time(&data->gts, gains[i].old_gain, int_time_old, time_us, &gains[i].new_gain); if (ret) { int scale1, scale2; bool ok; _bu27034_get_scale(data, gains[i].chan, &scale1, &scale2); dev_dbg(data->dev, "chan %u, can't support time %u with scale %u %u\n", gains[i].chan, time_us, scale1, scale2); if (gains[i].new_gain < 0) goto unlock_out; /* * If caller requests for integration time change and we * can't support the scale - then the caller should be * prepared to 'pick up the pieces and deal with the * fact that the scale changed'. */ ret = iio_find_closest_gain_low(&data->gts, gains[i].new_gain, &ok); if (!ok) dev_dbg(data->dev, "optimal gain out of range for chan %u\n", gains[i].chan); if (ret < 0) { dev_dbg(data->dev, "Total gain increase. Risk of saturation"); ret = iio_gts_get_min_gain(&data->gts); if (ret < 0) goto unlock_out; } dev_dbg(data->dev, "chan %u scale changed\n", gains[i].chan); gains[i].new_gain = ret; dev_dbg(data->dev, "chan %u new gain %u\n", gains[i].chan, gains[i].new_gain); } } for (i = 0; i < numg; i++) { ret = bu27034_set_gain(data, gains[i].chan, gains[i].new_gain); if (ret) goto unlock_out; } ret = bu27034_set_int_time(data, time_us); unlock_out: mutex_unlock(&data->mutex); return ret; } static int bu27034_set_scale(struct bu27034_data *data, int chan, int val, int val2) { int ret, time_sel, gain_sel, i; bool found = false; if (chan == BU27034_CHAN_DATA2) return -EINVAL; if (chan == BU27034_CHAN_ALS) { if (val == 0 && val2 == 1000000) return 0; return -EINVAL; } mutex_lock(&data->mutex); ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &time_sel); if (ret) goto unlock_out; ret = iio_gts_find_gain_sel_for_scale_using_time(&data->gts, time_sel, val, val2, &gain_sel); if (ret) { /* * Could not support scale with given time. Need to change time. * We still want to maintain the scale for all channels */ struct bu27034_gain_check gain; int new_time_sel; /* * Populate information for the other channel which should also * maintain the scale. (Due to the HW limitations the chan2 * gets the same gain as chan0, so we only need to explicitly * set the chan 0 and 1). */ if (chan == BU27034_CHAN_DATA0) gain.chan = BU27034_CHAN_DATA1; else if (chan == BU27034_CHAN_DATA1) gain.chan = BU27034_CHAN_DATA0; ret = bu27034_get_gain(data, gain.chan, &gain.old_gain); if (ret) goto unlock_out; /* * Iterate through all the times to see if we find one which * can support requested scale for requested channel, while * maintaining the scale for other channels */ for (i = 0; i < data->gts.num_itime; i++) { new_time_sel = data->gts.itime_table[i].sel; if (new_time_sel == time_sel) continue; /* Can we provide requested scale with this time? */ ret = iio_gts_find_gain_sel_for_scale_using_time( &data->gts, new_time_sel, val, val2, &gain_sel); if (ret) continue; /* Can the other channel(s) maintain scale? */ ret = iio_gts_find_new_gain_sel_by_old_gain_time( &data->gts, gain.old_gain, time_sel, new_time_sel, &gain.new_gain); if (!ret) { /* Yes - we found suitable time */ found = true; break; } } if (!found) { dev_dbg(data->dev, "Can't set scale maintaining other channels\n"); ret = -EINVAL; goto unlock_out; } ret = bu27034_set_gain(data, gain.chan, gain.new_gain); if (ret) goto unlock_out; ret = regmap_update_bits(data->regmap, BU27034_REG_MODE_CONTROL1, BU27034_MASK_MEAS_MODE, new_time_sel); if (ret) goto unlock_out; } ret = bu27034_write_gain_sel(data, chan, gain_sel); unlock_out: mutex_unlock(&data->mutex); return ret; } /* * for (D1/D0 < 0.87): * lx = 0.004521097 * D1 - 0.002663996 * D0 + * 0.00012213 * D1 * D1 / D0 * * => 115.7400832 * ch1 / gain1 / mt - * 68.1982976 * ch0 / gain0 / mt + * 0.00012213 * 25600 * (ch1 / gain1 / mt) * 25600 * * (ch1 /gain1 / mt) / (25600 * ch0 / gain0 / mt) * * A = 0.00012213 * 25600 * (ch1 /gain1 / mt) * 25600 * * (ch1 /gain1 / mt) / (25600 * ch0 / gain0 / mt) * => 0.00012213 * 25600 * (ch1 /gain1 / mt) * * (ch1 /gain1 / mt) / (ch0 / gain0 / mt) * => 0.00012213 * 25600 * (ch1 / gain1) * (ch1 /gain1 / mt) / * (ch0 / gain0) * => 0.00012213 * 25600 * (ch1 / gain1) * (ch1 /gain1 / mt) * * gain0 / ch0 * => 3.126528 * ch1 * ch1 * gain0 / gain1 / gain1 / mt /ch0 * * lx = (115.7400832 * ch1 / gain1 - 68.1982976 * ch0 / gain0) / * mt + A * => (115.7400832 * ch1 / gain1 - 68.1982976 * ch0 / gain0) / * mt + 3.126528 * ch1 * ch1 * gain0 / gain1 / gain1 / mt / * ch0 * * => (115.7400832 * ch1 / gain1 - 68.1982976 * ch0 / gain0 + * 3.126528 * ch1 * ch1 * gain0 / gain1 / gain1 / ch0) / * mt * * For (0.87 <= D1/D0 < 1.00) * lx = (0.001331* D0 + 0.0000354 * D1) * ((D1/D0 – 0.87) * (0.385) + 1) * => (0.001331 * 256 * 100 * ch0 / gain0 / mt + 0.0000354 * 256 * * 100 * ch1 / gain1 / mt) * ((D1/D0 - 0.87) * (0.385) + 1) * => (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) * * ((D1/D0 - 0.87) * (0.385) + 1) * => (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) * * (0.385 * D1/D0 - 0.66505) * => (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) * * (0.385 * 256 * 100 * ch1 / gain1 / mt / (256 * 100 * ch0 / gain0 / mt) - 0.66505) * => (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) * * (9856 * ch1 / gain1 / mt / (25600 * ch0 / gain0 / mt) + 0.66505) * => 13.118336 * ch1 / (gain1 * mt) * + 22.66064768 * ch0 / (gain0 * mt) * + 8931.90144 * ch1 * ch1 * gain0 / * (25600 * ch0 * gain1 * gain1 * mt) * + 0.602694912 * ch1 / (gain1 * mt) * * => [0.3489024 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) * + 22.66064768 * ch0 / gain0 * + 13.721030912 * ch1 / gain1 * ] / mt * * For (D1/D0 >= 1.00) * * lx = (0.001331* D0 + 0.0000354 * D1) * ((D1/D0 – 2.0) * (-0.05) + 1) * => (0.001331* D0 + 0.0000354 * D1) * (-0.05D1/D0 + 1.1) * => (0.001331 * 256 * 100 * ch0 / gain0 / mt + 0.0000354 * 256 * * 100 * ch1 / gain1 / mt) * (-0.05D1/D0 + 1.1) * => (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) * * (-0.05 * 256 * 100 * ch1 / gain1 / mt / (256 * 100 * ch0 / gain0 / mt) + 1.1) * => (34.0736 * ch0 / gain0 / mt + 0.90624 * ch1 / gain1 / mt) * * (-1280 * ch1 / (gain1 * mt * 25600 * ch0 / gain0 / mt) + 1.1) * => (34.0736 * ch0 * -1280 * ch1 * gain0 * mt /( gain0 * mt * gain1 * mt * 25600 * ch0) * + 34.0736 * 1.1 * ch0 / (gain0 * mt) * + 0.90624 * ch1 * -1280 * ch1 *gain0 * mt / (gain1 * mt *gain1 * mt * 25600 * ch0) * + 1.1 * 0.90624 * ch1 / (gain1 * mt) * => -43614.208 * ch1 / (gain1 * mt * 25600) * + 37.48096 ch0 / (gain0 * mt) * - 1159.9872 * ch1 * ch1 * gain0 / (gain1 * gain1 * mt * 25600 * ch0) * + 0.996864 ch1 / (gain1 * mt) * => [ * - 0.045312 * ch1 * ch1 * gain0 / (gain1 * gain1 * ch0) * - 0.706816 * ch1 / gain1 * + 37.48096 ch0 /gain0 * ] * mt * * * So, the first case (D1/D0 < 0.87) can be computed to a form: * * lx = (3.126528 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) + * 115.7400832 * ch1 / gain1 + * -68.1982976 * ch0 / gain0 * / mt * * Second case (0.87 <= D1/D0 < 1.00) goes to form: * * => [0.3489024 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) + * 13.721030912 * ch1 / gain1 + * 22.66064768 * ch0 / gain0 * ] / mt * * Third case (D1/D0 >= 1.00) goes to form: * => [-0.045312 * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) + * -0.706816 * ch1 / gain1 + * 37.48096 ch0 /(gain0 * ] / mt * * This can be unified to format: * lx = [ * A * ch1 * ch1 * gain0 / (ch0 * gain1 * gain1) + * B * ch1 / gain1 + * C * ch0 / gain0 * ] / mt * * For case 1: * A = 3.126528, * B = 115.7400832 * C = -68.1982976 * * For case 2: * A = 0.3489024 * B = 13.721030912 * C = 22.66064768 * * For case 3: * A = -0.045312 * B = -0.706816 * C = 37.48096 */ struct bu27034_lx_coeff { unsigned int A; unsigned int B; unsigned int C; /* Indicate which of the coefficients above are negative */ bool is_neg[3]; }; static inline u64 gain_mul_div_helper(u64 val, unsigned int gain, unsigned int div) { /* * Max gain for a channel is 4096. The max u64 (0xffffffffffffffffULL) * divided by 4096 is 0xFFFFFFFFFFFFF (GENMASK_ULL(51, 0)) (floored). * Thus, the 0xFFFFFFFFFFFFF is the largest value we can safely multiply * with the gain, no matter what gain is set. * * So, multiplication with max gain may overflow if val is greater than * 0xFFFFFFFFFFFFF (52 bits set).. * * If this is the case we divide first. */ if (val < GENMASK_ULL(51, 0)) { val *= gain; do_div(val, div); } else { do_div(val, div); val *= gain; } return val; } static u64 bu27034_fixp_calc_t1_64bit(unsigned int coeff, unsigned int ch0, unsigned int ch1, unsigned int gain0, unsigned int gain1) { unsigned int helper; u64 helper64; helper64 = (u64)coeff * (u64)ch1 * (u64)ch1; helper = gain1 * gain1; if (helper > ch0) { do_div(helper64, helper); return gain_mul_div_helper(helper64, gain0, ch0); } do_div(helper64, ch0); return gain_mul_div_helper(helper64, gain0, helper); } static u64 bu27034_fixp_calc_t1(unsigned int coeff, unsigned int ch0, unsigned int ch1, unsigned int gain0, unsigned int gain1) { unsigned int helper, tmp; /* * Here we could overflow even the 64bit value. Hence we * multiply with gain0 only after the divisions - even though * it may result loss of accuracy */ helper = coeff * ch1 * ch1; tmp = helper * gain0; helper = ch1 * ch1; if (check_mul_overflow(helper, coeff, &helper)) return bu27034_fixp_calc_t1_64bit(coeff, ch0, ch1, gain0, gain1); if (check_mul_overflow(helper, gain0, &tmp)) return bu27034_fixp_calc_t1_64bit(coeff, ch0, ch1, gain0, gain1); return tmp / (gain1 * gain1) / ch0; } static u64 bu27034_fixp_calc_t23(unsigned int coeff, unsigned int ch, unsigned int gain) { unsigned int helper; u64 helper64; if (!check_mul_overflow(coeff, ch, &helper)) return helper / gain; helper64 = (u64)coeff * (u64)ch; do_div(helper64, gain); return helper64; } static int bu27034_fixp_calc_lx(unsigned int ch0, unsigned int ch1, unsigned int gain0, unsigned int gain1, unsigned int meastime, int coeff_idx) { static const struct bu27034_lx_coeff coeff[] = { { .A = 31265280, /* 3.126528 */ .B = 1157400832, /*115.7400832 */ .C = 681982976, /* -68.1982976 */ .is_neg = {false, false, true}, }, { .A = 3489024, /* 0.3489024 */ .B = 137210309, /* 13.721030912 */ .C = 226606476, /* 22.66064768 */ /* All terms positive */ }, { .A = 453120, /* -0.045312 */ .B = 7068160, /* -0.706816 */ .C = 374809600, /* 37.48096 */ .is_neg = {true, true, false}, } }; const struct bu27034_lx_coeff *c = &coeff[coeff_idx]; u64 res = 0, terms[3]; int i; if (coeff_idx >= ARRAY_SIZE(coeff)) return -EINVAL; terms[0] = bu27034_fixp_calc_t1(c->A, ch0, ch1, gain0, gain1); terms[1] = bu27034_fixp_calc_t23(c->B, ch1, gain1); terms[2] = bu27034_fixp_calc_t23(c->C, ch0, gain0); /* First, add positive terms */ for (i = 0; i < 3; i++) if (!c->is_neg[i]) res += terms[i]; /* No positive term => zero lux */ if (!res) return 0; /* Then, subtract negative terms (if any) */ for (i = 0; i < 3; i++) if (c->is_neg[i]) { /* * If the negative term is greater than positive - then * the darkness has taken over and we are all doomed! Eh, * I mean, then we can just return 0 lx and go out */ if (terms[i] >= res) return 0; res -= terms[i]; } meastime *= 10; do_div(res, meastime); return (int) res; } static bool bu27034_has_valid_sample(struct bu27034_data *data) { int ret, val; ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL4, &val); if (ret) { dev_err(data->dev, "Read failed %d\n", ret); return false; } return val & BU27034_MASK_VALID; } /* * Reading the register where VALID bit is clears this bit. (So does changing * any gain / integration time configuration registers) The bit gets * set when we have acquired new data. We use this bit to indicate data * validity. */ static void bu27034_invalidate_read_data(struct bu27034_data *data) { bu27034_has_valid_sample(data); } static int bu27034_read_result(struct bu27034_data *data, int chan, int *res) { int reg[] = { [BU27034_CHAN_DATA0] = BU27034_REG_DATA0_LO, [BU27034_CHAN_DATA1] = BU27034_REG_DATA1_LO, [BU27034_CHAN_DATA2] = BU27034_REG_DATA2_LO, }; int valid, ret; __le16 val; ret = regmap_read_poll_timeout(data->regmap, BU27034_REG_MODE_CONTROL4, valid, (valid & BU27034_MASK_VALID), BU27034_DATA_WAIT_TIME_US, 0); if (ret) return ret; ret = regmap_bulk_read(data->regmap, reg[chan], &val, sizeof(val)); if (ret) return ret; *res = le16_to_cpu(val); return 0; } static int bu27034_get_result_unlocked(struct bu27034_data *data, __le16 *res, int size) { int ret = 0, retry_cnt = 0; retry: /* Get new value from sensor if data is ready */ if (bu27034_has_valid_sample(data)) { ret = regmap_bulk_read(data->regmap, BU27034_REG_DATA0_LO, res, size); if (ret) return ret; bu27034_invalidate_read_data(data); } else { /* No new data in sensor. Wait and retry */ retry_cnt++; if (retry_cnt > BU27034_RETRY_LIMIT) { dev_err(data->dev, "No data from sensor\n"); return -ETIMEDOUT; } msleep(25); goto retry; } return ret; } static int bu27034_meas_set(struct bu27034_data *data, bool en) { if (en) return regmap_set_bits(data->regmap, BU27034_REG_MODE_CONTROL4, BU27034_MASK_MEAS_EN); return regmap_clear_bits(data->regmap, BU27034_REG_MODE_CONTROL4, BU27034_MASK_MEAS_EN); } static int bu27034_get_single_result(struct bu27034_data *data, int chan, int *val) { int ret; if (chan < BU27034_CHAN_DATA0 || chan > BU27034_CHAN_DATA2) return -EINVAL; ret = bu27034_meas_set(data, true); if (ret) return ret; ret = bu27034_get_int_time(data); if (ret < 0) return ret; msleep(ret / 1000); return bu27034_read_result(data, chan, val); } /* * The formula given by vendor for computing luxes out of data0 and data1 * (in open air) is as follows: * * Let's mark: * D0 = data0/ch0_gain/meas_time_ms * 25600 * D1 = data1/ch1_gain/meas_time_ms * 25600 * * Then: * if (D1/D0 < 0.87) * lx = (0.001331 * D0 + 0.0000354 * D1) * ((D1 / D0 - 0.87) * 3.45 + 1) * else if (D1/D0 < 1) * lx = (0.001331 * D0 + 0.0000354 * D1) * ((D1 / D0 - 0.87) * 0.385 + 1) * else * lx = (0.001331 * D0 + 0.0000354 * D1) * ((D1 / D0 - 2) * -0.05 + 1) * * We use it here. Users who have for example some colored lens * need to modify the calculation but I hope this gives a starting point for * those working with such devices. */ static int bu27034_calc_mlux(struct bu27034_data *data, __le16 *res, int *val) { unsigned int gain0, gain1, meastime; unsigned int d1_d0_ratio_scaled; u16 ch0, ch1; u64 helper64; int ret; /* * We return 0 lux if calculation fails. This should be reasonably * easy to spot from the buffers especially if raw-data channels show * valid values */ *val = 0; ch0 = max_t(u16, 1, le16_to_cpu(res[0])); ch1 = max_t(u16, 1, le16_to_cpu(res[1])); ret = bu27034_get_gain(data, BU27034_CHAN_DATA0, &gain0); if (ret) return ret; ret = bu27034_get_gain(data, BU27034_CHAN_DATA1, &gain1); if (ret) return ret; ret = bu27034_get_int_time(data); if (ret < 0) return ret; meastime = ret; d1_d0_ratio_scaled = (unsigned int)ch1 * (unsigned int)gain0 * 100; helper64 = (u64)ch1 * (u64)gain0 * 100LLU; if (helper64 != d1_d0_ratio_scaled) { unsigned int div = (unsigned int)ch0 * gain1; do_div(helper64, div); d1_d0_ratio_scaled = helper64; } else { d1_d0_ratio_scaled /= ch0 * gain1; } if (d1_d0_ratio_scaled < 87) ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 0); else if (d1_d0_ratio_scaled < 100) ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 1); else ret = bu27034_fixp_calc_lx(ch0, ch1, gain0, gain1, meastime, 2); if (ret < 0) return ret; *val = ret; return 0; } static int bu27034_get_mlux(struct bu27034_data *data, int chan, int *val) { __le16 res[3]; int ret; ret = bu27034_meas_set(data, true); if (ret) return ret; ret = bu27034_get_result_unlocked(data, &res[0], sizeof(res)); if (ret) return ret; ret = bu27034_calc_mlux(data, res, val); if (ret) return ret; ret = bu27034_meas_set(data, false); if (ret) dev_err(data->dev, "failed to disable measurement\n"); return 0; } static int bu27034_read_raw(struct iio_dev *idev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct bu27034_data *data = iio_priv(idev); int ret; switch (mask) { case IIO_CHAN_INFO_INT_TIME: *val = 0; *val2 = bu27034_get_int_time(data); if (*val2 < 0) return *val2; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SCALE: return bu27034_get_scale(data, chan->channel, val, val2); case IIO_CHAN_INFO_RAW: { int (*result_get)(struct bu27034_data *data, int chan, int *val); if (chan->type == IIO_INTENSITY) result_get = bu27034_get_single_result; else if (chan->type == IIO_LIGHT) result_get = bu27034_get_mlux; else return -EINVAL; /* Don't mess with measurement enabling while buffering */ ret = iio_device_claim_direct_mode(idev); if (ret) return ret; mutex_lock(&data->mutex); /* * Reading one channel at a time is inefficient but we * don't care here. Buffered version should be used if * performance is an issue. */ ret = result_get(data, chan->channel, val); mutex_unlock(&data->mutex); iio_device_release_direct_mode(idev); if (ret) return ret; return IIO_VAL_INT; } default: return -EINVAL; } } static int bu27034_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: return IIO_VAL_INT_PLUS_NANO; case IIO_CHAN_INFO_INT_TIME: return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int bu27034_write_raw(struct iio_dev *idev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct bu27034_data *data = iio_priv(idev); int ret; ret = iio_device_claim_direct_mode(idev); if (ret) return ret; switch (mask) { case IIO_CHAN_INFO_SCALE: ret = bu27034_set_scale(data, chan->channel, val, val2); break; case IIO_CHAN_INFO_INT_TIME: if (!val) ret = bu27034_try_set_int_time(data, val2); else ret = -EINVAL; break; default: ret = -EINVAL; break; } iio_device_release_direct_mode(idev); return ret; } static int bu27034_read_avail(struct iio_dev *idev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct bu27034_data *data = iio_priv(idev); switch (mask) { case IIO_CHAN_INFO_INT_TIME: return iio_gts_avail_times(&data->gts, vals, type, length); case IIO_CHAN_INFO_SCALE: return iio_gts_all_avail_scales(&data->gts, vals, type, length); default: return -EINVAL; } } static const struct iio_info bu27034_info = { .read_raw = &bu27034_read_raw, .write_raw = &bu27034_write_raw, .write_raw_get_fmt = &bu27034_write_raw_get_fmt, .read_avail = &bu27034_read_avail, }; static int bu27034_chip_init(struct bu27034_data *data) { int ret, sel; /* Reset */ ret = regmap_write_bits(data->regmap, BU27034_REG_SYSTEM_CONTROL, BU27034_MASK_SW_RESET, BU27034_MASK_SW_RESET); if (ret) return dev_err_probe(data->dev, ret, "Sensor reset failed\n"); msleep(1); ret = regmap_reinit_cache(data->regmap, &bu27034_regmap); if (ret) { dev_err(data->dev, "Failed to reinit reg cache\n"); return ret; } /* * Read integration time here to ensure it is in regmap cache. We do * this to speed-up the int-time acquisition in the start of the buffer * handling thread where longer delays could make it more likely we end * up skipping a sample, and where the longer delays make timestamps * less accurate. */ ret = regmap_read(data->regmap, BU27034_REG_MODE_CONTROL1, &sel); if (ret) dev_err(data->dev, "reading integration time failed\n"); return 0; } static int bu27034_wait_for_data(struct bu27034_data *data) { int ret, val; ret = regmap_read_poll_timeout(data->regmap, BU27034_REG_MODE_CONTROL4, val, val & BU27034_MASK_VALID, BU27034_DATA_WAIT_TIME_US, BU27034_TOTAL_DATA_WAIT_TIME_US); if (ret) { dev_err(data->dev, "data polling %s\n", !(val & BU27034_MASK_VALID) ? "timeout" : "fail"); return ret; } ret = regmap_bulk_read(data->regmap, BU27034_REG_DATA0_LO, &data->scan.channels[0], sizeof(data->scan.channels)); if (ret) return ret; bu27034_invalidate_read_data(data); return 0; } static int bu27034_buffer_thread(void *arg) { struct iio_dev *idev = arg; struct bu27034_data *data; int wait_ms; data = iio_priv(idev); wait_ms = bu27034_get_int_time(data); wait_ms /= 1000; wait_ms -= BU27034_MEAS_WAIT_PREMATURE_MS; while (!kthread_should_stop()) { int ret; int64_t tstamp; msleep(wait_ms); ret = bu27034_wait_for_data(data); if (ret) continue; tstamp = iio_get_time_ns(idev); if (test_bit(BU27034_CHAN_ALS, idev->active_scan_mask)) { int mlux; ret = bu27034_calc_mlux(data, &data->scan.channels[0], &mlux); if (ret) dev_err(data->dev, "failed to calculate lux\n"); /* * The maximum Milli lux value we get with gain 1x time * 55mS data ch0 = 0xffff ch1 = 0xffff fits in 26 bits * so there should be no problem returning int from * computations and casting it to u32 */ data->scan.mlux = (u32)mlux; } iio_push_to_buffers_with_timestamp(idev, &data->scan, tstamp); } return 0; } static int bu27034_buffer_enable(struct iio_dev *idev) { struct bu27034_data *data = iio_priv(idev); struct task_struct *task; int ret; mutex_lock(&data->mutex); ret = bu27034_meas_set(data, true); if (ret) goto unlock_out; task = kthread_run(bu27034_buffer_thread, idev, "bu27034-buffering-%u", iio_device_id(idev)); if (IS_ERR(task)) { ret = PTR_ERR(task); goto unlock_out; } data->task = task; unlock_out: mutex_unlock(&data->mutex); return ret; } static int bu27034_buffer_disable(struct iio_dev *idev) { struct bu27034_data *data = iio_priv(idev); int ret; mutex_lock(&data->mutex); if (data->task) { kthread_stop(data->task); data->task = NULL; } ret = bu27034_meas_set(data, false); mutex_unlock(&data->mutex); return ret; } static const struct iio_buffer_setup_ops bu27034_buffer_ops = { .postenable = &bu27034_buffer_enable, .predisable = &bu27034_buffer_disable, }; static int bu27034_probe(struct i2c_client *i2c) { struct device *dev = &i2c->dev; struct bu27034_data *data; struct regmap *regmap; struct iio_dev *idev; unsigned int part_id, reg; int ret; regmap = devm_regmap_init_i2c(i2c, &bu27034_regmap); if (IS_ERR(regmap)) return dev_err_probe(dev, PTR_ERR(regmap), "Failed to initialize Regmap\n"); idev = devm_iio_device_alloc(dev, sizeof(*data)); if (!idev) return -ENOMEM; ret = devm_regulator_get_enable(dev, "vdd"); if (ret) return dev_err_probe(dev, ret, "Failed to get regulator\n"); data = iio_priv(idev); ret = regmap_read(regmap, BU27034_REG_SYSTEM_CONTROL, ®); if (ret) return dev_err_probe(dev, ret, "Failed to access sensor\n"); part_id = FIELD_GET(BU27034_MASK_PART_ID, reg); if (part_id != BU27034_ID) dev_warn(dev, "unknown device 0x%x\n", part_id); ret = devm_iio_init_iio_gts(dev, BU27034_SCALE_1X, 0, bu27034_gains, ARRAY_SIZE(bu27034_gains), bu27034_itimes, ARRAY_SIZE(bu27034_itimes), &data->gts); if (ret) return ret; mutex_init(&data->mutex); data->regmap = regmap; data->dev = dev; idev->channels = bu27034_channels; idev->num_channels = ARRAY_SIZE(bu27034_channels); idev->name = "bu27034"; idev->info = &bu27034_info; idev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE; idev->available_scan_masks = bu27034_scan_masks; ret = bu27034_chip_init(data); if (ret) return ret; ret = devm_iio_kfifo_buffer_setup(dev, idev, &bu27034_buffer_ops); if (ret) return dev_err_probe(dev, ret, "buffer setup failed\n"); ret = devm_iio_device_register(dev, idev); if (ret < 0) return dev_err_probe(dev, ret, "Unable to register iio device\n"); return ret; } static const struct of_device_id bu27034_of_match[] = { { .compatible = "rohm,bu27034" }, { } }; MODULE_DEVICE_TABLE(of, bu27034_of_match); static struct i2c_driver bu27034_i2c_driver = { .driver = { .name = "bu27034-als", .of_match_table = bu27034_of_match, .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, .probe = bu27034_probe, }; module_i2c_driver(bu27034_i2c_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>"); MODULE_DESCRIPTION("ROHM BU27034 ambient light sensor driver"); MODULE_IMPORT_NS(IIO_GTS_HELPER);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1