Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Nuno Sá | 6290 | 83.43% | 8 | 47.06% |
Cosmin Tanislav | 876 | 11.62% | 3 | 17.65% |
Andy Shevchenko | 246 | 3.26% | 2 | 11.76% |
Jonathan Cameron | 126 | 1.67% | 3 | 17.65% |
Colin Ian King | 1 | 0.01% | 1 | 5.88% |
Total | 7539 | 17 |
// SPDX-License-Identifier: GPL-2.0 /* * Analog Devices LTC2983 Multi-Sensor Digital Temperature Measurement System * driver * * Copyright 2019 Analog Devices Inc. */ #include <linux/bitfield.h> #include <linux/completion.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/iio/iio.h> #include <linux/interrupt.h> #include <linux/list.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/spi/spi.h> #include <asm/byteorder.h> #include <asm/unaligned.h> /* register map */ #define LTC2983_STATUS_REG 0x0000 #define LTC2983_TEMP_RES_START_REG 0x0010 #define LTC2983_TEMP_RES_END_REG 0x005F #define LTC2983_EEPROM_KEY_REG 0x00B0 #define LTC2983_EEPROM_READ_STATUS_REG 0x00D0 #define LTC2983_GLOBAL_CONFIG_REG 0x00F0 #define LTC2983_MULT_CHANNEL_START_REG 0x00F4 #define LTC2983_MULT_CHANNEL_END_REG 0x00F7 #define LTC2986_EEPROM_STATUS_REG 0x00F9 #define LTC2983_MUX_CONFIG_REG 0x00FF #define LTC2983_CHAN_ASSIGN_START_REG 0x0200 #define LTC2983_CHAN_ASSIGN_END_REG 0x024F #define LTC2983_CUST_SENS_TBL_START_REG 0x0250 #define LTC2983_CUST_SENS_TBL_END_REG 0x03CF #define LTC2983_DIFFERENTIAL_CHAN_MIN 2 #define LTC2983_MIN_CHANNELS_NR 1 #define LTC2983_SLEEP 0x97 #define LTC2983_CUSTOM_STEINHART_SIZE 24 #define LTC2983_CUSTOM_SENSOR_ENTRY_SZ 6 #define LTC2983_CUSTOM_STEINHART_ENTRY_SZ 4 #define LTC2983_EEPROM_KEY 0xA53C0F5A #define LTC2983_EEPROM_WRITE_CMD 0x15 #define LTC2983_EEPROM_READ_CMD 0x16 #define LTC2983_EEPROM_STATUS_FAILURE_MASK GENMASK(3, 1) #define LTC2983_EEPROM_READ_FAILURE_MASK GENMASK(7, 0) #define LTC2983_EEPROM_WRITE_TIME_MS 2600 #define LTC2983_EEPROM_READ_TIME_MS 20 #define LTC2983_CHAN_START_ADDR(chan) \ (((chan - 1) * 4) + LTC2983_CHAN_ASSIGN_START_REG) #define LTC2983_CHAN_RES_ADDR(chan) \ (((chan - 1) * 4) + LTC2983_TEMP_RES_START_REG) #define LTC2983_THERMOCOUPLE_DIFF_MASK BIT(3) #define LTC2983_THERMOCOUPLE_SGL(x) \ FIELD_PREP(LTC2983_THERMOCOUPLE_DIFF_MASK, x) #define LTC2983_THERMOCOUPLE_OC_CURR_MASK GENMASK(1, 0) #define LTC2983_THERMOCOUPLE_OC_CURR(x) \ FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CURR_MASK, x) #define LTC2983_THERMOCOUPLE_OC_CHECK_MASK BIT(2) #define LTC2983_THERMOCOUPLE_OC_CHECK(x) \ FIELD_PREP(LTC2983_THERMOCOUPLE_OC_CHECK_MASK, x) #define LTC2983_THERMISTOR_DIFF_MASK BIT(2) #define LTC2983_THERMISTOR_SGL(x) \ FIELD_PREP(LTC2983_THERMISTOR_DIFF_MASK, x) #define LTC2983_THERMISTOR_R_SHARE_MASK BIT(1) #define LTC2983_THERMISTOR_R_SHARE(x) \ FIELD_PREP(LTC2983_THERMISTOR_R_SHARE_MASK, x) #define LTC2983_THERMISTOR_C_ROTATE_MASK BIT(0) #define LTC2983_THERMISTOR_C_ROTATE(x) \ FIELD_PREP(LTC2983_THERMISTOR_C_ROTATE_MASK, x) #define LTC2983_DIODE_DIFF_MASK BIT(2) #define LTC2983_DIODE_SGL(x) \ FIELD_PREP(LTC2983_DIODE_DIFF_MASK, x) #define LTC2983_DIODE_3_CONV_CYCLE_MASK BIT(1) #define LTC2983_DIODE_3_CONV_CYCLE(x) \ FIELD_PREP(LTC2983_DIODE_3_CONV_CYCLE_MASK, x) #define LTC2983_DIODE_AVERAGE_ON_MASK BIT(0) #define LTC2983_DIODE_AVERAGE_ON(x) \ FIELD_PREP(LTC2983_DIODE_AVERAGE_ON_MASK, x) #define LTC2983_RTD_4_WIRE_MASK BIT(3) #define LTC2983_RTD_ROTATION_MASK BIT(1) #define LTC2983_RTD_C_ROTATE(x) \ FIELD_PREP(LTC2983_RTD_ROTATION_MASK, x) #define LTC2983_RTD_KELVIN_R_SENSE_MASK GENMASK(3, 2) #define LTC2983_RTD_N_WIRES_MASK GENMASK(3, 2) #define LTC2983_RTD_N_WIRES(x) \ FIELD_PREP(LTC2983_RTD_N_WIRES_MASK, x) #define LTC2983_RTD_R_SHARE_MASK BIT(0) #define LTC2983_RTD_R_SHARE(x) \ FIELD_PREP(LTC2983_RTD_R_SHARE_MASK, 1) #define LTC2983_COMMON_HARD_FAULT_MASK GENMASK(31, 30) #define LTC2983_COMMON_SOFT_FAULT_MASK GENMASK(27, 25) #define LTC2983_STATUS_START_MASK BIT(7) #define LTC2983_STATUS_START(x) FIELD_PREP(LTC2983_STATUS_START_MASK, x) #define LTC2983_STATUS_UP_MASK GENMASK(7, 6) #define LTC2983_STATUS_UP(reg) FIELD_GET(LTC2983_STATUS_UP_MASK, reg) #define LTC2983_STATUS_CHAN_SEL_MASK GENMASK(4, 0) #define LTC2983_STATUS_CHAN_SEL(x) \ FIELD_PREP(LTC2983_STATUS_CHAN_SEL_MASK, x) #define LTC2983_TEMP_UNITS_MASK BIT(2) #define LTC2983_TEMP_UNITS(x) FIELD_PREP(LTC2983_TEMP_UNITS_MASK, x) #define LTC2983_NOTCH_FREQ_MASK GENMASK(1, 0) #define LTC2983_NOTCH_FREQ(x) FIELD_PREP(LTC2983_NOTCH_FREQ_MASK, x) #define LTC2983_RES_VALID_MASK BIT(24) #define LTC2983_DATA_MASK GENMASK(23, 0) #define LTC2983_DATA_SIGN_BIT 23 #define LTC2983_CHAN_TYPE_MASK GENMASK(31, 27) #define LTC2983_CHAN_TYPE(x) FIELD_PREP(LTC2983_CHAN_TYPE_MASK, x) /* cold junction for thermocouples and rsense for rtd's and thermistor's */ #define LTC2983_CHAN_ASSIGN_MASK GENMASK(26, 22) #define LTC2983_CHAN_ASSIGN(x) FIELD_PREP(LTC2983_CHAN_ASSIGN_MASK, x) #define LTC2983_CUSTOM_LEN_MASK GENMASK(5, 0) #define LTC2983_CUSTOM_LEN(x) FIELD_PREP(LTC2983_CUSTOM_LEN_MASK, x) #define LTC2983_CUSTOM_ADDR_MASK GENMASK(11, 6) #define LTC2983_CUSTOM_ADDR(x) FIELD_PREP(LTC2983_CUSTOM_ADDR_MASK, x) #define LTC2983_THERMOCOUPLE_CFG_MASK GENMASK(21, 18) #define LTC2983_THERMOCOUPLE_CFG(x) \ FIELD_PREP(LTC2983_THERMOCOUPLE_CFG_MASK, x) #define LTC2983_THERMOCOUPLE_HARD_FAULT_MASK GENMASK(31, 29) #define LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK GENMASK(28, 25) #define LTC2983_RTD_CFG_MASK GENMASK(21, 18) #define LTC2983_RTD_CFG(x) FIELD_PREP(LTC2983_RTD_CFG_MASK, x) #define LTC2983_RTD_EXC_CURRENT_MASK GENMASK(17, 14) #define LTC2983_RTD_EXC_CURRENT(x) \ FIELD_PREP(LTC2983_RTD_EXC_CURRENT_MASK, x) #define LTC2983_RTD_CURVE_MASK GENMASK(13, 12) #define LTC2983_RTD_CURVE(x) FIELD_PREP(LTC2983_RTD_CURVE_MASK, x) #define LTC2983_THERMISTOR_CFG_MASK GENMASK(21, 19) #define LTC2983_THERMISTOR_CFG(x) \ FIELD_PREP(LTC2983_THERMISTOR_CFG_MASK, x) #define LTC2983_THERMISTOR_EXC_CURRENT_MASK GENMASK(18, 15) #define LTC2983_THERMISTOR_EXC_CURRENT(x) \ FIELD_PREP(LTC2983_THERMISTOR_EXC_CURRENT_MASK, x) #define LTC2983_DIODE_CFG_MASK GENMASK(26, 24) #define LTC2983_DIODE_CFG(x) FIELD_PREP(LTC2983_DIODE_CFG_MASK, x) #define LTC2983_DIODE_EXC_CURRENT_MASK GENMASK(23, 22) #define LTC2983_DIODE_EXC_CURRENT(x) \ FIELD_PREP(LTC2983_DIODE_EXC_CURRENT_MASK, x) #define LTC2983_DIODE_IDEAL_FACTOR_MASK GENMASK(21, 0) #define LTC2983_DIODE_IDEAL_FACTOR(x) \ FIELD_PREP(LTC2983_DIODE_IDEAL_FACTOR_MASK, x) #define LTC2983_R_SENSE_VAL_MASK GENMASK(26, 0) #define LTC2983_R_SENSE_VAL(x) FIELD_PREP(LTC2983_R_SENSE_VAL_MASK, x) #define LTC2983_ADC_SINGLE_ENDED_MASK BIT(26) #define LTC2983_ADC_SINGLE_ENDED(x) \ FIELD_PREP(LTC2983_ADC_SINGLE_ENDED_MASK, x) enum { LTC2983_SENSOR_THERMOCOUPLE = 1, LTC2983_SENSOR_THERMOCOUPLE_CUSTOM = 9, LTC2983_SENSOR_RTD = 10, LTC2983_SENSOR_RTD_CUSTOM = 18, LTC2983_SENSOR_THERMISTOR = 19, LTC2983_SENSOR_THERMISTOR_STEINHART = 26, LTC2983_SENSOR_THERMISTOR_CUSTOM = 27, LTC2983_SENSOR_DIODE = 28, LTC2983_SENSOR_SENSE_RESISTOR = 29, LTC2983_SENSOR_DIRECT_ADC = 30, LTC2983_SENSOR_ACTIVE_TEMP = 31, }; #define to_thermocouple(_sensor) \ container_of(_sensor, struct ltc2983_thermocouple, sensor) #define to_rtd(_sensor) \ container_of(_sensor, struct ltc2983_rtd, sensor) #define to_thermistor(_sensor) \ container_of(_sensor, struct ltc2983_thermistor, sensor) #define to_diode(_sensor) \ container_of(_sensor, struct ltc2983_diode, sensor) #define to_rsense(_sensor) \ container_of(_sensor, struct ltc2983_rsense, sensor) #define to_adc(_sensor) \ container_of(_sensor, struct ltc2983_adc, sensor) #define to_temp(_sensor) \ container_of(_sensor, struct ltc2983_temp, sensor) struct ltc2983_chip_info { const char *name; unsigned int max_channels_nr; bool has_temp; bool has_eeprom; }; struct ltc2983_data { const struct ltc2983_chip_info *info; struct regmap *regmap; struct spi_device *spi; struct mutex lock; struct completion completion; struct iio_chan_spec *iio_chan; struct ltc2983_sensor **sensors; u32 mux_delay_config; u32 filter_notch_freq; u16 custom_table_size; u8 num_channels; u8 iio_channels; /* * DMA (thus cache coherency maintenance) may require the * transfer buffers to live in their own cache lines. * Holds the converted temperature */ __be32 temp __aligned(IIO_DMA_MINALIGN); __be32 chan_val; __be32 eeprom_key; }; struct ltc2983_sensor { int (*fault_handler)(const struct ltc2983_data *st, const u32 result); int (*assign_chan)(struct ltc2983_data *st, const struct ltc2983_sensor *sensor); /* specifies the sensor channel */ u32 chan; /* sensor type */ u32 type; }; struct ltc2983_custom_sensor { /* raw table sensor data */ void *table; size_t size; /* address offset */ s8 offset; bool is_steinhart; }; struct ltc2983_thermocouple { struct ltc2983_sensor sensor; struct ltc2983_custom_sensor *custom; u32 sensor_config; u32 cold_junction_chan; }; struct ltc2983_rtd { struct ltc2983_sensor sensor; struct ltc2983_custom_sensor *custom; u32 sensor_config; u32 r_sense_chan; u32 excitation_current; u32 rtd_curve; }; struct ltc2983_thermistor { struct ltc2983_sensor sensor; struct ltc2983_custom_sensor *custom; u32 sensor_config; u32 r_sense_chan; u32 excitation_current; }; struct ltc2983_diode { struct ltc2983_sensor sensor; u32 sensor_config; u32 excitation_current; u32 ideal_factor_value; }; struct ltc2983_rsense { struct ltc2983_sensor sensor; u32 r_sense_val; }; struct ltc2983_adc { struct ltc2983_sensor sensor; bool single_ended; }; struct ltc2983_temp { struct ltc2983_sensor sensor; struct ltc2983_custom_sensor *custom; bool single_ended; }; /* * Convert to Q format numbers. These number's are integers where * the number of integer and fractional bits are specified. The resolution * is given by 1/@resolution and tell us the number of fractional bits. For * instance a resolution of 2^-10 means we have 10 fractional bits. */ static u32 __convert_to_raw(const u64 val, const u32 resolution) { u64 __res = val * resolution; /* all values are multiplied by 1000000 to remove the fraction */ do_div(__res, 1000000); return __res; } static u32 __convert_to_raw_sign(const u64 val, const u32 resolution) { s64 __res = -(s32)val; __res = __convert_to_raw(__res, resolution); return (u32)-__res; } static int __ltc2983_fault_handler(const struct ltc2983_data *st, const u32 result, const u32 hard_mask, const u32 soft_mask) { const struct device *dev = &st->spi->dev; if (result & hard_mask) { dev_err(dev, "Invalid conversion: Sensor HARD fault\n"); return -EIO; } else if (result & soft_mask) { /* just print a warning */ dev_warn(dev, "Suspicious conversion: Sensor SOFT fault\n"); } return 0; } static int __ltc2983_chan_assign_common(struct ltc2983_data *st, const struct ltc2983_sensor *sensor, u32 chan_val) { u32 reg = LTC2983_CHAN_START_ADDR(sensor->chan); chan_val |= LTC2983_CHAN_TYPE(sensor->type); dev_dbg(&st->spi->dev, "Assign reg:0x%04X, val:0x%08X\n", reg, chan_val); st->chan_val = cpu_to_be32(chan_val); return regmap_bulk_write(st->regmap, reg, &st->chan_val, sizeof(st->chan_val)); } static int __ltc2983_chan_custom_sensor_assign(struct ltc2983_data *st, struct ltc2983_custom_sensor *custom, u32 *chan_val) { u32 reg; u8 mult = custom->is_steinhart ? LTC2983_CUSTOM_STEINHART_ENTRY_SZ : LTC2983_CUSTOM_SENSOR_ENTRY_SZ; const struct device *dev = &st->spi->dev; /* * custom->size holds the raw size of the table. However, when * configuring the sensor channel, we must write the number of * entries of the table minus 1. For steinhart sensors 0 is written * since the size is constant! */ const u8 len = custom->is_steinhart ? 0 : (custom->size / LTC2983_CUSTOM_SENSOR_ENTRY_SZ) - 1; /* * Check if the offset was assigned already. It should be for steinhart * sensors. When coming from sleep, it should be assigned for all. */ if (custom->offset < 0) { /* * This needs to be done again here because, from the moment * when this test was done (successfully) for this custom * sensor, a steinhart sensor might have been added changing * custom_table_size... */ if (st->custom_table_size + custom->size > (LTC2983_CUST_SENS_TBL_END_REG - LTC2983_CUST_SENS_TBL_START_REG) + 1) { dev_err(dev, "Not space left(%d) for new custom sensor(%zu)", st->custom_table_size, custom->size); return -EINVAL; } custom->offset = st->custom_table_size / LTC2983_CUSTOM_SENSOR_ENTRY_SZ; st->custom_table_size += custom->size; } reg = (custom->offset * mult) + LTC2983_CUST_SENS_TBL_START_REG; *chan_val |= LTC2983_CUSTOM_LEN(len); *chan_val |= LTC2983_CUSTOM_ADDR(custom->offset); dev_dbg(dev, "Assign custom sensor, reg:0x%04X, off:%d, sz:%zu", reg, custom->offset, custom->size); /* write custom sensor table */ return regmap_bulk_write(st->regmap, reg, custom->table, custom->size); } static struct ltc2983_custom_sensor * __ltc2983_custom_sensor_new(struct ltc2983_data *st, const struct fwnode_handle *fn, const char *propname, const bool is_steinhart, const u32 resolution, const bool has_signed) { struct ltc2983_custom_sensor *new_custom; struct device *dev = &st->spi->dev; /* * For custom steinhart, the full u32 is taken. For all the others * the MSB is discarded. */ const u8 n_size = is_steinhart ? 4 : 3; u8 index, n_entries; int ret; if (is_steinhart) n_entries = fwnode_property_count_u32(fn, propname); else n_entries = fwnode_property_count_u64(fn, propname); /* n_entries must be an even number */ if (!n_entries || (n_entries % 2) != 0) { dev_err(dev, "Number of entries either 0 or not even\n"); return ERR_PTR(-EINVAL); } new_custom = devm_kzalloc(dev, sizeof(*new_custom), GFP_KERNEL); if (!new_custom) return ERR_PTR(-ENOMEM); new_custom->size = n_entries * n_size; /* check Steinhart size */ if (is_steinhart && new_custom->size != LTC2983_CUSTOM_STEINHART_SIZE) { dev_err(dev, "Steinhart sensors size(%zu) must be %u\n", new_custom->size, LTC2983_CUSTOM_STEINHART_SIZE); return ERR_PTR(-EINVAL); } /* Check space on the table. */ if (st->custom_table_size + new_custom->size > (LTC2983_CUST_SENS_TBL_END_REG - LTC2983_CUST_SENS_TBL_START_REG) + 1) { dev_err(dev, "No space left(%d) for new custom sensor(%zu)", st->custom_table_size, new_custom->size); return ERR_PTR(-EINVAL); } /* allocate the table */ if (is_steinhart) new_custom->table = devm_kcalloc(dev, n_entries, sizeof(u32), GFP_KERNEL); else new_custom->table = devm_kcalloc(dev, n_entries, sizeof(u64), GFP_KERNEL); if (!new_custom->table) return ERR_PTR(-ENOMEM); /* * Steinhart sensors are configured with raw values in the firmware * node. For the other sensors we must convert the value to raw. * The odd index's correspond to temperatures and always have 1/1024 * of resolution. Temperatures also come in Kelvin, so signed values * are not possible. */ if (is_steinhart) { ret = fwnode_property_read_u32_array(fn, propname, new_custom->table, n_entries); if (ret < 0) return ERR_PTR(ret); cpu_to_be32_array(new_custom->table, new_custom->table, n_entries); } else { ret = fwnode_property_read_u64_array(fn, propname, new_custom->table, n_entries); if (ret < 0) return ERR_PTR(ret); for (index = 0; index < n_entries; index++) { u64 temp = ((u64 *)new_custom->table)[index]; if ((index % 2) != 0) temp = __convert_to_raw(temp, 1024); else if (has_signed && (s64)temp < 0) temp = __convert_to_raw_sign(temp, resolution); else temp = __convert_to_raw(temp, resolution); put_unaligned_be24(temp, new_custom->table + index * 3); } } new_custom->is_steinhart = is_steinhart; /* * This is done to first add all the steinhart sensors to the table, * in order to maximize the table usage. If we mix adding steinhart * with the other sensors, we might have to do some roundup to make * sure that sensor_addr - 0x250(start address) is a multiple of 4 * (for steinhart), and a multiple of 6 for all the other sensors. * Since we have const 24 bytes for steinhart sensors and 24 is * also a multiple of 6, we guarantee that the first non-steinhart * sensor will sit in a correct address without the need of filling * addresses. */ if (is_steinhart) { new_custom->offset = st->custom_table_size / LTC2983_CUSTOM_STEINHART_ENTRY_SZ; st->custom_table_size += new_custom->size; } else { /* mark as unset. This is checked later on the assign phase */ new_custom->offset = -1; } return new_custom; } static int ltc2983_thermocouple_fault_handler(const struct ltc2983_data *st, const u32 result) { return __ltc2983_fault_handler(st, result, LTC2983_THERMOCOUPLE_HARD_FAULT_MASK, LTC2983_THERMOCOUPLE_SOFT_FAULT_MASK); } static int ltc2983_common_fault_handler(const struct ltc2983_data *st, const u32 result) { return __ltc2983_fault_handler(st, result, LTC2983_COMMON_HARD_FAULT_MASK, LTC2983_COMMON_SOFT_FAULT_MASK); } static int ltc2983_thermocouple_assign_chan(struct ltc2983_data *st, const struct ltc2983_sensor *sensor) { struct ltc2983_thermocouple *thermo = to_thermocouple(sensor); u32 chan_val; chan_val = LTC2983_CHAN_ASSIGN(thermo->cold_junction_chan); chan_val |= LTC2983_THERMOCOUPLE_CFG(thermo->sensor_config); if (thermo->custom) { int ret; ret = __ltc2983_chan_custom_sensor_assign(st, thermo->custom, &chan_val); if (ret) return ret; } return __ltc2983_chan_assign_common(st, sensor, chan_val); } static int ltc2983_rtd_assign_chan(struct ltc2983_data *st, const struct ltc2983_sensor *sensor) { struct ltc2983_rtd *rtd = to_rtd(sensor); u32 chan_val; chan_val = LTC2983_CHAN_ASSIGN(rtd->r_sense_chan); chan_val |= LTC2983_RTD_CFG(rtd->sensor_config); chan_val |= LTC2983_RTD_EXC_CURRENT(rtd->excitation_current); chan_val |= LTC2983_RTD_CURVE(rtd->rtd_curve); if (rtd->custom) { int ret; ret = __ltc2983_chan_custom_sensor_assign(st, rtd->custom, &chan_val); if (ret) return ret; } return __ltc2983_chan_assign_common(st, sensor, chan_val); } static int ltc2983_thermistor_assign_chan(struct ltc2983_data *st, const struct ltc2983_sensor *sensor) { struct ltc2983_thermistor *thermistor = to_thermistor(sensor); u32 chan_val; chan_val = LTC2983_CHAN_ASSIGN(thermistor->r_sense_chan); chan_val |= LTC2983_THERMISTOR_CFG(thermistor->sensor_config); chan_val |= LTC2983_THERMISTOR_EXC_CURRENT(thermistor->excitation_current); if (thermistor->custom) { int ret; ret = __ltc2983_chan_custom_sensor_assign(st, thermistor->custom, &chan_val); if (ret) return ret; } return __ltc2983_chan_assign_common(st, sensor, chan_val); } static int ltc2983_diode_assign_chan(struct ltc2983_data *st, const struct ltc2983_sensor *sensor) { struct ltc2983_diode *diode = to_diode(sensor); u32 chan_val; chan_val = LTC2983_DIODE_CFG(diode->sensor_config); chan_val |= LTC2983_DIODE_EXC_CURRENT(diode->excitation_current); chan_val |= LTC2983_DIODE_IDEAL_FACTOR(diode->ideal_factor_value); return __ltc2983_chan_assign_common(st, sensor, chan_val); } static int ltc2983_r_sense_assign_chan(struct ltc2983_data *st, const struct ltc2983_sensor *sensor) { struct ltc2983_rsense *rsense = to_rsense(sensor); u32 chan_val; chan_val = LTC2983_R_SENSE_VAL(rsense->r_sense_val); return __ltc2983_chan_assign_common(st, sensor, chan_val); } static int ltc2983_adc_assign_chan(struct ltc2983_data *st, const struct ltc2983_sensor *sensor) { struct ltc2983_adc *adc = to_adc(sensor); u32 chan_val; chan_val = LTC2983_ADC_SINGLE_ENDED(adc->single_ended); return __ltc2983_chan_assign_common(st, sensor, chan_val); } static int ltc2983_temp_assign_chan(struct ltc2983_data *st, const struct ltc2983_sensor *sensor) { struct ltc2983_temp *temp = to_temp(sensor); u32 chan_val; int ret; chan_val = LTC2983_ADC_SINGLE_ENDED(temp->single_ended); ret = __ltc2983_chan_custom_sensor_assign(st, temp->custom, &chan_val); if (ret) return ret; return __ltc2983_chan_assign_common(st, sensor, chan_val); } static struct ltc2983_sensor * ltc2983_thermocouple_new(const struct fwnode_handle *child, struct ltc2983_data *st, const struct ltc2983_sensor *sensor) { struct ltc2983_thermocouple *thermo; u32 oc_current; int ret; thermo = devm_kzalloc(&st->spi->dev, sizeof(*thermo), GFP_KERNEL); if (!thermo) return ERR_PTR(-ENOMEM); if (fwnode_property_read_bool(child, "adi,single-ended")) thermo->sensor_config = LTC2983_THERMOCOUPLE_SGL(1); ret = fwnode_property_read_u32(child, "adi,sensor-oc-current-microamp", &oc_current); if (!ret) { switch (oc_current) { case 10: thermo->sensor_config |= LTC2983_THERMOCOUPLE_OC_CURR(0); break; case 100: thermo->sensor_config |= LTC2983_THERMOCOUPLE_OC_CURR(1); break; case 500: thermo->sensor_config |= LTC2983_THERMOCOUPLE_OC_CURR(2); break; case 1000: thermo->sensor_config |= LTC2983_THERMOCOUPLE_OC_CURR(3); break; default: dev_err(&st->spi->dev, "Invalid open circuit current:%u", oc_current); return ERR_PTR(-EINVAL); } thermo->sensor_config |= LTC2983_THERMOCOUPLE_OC_CHECK(1); } /* validate channel index */ if (!(thermo->sensor_config & LTC2983_THERMOCOUPLE_DIFF_MASK) && sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) { dev_err(&st->spi->dev, "Invalid chann:%d for differential thermocouple", sensor->chan); return ERR_PTR(-EINVAL); } struct fwnode_handle *ref __free(fwnode_handle) = fwnode_find_reference(child, "adi,cold-junction-handle", 0); if (IS_ERR(ref)) { ref = NULL; } else { ret = fwnode_property_read_u32(ref, "reg", &thermo->cold_junction_chan); if (ret) { /* * This would be catched later but we can just return * the error right away. */ dev_err(&st->spi->dev, "Property reg must be given\n"); return ERR_PTR(ret); } } /* check custom sensor */ if (sensor->type == LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) { const char *propname = "adi,custom-thermocouple"; thermo->custom = __ltc2983_custom_sensor_new(st, child, propname, false, 16384, true); if (IS_ERR(thermo->custom)) return ERR_CAST(thermo->custom); } /* set common parameters */ thermo->sensor.fault_handler = ltc2983_thermocouple_fault_handler; thermo->sensor.assign_chan = ltc2983_thermocouple_assign_chan; return &thermo->sensor; } static struct ltc2983_sensor * ltc2983_rtd_new(const struct fwnode_handle *child, struct ltc2983_data *st, const struct ltc2983_sensor *sensor) { struct ltc2983_rtd *rtd; int ret = 0; struct device *dev = &st->spi->dev; u32 excitation_current = 0, n_wires = 0; rtd = devm_kzalloc(dev, sizeof(*rtd), GFP_KERNEL); if (!rtd) return ERR_PTR(-ENOMEM); struct fwnode_handle *ref __free(fwnode_handle) = fwnode_find_reference(child, "adi,rsense-handle", 0); if (IS_ERR(ref)) { dev_err(dev, "Property adi,rsense-handle missing or invalid"); return ERR_CAST(ref); } ret = fwnode_property_read_u32(ref, "reg", &rtd->r_sense_chan); if (ret) { dev_err(dev, "Property reg must be given\n"); return ERR_PTR(ret); } ret = fwnode_property_read_u32(child, "adi,number-of-wires", &n_wires); if (!ret) { switch (n_wires) { case 2: rtd->sensor_config = LTC2983_RTD_N_WIRES(0); break; case 3: rtd->sensor_config = LTC2983_RTD_N_WIRES(1); break; case 4: rtd->sensor_config = LTC2983_RTD_N_WIRES(2); break; case 5: /* 4 wires, Kelvin Rsense */ rtd->sensor_config = LTC2983_RTD_N_WIRES(3); break; default: dev_err(dev, "Invalid number of wires:%u\n", n_wires); return ERR_PTR(-EINVAL); } } if (fwnode_property_read_bool(child, "adi,rsense-share")) { /* Current rotation is only available with rsense sharing */ if (fwnode_property_read_bool(child, "adi,current-rotate")) { if (n_wires == 2 || n_wires == 3) { dev_err(dev, "Rotation not allowed for 2/3 Wire RTDs"); return ERR_PTR(-EINVAL); } rtd->sensor_config |= LTC2983_RTD_C_ROTATE(1); } else { rtd->sensor_config |= LTC2983_RTD_R_SHARE(1); } } /* * rtd channel indexes are a bit more complicated to validate. * For 4wire RTD with rotation, the channel selection cannot be * >=19 since the chann + 1 is used in this configuration. * For 4wire RTDs with kelvin rsense, the rsense channel cannot be * <=1 since chanel - 1 and channel - 2 are used. */ if (rtd->sensor_config & LTC2983_RTD_4_WIRE_MASK) { /* 4-wire */ u8 min = LTC2983_DIFFERENTIAL_CHAN_MIN, max = st->info->max_channels_nr; if (rtd->sensor_config & LTC2983_RTD_ROTATION_MASK) max = st->info->max_channels_nr - 1; if (((rtd->sensor_config & LTC2983_RTD_KELVIN_R_SENSE_MASK) == LTC2983_RTD_KELVIN_R_SENSE_MASK) && (rtd->r_sense_chan <= min)) { /* kelvin rsense*/ dev_err(dev, "Invalid rsense chann:%d to use in kelvin rsense", rtd->r_sense_chan); return ERR_PTR(-EINVAL); } if (sensor->chan < min || sensor->chan > max) { dev_err(dev, "Invalid chann:%d for the rtd config", sensor->chan); return ERR_PTR(-EINVAL); } } else { /* same as differential case */ if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) { dev_err(&st->spi->dev, "Invalid chann:%d for RTD", sensor->chan); return ERR_PTR(-EINVAL); } } /* check custom sensor */ if (sensor->type == LTC2983_SENSOR_RTD_CUSTOM) { rtd->custom = __ltc2983_custom_sensor_new(st, child, "adi,custom-rtd", false, 2048, false); if (IS_ERR(rtd->custom)) return ERR_CAST(rtd->custom); } /* set common parameters */ rtd->sensor.fault_handler = ltc2983_common_fault_handler; rtd->sensor.assign_chan = ltc2983_rtd_assign_chan; ret = fwnode_property_read_u32(child, "adi,excitation-current-microamp", &excitation_current); if (ret) { /* default to 5uA */ rtd->excitation_current = 1; } else { switch (excitation_current) { case 5: rtd->excitation_current = 0x01; break; case 10: rtd->excitation_current = 0x02; break; case 25: rtd->excitation_current = 0x03; break; case 50: rtd->excitation_current = 0x04; break; case 100: rtd->excitation_current = 0x05; break; case 250: rtd->excitation_current = 0x06; break; case 500: rtd->excitation_current = 0x07; break; case 1000: rtd->excitation_current = 0x08; break; default: dev_err(&st->spi->dev, "Invalid value for excitation current(%u)", excitation_current); return ERR_PTR(-EINVAL); } } fwnode_property_read_u32(child, "adi,rtd-curve", &rtd->rtd_curve); return &rtd->sensor; } static struct ltc2983_sensor * ltc2983_thermistor_new(const struct fwnode_handle *child, struct ltc2983_data *st, const struct ltc2983_sensor *sensor) { struct ltc2983_thermistor *thermistor; struct device *dev = &st->spi->dev; u32 excitation_current = 0; int ret = 0; thermistor = devm_kzalloc(dev, sizeof(*thermistor), GFP_KERNEL); if (!thermistor) return ERR_PTR(-ENOMEM); struct fwnode_handle *ref __free(fwnode_handle) = fwnode_find_reference(child, "adi,rsense-handle", 0); if (IS_ERR(ref)) { dev_err(dev, "Property adi,rsense-handle missing or invalid"); return ERR_CAST(ref); } ret = fwnode_property_read_u32(ref, "reg", &thermistor->r_sense_chan); if (ret) { dev_err(dev, "rsense channel must be configured...\n"); return ERR_PTR(ret); } if (fwnode_property_read_bool(child, "adi,single-ended")) { thermistor->sensor_config = LTC2983_THERMISTOR_SGL(1); } else if (fwnode_property_read_bool(child, "adi,rsense-share")) { /* rotation is only possible if sharing rsense */ if (fwnode_property_read_bool(child, "adi,current-rotate")) thermistor->sensor_config = LTC2983_THERMISTOR_C_ROTATE(1); else thermistor->sensor_config = LTC2983_THERMISTOR_R_SHARE(1); } /* validate channel index */ if (!(thermistor->sensor_config & LTC2983_THERMISTOR_DIFF_MASK) && sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) { dev_err(&st->spi->dev, "Invalid chann:%d for differential thermistor", sensor->chan); return ERR_PTR(-EINVAL); } /* check custom sensor */ if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART) { bool steinhart = false; const char *propname; if (sensor->type == LTC2983_SENSOR_THERMISTOR_STEINHART) { steinhart = true; propname = "adi,custom-steinhart"; } else { propname = "adi,custom-thermistor"; } thermistor->custom = __ltc2983_custom_sensor_new(st, child, propname, steinhart, 64, false); if (IS_ERR(thermistor->custom)) return ERR_CAST(thermistor->custom); } /* set common parameters */ thermistor->sensor.fault_handler = ltc2983_common_fault_handler; thermistor->sensor.assign_chan = ltc2983_thermistor_assign_chan; ret = fwnode_property_read_u32(child, "adi,excitation-current-nanoamp", &excitation_current); if (ret) { /* Auto range is not allowed for custom sensors */ if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART) /* default to 1uA */ thermistor->excitation_current = 0x03; else /* default to auto-range */ thermistor->excitation_current = 0x0c; } else { switch (excitation_current) { case 0: /* auto range */ if (sensor->type >= LTC2983_SENSOR_THERMISTOR_STEINHART) { dev_err(&st->spi->dev, "Auto Range not allowed for custom sensors\n"); return ERR_PTR(-EINVAL); } thermistor->excitation_current = 0x0c; break; case 250: thermistor->excitation_current = 0x01; break; case 500: thermistor->excitation_current = 0x02; break; case 1000: thermistor->excitation_current = 0x03; break; case 5000: thermistor->excitation_current = 0x04; break; case 10000: thermistor->excitation_current = 0x05; break; case 25000: thermistor->excitation_current = 0x06; break; case 50000: thermistor->excitation_current = 0x07; break; case 100000: thermistor->excitation_current = 0x08; break; case 250000: thermistor->excitation_current = 0x09; break; case 500000: thermistor->excitation_current = 0x0a; break; case 1000000: thermistor->excitation_current = 0x0b; break; default: dev_err(&st->spi->dev, "Invalid value for excitation current(%u)", excitation_current); return ERR_PTR(-EINVAL); } } return &thermistor->sensor; } static struct ltc2983_sensor * ltc2983_diode_new(const struct fwnode_handle *child, const struct ltc2983_data *st, const struct ltc2983_sensor *sensor) { struct ltc2983_diode *diode; u32 temp = 0, excitation_current = 0; int ret; diode = devm_kzalloc(&st->spi->dev, sizeof(*diode), GFP_KERNEL); if (!diode) return ERR_PTR(-ENOMEM); if (fwnode_property_read_bool(child, "adi,single-ended")) diode->sensor_config = LTC2983_DIODE_SGL(1); if (fwnode_property_read_bool(child, "adi,three-conversion-cycles")) diode->sensor_config |= LTC2983_DIODE_3_CONV_CYCLE(1); if (fwnode_property_read_bool(child, "adi,average-on")) diode->sensor_config |= LTC2983_DIODE_AVERAGE_ON(1); /* validate channel index */ if (!(diode->sensor_config & LTC2983_DIODE_DIFF_MASK) && sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) { dev_err(&st->spi->dev, "Invalid chann:%d for differential thermistor", sensor->chan); return ERR_PTR(-EINVAL); } /* set common parameters */ diode->sensor.fault_handler = ltc2983_common_fault_handler; diode->sensor.assign_chan = ltc2983_diode_assign_chan; ret = fwnode_property_read_u32(child, "adi,excitation-current-microamp", &excitation_current); if (!ret) { switch (excitation_current) { case 10: diode->excitation_current = 0x00; break; case 20: diode->excitation_current = 0x01; break; case 40: diode->excitation_current = 0x02; break; case 80: diode->excitation_current = 0x03; break; default: dev_err(&st->spi->dev, "Invalid value for excitation current(%u)", excitation_current); return ERR_PTR(-EINVAL); } } fwnode_property_read_u32(child, "adi,ideal-factor-value", &temp); /* 2^20 resolution */ diode->ideal_factor_value = __convert_to_raw(temp, 1048576); return &diode->sensor; } static struct ltc2983_sensor *ltc2983_r_sense_new(struct fwnode_handle *child, struct ltc2983_data *st, const struct ltc2983_sensor *sensor) { struct ltc2983_rsense *rsense; int ret; u32 temp; rsense = devm_kzalloc(&st->spi->dev, sizeof(*rsense), GFP_KERNEL); if (!rsense) return ERR_PTR(-ENOMEM); /* validate channel index */ if (sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) { dev_err(&st->spi->dev, "Invalid chann:%d for r_sense", sensor->chan); return ERR_PTR(-EINVAL); } ret = fwnode_property_read_u32(child, "adi,rsense-val-milli-ohms", &temp); if (ret) { dev_err(&st->spi->dev, "Property adi,rsense-val-milli-ohms missing\n"); return ERR_PTR(-EINVAL); } /* * Times 1000 because we have milli-ohms and __convert_to_raw * expects scales of 1000000 which are used for all other * properties. * 2^10 resolution */ rsense->r_sense_val = __convert_to_raw((u64)temp * 1000, 1024); /* set common parameters */ rsense->sensor.assign_chan = ltc2983_r_sense_assign_chan; return &rsense->sensor; } static struct ltc2983_sensor *ltc2983_adc_new(struct fwnode_handle *child, struct ltc2983_data *st, const struct ltc2983_sensor *sensor) { struct ltc2983_adc *adc; adc = devm_kzalloc(&st->spi->dev, sizeof(*adc), GFP_KERNEL); if (!adc) return ERR_PTR(-ENOMEM); if (fwnode_property_read_bool(child, "adi,single-ended")) adc->single_ended = true; if (!adc->single_ended && sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) { dev_err(&st->spi->dev, "Invalid chan:%d for differential adc\n", sensor->chan); return ERR_PTR(-EINVAL); } /* set common parameters */ adc->sensor.assign_chan = ltc2983_adc_assign_chan; adc->sensor.fault_handler = ltc2983_common_fault_handler; return &adc->sensor; } static struct ltc2983_sensor *ltc2983_temp_new(struct fwnode_handle *child, struct ltc2983_data *st, const struct ltc2983_sensor *sensor) { struct ltc2983_temp *temp; temp = devm_kzalloc(&st->spi->dev, sizeof(*temp), GFP_KERNEL); if (!temp) return ERR_PTR(-ENOMEM); if (fwnode_property_read_bool(child, "adi,single-ended")) temp->single_ended = true; if (!temp->single_ended && sensor->chan < LTC2983_DIFFERENTIAL_CHAN_MIN) { dev_err(&st->spi->dev, "Invalid chan:%d for differential temp\n", sensor->chan); return ERR_PTR(-EINVAL); } temp->custom = __ltc2983_custom_sensor_new(st, child, "adi,custom-temp", false, 4096, true); if (IS_ERR(temp->custom)) return ERR_CAST(temp->custom); /* set common parameters */ temp->sensor.assign_chan = ltc2983_temp_assign_chan; temp->sensor.fault_handler = ltc2983_common_fault_handler; return &temp->sensor; } static int ltc2983_chan_read(struct ltc2983_data *st, const struct ltc2983_sensor *sensor, int *val) { u32 start_conversion = 0; int ret; unsigned long time; start_conversion = LTC2983_STATUS_START(true); start_conversion |= LTC2983_STATUS_CHAN_SEL(sensor->chan); dev_dbg(&st->spi->dev, "Start conversion on chan:%d, status:%02X\n", sensor->chan, start_conversion); /* start conversion */ ret = regmap_write(st->regmap, LTC2983_STATUS_REG, start_conversion); if (ret) return ret; reinit_completion(&st->completion); /* * wait for conversion to complete. * 300 ms should be more than enough to complete the conversion. * Depending on the sensor configuration, there are 2/3 conversions * cycles of 82ms. */ time = wait_for_completion_timeout(&st->completion, msecs_to_jiffies(300)); if (!time) { dev_warn(&st->spi->dev, "Conversion timed out\n"); return -ETIMEDOUT; } /* read the converted data */ ret = regmap_bulk_read(st->regmap, LTC2983_CHAN_RES_ADDR(sensor->chan), &st->temp, sizeof(st->temp)); if (ret) return ret; *val = __be32_to_cpu(st->temp); if (!(LTC2983_RES_VALID_MASK & *val)) { dev_err(&st->spi->dev, "Invalid conversion detected\n"); return -EIO; } ret = sensor->fault_handler(st, *val); if (ret) return ret; *val = sign_extend32((*val) & LTC2983_DATA_MASK, LTC2983_DATA_SIGN_BIT); return 0; } static int ltc2983_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct ltc2983_data *st = iio_priv(indio_dev); int ret; /* sanity check */ if (chan->address >= st->num_channels) { dev_err(&st->spi->dev, "Invalid chan address:%ld", chan->address); return -EINVAL; } switch (mask) { case IIO_CHAN_INFO_RAW: mutex_lock(&st->lock); ret = ltc2983_chan_read(st, st->sensors[chan->address], val); mutex_unlock(&st->lock); return ret ?: IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_TEMP: /* value in milli degrees */ *val = 1000; /* 2^10 */ *val2 = 1024; return IIO_VAL_FRACTIONAL; case IIO_VOLTAGE: /* value in millivolt */ *val = 1000; /* 2^21 */ *val2 = 2097152; return IIO_VAL_FRACTIONAL; default: return -EINVAL; } } return -EINVAL; } static int ltc2983_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct ltc2983_data *st = iio_priv(indio_dev); if (readval) return regmap_read(st->regmap, reg, readval); else return regmap_write(st->regmap, reg, writeval); } static irqreturn_t ltc2983_irq_handler(int irq, void *data) { struct ltc2983_data *st = data; complete(&st->completion); return IRQ_HANDLED; } #define LTC2983_CHAN(__type, index, __address) ({ \ struct iio_chan_spec __chan = { \ .type = __type, \ .indexed = 1, \ .channel = index, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .address = __address, \ }; \ __chan; \ }) static int ltc2983_parse_fw(struct ltc2983_data *st) { struct device *dev = &st->spi->dev; int ret, chan = 0, channel_avail_mask = 0; device_property_read_u32(dev, "adi,mux-delay-config-us", &st->mux_delay_config); device_property_read_u32(dev, "adi,filter-notch-freq", &st->filter_notch_freq); st->num_channels = device_get_child_node_count(dev); if (!st->num_channels) { dev_err(&st->spi->dev, "At least one channel must be given!"); return -EINVAL; } st->sensors = devm_kcalloc(dev, st->num_channels, sizeof(*st->sensors), GFP_KERNEL); if (!st->sensors) return -ENOMEM; st->iio_channels = st->num_channels; device_for_each_child_node_scoped(dev, child) { struct ltc2983_sensor sensor; ret = fwnode_property_read_u32(child, "reg", &sensor.chan); if (ret) return dev_err_probe(dev, ret, "reg property must given for child nodes\n"); /* check if we have a valid channel */ if (sensor.chan < LTC2983_MIN_CHANNELS_NR || sensor.chan > st->info->max_channels_nr) return dev_err_probe(dev, -EINVAL, "chan:%d must be from %u to %u\n", sensor.chan, LTC2983_MIN_CHANNELS_NR, st->info->max_channels_nr); if (channel_avail_mask & BIT(sensor.chan)) return dev_err_probe(dev, -EINVAL, "chan:%d already in use\n", sensor.chan); ret = fwnode_property_read_u32(child, "adi,sensor-type", &sensor.type); if (ret) return dev_err_probe(dev, ret, "adi,sensor-type property must given for child nodes\n"); dev_dbg(dev, "Create new sensor, type %u, chann %u", sensor.type, sensor.chan); if (sensor.type >= LTC2983_SENSOR_THERMOCOUPLE && sensor.type <= LTC2983_SENSOR_THERMOCOUPLE_CUSTOM) { st->sensors[chan] = ltc2983_thermocouple_new(child, st, &sensor); } else if (sensor.type >= LTC2983_SENSOR_RTD && sensor.type <= LTC2983_SENSOR_RTD_CUSTOM) { st->sensors[chan] = ltc2983_rtd_new(child, st, &sensor); } else if (sensor.type >= LTC2983_SENSOR_THERMISTOR && sensor.type <= LTC2983_SENSOR_THERMISTOR_CUSTOM) { st->sensors[chan] = ltc2983_thermistor_new(child, st, &sensor); } else if (sensor.type == LTC2983_SENSOR_DIODE) { st->sensors[chan] = ltc2983_diode_new(child, st, &sensor); } else if (sensor.type == LTC2983_SENSOR_SENSE_RESISTOR) { st->sensors[chan] = ltc2983_r_sense_new(child, st, &sensor); /* don't add rsense to iio */ st->iio_channels--; } else if (sensor.type == LTC2983_SENSOR_DIRECT_ADC) { st->sensors[chan] = ltc2983_adc_new(child, st, &sensor); } else if (st->info->has_temp && sensor.type == LTC2983_SENSOR_ACTIVE_TEMP) { st->sensors[chan] = ltc2983_temp_new(child, st, &sensor); } else { return dev_err_probe(dev, -EINVAL, "Unknown sensor type %d\n", sensor.type); } if (IS_ERR(st->sensors[chan])) return dev_err_probe(dev, PTR_ERR(st->sensors[chan]), "Failed to create sensor\n"); /* set generic sensor parameters */ st->sensors[chan]->chan = sensor.chan; st->sensors[chan]->type = sensor.type; channel_avail_mask |= BIT(sensor.chan); chan++; } return 0; } static int ltc2983_eeprom_cmd(struct ltc2983_data *st, unsigned int cmd, unsigned int wait_time, unsigned int status_reg, unsigned long status_fail_mask) { unsigned long time; unsigned int val; int ret; ret = regmap_bulk_write(st->regmap, LTC2983_EEPROM_KEY_REG, &st->eeprom_key, sizeof(st->eeprom_key)); if (ret) return ret; reinit_completion(&st->completion); ret = regmap_write(st->regmap, LTC2983_STATUS_REG, LTC2983_STATUS_START(true) | cmd); if (ret) return ret; time = wait_for_completion_timeout(&st->completion, msecs_to_jiffies(wait_time)); if (!time) { dev_err(&st->spi->dev, "EEPROM command timed out\n"); return -ETIMEDOUT; } ret = regmap_read(st->regmap, status_reg, &val); if (ret) return ret; if (val & status_fail_mask) { dev_err(&st->spi->dev, "EEPROM command failed: 0x%02X\n", val); return -EINVAL; } return 0; } static int ltc2983_setup(struct ltc2983_data *st, bool assign_iio) { u32 iio_chan_t = 0, iio_chan_v = 0, chan, iio_idx = 0, status; int ret; /* make sure the device is up: start bit (7) is 0 and done bit (6) is 1 */ ret = regmap_read_poll_timeout(st->regmap, LTC2983_STATUS_REG, status, LTC2983_STATUS_UP(status) == 1, 25000, 25000 * 10); if (ret) { dev_err(&st->spi->dev, "Device startup timed out\n"); return ret; } ret = regmap_update_bits(st->regmap, LTC2983_GLOBAL_CONFIG_REG, LTC2983_NOTCH_FREQ_MASK, LTC2983_NOTCH_FREQ(st->filter_notch_freq)); if (ret) return ret; ret = regmap_write(st->regmap, LTC2983_MUX_CONFIG_REG, st->mux_delay_config); if (ret) return ret; if (st->info->has_eeprom && !assign_iio) { ret = ltc2983_eeprom_cmd(st, LTC2983_EEPROM_READ_CMD, LTC2983_EEPROM_READ_TIME_MS, LTC2983_EEPROM_READ_STATUS_REG, LTC2983_EEPROM_READ_FAILURE_MASK); if (!ret) return 0; } for (chan = 0; chan < st->num_channels; chan++) { u32 chan_type = 0, *iio_chan; ret = st->sensors[chan]->assign_chan(st, st->sensors[chan]); if (ret) return ret; /* * The assign_iio flag is necessary for when the device is * coming out of sleep. In that case, we just need to * re-configure the device channels. * We also don't assign iio channels for rsense. */ if (st->sensors[chan]->type == LTC2983_SENSOR_SENSE_RESISTOR || !assign_iio) continue; /* assign iio channel */ if (st->sensors[chan]->type != LTC2983_SENSOR_DIRECT_ADC) { chan_type = IIO_TEMP; iio_chan = &iio_chan_t; } else { chan_type = IIO_VOLTAGE; iio_chan = &iio_chan_v; } /* * add chan as the iio .address so that, we can directly * reference the sensor given the iio_chan_spec */ st->iio_chan[iio_idx++] = LTC2983_CHAN(chan_type, (*iio_chan)++, chan); } return 0; } static const struct regmap_range ltc2983_reg_ranges[] = { regmap_reg_range(LTC2983_STATUS_REG, LTC2983_STATUS_REG), regmap_reg_range(LTC2983_TEMP_RES_START_REG, LTC2983_TEMP_RES_END_REG), regmap_reg_range(LTC2983_EEPROM_KEY_REG, LTC2983_EEPROM_KEY_REG), regmap_reg_range(LTC2983_EEPROM_READ_STATUS_REG, LTC2983_EEPROM_READ_STATUS_REG), regmap_reg_range(LTC2983_GLOBAL_CONFIG_REG, LTC2983_GLOBAL_CONFIG_REG), regmap_reg_range(LTC2983_MULT_CHANNEL_START_REG, LTC2983_MULT_CHANNEL_END_REG), regmap_reg_range(LTC2986_EEPROM_STATUS_REG, LTC2986_EEPROM_STATUS_REG), regmap_reg_range(LTC2983_MUX_CONFIG_REG, LTC2983_MUX_CONFIG_REG), regmap_reg_range(LTC2983_CHAN_ASSIGN_START_REG, LTC2983_CHAN_ASSIGN_END_REG), regmap_reg_range(LTC2983_CUST_SENS_TBL_START_REG, LTC2983_CUST_SENS_TBL_END_REG), }; static const struct regmap_access_table ltc2983_reg_table = { .yes_ranges = ltc2983_reg_ranges, .n_yes_ranges = ARRAY_SIZE(ltc2983_reg_ranges), }; /* * The reg_bits are actually 12 but the device needs the first *complete* * byte for the command (R/W). */ static const struct regmap_config ltc2983_regmap_config = { .reg_bits = 24, .val_bits = 8, .wr_table = <c2983_reg_table, .rd_table = <c2983_reg_table, .read_flag_mask = GENMASK(1, 0), .write_flag_mask = BIT(1), }; static const struct iio_info ltc2983_iio_info = { .read_raw = ltc2983_read_raw, .debugfs_reg_access = ltc2983_reg_access, }; static int ltc2983_probe(struct spi_device *spi) { struct ltc2983_data *st; struct iio_dev *indio_dev; struct gpio_desc *gpio; int ret; indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; st = iio_priv(indio_dev); st->info = spi_get_device_match_data(spi); if (!st->info) return -ENODEV; st->regmap = devm_regmap_init_spi(spi, <c2983_regmap_config); if (IS_ERR(st->regmap)) { dev_err(&spi->dev, "Failed to initialize regmap\n"); return PTR_ERR(st->regmap); } mutex_init(&st->lock); init_completion(&st->completion); st->spi = spi; st->eeprom_key = cpu_to_be32(LTC2983_EEPROM_KEY); spi_set_drvdata(spi, st); ret = ltc2983_parse_fw(st); if (ret) return ret; ret = devm_regulator_get_enable(&spi->dev, "vdd"); if (ret) return ret; gpio = devm_gpiod_get_optional(&st->spi->dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(gpio)) return PTR_ERR(gpio); if (gpio) { /* bring the device out of reset */ usleep_range(1000, 1200); gpiod_set_value_cansleep(gpio, 0); } st->iio_chan = devm_kzalloc(&spi->dev, st->iio_channels * sizeof(*st->iio_chan), GFP_KERNEL); if (!st->iio_chan) return -ENOMEM; ret = ltc2983_setup(st, true); if (ret) return ret; ret = devm_request_irq(&spi->dev, spi->irq, ltc2983_irq_handler, IRQF_TRIGGER_RISING, st->info->name, st); if (ret) { dev_err(&spi->dev, "failed to request an irq, %d", ret); return ret; } if (st->info->has_eeprom) { ret = ltc2983_eeprom_cmd(st, LTC2983_EEPROM_WRITE_CMD, LTC2983_EEPROM_WRITE_TIME_MS, LTC2986_EEPROM_STATUS_REG, LTC2983_EEPROM_STATUS_FAILURE_MASK); if (ret) return ret; } indio_dev->name = st->info->name; indio_dev->num_channels = st->iio_channels; indio_dev->channels = st->iio_chan; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = <c2983_iio_info; return devm_iio_device_register(&spi->dev, indio_dev); } static int ltc2983_resume(struct device *dev) { struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev)); int dummy; /* dummy read to bring the device out of sleep */ regmap_read(st->regmap, LTC2983_STATUS_REG, &dummy); /* we need to re-assign the channels */ return ltc2983_setup(st, false); } static int ltc2983_suspend(struct device *dev) { struct ltc2983_data *st = spi_get_drvdata(to_spi_device(dev)); return regmap_write(st->regmap, LTC2983_STATUS_REG, LTC2983_SLEEP); } static DEFINE_SIMPLE_DEV_PM_OPS(ltc2983_pm_ops, ltc2983_suspend, ltc2983_resume); static const struct ltc2983_chip_info ltc2983_chip_info_data = { .name = "ltc2983", .max_channels_nr = 20, }; static const struct ltc2983_chip_info ltc2984_chip_info_data = { .name = "ltc2984", .max_channels_nr = 20, .has_eeprom = true, }; static const struct ltc2983_chip_info ltc2986_chip_info_data = { .name = "ltc2986", .max_channels_nr = 10, .has_temp = true, .has_eeprom = true, }; static const struct ltc2983_chip_info ltm2985_chip_info_data = { .name = "ltm2985", .max_channels_nr = 10, .has_temp = true, .has_eeprom = true, }; static const struct spi_device_id ltc2983_id_table[] = { { "ltc2983", (kernel_ulong_t)<c2983_chip_info_data }, { "ltc2984", (kernel_ulong_t)<c2984_chip_info_data }, { "ltc2986", (kernel_ulong_t)<c2986_chip_info_data }, { "ltm2985", (kernel_ulong_t)<m2985_chip_info_data }, {}, }; MODULE_DEVICE_TABLE(spi, ltc2983_id_table); static const struct of_device_id ltc2983_of_match[] = { { .compatible = "adi,ltc2983", .data = <c2983_chip_info_data }, { .compatible = "adi,ltc2984", .data = <c2984_chip_info_data }, { .compatible = "adi,ltc2986", .data = <c2986_chip_info_data }, { .compatible = "adi,ltm2985", .data = <m2985_chip_info_data }, {}, }; MODULE_DEVICE_TABLE(of, ltc2983_of_match); static struct spi_driver ltc2983_driver = { .driver = { .name = "ltc2983", .of_match_table = ltc2983_of_match, .pm = pm_sleep_ptr(<c2983_pm_ops), }, .probe = ltc2983_probe, .id_table = ltc2983_id_table, }; module_spi_driver(ltc2983_driver); MODULE_AUTHOR("Nuno Sa <nuno.sa@analog.com>"); MODULE_DESCRIPTION("Analog Devices LTC2983 SPI Temperature sensors"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1