Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jason Gunthorpe | 2597 | 18.73% | 36 | 18.75% |
Eli Cohen | 2012 | 14.51% | 8 | 4.17% |
Michael Guralnik | 1746 | 12.60% | 6 | 3.12% |
Max Gurtovoy | 1514 | 10.92% | 3 | 1.56% |
Sagi Grimberg | 1225 | 8.84% | 7 | 3.65% |
Saeed Mahameed | 762 | 5.50% | 6 | 3.12% |
Shay Drory | 677 | 4.88% | 3 | 1.56% |
Aharon Landau | 534 | 3.85% | 23 | 11.98% |
Jianxin Xiong | 395 | 2.85% | 1 | 0.52% |
Ariel Levkovich | 372 | 2.68% | 4 | 2.08% |
Matan Barak | 361 | 2.60% | 4 | 2.08% |
Israel Rukshin | 314 | 2.27% | 1 | 0.52% |
Artemy Kovalyov | 266 | 1.92% | 7 | 3.65% |
Leon Romanovsky | 139 | 1.00% | 14 | 7.29% |
Noa Osherovich | 119 | 0.86% | 2 | 1.04% |
Or Har-Toov | 112 | 0.81% | 2 | 1.04% |
Haggai Eran | 108 | 0.78% | 8 | 4.17% |
Ilya Lesokhin | 84 | 0.61% | 4 | 2.08% |
Moni Shoua | 75 | 0.54% | 4 | 2.08% |
Yishai Hadas | 55 | 0.40% | 6 | 3.12% |
Maor Gottlieb | 50 | 0.36% | 3 | 1.56% |
Yuanyuan Zhong | 39 | 0.28% | 1 | 0.52% |
Parav Pandit | 33 | 0.24% | 2 | 1.04% |
Bart Van Assche | 33 | 0.24% | 3 | 1.56% |
Christoph Hellwig | 26 | 0.19% | 1 | 0.52% |
Avihai Horon | 23 | 0.17% | 3 | 1.56% |
Mark Bloch | 23 | 0.17% | 6 | 3.12% |
Daniel Jurgens | 20 | 0.14% | 1 | 0.52% |
Jann Horn | 20 | 0.14% | 1 | 0.52% |
Moshe Lazer | 19 | 0.14% | 2 | 1.04% |
Moshe Shemesh | 18 | 0.13% | 1 | 0.52% |
Kees Cook | 14 | 0.10% | 1 | 0.52% |
Majd Dibbiny | 13 | 0.09% | 3 | 1.56% |
Changcheng Liu | 11 | 0.08% | 1 | 0.52% |
Dan Carpenter | 10 | 0.07% | 1 | 0.52% |
Jack Morgenstein | 7 | 0.05% | 1 | 0.52% |
Greg Kroah-Hartman | 6 | 0.04% | 1 | 0.52% |
Achiad Shochat | 6 | 0.04% | 2 | 1.04% |
Arnd Bergmann | 5 | 0.04% | 1 | 0.52% |
Wei Yongjun | 4 | 0.03% | 1 | 0.52% |
Shun Hao | 3 | 0.02% | 1 | 0.52% |
Yevgeny Kliteynik | 3 | 0.02% | 1 | 0.52% |
Bhaktipriya Shridhar | 3 | 0.02% | 1 | 0.52% |
Li Zhijian | 2 | 0.01% | 1 | 0.52% |
Al Viro | 2 | 0.01% | 1 | 0.52% |
Gal Pressman | 1 | 0.01% | 1 | 0.52% |
Rohit Chavan | 1 | 0.01% | 1 | 0.52% |
Total | 13862 | 192 |
/* * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. * Copyright (c) 2020, Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/kref.h> #include <linux/random.h> #include <linux/debugfs.h> #include <linux/export.h> #include <linux/delay.h> #include <linux/dma-buf.h> #include <linux/dma-resv.h> #include <rdma/ib_umem_odp.h> #include "dm.h" #include "mlx5_ib.h" #include "umr.h" enum { MAX_PENDING_REG_MR = 8, }; #define MLX5_UMR_ALIGN 2048 static void create_mkey_callback(int status, struct mlx5_async_work *context); static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem, u64 iova, int access_flags, unsigned int page_size, bool populate); static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr, struct ib_pd *pd) { struct mlx5_ib_dev *dev = to_mdev(pd->device); MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC)); MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE)); MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ)); MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE)); MLX5_SET(mkc, mkc, lr, 1); if (acc & IB_ACCESS_RELAXED_ORDERING) { if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write)) MLX5_SET(mkc, mkc, relaxed_ordering_write, 1); if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) || (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_pci_enabled) && pcie_relaxed_ordering_enabled(dev->mdev->pdev))) MLX5_SET(mkc, mkc, relaxed_ordering_read, 1); } MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn); MLX5_SET(mkc, mkc, qpn, 0xffffff); MLX5_SET64(mkc, mkc, start_addr, start_addr); } static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in) { u8 key = atomic_inc_return(&dev->mkey_var); void *mkc; mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, mkey_7_0, key); *mkey = key; } static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mkey *mkey, u32 *in, int inlen) { int ret; assign_mkey_variant(dev, &mkey->key, in); ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen); if (!ret) init_waitqueue_head(&mkey->wait); return ret; } static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create) { struct mlx5_ib_dev *dev = async_create->ent->dev; size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out); MLX5_SET(create_mkey_in, async_create->in, opcode, MLX5_CMD_OP_CREATE_MKEY); assign_mkey_variant(dev, &async_create->mkey, async_create->in); return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen, async_create->out, outlen, create_mkey_callback, &async_create->cb_work); } static int mkey_cache_max_order(struct mlx5_ib_dev *dev); static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent); static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) { WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key))); return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key); } static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out) { if (status == -ENXIO) /* core driver is not available */ return; mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status); if (status != -EREMOTEIO) /* driver specific failure */ return; /* Failed in FW, print cmd out failure details */ mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out); } static int push_mkey_locked(struct mlx5_cache_ent *ent, u32 mkey) { unsigned long tmp = ent->mkeys_queue.ci % NUM_MKEYS_PER_PAGE; struct mlx5_mkeys_page *page; lockdep_assert_held(&ent->mkeys_queue.lock); if (ent->mkeys_queue.ci >= ent->mkeys_queue.num_pages * NUM_MKEYS_PER_PAGE) { page = kzalloc(sizeof(*page), GFP_ATOMIC); if (!page) return -ENOMEM; ent->mkeys_queue.num_pages++; list_add_tail(&page->list, &ent->mkeys_queue.pages_list); } else { page = list_last_entry(&ent->mkeys_queue.pages_list, struct mlx5_mkeys_page, list); } page->mkeys[tmp] = mkey; ent->mkeys_queue.ci++; return 0; } static int pop_mkey_locked(struct mlx5_cache_ent *ent) { unsigned long tmp = (ent->mkeys_queue.ci - 1) % NUM_MKEYS_PER_PAGE; struct mlx5_mkeys_page *last_page; u32 mkey; lockdep_assert_held(&ent->mkeys_queue.lock); last_page = list_last_entry(&ent->mkeys_queue.pages_list, struct mlx5_mkeys_page, list); mkey = last_page->mkeys[tmp]; last_page->mkeys[tmp] = 0; ent->mkeys_queue.ci--; if (ent->mkeys_queue.num_pages > 1 && !tmp) { list_del(&last_page->list); ent->mkeys_queue.num_pages--; kfree(last_page); } return mkey; } static void create_mkey_callback(int status, struct mlx5_async_work *context) { struct mlx5r_async_create_mkey *mkey_out = container_of(context, struct mlx5r_async_create_mkey, cb_work); struct mlx5_cache_ent *ent = mkey_out->ent; struct mlx5_ib_dev *dev = ent->dev; unsigned long flags; if (status) { create_mkey_warn(dev, status, mkey_out->out); kfree(mkey_out); spin_lock_irqsave(&ent->mkeys_queue.lock, flags); ent->pending--; WRITE_ONCE(dev->fill_delay, 1); spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags); mod_timer(&dev->delay_timer, jiffies + HZ); return; } mkey_out->mkey |= mlx5_idx_to_mkey( MLX5_GET(create_mkey_out, mkey_out->out, mkey_index)); WRITE_ONCE(dev->cache.last_add, jiffies); spin_lock_irqsave(&ent->mkeys_queue.lock, flags); push_mkey_locked(ent, mkey_out->mkey); /* If we are doing fill_to_high_water then keep going. */ queue_adjust_cache_locked(ent); ent->pending--; spin_unlock_irqrestore(&ent->mkeys_queue.lock, flags); kfree(mkey_out); } static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs) { int ret = 0; switch (access_mode) { case MLX5_MKC_ACCESS_MODE_MTT: ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD / sizeof(struct mlx5_mtt)); break; case MLX5_MKC_ACCESS_MODE_KSM: ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD / sizeof(struct mlx5_klm)); break; default: WARN_ON(1); } return ret; } static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc) { set_mkc_access_pd_addr_fields(mkc, ent->rb_key.access_flags, 0, ent->dev->umrc.pd); MLX5_SET(mkc, mkc, free, 1); MLX5_SET(mkc, mkc, umr_en, 1); MLX5_SET(mkc, mkc, access_mode_1_0, ent->rb_key.access_mode & 0x3); MLX5_SET(mkc, mkc, access_mode_4_2, (ent->rb_key.access_mode >> 2) & 0x7); MLX5_SET(mkc, mkc, ma_translation_mode, !!ent->rb_key.ats); MLX5_SET(mkc, mkc, translations_octword_size, get_mkc_octo_size(ent->rb_key.access_mode, ent->rb_key.ndescs)); MLX5_SET(mkc, mkc, log_page_size, PAGE_SHIFT); } /* Asynchronously schedule new MRs to be populated in the cache. */ static int add_keys(struct mlx5_cache_ent *ent, unsigned int num) { struct mlx5r_async_create_mkey *async_create; void *mkc; int err = 0; int i; for (i = 0; i < num; i++) { async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey), GFP_KERNEL); if (!async_create) return -ENOMEM; mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in, memory_key_mkey_entry); set_cache_mkc(ent, mkc); async_create->ent = ent; spin_lock_irq(&ent->mkeys_queue.lock); if (ent->pending >= MAX_PENDING_REG_MR) { err = -EAGAIN; goto free_async_create; } ent->pending++; spin_unlock_irq(&ent->mkeys_queue.lock); err = mlx5_ib_create_mkey_cb(async_create); if (err) { mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err); goto err_create_mkey; } } return 0; err_create_mkey: spin_lock_irq(&ent->mkeys_queue.lock); ent->pending--; free_async_create: spin_unlock_irq(&ent->mkeys_queue.lock); kfree(async_create); return err; } /* Synchronously create a MR in the cache */ static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey) { size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in); void *mkc; u32 *in; int err; in = kzalloc(inlen, GFP_KERNEL); if (!in) return -ENOMEM; mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); set_cache_mkc(ent, mkc); err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen); if (err) goto free_in; WRITE_ONCE(ent->dev->cache.last_add, jiffies); free_in: kfree(in); return err; } static void remove_cache_mr_locked(struct mlx5_cache_ent *ent) { u32 mkey; lockdep_assert_held(&ent->mkeys_queue.lock); if (!ent->mkeys_queue.ci) return; mkey = pop_mkey_locked(ent); spin_unlock_irq(&ent->mkeys_queue.lock); mlx5_core_destroy_mkey(ent->dev->mdev, mkey); spin_lock_irq(&ent->mkeys_queue.lock); } static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target, bool limit_fill) __acquires(&ent->mkeys_queue.lock) __releases(&ent->mkeys_queue.lock) { int err; lockdep_assert_held(&ent->mkeys_queue.lock); while (true) { if (limit_fill) target = ent->limit * 2; if (target == ent->pending + ent->mkeys_queue.ci) return 0; if (target > ent->pending + ent->mkeys_queue.ci) { u32 todo = target - (ent->pending + ent->mkeys_queue.ci); spin_unlock_irq(&ent->mkeys_queue.lock); err = add_keys(ent, todo); if (err == -EAGAIN) usleep_range(3000, 5000); spin_lock_irq(&ent->mkeys_queue.lock); if (err) { if (err != -EAGAIN) return err; } else return 0; } else { remove_cache_mr_locked(ent); } } } static ssize_t size_write(struct file *filp, const char __user *buf, size_t count, loff_t *pos) { struct mlx5_cache_ent *ent = filp->private_data; u32 target; int err; err = kstrtou32_from_user(buf, count, 0, &target); if (err) return err; /* * Target is the new value of total_mrs the user requests, however we * cannot free MRs that are in use. Compute the target value for stored * mkeys. */ spin_lock_irq(&ent->mkeys_queue.lock); if (target < ent->in_use) { err = -EINVAL; goto err_unlock; } target = target - ent->in_use; if (target < ent->limit || target > ent->limit*2) { err = -EINVAL; goto err_unlock; } err = resize_available_mrs(ent, target, false); if (err) goto err_unlock; spin_unlock_irq(&ent->mkeys_queue.lock); return count; err_unlock: spin_unlock_irq(&ent->mkeys_queue.lock); return err; } static ssize_t size_read(struct file *filp, char __user *buf, size_t count, loff_t *pos) { struct mlx5_cache_ent *ent = filp->private_data; char lbuf[20]; int err; err = snprintf(lbuf, sizeof(lbuf), "%ld\n", ent->mkeys_queue.ci + ent->in_use); if (err < 0) return err; return simple_read_from_buffer(buf, count, pos, lbuf, err); } static const struct file_operations size_fops = { .owner = THIS_MODULE, .open = simple_open, .write = size_write, .read = size_read, }; static ssize_t limit_write(struct file *filp, const char __user *buf, size_t count, loff_t *pos) { struct mlx5_cache_ent *ent = filp->private_data; u32 var; int err; err = kstrtou32_from_user(buf, count, 0, &var); if (err) return err; /* * Upon set we immediately fill the cache to high water mark implied by * the limit. */ spin_lock_irq(&ent->mkeys_queue.lock); ent->limit = var; err = resize_available_mrs(ent, 0, true); spin_unlock_irq(&ent->mkeys_queue.lock); if (err) return err; return count; } static ssize_t limit_read(struct file *filp, char __user *buf, size_t count, loff_t *pos) { struct mlx5_cache_ent *ent = filp->private_data; char lbuf[20]; int err; err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit); if (err < 0) return err; return simple_read_from_buffer(buf, count, pos, lbuf, err); } static const struct file_operations limit_fops = { .owner = THIS_MODULE, .open = simple_open, .write = limit_write, .read = limit_read, }; static bool someone_adding(struct mlx5_mkey_cache *cache) { struct mlx5_cache_ent *ent; struct rb_node *node; bool ret; mutex_lock(&cache->rb_lock); for (node = rb_first(&cache->rb_root); node; node = rb_next(node)) { ent = rb_entry(node, struct mlx5_cache_ent, node); spin_lock_irq(&ent->mkeys_queue.lock); ret = ent->mkeys_queue.ci < ent->limit; spin_unlock_irq(&ent->mkeys_queue.lock); if (ret) { mutex_unlock(&cache->rb_lock); return true; } } mutex_unlock(&cache->rb_lock); return false; } /* * Check if the bucket is outside the high/low water mark and schedule an async * update. The cache refill has hysteresis, once the low water mark is hit it is * refilled up to the high mark. */ static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent) { lockdep_assert_held(&ent->mkeys_queue.lock); if (ent->disabled || READ_ONCE(ent->dev->fill_delay) || ent->is_tmp) return; if (ent->mkeys_queue.ci < ent->limit) { ent->fill_to_high_water = true; mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0); } else if (ent->fill_to_high_water && ent->mkeys_queue.ci + ent->pending < 2 * ent->limit) { /* * Once we start populating due to hitting a low water mark * continue until we pass the high water mark. */ mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0); } else if (ent->mkeys_queue.ci == 2 * ent->limit) { ent->fill_to_high_water = false; } else if (ent->mkeys_queue.ci > 2 * ent->limit) { /* Queue deletion of excess entries */ ent->fill_to_high_water = false; if (ent->pending) queue_delayed_work(ent->dev->cache.wq, &ent->dwork, msecs_to_jiffies(1000)); else mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0); } } static void __cache_work_func(struct mlx5_cache_ent *ent) { struct mlx5_ib_dev *dev = ent->dev; struct mlx5_mkey_cache *cache = &dev->cache; int err; spin_lock_irq(&ent->mkeys_queue.lock); if (ent->disabled) goto out; if (ent->fill_to_high_water && ent->mkeys_queue.ci + ent->pending < 2 * ent->limit && !READ_ONCE(dev->fill_delay)) { spin_unlock_irq(&ent->mkeys_queue.lock); err = add_keys(ent, 1); spin_lock_irq(&ent->mkeys_queue.lock); if (ent->disabled) goto out; if (err) { /* * EAGAIN only happens if there are pending MRs, so we * will be rescheduled when storing them. The only * failure path here is ENOMEM. */ if (err != -EAGAIN) { mlx5_ib_warn( dev, "add keys command failed, err %d\n", err); queue_delayed_work(cache->wq, &ent->dwork, msecs_to_jiffies(1000)); } } } else if (ent->mkeys_queue.ci > 2 * ent->limit) { bool need_delay; /* * The remove_cache_mr() logic is performed as garbage * collection task. Such task is intended to be run when no * other active processes are running. * * The need_resched() will return TRUE if there are user tasks * to be activated in near future. * * In such case, we don't execute remove_cache_mr() and postpone * the garbage collection work to try to run in next cycle, in * order to free CPU resources to other tasks. */ spin_unlock_irq(&ent->mkeys_queue.lock); need_delay = need_resched() || someone_adding(cache) || !time_after(jiffies, READ_ONCE(cache->last_add) + 300 * HZ); spin_lock_irq(&ent->mkeys_queue.lock); if (ent->disabled) goto out; if (need_delay) { queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ); goto out; } remove_cache_mr_locked(ent); queue_adjust_cache_locked(ent); } out: spin_unlock_irq(&ent->mkeys_queue.lock); } static void delayed_cache_work_func(struct work_struct *work) { struct mlx5_cache_ent *ent; ent = container_of(work, struct mlx5_cache_ent, dwork.work); __cache_work_func(ent); } static int cache_ent_key_cmp(struct mlx5r_cache_rb_key key1, struct mlx5r_cache_rb_key key2) { int res; res = key1.ats - key2.ats; if (res) return res; res = key1.access_mode - key2.access_mode; if (res) return res; res = key1.access_flags - key2.access_flags; if (res) return res; /* * keep ndescs the last in the compare table since the find function * searches for an exact match on all properties and only closest * match in size. */ return key1.ndescs - key2.ndescs; } static int mlx5_cache_ent_insert(struct mlx5_mkey_cache *cache, struct mlx5_cache_ent *ent) { struct rb_node **new = &cache->rb_root.rb_node, *parent = NULL; struct mlx5_cache_ent *cur; int cmp; /* Figure out where to put new node */ while (*new) { cur = rb_entry(*new, struct mlx5_cache_ent, node); parent = *new; cmp = cache_ent_key_cmp(cur->rb_key, ent->rb_key); if (cmp > 0) new = &((*new)->rb_left); if (cmp < 0) new = &((*new)->rb_right); if (cmp == 0) return -EEXIST; } /* Add new node and rebalance tree. */ rb_link_node(&ent->node, parent, new); rb_insert_color(&ent->node, &cache->rb_root); return 0; } static struct mlx5_cache_ent * mkey_cache_ent_from_rb_key(struct mlx5_ib_dev *dev, struct mlx5r_cache_rb_key rb_key) { struct rb_node *node = dev->cache.rb_root.rb_node; struct mlx5_cache_ent *cur, *smallest = NULL; int cmp; /* * Find the smallest ent with order >= requested_order. */ while (node) { cur = rb_entry(node, struct mlx5_cache_ent, node); cmp = cache_ent_key_cmp(cur->rb_key, rb_key); if (cmp > 0) { smallest = cur; node = node->rb_left; } if (cmp < 0) node = node->rb_right; if (cmp == 0) return cur; } return (smallest && smallest->rb_key.access_mode == rb_key.access_mode && smallest->rb_key.access_flags == rb_key.access_flags && smallest->rb_key.ats == rb_key.ats) ? smallest : NULL; } static struct mlx5_ib_mr *_mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent, int access_flags) { struct mlx5_ib_mr *mr; int err; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); spin_lock_irq(&ent->mkeys_queue.lock); ent->in_use++; if (!ent->mkeys_queue.ci) { queue_adjust_cache_locked(ent); ent->miss++; spin_unlock_irq(&ent->mkeys_queue.lock); err = create_cache_mkey(ent, &mr->mmkey.key); if (err) { spin_lock_irq(&ent->mkeys_queue.lock); ent->in_use--; spin_unlock_irq(&ent->mkeys_queue.lock); kfree(mr); return ERR_PTR(err); } } else { mr->mmkey.key = pop_mkey_locked(ent); queue_adjust_cache_locked(ent); spin_unlock_irq(&ent->mkeys_queue.lock); } mr->mmkey.cache_ent = ent; mr->mmkey.type = MLX5_MKEY_MR; mr->mmkey.rb_key = ent->rb_key; mr->mmkey.cacheable = true; init_waitqueue_head(&mr->mmkey.wait); return mr; } static int get_unchangeable_access_flags(struct mlx5_ib_dev *dev, int access_flags) { int ret = 0; if ((access_flags & IB_ACCESS_REMOTE_ATOMIC) && MLX5_CAP_GEN(dev->mdev, atomic) && MLX5_CAP_GEN(dev->mdev, umr_modify_atomic_disabled)) ret |= IB_ACCESS_REMOTE_ATOMIC; if ((access_flags & IB_ACCESS_RELAXED_ORDERING) && MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write) && !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write_umr)) ret |= IB_ACCESS_RELAXED_ORDERING; if ((access_flags & IB_ACCESS_RELAXED_ORDERING) && (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read) || MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_pci_enabled)) && !MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read_umr)) ret |= IB_ACCESS_RELAXED_ORDERING; return ret; } struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev, int access_flags, int access_mode, int ndescs) { struct mlx5r_cache_rb_key rb_key = { .ndescs = ndescs, .access_mode = access_mode, .access_flags = get_unchangeable_access_flags(dev, access_flags) }; struct mlx5_cache_ent *ent = mkey_cache_ent_from_rb_key(dev, rb_key); if (!ent) return ERR_PTR(-EOPNOTSUPP); return _mlx5_mr_cache_alloc(dev, ent, access_flags); } static void clean_keys(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent) { u32 mkey; cancel_delayed_work(&ent->dwork); spin_lock_irq(&ent->mkeys_queue.lock); while (ent->mkeys_queue.ci) { mkey = pop_mkey_locked(ent); spin_unlock_irq(&ent->mkeys_queue.lock); mlx5_core_destroy_mkey(dev->mdev, mkey); spin_lock_irq(&ent->mkeys_queue.lock); } spin_unlock_irq(&ent->mkeys_queue.lock); } static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev) { if (!mlx5_debugfs_root || dev->is_rep) return; debugfs_remove_recursive(dev->cache.fs_root); dev->cache.fs_root = NULL; } static void mlx5_mkey_cache_debugfs_add_ent(struct mlx5_ib_dev *dev, struct mlx5_cache_ent *ent) { int order = order_base_2(ent->rb_key.ndescs); struct dentry *dir; if (!mlx5_debugfs_root || dev->is_rep) return; if (ent->rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM) order = MLX5_IMR_KSM_CACHE_ENTRY + 2; sprintf(ent->name, "%d", order); dir = debugfs_create_dir(ent->name, dev->cache.fs_root); debugfs_create_file("size", 0600, dir, ent, &size_fops); debugfs_create_file("limit", 0600, dir, ent, &limit_fops); debugfs_create_ulong("cur", 0400, dir, &ent->mkeys_queue.ci); debugfs_create_u32("miss", 0600, dir, &ent->miss); } static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev) { struct dentry *dbg_root = mlx5_debugfs_get_dev_root(dev->mdev); struct mlx5_mkey_cache *cache = &dev->cache; if (!mlx5_debugfs_root || dev->is_rep) return; cache->fs_root = debugfs_create_dir("mr_cache", dbg_root); } static void delay_time_func(struct timer_list *t) { struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer); WRITE_ONCE(dev->fill_delay, 0); } static int mlx5r_mkeys_init(struct mlx5_cache_ent *ent) { struct mlx5_mkeys_page *page; page = kzalloc(sizeof(*page), GFP_KERNEL); if (!page) return -ENOMEM; INIT_LIST_HEAD(&ent->mkeys_queue.pages_list); spin_lock_init(&ent->mkeys_queue.lock); list_add_tail(&page->list, &ent->mkeys_queue.pages_list); ent->mkeys_queue.num_pages++; return 0; } static void mlx5r_mkeys_uninit(struct mlx5_cache_ent *ent) { struct mlx5_mkeys_page *page; WARN_ON(ent->mkeys_queue.ci || ent->mkeys_queue.num_pages > 1); page = list_last_entry(&ent->mkeys_queue.pages_list, struct mlx5_mkeys_page, list); list_del(&page->list); kfree(page); } struct mlx5_cache_ent * mlx5r_cache_create_ent_locked(struct mlx5_ib_dev *dev, struct mlx5r_cache_rb_key rb_key, bool persistent_entry) { struct mlx5_cache_ent *ent; int order; int ret; ent = kzalloc(sizeof(*ent), GFP_KERNEL); if (!ent) return ERR_PTR(-ENOMEM); ret = mlx5r_mkeys_init(ent); if (ret) goto mkeys_err; ent->rb_key = rb_key; ent->dev = dev; ent->is_tmp = !persistent_entry; INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func); ret = mlx5_cache_ent_insert(&dev->cache, ent); if (ret) goto ent_insert_err; if (persistent_entry) { if (rb_key.access_mode == MLX5_MKC_ACCESS_MODE_KSM) order = MLX5_IMR_KSM_CACHE_ENTRY; else order = order_base_2(rb_key.ndescs) - 2; if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) && !dev->is_rep && mlx5_core_is_pf(dev->mdev) && mlx5r_umr_can_load_pas(dev, 0)) ent->limit = dev->mdev->profile.mr_cache[order].limit; else ent->limit = 0; mlx5_mkey_cache_debugfs_add_ent(dev, ent); } else { mod_delayed_work(ent->dev->cache.wq, &ent->dev->cache.remove_ent_dwork, msecs_to_jiffies(30 * 1000)); } return ent; ent_insert_err: mlx5r_mkeys_uninit(ent); mkeys_err: kfree(ent); return ERR_PTR(ret); } static void remove_ent_work_func(struct work_struct *work) { struct mlx5_mkey_cache *cache; struct mlx5_cache_ent *ent; struct rb_node *cur; cache = container_of(work, struct mlx5_mkey_cache, remove_ent_dwork.work); mutex_lock(&cache->rb_lock); cur = rb_last(&cache->rb_root); while (cur) { ent = rb_entry(cur, struct mlx5_cache_ent, node); cur = rb_prev(cur); mutex_unlock(&cache->rb_lock); spin_lock_irq(&ent->mkeys_queue.lock); if (!ent->is_tmp) { spin_unlock_irq(&ent->mkeys_queue.lock); mutex_lock(&cache->rb_lock); continue; } spin_unlock_irq(&ent->mkeys_queue.lock); clean_keys(ent->dev, ent); mutex_lock(&cache->rb_lock); } mutex_unlock(&cache->rb_lock); } int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev) { struct mlx5_mkey_cache *cache = &dev->cache; struct rb_root *root = &dev->cache.rb_root; struct mlx5r_cache_rb_key rb_key = { .access_mode = MLX5_MKC_ACCESS_MODE_MTT, }; struct mlx5_cache_ent *ent; struct rb_node *node; int ret; int i; mutex_init(&dev->slow_path_mutex); mutex_init(&dev->cache.rb_lock); dev->cache.rb_root = RB_ROOT; INIT_DELAYED_WORK(&dev->cache.remove_ent_dwork, remove_ent_work_func); cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM); if (!cache->wq) { mlx5_ib_warn(dev, "failed to create work queue\n"); return -ENOMEM; } mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx); timer_setup(&dev->delay_timer, delay_time_func, 0); mlx5_mkey_cache_debugfs_init(dev); mutex_lock(&cache->rb_lock); for (i = 0; i <= mkey_cache_max_order(dev); i++) { rb_key.ndescs = 1 << (i + 2); ent = mlx5r_cache_create_ent_locked(dev, rb_key, true); if (IS_ERR(ent)) { ret = PTR_ERR(ent); goto err; } } ret = mlx5_odp_init_mkey_cache(dev); if (ret) goto err; mutex_unlock(&cache->rb_lock); for (node = rb_first(root); node; node = rb_next(node)) { ent = rb_entry(node, struct mlx5_cache_ent, node); spin_lock_irq(&ent->mkeys_queue.lock); queue_adjust_cache_locked(ent); spin_unlock_irq(&ent->mkeys_queue.lock); } return 0; err: mutex_unlock(&cache->rb_lock); mlx5_mkey_cache_debugfs_cleanup(dev); mlx5_ib_warn(dev, "failed to create mkey cache entry\n"); return ret; } void mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev) { struct rb_root *root = &dev->cache.rb_root; struct mlx5_cache_ent *ent; struct rb_node *node; if (!dev->cache.wq) return; mutex_lock(&dev->cache.rb_lock); cancel_delayed_work(&dev->cache.remove_ent_dwork); for (node = rb_first(root); node; node = rb_next(node)) { ent = rb_entry(node, struct mlx5_cache_ent, node); spin_lock_irq(&ent->mkeys_queue.lock); ent->disabled = true; spin_unlock_irq(&ent->mkeys_queue.lock); cancel_delayed_work(&ent->dwork); } mutex_unlock(&dev->cache.rb_lock); /* * After all entries are disabled and will not reschedule on WQ, * flush it and all async commands. */ flush_workqueue(dev->cache.wq); mlx5_mkey_cache_debugfs_cleanup(dev); mlx5_cmd_cleanup_async_ctx(&dev->async_ctx); /* At this point all entries are disabled and have no concurrent work. */ mutex_lock(&dev->cache.rb_lock); node = rb_first(root); while (node) { ent = rb_entry(node, struct mlx5_cache_ent, node); node = rb_next(node); clean_keys(dev, ent); rb_erase(&ent->node, root); mlx5r_mkeys_uninit(ent); kfree(ent); } mutex_unlock(&dev->cache.rb_lock); destroy_workqueue(dev->cache.wq); del_timer_sync(&dev->delay_timer); } struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc) { struct mlx5_ib_dev *dev = to_mdev(pd->device); int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); struct mlx5_ib_mr *mr; void *mkc; u32 *in; int err; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); in = kzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_free; } mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA); MLX5_SET(mkc, mkc, length64, 1); set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0, pd); err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); if (err) goto err_in; kfree(in); mr->mmkey.type = MLX5_MKEY_MR; mr->ibmr.lkey = mr->mmkey.key; mr->ibmr.rkey = mr->mmkey.key; mr->umem = NULL; return &mr->ibmr; err_in: kfree(in); err_free: kfree(mr); return ERR_PTR(err); } static int get_octo_len(u64 addr, u64 len, int page_shift) { u64 page_size = 1ULL << page_shift; u64 offset; int npages; offset = addr & (page_size - 1); npages = ALIGN(len + offset, page_size) >> page_shift; return (npages + 1) / 2; } static int mkey_cache_max_order(struct mlx5_ib_dev *dev) { if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) return MKEY_CACHE_LAST_STD_ENTRY; return MLX5_MAX_UMR_SHIFT; } static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, u64 length, int access_flags, u64 iova) { mr->ibmr.lkey = mr->mmkey.key; mr->ibmr.rkey = mr->mmkey.key; mr->ibmr.length = length; mr->ibmr.device = &dev->ib_dev; mr->ibmr.iova = iova; mr->access_flags = access_flags; } static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem, u64 iova) { /* * The alignment of iova has already been checked upon entering * UVERBS_METHOD_REG_DMABUF_MR */ umem->iova = iova; return PAGE_SIZE; } static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd, struct ib_umem *umem, u64 iova, int access_flags) { struct mlx5r_cache_rb_key rb_key = { .access_mode = MLX5_MKC_ACCESS_MODE_MTT, }; struct mlx5_ib_dev *dev = to_mdev(pd->device); struct mlx5_cache_ent *ent; struct mlx5_ib_mr *mr; unsigned int page_size; if (umem->is_dmabuf) page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova); else page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size, 0, iova); if (WARN_ON(!page_size)) return ERR_PTR(-EINVAL); rb_key.ndescs = ib_umem_num_dma_blocks(umem, page_size); rb_key.ats = mlx5_umem_needs_ats(dev, umem, access_flags); rb_key.access_flags = get_unchangeable_access_flags(dev, access_flags); ent = mkey_cache_ent_from_rb_key(dev, rb_key); /* * If the MR can't come from the cache then synchronously create an uncached * one. */ if (!ent) { mutex_lock(&dev->slow_path_mutex); mr = reg_create(pd, umem, iova, access_flags, page_size, false); mutex_unlock(&dev->slow_path_mutex); if (IS_ERR(mr)) return mr; mr->mmkey.rb_key = rb_key; mr->mmkey.cacheable = true; return mr; } mr = _mlx5_mr_cache_alloc(dev, ent, access_flags); if (IS_ERR(mr)) return mr; mr->ibmr.pd = pd; mr->umem = umem; mr->page_shift = order_base_2(page_size); set_mr_fields(dev, mr, umem->length, access_flags, iova); return mr; } /* * If ibmr is NULL it will be allocated by reg_create. * Else, the given ibmr will be used. */ static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem, u64 iova, int access_flags, unsigned int page_size, bool populate) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct mlx5_ib_mr *mr; __be64 *pas; void *mkc; int inlen; u32 *in; int err; bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg)); if (!page_size) return ERR_PTR(-EINVAL); mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); mr->ibmr.pd = pd; mr->access_flags = access_flags; mr->page_shift = order_base_2(page_size); inlen = MLX5_ST_SZ_BYTES(create_mkey_in); if (populate) inlen += sizeof(*pas) * roundup(ib_umem_num_dma_blocks(umem, page_size), 2); in = kvzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_1; } pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt); if (populate) { if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) { err = -EINVAL; goto err_2; } mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas, pg_cap ? MLX5_IB_MTT_PRESENT : 0); } /* The pg_access bit allows setting the access flags * in the page list submitted with the command. */ MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap)); mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); set_mkc_access_pd_addr_fields(mkc, access_flags, iova, populate ? pd : dev->umrc.pd); MLX5_SET(mkc, mkc, free, !populate); MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT); MLX5_SET(mkc, mkc, umr_en, 1); MLX5_SET64(mkc, mkc, len, umem->length); MLX5_SET(mkc, mkc, bsf_octword_size, 0); MLX5_SET(mkc, mkc, translations_octword_size, get_octo_len(iova, umem->length, mr->page_shift)); MLX5_SET(mkc, mkc, log_page_size, mr->page_shift); if (mlx5_umem_needs_ats(dev, umem, access_flags)) MLX5_SET(mkc, mkc, ma_translation_mode, 1); if (populate) { MLX5_SET(create_mkey_in, in, translations_octword_actual_size, get_octo_len(iova, umem->length, mr->page_shift)); } err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); if (err) { mlx5_ib_warn(dev, "create mkey failed\n"); goto err_2; } mr->mmkey.type = MLX5_MKEY_MR; mr->mmkey.ndescs = get_octo_len(iova, umem->length, mr->page_shift); mr->umem = umem; set_mr_fields(dev, mr, umem->length, access_flags, iova); kvfree(in); mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key); return mr; err_2: kvfree(in); err_1: kfree(mr); return ERR_PTR(err); } static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr, u64 length, int acc, int mode) { struct mlx5_ib_dev *dev = to_mdev(pd->device); int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); struct mlx5_ib_mr *mr; void *mkc; u32 *in; int err; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); in = kzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_free; } mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3); MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7); MLX5_SET64(mkc, mkc, len, length); set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd); err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); if (err) goto err_in; kfree(in); set_mr_fields(dev, mr, length, acc, start_addr); return &mr->ibmr; err_in: kfree(in); err_free: kfree(mr); return ERR_PTR(err); } int mlx5_ib_advise_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice, u32 flags, struct ib_sge *sg_list, u32 num_sge, struct uverbs_attr_bundle *attrs) { if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH && advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE && advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT) return -EOPNOTSUPP; return mlx5_ib_advise_mr_prefetch(pd, advice, flags, sg_list, num_sge); } struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm, struct ib_dm_mr_attr *attr, struct uverbs_attr_bundle *attrs) { struct mlx5_ib_dm *mdm = to_mdm(dm); struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev; u64 start_addr = mdm->dev_addr + attr->offset; int mode; switch (mdm->type) { case MLX5_IB_UAPI_DM_TYPE_MEMIC: if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS) return ERR_PTR(-EINVAL); mode = MLX5_MKC_ACCESS_MODE_MEMIC; start_addr -= pci_resource_start(dev->pdev, 0); break; case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM: case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM: case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM: case MLX5_IB_UAPI_DM_TYPE_ENCAP_SW_ICM: if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS) return ERR_PTR(-EINVAL); mode = MLX5_MKC_ACCESS_MODE_SW_ICM; break; default: return ERR_PTR(-EINVAL); } return mlx5_ib_get_dm_mr(pd, start_addr, attr->length, attr->access_flags, mode); } static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem, u64 iova, int access_flags) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct mlx5_ib_mr *mr = NULL; bool xlt_with_umr; int err; xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length); if (xlt_with_umr) { mr = alloc_cacheable_mr(pd, umem, iova, access_flags); } else { unsigned int page_size = mlx5_umem_find_best_pgsz( umem, mkc, log_page_size, 0, iova); mutex_lock(&dev->slow_path_mutex); mr = reg_create(pd, umem, iova, access_flags, page_size, true); mutex_unlock(&dev->slow_path_mutex); } if (IS_ERR(mr)) { ib_umem_release(umem); return ERR_CAST(mr); } mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages); if (xlt_with_umr) { /* * If the MR was created with reg_create then it will be * configured properly but left disabled. It is safe to go ahead * and configure it again via UMR while enabling it. */ err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE); if (err) { mlx5_ib_dereg_mr(&mr->ibmr, NULL); return ERR_PTR(err); } } return &mr->ibmr; } static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length, u64 iova, int access_flags, struct ib_udata *udata) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct ib_umem_odp *odp; struct mlx5_ib_mr *mr; int err; if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) return ERR_PTR(-EOPNOTSUPP); err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq); if (err) return ERR_PTR(err); if (!start && length == U64_MAX) { if (iova != 0) return ERR_PTR(-EINVAL); if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) return ERR_PTR(-EINVAL); mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags); if (IS_ERR(mr)) return ERR_CAST(mr); return &mr->ibmr; } /* ODP requires xlt update via umr to work. */ if (!mlx5r_umr_can_load_pas(dev, length)) return ERR_PTR(-EINVAL); odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags, &mlx5_mn_ops); if (IS_ERR(odp)) return ERR_CAST(odp); mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags); if (IS_ERR(mr)) { ib_umem_release(&odp->umem); return ERR_CAST(mr); } xa_init(&mr->implicit_children); odp->private = mr; err = mlx5r_store_odp_mkey(dev, &mr->mmkey); if (err) goto err_dereg_mr; err = mlx5_ib_init_odp_mr(mr); if (err) goto err_dereg_mr; return &mr->ibmr; err_dereg_mr: mlx5_ib_dereg_mr(&mr->ibmr, NULL); return ERR_PTR(err); } struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length, u64 iova, int access_flags, struct ib_udata *udata) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct ib_umem *umem; if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) return ERR_PTR(-EOPNOTSUPP); mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n", start, iova, length, access_flags); if (access_flags & IB_ACCESS_ON_DEMAND) return create_user_odp_mr(pd, start, length, iova, access_flags, udata); umem = ib_umem_get(&dev->ib_dev, start, length, access_flags); if (IS_ERR(umem)) return ERR_CAST(umem); return create_real_mr(pd, umem, iova, access_flags); } static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach) { struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv; struct mlx5_ib_mr *mr = umem_dmabuf->private; dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv); if (!umem_dmabuf->sgt) return; mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP); ib_umem_dmabuf_unmap_pages(umem_dmabuf); } static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = { .allow_peer2peer = 1, .move_notify = mlx5_ib_dmabuf_invalidate_cb, }; struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset, u64 length, u64 virt_addr, int fd, int access_flags, struct ib_udata *udata) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct mlx5_ib_mr *mr = NULL; struct ib_umem_dmabuf *umem_dmabuf; int err; if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) || !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) return ERR_PTR(-EOPNOTSUPP); mlx5_ib_dbg(dev, "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n", offset, virt_addr, length, fd, access_flags); /* dmabuf requires xlt update via umr to work. */ if (!mlx5r_umr_can_load_pas(dev, length)) return ERR_PTR(-EINVAL); umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd, access_flags, &mlx5_ib_dmabuf_attach_ops); if (IS_ERR(umem_dmabuf)) { mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n", PTR_ERR(umem_dmabuf)); return ERR_CAST(umem_dmabuf); } mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr, access_flags); if (IS_ERR(mr)) { ib_umem_release(&umem_dmabuf->umem); return ERR_CAST(mr); } mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key); atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages); umem_dmabuf->private = mr; err = mlx5r_store_odp_mkey(dev, &mr->mmkey); if (err) goto err_dereg_mr; err = mlx5_ib_init_dmabuf_mr(mr); if (err) goto err_dereg_mr; return &mr->ibmr; err_dereg_mr: mlx5_ib_dereg_mr(&mr->ibmr, NULL); return ERR_PTR(err); } /* * True if the change in access flags can be done via UMR, only some access * flags can be updated. */ static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev, unsigned int current_access_flags, unsigned int target_access_flags) { unsigned int diffs = current_access_flags ^ target_access_flags; if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING | IB_ACCESS_REMOTE_ATOMIC)) return false; return mlx5r_umr_can_reconfig(dev, current_access_flags, target_access_flags); } static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_umem *new_umem, int new_access_flags, u64 iova, unsigned long *page_size) { struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); /* We only track the allocated sizes of MRs from the cache */ if (!mr->mmkey.cache_ent) return false; if (!mlx5r_umr_can_load_pas(dev, new_umem->length)) return false; *page_size = mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova); if (WARN_ON(!*page_size)) return false; return (mr->mmkey.cache_ent->rb_key.ndescs) >= ib_umem_num_dma_blocks(new_umem, *page_size); } static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd, int access_flags, int flags, struct ib_umem *new_umem, u64 iova, unsigned long page_size) { struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE; struct ib_umem *old_umem = mr->umem; int err; /* * To keep everything simple the MR is revoked before we start to mess * with it. This ensure the change is atomic relative to any use of the * MR. */ err = mlx5r_umr_revoke_mr(mr); if (err) return err; if (flags & IB_MR_REREG_PD) { mr->ibmr.pd = pd; upd_flags |= MLX5_IB_UPD_XLT_PD; } if (flags & IB_MR_REREG_ACCESS) { mr->access_flags = access_flags; upd_flags |= MLX5_IB_UPD_XLT_ACCESS; } mr->ibmr.iova = iova; mr->ibmr.length = new_umem->length; mr->page_shift = order_base_2(page_size); mr->umem = new_umem; err = mlx5r_umr_update_mr_pas(mr, upd_flags); if (err) { /* * The MR is revoked at this point so there is no issue to free * new_umem. */ mr->umem = old_umem; return err; } atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages); ib_umem_release(old_umem); atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages); return 0; } struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start, u64 length, u64 iova, int new_access_flags, struct ib_pd *new_pd, struct ib_udata *udata) { struct mlx5_ib_dev *dev = to_mdev(ib_mr->device); struct mlx5_ib_mr *mr = to_mmr(ib_mr); int err; if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM)) return ERR_PTR(-EOPNOTSUPP); mlx5_ib_dbg( dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n", start, iova, length, new_access_flags); if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS)) return ERR_PTR(-EOPNOTSUPP); if (!(flags & IB_MR_REREG_ACCESS)) new_access_flags = mr->access_flags; if (!(flags & IB_MR_REREG_PD)) new_pd = ib_mr->pd; if (!(flags & IB_MR_REREG_TRANS)) { struct ib_umem *umem; /* Fast path for PD/access change */ if (can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) { err = mlx5r_umr_rereg_pd_access(mr, new_pd, new_access_flags); if (err) return ERR_PTR(err); return NULL; } /* DM or ODP MR's don't have a normal umem so we can't re-use it */ if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr)) goto recreate; /* * Only one active MR can refer to a umem at one time, revoke * the old MR before assigning the umem to the new one. */ err = mlx5r_umr_revoke_mr(mr); if (err) return ERR_PTR(err); umem = mr->umem; mr->umem = NULL; atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages); return create_real_mr(new_pd, umem, mr->ibmr.iova, new_access_flags); } /* * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does * but the logic around releasing the umem is different */ if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr)) goto recreate; if (!(new_access_flags & IB_ACCESS_ON_DEMAND) && can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) { struct ib_umem *new_umem; unsigned long page_size; new_umem = ib_umem_get(&dev->ib_dev, start, length, new_access_flags); if (IS_ERR(new_umem)) return ERR_CAST(new_umem); /* Fast path for PAS change */ if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova, &page_size)) { err = umr_rereg_pas(mr, new_pd, new_access_flags, flags, new_umem, iova, page_size); if (err) { ib_umem_release(new_umem); return ERR_PTR(err); } return NULL; } return create_real_mr(new_pd, new_umem, iova, new_access_flags); } /* * Everything else has no state we can preserve, just create a new MR * from scratch */ recreate: return mlx5_ib_reg_user_mr(new_pd, start, length, iova, new_access_flags, udata); } static int mlx5_alloc_priv_descs(struct ib_device *device, struct mlx5_ib_mr *mr, int ndescs, int desc_size) { struct mlx5_ib_dev *dev = to_mdev(device); struct device *ddev = &dev->mdev->pdev->dev; int size = ndescs * desc_size; int add_size; int ret; add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0); if (is_power_of_2(MLX5_UMR_ALIGN) && add_size) { int end = max_t(int, MLX5_UMR_ALIGN, roundup_pow_of_two(size)); add_size = min_t(int, end - size, add_size); } mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL); if (!mr->descs_alloc) return -ENOMEM; mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN); mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE); if (dma_mapping_error(ddev, mr->desc_map)) { ret = -ENOMEM; goto err; } return 0; err: kfree(mr->descs_alloc); return ret; } static void mlx5_free_priv_descs(struct mlx5_ib_mr *mr) { if (!mr->umem && mr->descs) { struct ib_device *device = mr->ibmr.device; int size = mr->max_descs * mr->desc_size; struct mlx5_ib_dev *dev = to_mdev(device); dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size, DMA_TO_DEVICE); kfree(mr->descs_alloc); mr->descs = NULL; } } static int cache_ent_find_and_store(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr) { struct mlx5_mkey_cache *cache = &dev->cache; struct mlx5_cache_ent *ent; int ret; if (mr->mmkey.cache_ent) { spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock); mr->mmkey.cache_ent->in_use--; goto end; } mutex_lock(&cache->rb_lock); ent = mkey_cache_ent_from_rb_key(dev, mr->mmkey.rb_key); if (ent) { if (ent->rb_key.ndescs == mr->mmkey.rb_key.ndescs) { if (ent->disabled) { mutex_unlock(&cache->rb_lock); return -EOPNOTSUPP; } mr->mmkey.cache_ent = ent; spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock); mutex_unlock(&cache->rb_lock); goto end; } } ent = mlx5r_cache_create_ent_locked(dev, mr->mmkey.rb_key, false); mutex_unlock(&cache->rb_lock); if (IS_ERR(ent)) return PTR_ERR(ent); mr->mmkey.cache_ent = ent; spin_lock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock); end: ret = push_mkey_locked(mr->mmkey.cache_ent, mr->mmkey.key); spin_unlock_irq(&mr->mmkey.cache_ent->mkeys_queue.lock); return ret; } static int mlx5_revoke_mr(struct mlx5_ib_mr *mr) { struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device); struct mlx5_cache_ent *ent = mr->mmkey.cache_ent; if (mr->mmkey.cacheable && !mlx5r_umr_revoke_mr(mr) && !cache_ent_find_and_store(dev, mr)) return 0; if (ent) { spin_lock_irq(&ent->mkeys_queue.lock); ent->in_use--; mr->mmkey.cache_ent = NULL; spin_unlock_irq(&ent->mkeys_queue.lock); } return destroy_mkey(dev, mr); } int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata) { struct mlx5_ib_mr *mr = to_mmr(ibmr); struct mlx5_ib_dev *dev = to_mdev(ibmr->device); int rc; /* * Any async use of the mr must hold the refcount, once the refcount * goes to zero no other thread, such as ODP page faults, prefetch, any * UMR activity, etc can touch the mkey. Thus it is safe to destroy it. */ if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && refcount_read(&mr->mmkey.usecount) != 0 && xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key))) mlx5r_deref_wait_odp_mkey(&mr->mmkey); if (ibmr->type == IB_MR_TYPE_INTEGRITY) { xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), mr->sig, NULL, GFP_KERNEL); if (mr->mtt_mr) { rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL); if (rc) return rc; mr->mtt_mr = NULL; } if (mr->klm_mr) { rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL); if (rc) return rc; mr->klm_mr = NULL; } if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", mr->sig->psv_memory.psv_idx); if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", mr->sig->psv_wire.psv_idx); kfree(mr->sig); mr->sig = NULL; } /* Stop DMA */ rc = mlx5_revoke_mr(mr); if (rc) return rc; if (mr->umem) { bool is_odp = is_odp_mr(mr); if (!is_odp) atomic_sub(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages); ib_umem_release(mr->umem); if (is_odp) mlx5_ib_free_odp_mr(mr); } if (!mr->mmkey.cache_ent) mlx5_free_priv_descs(mr); kfree(mr); return 0; } static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs, int access_mode, int page_shift) { void *mkc; mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); /* This is only used from the kernel, so setting the PD is OK. */ set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd); MLX5_SET(mkc, mkc, free, 1); MLX5_SET(mkc, mkc, translations_octword_size, ndescs); MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3); MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7); MLX5_SET(mkc, mkc, umr_en, 1); MLX5_SET(mkc, mkc, log_page_size, page_shift); } static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, int ndescs, int desc_size, int page_shift, int access_mode, u32 *in, int inlen) { struct mlx5_ib_dev *dev = to_mdev(pd->device); int err; mr->access_mode = access_mode; mr->desc_size = desc_size; mr->max_descs = ndescs; err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size); if (err) return err; mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift); err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen); if (err) goto err_free_descs; mr->mmkey.type = MLX5_MKEY_MR; mr->ibmr.lkey = mr->mmkey.key; mr->ibmr.rkey = mr->mmkey.key; return 0; err_free_descs: mlx5_free_priv_descs(mr); return err; } static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd, u32 max_num_sg, u32 max_num_meta_sg, int desc_size, int access_mode) { int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4); int page_shift = 0; struct mlx5_ib_mr *mr; u32 *in; int err; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); mr->ibmr.pd = pd; mr->ibmr.device = pd->device; in = kzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_free; } if (access_mode == MLX5_MKC_ACCESS_MODE_MTT) page_shift = PAGE_SHIFT; err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift, access_mode, in, inlen); if (err) goto err_free_in; mr->umem = NULL; kfree(in); return mr; err_free_in: kfree(in); err_free: kfree(mr); return ERR_PTR(err); } static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, int ndescs, u32 *in, int inlen) { return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt), PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in, inlen); } static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, int ndescs, u32 *in, int inlen) { return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm), 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); } static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr, int max_num_sg, int max_num_meta_sg, u32 *in, int inlen) { struct mlx5_ib_dev *dev = to_mdev(pd->device); u32 psv_index[2]; void *mkc; int err; mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL); if (!mr->sig) return -ENOMEM; /* create mem & wire PSVs */ err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index); if (err) goto err_free_sig; mr->sig->psv_memory.psv_idx = psv_index[0]; mr->sig->psv_wire.psv_idx = psv_index[1]; mr->sig->sig_status_checked = true; mr->sig->sig_err_exists = false; /* Next UMR, Arm SIGERR */ ++mr->sig->sigerr_count; mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, sizeof(struct mlx5_klm), MLX5_MKC_ACCESS_MODE_KLMS); if (IS_ERR(mr->klm_mr)) { err = PTR_ERR(mr->klm_mr); goto err_destroy_psv; } mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg, sizeof(struct mlx5_mtt), MLX5_MKC_ACCESS_MODE_MTT); if (IS_ERR(mr->mtt_mr)) { err = PTR_ERR(mr->mtt_mr); goto err_free_klm_mr; } /* Set bsf descriptors for mkey */ mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, bsf_en, 1); MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE); err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen); if (err) goto err_free_mtt_mr; err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key), mr->sig, GFP_KERNEL)); if (err) goto err_free_descs; return 0; err_free_descs: destroy_mkey(dev, mr); mlx5_free_priv_descs(mr); err_free_mtt_mr: mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL); mr->mtt_mr = NULL; err_free_klm_mr: mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL); mr->klm_mr = NULL; err_destroy_psv: if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx)) mlx5_ib_warn(dev, "failed to destroy mem psv %d\n", mr->sig->psv_memory.psv_idx); if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx)) mlx5_ib_warn(dev, "failed to destroy wire psv %d\n", mr->sig->psv_wire.psv_idx); err_free_sig: kfree(mr->sig); return err; } static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_num_sg, u32 max_num_meta_sg) { struct mlx5_ib_dev *dev = to_mdev(pd->device); int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); int ndescs = ALIGN(max_num_sg, 4); struct mlx5_ib_mr *mr; u32 *in; int err; mr = kzalloc(sizeof(*mr), GFP_KERNEL); if (!mr) return ERR_PTR(-ENOMEM); in = kzalloc(inlen, GFP_KERNEL); if (!in) { err = -ENOMEM; goto err_free; } mr->ibmr.device = pd->device; mr->umem = NULL; switch (mr_type) { case IB_MR_TYPE_MEM_REG: err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen); break; case IB_MR_TYPE_SG_GAPS: err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen); break; case IB_MR_TYPE_INTEGRITY: err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg, max_num_meta_sg, in, inlen); break; default: mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type); err = -EINVAL; } if (err) goto err_free_in; kfree(in); return &mr->ibmr; err_free_in: kfree(in); err_free: kfree(mr); return ERR_PTR(err); } struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type, u32 max_num_sg) { return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0); } struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd, u32 max_num_sg, u32 max_num_meta_sg) { return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg, max_num_meta_sg); } int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata) { struct mlx5_ib_dev *dev = to_mdev(ibmw->device); int inlen = MLX5_ST_SZ_BYTES(create_mkey_in); struct mlx5_ib_mw *mw = to_mmw(ibmw); unsigned int ndescs; u32 *in = NULL; void *mkc; int err; struct mlx5_ib_alloc_mw req = {}; struct { __u32 comp_mask; __u32 response_length; } resp = {}; err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req))); if (err) return err; if (req.comp_mask || req.reserved1 || req.reserved2) return -EOPNOTSUPP; if (udata->inlen > sizeof(req) && !ib_is_udata_cleared(udata, sizeof(req), udata->inlen - sizeof(req))) return -EOPNOTSUPP; ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4); in = kzalloc(inlen, GFP_KERNEL); if (!in) return -ENOMEM; mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry); MLX5_SET(mkc, mkc, free, 1); MLX5_SET(mkc, mkc, translations_octword_size, ndescs); MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn); MLX5_SET(mkc, mkc, umr_en, 1); MLX5_SET(mkc, mkc, lr, 1); MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS); MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2))); MLX5_SET(mkc, mkc, qpn, 0xffffff); err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen); if (err) goto free; mw->mmkey.type = MLX5_MKEY_MW; ibmw->rkey = mw->mmkey.key; mw->mmkey.ndescs = ndescs; resp.response_length = min(offsetofend(typeof(resp), response_length), udata->outlen); if (resp.response_length) { err = ib_copy_to_udata(udata, &resp, resp.response_length); if (err) goto free_mkey; } if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) { err = mlx5r_store_odp_mkey(dev, &mw->mmkey); if (err) goto free_mkey; } kfree(in); return 0; free_mkey: mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key); free: kfree(in); return err; } int mlx5_ib_dealloc_mw(struct ib_mw *mw) { struct mlx5_ib_dev *dev = to_mdev(mw->device); struct mlx5_ib_mw *mmw = to_mmw(mw); if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) && xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key))) /* * pagefault_single_data_segment() may be accessing mmw * if the user bound an ODP MR to this MW. */ mlx5r_deref_wait_odp_mkey(&mmw->mmkey); return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key); } int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask, struct ib_mr_status *mr_status) { struct mlx5_ib_mr *mmr = to_mmr(ibmr); int ret = 0; if (check_mask & ~IB_MR_CHECK_SIG_STATUS) { pr_err("Invalid status check mask\n"); ret = -EINVAL; goto done; } mr_status->fail_status = 0; if (check_mask & IB_MR_CHECK_SIG_STATUS) { if (!mmr->sig) { ret = -EINVAL; pr_err("signature status check requested on a non-signature enabled MR\n"); goto done; } mmr->sig->sig_status_checked = true; if (!mmr->sig->sig_err_exists) goto done; if (ibmr->lkey == mmr->sig->err_item.key) memcpy(&mr_status->sig_err, &mmr->sig->err_item, sizeof(mr_status->sig_err)); else { mr_status->sig_err.err_type = IB_SIG_BAD_GUARD; mr_status->sig_err.sig_err_offset = 0; mr_status->sig_err.key = mmr->sig->err_item.key; } mmr->sig->sig_err_exists = false; mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS; } done: return ret; } static int mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, int data_sg_nents, unsigned int *data_sg_offset, struct scatterlist *meta_sg, int meta_sg_nents, unsigned int *meta_sg_offset) { struct mlx5_ib_mr *mr = to_mmr(ibmr); unsigned int sg_offset = 0; int n = 0; mr->meta_length = 0; if (data_sg_nents == 1) { n++; mr->mmkey.ndescs = 1; if (data_sg_offset) sg_offset = *data_sg_offset; mr->data_length = sg_dma_len(data_sg) - sg_offset; mr->data_iova = sg_dma_address(data_sg) + sg_offset; if (meta_sg_nents == 1) { n++; mr->meta_ndescs = 1; if (meta_sg_offset) sg_offset = *meta_sg_offset; else sg_offset = 0; mr->meta_length = sg_dma_len(meta_sg) - sg_offset; mr->pi_iova = sg_dma_address(meta_sg) + sg_offset; } ibmr->length = mr->data_length + mr->meta_length; } return n; } static int mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr, struct scatterlist *sgl, unsigned short sg_nents, unsigned int *sg_offset_p, struct scatterlist *meta_sgl, unsigned short meta_sg_nents, unsigned int *meta_sg_offset_p) { struct scatterlist *sg = sgl; struct mlx5_klm *klms = mr->descs; unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0; u32 lkey = mr->ibmr.pd->local_dma_lkey; int i, j = 0; mr->ibmr.iova = sg_dma_address(sg) + sg_offset; mr->ibmr.length = 0; for_each_sg(sgl, sg, sg_nents, i) { if (unlikely(i >= mr->max_descs)) break; klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset); klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset); klms[i].key = cpu_to_be32(lkey); mr->ibmr.length += sg_dma_len(sg) - sg_offset; sg_offset = 0; } if (sg_offset_p) *sg_offset_p = sg_offset; mr->mmkey.ndescs = i; mr->data_length = mr->ibmr.length; if (meta_sg_nents) { sg = meta_sgl; sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0; for_each_sg(meta_sgl, sg, meta_sg_nents, j) { if (unlikely(i + j >= mr->max_descs)) break; klms[i + j].va = cpu_to_be64(sg_dma_address(sg) + sg_offset); klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset); klms[i + j].key = cpu_to_be32(lkey); mr->ibmr.length += sg_dma_len(sg) - sg_offset; sg_offset = 0; } if (meta_sg_offset_p) *meta_sg_offset_p = sg_offset; mr->meta_ndescs = j; mr->meta_length = mr->ibmr.length - mr->data_length; } return i + j; } static int mlx5_set_page(struct ib_mr *ibmr, u64 addr) { struct mlx5_ib_mr *mr = to_mmr(ibmr); __be64 *descs; if (unlikely(mr->mmkey.ndescs == mr->max_descs)) return -ENOMEM; descs = mr->descs; descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); return 0; } static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr) { struct mlx5_ib_mr *mr = to_mmr(ibmr); __be64 *descs; if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs)) return -ENOMEM; descs = mr->descs; descs[mr->mmkey.ndescs + mr->meta_ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR); return 0; } static int mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, int data_sg_nents, unsigned int *data_sg_offset, struct scatterlist *meta_sg, int meta_sg_nents, unsigned int *meta_sg_offset) { struct mlx5_ib_mr *mr = to_mmr(ibmr); struct mlx5_ib_mr *pi_mr = mr->mtt_mr; int n; pi_mr->mmkey.ndescs = 0; pi_mr->meta_ndescs = 0; pi_mr->meta_length = 0; ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, pi_mr->desc_size * pi_mr->max_descs, DMA_TO_DEVICE); pi_mr->ibmr.page_size = ibmr->page_size; n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset, mlx5_set_page); if (n != data_sg_nents) return n; pi_mr->data_iova = pi_mr->ibmr.iova; pi_mr->data_length = pi_mr->ibmr.length; pi_mr->ibmr.length = pi_mr->data_length; ibmr->length = pi_mr->data_length; if (meta_sg_nents) { u64 page_mask = ~((u64)ibmr->page_size - 1); u64 iova = pi_mr->data_iova; n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents, meta_sg_offset, mlx5_set_page_pi); pi_mr->meta_length = pi_mr->ibmr.length; /* * PI address for the HW is the offset of the metadata address * relative to the first data page address. * It equals to first data page address + size of data pages + * metadata offset at the first metadata page */ pi_mr->pi_iova = (iova & page_mask) + pi_mr->mmkey.ndescs * ibmr->page_size + (pi_mr->ibmr.iova & ~page_mask); /* * In order to use one MTT MR for data and metadata, we register * also the gaps between the end of the data and the start of * the metadata (the sig MR will verify that the HW will access * to right addresses). This mapping is safe because we use * internal mkey for the registration. */ pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova; pi_mr->ibmr.iova = iova; ibmr->length += pi_mr->meta_length; } ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, pi_mr->desc_size * pi_mr->max_descs, DMA_TO_DEVICE); return n; } static int mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, int data_sg_nents, unsigned int *data_sg_offset, struct scatterlist *meta_sg, int meta_sg_nents, unsigned int *meta_sg_offset) { struct mlx5_ib_mr *mr = to_mmr(ibmr); struct mlx5_ib_mr *pi_mr = mr->klm_mr; int n; pi_mr->mmkey.ndescs = 0; pi_mr->meta_ndescs = 0; pi_mr->meta_length = 0; ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map, pi_mr->desc_size * pi_mr->max_descs, DMA_TO_DEVICE); n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset, meta_sg, meta_sg_nents, meta_sg_offset); ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map, pi_mr->desc_size * pi_mr->max_descs, DMA_TO_DEVICE); /* This is zero-based memory region */ pi_mr->data_iova = 0; pi_mr->ibmr.iova = 0; pi_mr->pi_iova = pi_mr->data_length; ibmr->length = pi_mr->ibmr.length; return n; } int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg, int data_sg_nents, unsigned int *data_sg_offset, struct scatterlist *meta_sg, int meta_sg_nents, unsigned int *meta_sg_offset) { struct mlx5_ib_mr *mr = to_mmr(ibmr); struct mlx5_ib_mr *pi_mr = NULL; int n; WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY); mr->mmkey.ndescs = 0; mr->data_length = 0; mr->data_iova = 0; mr->meta_ndescs = 0; mr->pi_iova = 0; /* * As a performance optimization, if possible, there is no need to * perform UMR operation to register the data/metadata buffers. * First try to map the sg lists to PA descriptors with local_dma_lkey. * Fallback to UMR only in case of a failure. */ n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents, data_sg_offset, meta_sg, meta_sg_nents, meta_sg_offset); if (n == data_sg_nents + meta_sg_nents) goto out; /* * As a performance optimization, if possible, there is no need to map * the sg lists to KLM descriptors. First try to map the sg lists to MTT * descriptors and fallback to KLM only in case of a failure. * It's more efficient for the HW to work with MTT descriptors * (especially in high load). * Use KLM (indirect access) only if it's mandatory. */ pi_mr = mr->mtt_mr; n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents, data_sg_offset, meta_sg, meta_sg_nents, meta_sg_offset); if (n == data_sg_nents + meta_sg_nents) goto out; pi_mr = mr->klm_mr; n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents, data_sg_offset, meta_sg, meta_sg_nents, meta_sg_offset); if (unlikely(n != data_sg_nents + meta_sg_nents)) return -ENOMEM; out: /* This is zero-based memory region */ ibmr->iova = 0; mr->pi_mr = pi_mr; if (pi_mr) ibmr->sig_attrs->meta_length = pi_mr->meta_length; else ibmr->sig_attrs->meta_length = mr->meta_length; return 0; } int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents, unsigned int *sg_offset) { struct mlx5_ib_mr *mr = to_mmr(ibmr); int n; mr->mmkey.ndescs = 0; ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map, mr->desc_size * mr->max_descs, DMA_TO_DEVICE); if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS) n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0, NULL); else n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset, mlx5_set_page); ib_dma_sync_single_for_device(ibmr->device, mr->desc_map, mr->desc_size * mr->max_descs, DMA_TO_DEVICE); return n; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1