Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Roland Dreier | 1051 | 35.98% | 2 | 5.26% |
Guy Levi | 723 | 24.75% | 1 | 2.63% |
Matan Barak | 333 | 11.40% | 2 | 5.26% |
Sagi Grimberg | 318 | 10.89% | 2 | 5.26% |
Shani Michaelli | 183 | 6.26% | 2 | 5.26% |
Jack Morgenstein | 120 | 4.11% | 4 | 10.53% |
Chuck Lever | 37 | 1.27% | 1 | 2.63% |
Jason Gunthorpe | 36 | 1.23% | 5 | 13.16% |
Leon Romanovsky | 28 | 0.96% | 2 | 5.26% |
Moni Shoua | 15 | 0.51% | 2 | 5.26% |
Andrey Konovalov | 12 | 0.41% | 1 | 2.63% |
Yishai Hadas | 11 | 0.38% | 1 | 2.63% |
Steve Wise | 10 | 0.34% | 1 | 2.63% |
Bart Van Assche | 10 | 0.34% | 2 | 5.26% |
Christophe Jaillet | 8 | 0.27% | 1 | 2.63% |
Vladimir Sokolovsky | 6 | 0.21% | 1 | 2.63% |
Christoph Hellwig | 6 | 0.21% | 1 | 2.63% |
Maor Gottlieb | 4 | 0.14% | 1 | 2.63% |
Glenn Streiff | 3 | 0.10% | 1 | 2.63% |
Linus Torvalds (pre-git) | 2 | 0.07% | 1 | 2.63% |
Michel Lespinasse | 2 | 0.07% | 1 | 2.63% |
Eli Cohen | 2 | 0.07% | 2 | 5.26% |
Linus Torvalds | 1 | 0.03% | 1 | 2.63% |
Total | 2921 | 38 |
/* * Copyright (c) 2007 Cisco Systems, Inc. All rights reserved. * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/slab.h> #include <rdma/ib_user_verbs.h> #include "mlx4_ib.h" static u32 convert_access(int acc) { return (acc & IB_ACCESS_REMOTE_ATOMIC ? MLX4_PERM_ATOMIC : 0) | (acc & IB_ACCESS_REMOTE_WRITE ? MLX4_PERM_REMOTE_WRITE : 0) | (acc & IB_ACCESS_REMOTE_READ ? MLX4_PERM_REMOTE_READ : 0) | (acc & IB_ACCESS_LOCAL_WRITE ? MLX4_PERM_LOCAL_WRITE : 0) | (acc & IB_ACCESS_MW_BIND ? MLX4_PERM_BIND_MW : 0) | MLX4_PERM_LOCAL_READ; } static enum mlx4_mw_type to_mlx4_type(enum ib_mw_type type) { switch (type) { case IB_MW_TYPE_1: return MLX4_MW_TYPE_1; case IB_MW_TYPE_2: return MLX4_MW_TYPE_2; default: return -1; } } struct ib_mr *mlx4_ib_get_dma_mr(struct ib_pd *pd, int acc) { struct mlx4_ib_mr *mr; int err; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); err = mlx4_mr_alloc(to_mdev(pd->device)->dev, to_mpd(pd)->pdn, 0, ~0ull, convert_access(acc), 0, 0, &mr->mmr); if (err) goto err_free; err = mlx4_mr_enable(to_mdev(pd->device)->dev, &mr->mmr); if (err) goto err_mr; mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; mr->umem = NULL; return &mr->ibmr; err_mr: (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr); err_free: kfree(mr); return ERR_PTR(err); } enum { MLX4_MAX_MTT_SHIFT = 31 }; static int mlx4_ib_umem_write_mtt_block(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt, u64 mtt_size, u64 mtt_shift, u64 len, u64 cur_start_addr, u64 *pages, int *start_index, int *npages) { u64 cur_end_addr = cur_start_addr + len; u64 cur_end_addr_aligned = 0; u64 mtt_entries; int err = 0; int k; len += (cur_start_addr & (mtt_size - 1ULL)); cur_end_addr_aligned = round_up(cur_end_addr, mtt_size); len += (cur_end_addr_aligned - cur_end_addr); if (len & (mtt_size - 1ULL)) { pr_warn("write_block: len %llx is not aligned to mtt_size %llx\n", len, mtt_size); return -EINVAL; } mtt_entries = (len >> mtt_shift); /* * Align the MTT start address to the mtt_size. * Required to handle cases when the MR starts in the middle of an MTT * record. Was not required in old code since the physical addresses * provided by the dma subsystem were page aligned, which was also the * MTT size. */ cur_start_addr = round_down(cur_start_addr, mtt_size); /* A new block is started ... */ for (k = 0; k < mtt_entries; ++k) { pages[*npages] = cur_start_addr + (mtt_size * k); (*npages)++; /* * Be friendly to mlx4_write_mtt() and pass it chunks of * appropriate size. */ if (*npages == PAGE_SIZE / sizeof(u64)) { err = mlx4_write_mtt(dev->dev, mtt, *start_index, *npages, pages); if (err) return err; (*start_index) += *npages; *npages = 0; } } return 0; } static inline u64 alignment_of(u64 ptr) { return ilog2(ptr & (~(ptr - 1))); } static int mlx4_ib_umem_calc_block_mtt(u64 next_block_start, u64 current_block_end, u64 block_shift) { /* Check whether the alignment of the new block is aligned as well as * the previous block. * Block address must start with zeros till size of entity_size. */ if ((next_block_start & ((1ULL << block_shift) - 1ULL)) != 0) /* * It is not as well aligned as the previous block-reduce the * mtt size accordingly. Here we take the last right bit which * is 1. */ block_shift = alignment_of(next_block_start); /* * Check whether the alignment of the end of previous block - is it * aligned as well as the start of the block */ if (((current_block_end) & ((1ULL << block_shift) - 1ULL)) != 0) /* * It is not as well aligned as the start of the block - * reduce the mtt size accordingly. */ block_shift = alignment_of(current_block_end); return block_shift; } int mlx4_ib_umem_write_mtt(struct mlx4_ib_dev *dev, struct mlx4_mtt *mtt, struct ib_umem *umem) { u64 *pages; u64 len = 0; int err = 0; u64 mtt_size; u64 cur_start_addr = 0; u64 mtt_shift; int start_index = 0; int npages = 0; struct scatterlist *sg; int i; pages = (u64 *) __get_free_page(GFP_KERNEL); if (!pages) return -ENOMEM; mtt_shift = mtt->page_shift; mtt_size = 1ULL << mtt_shift; for_each_sgtable_dma_sg(&umem->sgt_append.sgt, sg, i) { if (cur_start_addr + len == sg_dma_address(sg)) { /* still the same block */ len += sg_dma_len(sg); continue; } /* * A new block is started ... * If len is malaligned, write an extra mtt entry to cover the * misaligned area (round up the division) */ err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size, mtt_shift, len, cur_start_addr, pages, &start_index, &npages); if (err) goto out; cur_start_addr = sg_dma_address(sg); len = sg_dma_len(sg); } /* Handle the last block */ if (len > 0) { /* * If len is malaligned, write an extra mtt entry to cover * the misaligned area (round up the division) */ err = mlx4_ib_umem_write_mtt_block(dev, mtt, mtt_size, mtt_shift, len, cur_start_addr, pages, &start_index, &npages); if (err) goto out; } if (npages) err = mlx4_write_mtt(dev->dev, mtt, start_index, npages, pages); out: free_page((unsigned long) pages); return err; } /* * Calculate optimal mtt size based on contiguous pages. * Function will return also the number of pages that are not aligned to the * calculated mtt_size to be added to total number of pages. For that we should * check the first chunk length & last chunk length and if not aligned to * mtt_size we should increment the non_aligned_pages number. All chunks in the * middle already handled as part of mtt shift calculation for both their start * & end addresses. */ int mlx4_ib_umem_calc_optimal_mtt_size(struct ib_umem *umem, u64 start_va, int *num_of_mtts) { u64 block_shift = MLX4_MAX_MTT_SHIFT; u64 min_shift = PAGE_SHIFT; u64 last_block_aligned_end = 0; u64 current_block_start = 0; u64 first_block_start = 0; u64 current_block_len = 0; u64 last_block_end = 0; struct scatterlist *sg; u64 current_block_end; u64 misalignment_bits; u64 next_block_start; u64 total_len = 0; int i; *num_of_mtts = ib_umem_num_dma_blocks(umem, PAGE_SIZE); for_each_sgtable_dma_sg(&umem->sgt_append.sgt, sg, i) { /* * Initialization - save the first chunk start as the * current_block_start - block means contiguous pages. */ if (current_block_len == 0 && current_block_start == 0) { current_block_start = sg_dma_address(sg); first_block_start = current_block_start; /* * Find the bits that are different between the physical * address and the virtual address for the start of the * MR. * umem_get aligned the start_va to a page boundary. * Therefore, we need to align the start va to the same * boundary. * misalignment_bits is needed to handle the case of a * single memory region. In this case, the rest of the * logic will not reduce the block size. If we use a * block size which is bigger than the alignment of the * misalignment bits, we might use the virtual page * number instead of the physical page number, resulting * in access to the wrong data. */ misalignment_bits = (start_va & (~(((u64)(PAGE_SIZE)) - 1ULL))) ^ current_block_start; block_shift = min(alignment_of(misalignment_bits), block_shift); } /* * Go over the scatter entries and check if they continue the * previous scatter entry. */ next_block_start = sg_dma_address(sg); current_block_end = current_block_start + current_block_len; /* If we have a split (non-contig.) between two blocks */ if (current_block_end != next_block_start) { block_shift = mlx4_ib_umem_calc_block_mtt (next_block_start, current_block_end, block_shift); /* * If we reached the minimum shift for 4k page we stop * the loop. */ if (block_shift <= min_shift) goto end; /* * If not saved yet we are in first block - we save the * length of first block to calculate the * non_aligned_pages number at the end. */ total_len += current_block_len; /* Start a new block */ current_block_start = next_block_start; current_block_len = sg_dma_len(sg); continue; } /* The scatter entry is another part of the current block, * increase the block size. * An entry in the scatter can be larger than 4k (page) as of * dma mapping which merge some blocks together. */ current_block_len += sg_dma_len(sg); } /* Account for the last block in the total len */ total_len += current_block_len; /* Add to the first block the misalignment that it suffers from. */ total_len += (first_block_start & ((1ULL << block_shift) - 1ULL)); last_block_end = current_block_start + current_block_len; last_block_aligned_end = round_up(last_block_end, 1ULL << block_shift); total_len += (last_block_aligned_end - last_block_end); if (total_len & ((1ULL << block_shift) - 1ULL)) pr_warn("misaligned total length detected (%llu, %llu)!", total_len, block_shift); *num_of_mtts = total_len >> block_shift; end: if (block_shift < min_shift) { /* * If shift is less than the min we set a warning and return the * min shift. */ pr_warn("umem_calc_optimal_mtt_size - unexpected shift %lld\n", block_shift); block_shift = min_shift; } return block_shift; } static struct ib_umem *mlx4_get_umem_mr(struct ib_device *device, u64 start, u64 length, int access_flags) { /* * Force registering the memory as writable if the underlying pages * are writable. This is so rereg can change the access permissions * from readable to writable without having to run through ib_umem_get * again */ if (!ib_access_writable(access_flags)) { unsigned long untagged_start = untagged_addr(start); struct vm_area_struct *vma; mmap_read_lock(current->mm); /* * FIXME: Ideally this would iterate over all the vmas that * cover the memory, but for now it requires a single vma to * entirely cover the MR to support RO mappings. */ vma = find_vma(current->mm, untagged_start); if (vma && vma->vm_end >= untagged_start + length && vma->vm_start <= untagged_start) { if (vma->vm_flags & VM_WRITE) access_flags |= IB_ACCESS_LOCAL_WRITE; } else { access_flags |= IB_ACCESS_LOCAL_WRITE; } mmap_read_unlock(current->mm); } return ib_umem_get(device, start, length, access_flags); } struct ib_mr *mlx4_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, u64 virt_addr, int access_flags, struct ib_udata *udata) { struct mlx4_ib_dev *dev = to_mdev(pd->device); struct mlx4_ib_mr *mr; int shift; int err; int n; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); mr->umem = mlx4_get_umem_mr(pd->device, start, length, access_flags); if (IS_ERR(mr->umem)) { err = PTR_ERR(mr->umem); goto err_free; } shift = mlx4_ib_umem_calc_optimal_mtt_size(mr->umem, start, &n); err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, virt_addr, length, convert_access(access_flags), n, shift, &mr->mmr); if (err) goto err_umem; err = mlx4_ib_umem_write_mtt(dev, &mr->mmr.mtt, mr->umem); if (err) goto err_mr; err = mlx4_mr_enable(dev->dev, &mr->mmr); if (err) goto err_mr; mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; mr->ibmr.page_size = 1U << shift; return &mr->ibmr; err_mr: (void) mlx4_mr_free(to_mdev(pd->device)->dev, &mr->mmr); err_umem: ib_umem_release(mr->umem); err_free: kfree(mr); return ERR_PTR(err); } struct ib_mr *mlx4_ib_rereg_user_mr(struct ib_mr *mr, int flags, u64 start, u64 length, u64 virt_addr, int mr_access_flags, struct ib_pd *pd, struct ib_udata *udata) { struct mlx4_ib_dev *dev = to_mdev(mr->device); struct mlx4_ib_mr *mmr = to_mmr(mr); struct mlx4_mpt_entry *mpt_entry; struct mlx4_mpt_entry **pmpt_entry = &mpt_entry; int err; /* Since we synchronize this call and mlx4_ib_dereg_mr via uverbs, * we assume that the calls can't run concurrently. Otherwise, a * race exists. */ err = mlx4_mr_hw_get_mpt(dev->dev, &mmr->mmr, &pmpt_entry); if (err) return ERR_PTR(err); if (flags & IB_MR_REREG_PD) { err = mlx4_mr_hw_change_pd(dev->dev, *pmpt_entry, to_mpd(pd)->pdn); if (err) goto release_mpt_entry; } if (flags & IB_MR_REREG_ACCESS) { if (ib_access_writable(mr_access_flags) && !mmr->umem->writable) { err = -EPERM; goto release_mpt_entry; } err = mlx4_mr_hw_change_access(dev->dev, *pmpt_entry, convert_access(mr_access_flags)); if (err) goto release_mpt_entry; } if (flags & IB_MR_REREG_TRANS) { int shift; int n; mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr); ib_umem_release(mmr->umem); mmr->umem = mlx4_get_umem_mr(mr->device, start, length, mr_access_flags); if (IS_ERR(mmr->umem)) { err = PTR_ERR(mmr->umem); /* Prevent mlx4_ib_dereg_mr from free'ing invalid pointer */ mmr->umem = NULL; goto release_mpt_entry; } n = ib_umem_num_dma_blocks(mmr->umem, PAGE_SIZE); shift = PAGE_SHIFT; err = mlx4_mr_rereg_mem_write(dev->dev, &mmr->mmr, virt_addr, length, n, shift, *pmpt_entry); if (err) { ib_umem_release(mmr->umem); goto release_mpt_entry; } mmr->mmr.iova = virt_addr; mmr->mmr.size = length; err = mlx4_ib_umem_write_mtt(dev, &mmr->mmr.mtt, mmr->umem); if (err) { mlx4_mr_rereg_mem_cleanup(dev->dev, &mmr->mmr); ib_umem_release(mmr->umem); goto release_mpt_entry; } } /* If we couldn't transfer the MR to the HCA, just remember to * return a failure. But dereg_mr will free the resources. */ err = mlx4_mr_hw_write_mpt(dev->dev, &mmr->mmr, pmpt_entry); if (!err && flags & IB_MR_REREG_ACCESS) mmr->mmr.access = mr_access_flags; release_mpt_entry: mlx4_mr_hw_put_mpt(dev->dev, pmpt_entry); if (err) return ERR_PTR(err); return NULL; } static int mlx4_alloc_priv_pages(struct ib_device *device, struct mlx4_ib_mr *mr, int max_pages) { int ret; /* Ensure that size is aligned to DMA cacheline * requirements. * max_pages is limited to MLX4_MAX_FAST_REG_PAGES * so page_map_size will never cross PAGE_SIZE. */ mr->page_map_size = roundup(max_pages * sizeof(u64), MLX4_MR_PAGES_ALIGN); /* Prevent cross page boundary allocation. */ mr->pages = (__be64 *)get_zeroed_page(GFP_KERNEL); if (!mr->pages) return -ENOMEM; mr->page_map = dma_map_single(device->dev.parent, mr->pages, mr->page_map_size, DMA_TO_DEVICE); if (dma_mapping_error(device->dev.parent, mr->page_map)) { ret = -ENOMEM; goto err; } return 0; err: free_page((unsigned long)mr->pages); return ret; } static void mlx4_free_priv_pages(struct mlx4_ib_mr *mr) { if (mr->pages) { struct ib_device *device = mr->ibmr.device; dma_unmap_single(device->dev.parent, mr->page_map, mr->page_map_size, DMA_TO_DEVICE); free_page((unsigned long)mr->pages); mr->pages = NULL; } } int mlx4_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) { struct mlx4_ib_mr *mr = to_mmr(ibmr); int ret; mlx4_free_priv_pages(mr); ret = mlx4_mr_free(to_mdev(ibmr->device)->dev, &mr->mmr); if (ret) return ret; if (mr->umem) ib_umem_release(mr->umem); kfree(mr); return 0; } int mlx4_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) { struct mlx4_ib_dev *dev = to_mdev(ibmw->device); struct mlx4_ib_mw *mw = to_mmw(ibmw); int err; err = mlx4_mw_alloc(dev->dev, to_mpd(ibmw->pd)->pdn, to_mlx4_type(ibmw->type), &mw->mmw); if (err) return err; err = mlx4_mw_enable(dev->dev, &mw->mmw); if (err) goto err_mw; ibmw->rkey = mw->mmw.key; return 0; err_mw: mlx4_mw_free(dev->dev, &mw->mmw); return err; } int mlx4_ib_dealloc_mw(struct ib_mw *ibmw) { struct mlx4_ib_mw *mw = to_mmw(ibmw); mlx4_mw_free(to_mdev(ibmw->device)->dev, &mw->mmw); return 0; } struct ib_mr *mlx4_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_num_sg) { struct mlx4_ib_dev *dev = to_mdev(pd->device); struct mlx4_ib_mr *mr; int err; if (mr_type != IB_MR_TYPE_MEM_REG || max_num_sg > MLX4_MAX_FAST_REG_PAGES) return ERR_PTR(-EINVAL); mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); err = mlx4_mr_alloc(dev->dev, to_mpd(pd)->pdn, 0, 0, 0, max_num_sg, 0, &mr->mmr); if (err) goto err_free; err = mlx4_alloc_priv_pages(pd->device, mr, max_num_sg); if (err) goto err_free_mr; mr->max_pages = max_num_sg; err = mlx4_mr_enable(dev->dev, &mr->mmr); if (err) goto err_free_pl; mr->ibmr.rkey = mr->ibmr.lkey = mr->mmr.key; mr->umem = NULL; return &mr->ibmr; err_free_pl: mr->ibmr.device = pd->device; mlx4_free_priv_pages(mr); err_free_mr: (void) mlx4_mr_free(dev->dev, &mr->mmr); err_free: kfree(mr); return ERR_PTR(err); } static int mlx4_set_page(struct ib_mr *ibmr, u64 addr) { struct mlx4_ib_mr *mr = to_mmr(ibmr); if (unlikely(mr->npages == mr->max_pages)) return -ENOMEM; mr->pages[mr->npages++] = cpu_to_be64(addr | MLX4_MTT_FLAG_PRESENT); return 0; } int mlx4_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, unsigned int *sg_offset) { struct mlx4_ib_mr *mr = to_mmr(ibmr); int rc; mr->npages = 0; ib_dma_sync_single_for_cpu(ibmr->device, mr->page_map, mr->page_map_size, DMA_TO_DEVICE); rc = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx4_set_page); ib_dma_sync_single_for_device(ibmr->device, mr->page_map, mr->page_map_size, DMA_TO_DEVICE); return rc; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1