Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Moni Shoua | 4499 | 57.31% | 1 | 1.22% |
Bob Pearson | 1657 | 21.11% | 43 | 52.44% |
Li Zhijian | 803 | 10.23% | 4 | 4.88% |
Xiao Yang | 335 | 4.27% | 5 | 6.10% |
Daisuke Matsuda | 112 | 1.43% | 4 | 4.88% |
Honggang Li | 98 | 1.25% | 1 | 1.22% |
Bart Van Assche | 74 | 0.94% | 6 | 7.32% |
Andrew Boyer | 52 | 0.66% | 5 | 6.10% |
Sagi Grimberg | 42 | 0.54% | 1 | 1.22% |
Steve Wise | 33 | 0.42% | 1 | 1.22% |
Vijay Immanuel | 29 | 0.37% | 2 | 2.44% |
Martin Wilck | 28 | 0.36% | 1 | 1.22% |
Parav Pandit | 26 | 0.33% | 2 | 2.44% |
Guoqing Jiang | 21 | 0.27% | 1 | 1.22% |
Yonatan Cohen | 21 | 0.27% | 1 | 1.22% |
Konstantin Taranov | 16 | 0.20% | 1 | 1.22% |
Dan Carpenter | 2 | 0.03% | 1 | 1.22% |
Zhu Yanjun | 1 | 0.01% | 1 | 1.22% |
Jason Gunthorpe | 1 | 0.01% | 1 | 1.22% |
Total | 7850 | 82 |
// SPDX-License-Identifier: GPL-2.0 OR Linux-OpenIB /* * Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved. * Copyright (c) 2015 System Fabric Works, Inc. All rights reserved. */ #include <linux/skbuff.h> #include "rxe.h" #include "rxe_loc.h" #include "rxe_queue.h" static char *resp_state_name[] = { [RESPST_NONE] = "NONE", [RESPST_GET_REQ] = "GET_REQ", [RESPST_CHK_PSN] = "CHK_PSN", [RESPST_CHK_OP_SEQ] = "CHK_OP_SEQ", [RESPST_CHK_OP_VALID] = "CHK_OP_VALID", [RESPST_CHK_RESOURCE] = "CHK_RESOURCE", [RESPST_CHK_LENGTH] = "CHK_LENGTH", [RESPST_CHK_RKEY] = "CHK_RKEY", [RESPST_EXECUTE] = "EXECUTE", [RESPST_READ_REPLY] = "READ_REPLY", [RESPST_ATOMIC_REPLY] = "ATOMIC_REPLY", [RESPST_ATOMIC_WRITE_REPLY] = "ATOMIC_WRITE_REPLY", [RESPST_PROCESS_FLUSH] = "PROCESS_FLUSH", [RESPST_COMPLETE] = "COMPLETE", [RESPST_ACKNOWLEDGE] = "ACKNOWLEDGE", [RESPST_CLEANUP] = "CLEANUP", [RESPST_DUPLICATE_REQUEST] = "DUPLICATE_REQUEST", [RESPST_ERR_MALFORMED_WQE] = "ERR_MALFORMED_WQE", [RESPST_ERR_UNSUPPORTED_OPCODE] = "ERR_UNSUPPORTED_OPCODE", [RESPST_ERR_MISALIGNED_ATOMIC] = "ERR_MISALIGNED_ATOMIC", [RESPST_ERR_PSN_OUT_OF_SEQ] = "ERR_PSN_OUT_OF_SEQ", [RESPST_ERR_MISSING_OPCODE_FIRST] = "ERR_MISSING_OPCODE_FIRST", [RESPST_ERR_MISSING_OPCODE_LAST_C] = "ERR_MISSING_OPCODE_LAST_C", [RESPST_ERR_MISSING_OPCODE_LAST_D1E] = "ERR_MISSING_OPCODE_LAST_D1E", [RESPST_ERR_TOO_MANY_RDMA_ATM_REQ] = "ERR_TOO_MANY_RDMA_ATM_REQ", [RESPST_ERR_RNR] = "ERR_RNR", [RESPST_ERR_RKEY_VIOLATION] = "ERR_RKEY_VIOLATION", [RESPST_ERR_INVALIDATE_RKEY] = "ERR_INVALIDATE_RKEY_VIOLATION", [RESPST_ERR_LENGTH] = "ERR_LENGTH", [RESPST_ERR_CQ_OVERFLOW] = "ERR_CQ_OVERFLOW", [RESPST_ERROR] = "ERROR", [RESPST_DONE] = "DONE", [RESPST_EXIT] = "EXIT", }; /* rxe_recv calls here to add a request packet to the input queue */ void rxe_resp_queue_pkt(struct rxe_qp *qp, struct sk_buff *skb) { skb_queue_tail(&qp->req_pkts, skb); rxe_sched_task(&qp->recv_task); } static inline enum resp_states get_req(struct rxe_qp *qp, struct rxe_pkt_info **pkt_p) { struct sk_buff *skb; skb = skb_peek(&qp->req_pkts); if (!skb) return RESPST_EXIT; *pkt_p = SKB_TO_PKT(skb); return (qp->resp.res) ? RESPST_READ_REPLY : RESPST_CHK_PSN; } static enum resp_states check_psn(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { int diff = psn_compare(pkt->psn, qp->resp.psn); struct rxe_dev *rxe = to_rdev(qp->ibqp.device); switch (qp_type(qp)) { case IB_QPT_RC: if (diff > 0) { if (qp->resp.sent_psn_nak) return RESPST_CLEANUP; qp->resp.sent_psn_nak = 1; rxe_counter_inc(rxe, RXE_CNT_OUT_OF_SEQ_REQ); return RESPST_ERR_PSN_OUT_OF_SEQ; } else if (diff < 0) { rxe_counter_inc(rxe, RXE_CNT_DUP_REQ); return RESPST_DUPLICATE_REQUEST; } if (qp->resp.sent_psn_nak) qp->resp.sent_psn_nak = 0; break; case IB_QPT_UC: if (qp->resp.drop_msg || diff != 0) { if (pkt->mask & RXE_START_MASK) { qp->resp.drop_msg = 0; return RESPST_CHK_OP_SEQ; } qp->resp.drop_msg = 1; return RESPST_CLEANUP; } break; default: break; } return RESPST_CHK_OP_SEQ; } static enum resp_states check_op_seq(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { switch (qp_type(qp)) { case IB_QPT_RC: switch (qp->resp.opcode) { case IB_OPCODE_RC_SEND_FIRST: case IB_OPCODE_RC_SEND_MIDDLE: switch (pkt->opcode) { case IB_OPCODE_RC_SEND_MIDDLE: case IB_OPCODE_RC_SEND_LAST: case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE: case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE: return RESPST_CHK_OP_VALID; default: return RESPST_ERR_MISSING_OPCODE_LAST_C; } case IB_OPCODE_RC_RDMA_WRITE_FIRST: case IB_OPCODE_RC_RDMA_WRITE_MIDDLE: switch (pkt->opcode) { case IB_OPCODE_RC_RDMA_WRITE_MIDDLE: case IB_OPCODE_RC_RDMA_WRITE_LAST: case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE: return RESPST_CHK_OP_VALID; default: return RESPST_ERR_MISSING_OPCODE_LAST_C; } default: switch (pkt->opcode) { case IB_OPCODE_RC_SEND_MIDDLE: case IB_OPCODE_RC_SEND_LAST: case IB_OPCODE_RC_SEND_LAST_WITH_IMMEDIATE: case IB_OPCODE_RC_SEND_LAST_WITH_INVALIDATE: case IB_OPCODE_RC_RDMA_WRITE_MIDDLE: case IB_OPCODE_RC_RDMA_WRITE_LAST: case IB_OPCODE_RC_RDMA_WRITE_LAST_WITH_IMMEDIATE: return RESPST_ERR_MISSING_OPCODE_FIRST; default: return RESPST_CHK_OP_VALID; } } break; case IB_QPT_UC: switch (qp->resp.opcode) { case IB_OPCODE_UC_SEND_FIRST: case IB_OPCODE_UC_SEND_MIDDLE: switch (pkt->opcode) { case IB_OPCODE_UC_SEND_MIDDLE: case IB_OPCODE_UC_SEND_LAST: case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE: return RESPST_CHK_OP_VALID; default: return RESPST_ERR_MISSING_OPCODE_LAST_D1E; } case IB_OPCODE_UC_RDMA_WRITE_FIRST: case IB_OPCODE_UC_RDMA_WRITE_MIDDLE: switch (pkt->opcode) { case IB_OPCODE_UC_RDMA_WRITE_MIDDLE: case IB_OPCODE_UC_RDMA_WRITE_LAST: case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE: return RESPST_CHK_OP_VALID; default: return RESPST_ERR_MISSING_OPCODE_LAST_D1E; } default: switch (pkt->opcode) { case IB_OPCODE_UC_SEND_MIDDLE: case IB_OPCODE_UC_SEND_LAST: case IB_OPCODE_UC_SEND_LAST_WITH_IMMEDIATE: case IB_OPCODE_UC_RDMA_WRITE_MIDDLE: case IB_OPCODE_UC_RDMA_WRITE_LAST: case IB_OPCODE_UC_RDMA_WRITE_LAST_WITH_IMMEDIATE: qp->resp.drop_msg = 1; return RESPST_CLEANUP; default: return RESPST_CHK_OP_VALID; } } break; default: return RESPST_CHK_OP_VALID; } } static bool check_qp_attr_access(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { if (((pkt->mask & RXE_READ_MASK) && !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_READ)) || ((pkt->mask & (RXE_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) && !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) || ((pkt->mask & RXE_ATOMIC_MASK) && !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_ATOMIC))) return false; if (pkt->mask & RXE_FLUSH_MASK) { u32 flush_type = feth_plt(pkt); if ((flush_type & IB_FLUSH_GLOBAL && !(qp->attr.qp_access_flags & IB_ACCESS_FLUSH_GLOBAL)) || (flush_type & IB_FLUSH_PERSISTENT && !(qp->attr.qp_access_flags & IB_ACCESS_FLUSH_PERSISTENT))) return false; } return true; } static enum resp_states check_op_valid(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { switch (qp_type(qp)) { case IB_QPT_RC: if (!check_qp_attr_access(qp, pkt)) return RESPST_ERR_UNSUPPORTED_OPCODE; break; case IB_QPT_UC: if ((pkt->mask & RXE_WRITE_MASK) && !(qp->attr.qp_access_flags & IB_ACCESS_REMOTE_WRITE)) { qp->resp.drop_msg = 1; return RESPST_CLEANUP; } break; case IB_QPT_UD: case IB_QPT_GSI: break; default: WARN_ON_ONCE(1); break; } return RESPST_CHK_RESOURCE; } static enum resp_states get_srq_wqe(struct rxe_qp *qp) { struct rxe_srq *srq = qp->srq; struct rxe_queue *q = srq->rq.queue; struct rxe_recv_wqe *wqe; struct ib_event ev; unsigned int count; size_t size; unsigned long flags; if (srq->error) return RESPST_ERR_RNR; spin_lock_irqsave(&srq->rq.consumer_lock, flags); wqe = queue_head(q, QUEUE_TYPE_FROM_CLIENT); if (!wqe) { spin_unlock_irqrestore(&srq->rq.consumer_lock, flags); return RESPST_ERR_RNR; } /* don't trust user space data */ if (unlikely(wqe->dma.num_sge > srq->rq.max_sge)) { spin_unlock_irqrestore(&srq->rq.consumer_lock, flags); rxe_dbg_qp(qp, "invalid num_sge in SRQ entry\n"); return RESPST_ERR_MALFORMED_WQE; } size = sizeof(*wqe) + wqe->dma.num_sge*sizeof(struct rxe_sge); memcpy(&qp->resp.srq_wqe, wqe, size); qp->resp.wqe = &qp->resp.srq_wqe.wqe; queue_advance_consumer(q, QUEUE_TYPE_FROM_CLIENT); count = queue_count(q, QUEUE_TYPE_FROM_CLIENT); if (srq->limit && srq->ibsrq.event_handler && (count < srq->limit)) { srq->limit = 0; goto event; } spin_unlock_irqrestore(&srq->rq.consumer_lock, flags); return RESPST_CHK_LENGTH; event: spin_unlock_irqrestore(&srq->rq.consumer_lock, flags); ev.device = qp->ibqp.device; ev.element.srq = qp->ibqp.srq; ev.event = IB_EVENT_SRQ_LIMIT_REACHED; srq->ibsrq.event_handler(&ev, srq->ibsrq.srq_context); return RESPST_CHK_LENGTH; } static enum resp_states check_resource(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct rxe_srq *srq = qp->srq; if (pkt->mask & (RXE_READ_OR_ATOMIC_MASK | RXE_ATOMIC_WRITE_MASK)) { /* it is the requesters job to not send * too many read/atomic ops, we just * recycle the responder resource queue */ if (likely(qp->attr.max_dest_rd_atomic > 0)) return RESPST_CHK_LENGTH; else return RESPST_ERR_TOO_MANY_RDMA_ATM_REQ; } if (pkt->mask & RXE_RWR_MASK) { if (srq) return get_srq_wqe(qp); qp->resp.wqe = queue_head(qp->rq.queue, QUEUE_TYPE_FROM_CLIENT); return (qp->resp.wqe) ? RESPST_CHK_LENGTH : RESPST_ERR_RNR; } return RESPST_CHK_LENGTH; } static enum resp_states rxe_resp_check_length(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { /* * See IBA C9-92 * For UD QPs we only check if the packet will fit in the * receive buffer later. For rmda operations additional * length checks are performed in check_rkey. */ if ((qp_type(qp) == IB_QPT_GSI) || (qp_type(qp) == IB_QPT_UD)) { unsigned int payload = payload_size(pkt); unsigned int recv_buffer_len = 0; int i; for (i = 0; i < qp->resp.wqe->dma.num_sge; i++) recv_buffer_len += qp->resp.wqe->dma.sge[i].length; if (payload + 40 > recv_buffer_len) { rxe_dbg_qp(qp, "The receive buffer is too small for this UD packet.\n"); return RESPST_ERR_LENGTH; } } if (pkt->mask & RXE_PAYLOAD_MASK && ((qp_type(qp) == IB_QPT_RC) || (qp_type(qp) == IB_QPT_UC))) { unsigned int mtu = qp->mtu; unsigned int payload = payload_size(pkt); if ((pkt->mask & RXE_START_MASK) && (pkt->mask & RXE_END_MASK)) { if (unlikely(payload > mtu)) { rxe_dbg_qp(qp, "only packet too long\n"); return RESPST_ERR_LENGTH; } } else if ((pkt->mask & RXE_START_MASK) || (pkt->mask & RXE_MIDDLE_MASK)) { if (unlikely(payload != mtu)) { rxe_dbg_qp(qp, "first or middle packet not mtu\n"); return RESPST_ERR_LENGTH; } } else if (pkt->mask & RXE_END_MASK) { if (unlikely((payload == 0) || (payload > mtu))) { rxe_dbg_qp(qp, "last packet zero or too long\n"); return RESPST_ERR_LENGTH; } } } /* See IBA C9-94 */ if (pkt->mask & RXE_RETH_MASK) { if (reth_len(pkt) > (1U << 31)) { rxe_dbg_qp(qp, "dma length too long\n"); return RESPST_ERR_LENGTH; } } if (pkt->mask & RXE_RDMA_OP_MASK) return RESPST_CHK_RKEY; else return RESPST_EXECUTE; } /* if the reth length field is zero we can assume nothing * about the rkey value and should not validate or use it. * Instead set qp->resp.rkey to 0 which is an invalid rkey * value since the minimum index part is 1. */ static void qp_resp_from_reth(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { unsigned int length = reth_len(pkt); qp->resp.va = reth_va(pkt); qp->resp.offset = 0; qp->resp.resid = length; qp->resp.length = length; if (pkt->mask & RXE_READ_OR_WRITE_MASK && length == 0) qp->resp.rkey = 0; else qp->resp.rkey = reth_rkey(pkt); } static void qp_resp_from_atmeth(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { qp->resp.va = atmeth_va(pkt); qp->resp.offset = 0; qp->resp.rkey = atmeth_rkey(pkt); qp->resp.resid = sizeof(u64); } /* resolve the packet rkey to qp->resp.mr or set qp->resp.mr to NULL * if an invalid rkey is received or the rdma length is zero. For middle * or last packets use the stored value of mr. */ static enum resp_states check_rkey(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct rxe_mr *mr = NULL; struct rxe_mw *mw = NULL; u64 va; u32 rkey; u32 resid; u32 pktlen; int mtu = qp->mtu; enum resp_states state; int access = 0; /* parse RETH or ATMETH header for first/only packets * for va, length, rkey, etc. or use current value for * middle/last packets. */ if (pkt->mask & (RXE_READ_OR_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) { if (pkt->mask & RXE_RETH_MASK) qp_resp_from_reth(qp, pkt); access = (pkt->mask & RXE_READ_MASK) ? IB_ACCESS_REMOTE_READ : IB_ACCESS_REMOTE_WRITE; } else if (pkt->mask & RXE_FLUSH_MASK) { u32 flush_type = feth_plt(pkt); if (pkt->mask & RXE_RETH_MASK) qp_resp_from_reth(qp, pkt); if (flush_type & IB_FLUSH_GLOBAL) access |= IB_ACCESS_FLUSH_GLOBAL; if (flush_type & IB_FLUSH_PERSISTENT) access |= IB_ACCESS_FLUSH_PERSISTENT; } else if (pkt->mask & RXE_ATOMIC_MASK) { qp_resp_from_atmeth(qp, pkt); access = IB_ACCESS_REMOTE_ATOMIC; } else { /* shouldn't happen */ WARN_ON(1); } /* A zero-byte read or write op is not required to * set an addr or rkey. See C9-88 */ if ((pkt->mask & RXE_READ_OR_WRITE_MASK) && (pkt->mask & RXE_RETH_MASK) && reth_len(pkt) == 0) { qp->resp.mr = NULL; return RESPST_EXECUTE; } va = qp->resp.va; rkey = qp->resp.rkey; resid = qp->resp.resid; pktlen = payload_size(pkt); if (rkey_is_mw(rkey)) { mw = rxe_lookup_mw(qp, access, rkey); if (!mw) { rxe_dbg_qp(qp, "no MW matches rkey %#x\n", rkey); state = RESPST_ERR_RKEY_VIOLATION; goto err; } mr = mw->mr; if (!mr) { rxe_dbg_qp(qp, "MW doesn't have an MR\n"); state = RESPST_ERR_RKEY_VIOLATION; goto err; } if (mw->access & IB_ZERO_BASED) qp->resp.offset = mw->addr; rxe_get(mr); rxe_put(mw); mw = NULL; } else { mr = lookup_mr(qp->pd, access, rkey, RXE_LOOKUP_REMOTE); if (!mr) { rxe_dbg_qp(qp, "no MR matches rkey %#x\n", rkey); state = RESPST_ERR_RKEY_VIOLATION; goto err; } } if (pkt->mask & RXE_FLUSH_MASK) { /* FLUSH MR may not set va or resid * no need to check range since we will flush whole mr */ if (feth_sel(pkt) == IB_FLUSH_MR) goto skip_check_range; } if (mr_check_range(mr, va + qp->resp.offset, resid)) { state = RESPST_ERR_RKEY_VIOLATION; goto err; } skip_check_range: if (pkt->mask & (RXE_WRITE_MASK | RXE_ATOMIC_WRITE_MASK)) { if (resid > mtu) { if (pktlen != mtu || bth_pad(pkt)) { state = RESPST_ERR_LENGTH; goto err; } } else { if (pktlen != resid) { state = RESPST_ERR_LENGTH; goto err; } if ((bth_pad(pkt) != (0x3 & (-resid)))) { /* This case may not be exactly that * but nothing else fits. */ state = RESPST_ERR_LENGTH; goto err; } } } WARN_ON_ONCE(qp->resp.mr); qp->resp.mr = mr; return RESPST_EXECUTE; err: qp->resp.mr = NULL; if (mr) rxe_put(mr); if (mw) rxe_put(mw); return state; } static enum resp_states send_data_in(struct rxe_qp *qp, void *data_addr, int data_len) { int err; err = copy_data(qp->pd, IB_ACCESS_LOCAL_WRITE, &qp->resp.wqe->dma, data_addr, data_len, RXE_TO_MR_OBJ); if (unlikely(err)) return (err == -ENOSPC) ? RESPST_ERR_LENGTH : RESPST_ERR_MALFORMED_WQE; return RESPST_NONE; } static enum resp_states write_data_in(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { enum resp_states rc = RESPST_NONE; int err; int data_len = payload_size(pkt); err = rxe_mr_copy(qp->resp.mr, qp->resp.va + qp->resp.offset, payload_addr(pkt), data_len, RXE_TO_MR_OBJ); if (err) { rc = RESPST_ERR_RKEY_VIOLATION; goto out; } qp->resp.va += data_len; qp->resp.resid -= data_len; out: return rc; } static struct resp_res *rxe_prepare_res(struct rxe_qp *qp, struct rxe_pkt_info *pkt, int type) { struct resp_res *res; u32 pkts; res = &qp->resp.resources[qp->resp.res_head]; rxe_advance_resp_resource(qp); free_rd_atomic_resource(res); res->type = type; res->replay = 0; switch (type) { case RXE_READ_MASK: res->read.va = qp->resp.va + qp->resp.offset; res->read.va_org = qp->resp.va + qp->resp.offset; res->read.resid = qp->resp.resid; res->read.length = qp->resp.resid; res->read.rkey = qp->resp.rkey; pkts = max_t(u32, (reth_len(pkt) + qp->mtu - 1)/qp->mtu, 1); res->first_psn = pkt->psn; res->cur_psn = pkt->psn; res->last_psn = (pkt->psn + pkts - 1) & BTH_PSN_MASK; res->state = rdatm_res_state_new; break; case RXE_ATOMIC_MASK: case RXE_ATOMIC_WRITE_MASK: res->first_psn = pkt->psn; res->last_psn = pkt->psn; res->cur_psn = pkt->psn; break; case RXE_FLUSH_MASK: res->flush.va = qp->resp.va + qp->resp.offset; res->flush.length = qp->resp.length; res->flush.type = feth_plt(pkt); res->flush.level = feth_sel(pkt); } return res; } static enum resp_states process_flush(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { u64 length, start; struct rxe_mr *mr = qp->resp.mr; struct resp_res *res = qp->resp.res; /* oA19-14, oA19-15 */ if (res && res->replay) return RESPST_ACKNOWLEDGE; else if (!res) { res = rxe_prepare_res(qp, pkt, RXE_FLUSH_MASK); qp->resp.res = res; } if (res->flush.level == IB_FLUSH_RANGE) { start = res->flush.va; length = res->flush.length; } else { /* level == IB_FLUSH_MR */ start = mr->ibmr.iova; length = mr->ibmr.length; } if (res->flush.type & IB_FLUSH_PERSISTENT) { if (rxe_flush_pmem_iova(mr, start, length)) return RESPST_ERR_RKEY_VIOLATION; /* Make data persistent. */ wmb(); } else if (res->flush.type & IB_FLUSH_GLOBAL) { /* Make data global visibility. */ wmb(); } qp->resp.msn++; /* next expected psn, read handles this separately */ qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK; qp->resp.ack_psn = qp->resp.psn; qp->resp.opcode = pkt->opcode; qp->resp.status = IB_WC_SUCCESS; return RESPST_ACKNOWLEDGE; } static enum resp_states atomic_reply(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct rxe_mr *mr = qp->resp.mr; struct resp_res *res = qp->resp.res; int err; if (!res) { res = rxe_prepare_res(qp, pkt, RXE_ATOMIC_MASK); qp->resp.res = res; } if (!res->replay) { u64 iova = qp->resp.va + qp->resp.offset; err = rxe_mr_do_atomic_op(mr, iova, pkt->opcode, atmeth_comp(pkt), atmeth_swap_add(pkt), &res->atomic.orig_val); if (err) return err; qp->resp.msn++; /* next expected psn, read handles this separately */ qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK; qp->resp.ack_psn = qp->resp.psn; qp->resp.opcode = pkt->opcode; qp->resp.status = IB_WC_SUCCESS; } return RESPST_ACKNOWLEDGE; } static enum resp_states atomic_write_reply(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct resp_res *res = qp->resp.res; struct rxe_mr *mr; u64 value; u64 iova; int err; if (!res) { res = rxe_prepare_res(qp, pkt, RXE_ATOMIC_WRITE_MASK); qp->resp.res = res; } if (res->replay) return RESPST_ACKNOWLEDGE; mr = qp->resp.mr; value = *(u64 *)payload_addr(pkt); iova = qp->resp.va + qp->resp.offset; err = rxe_mr_do_atomic_write(mr, iova, value); if (err) return err; qp->resp.resid = 0; qp->resp.msn++; /* next expected psn, read handles this separately */ qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK; qp->resp.ack_psn = qp->resp.psn; qp->resp.opcode = pkt->opcode; qp->resp.status = IB_WC_SUCCESS; return RESPST_ACKNOWLEDGE; } static struct sk_buff *prepare_ack_packet(struct rxe_qp *qp, struct rxe_pkt_info *ack, int opcode, int payload, u32 psn, u8 syndrome) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); struct sk_buff *skb; int paylen; int pad; int err; /* * allocate packet */ pad = (-payload) & 0x3; paylen = rxe_opcode[opcode].length + payload + pad + RXE_ICRC_SIZE; skb = rxe_init_packet(rxe, &qp->pri_av, paylen, ack); if (!skb) return NULL; ack->qp = qp; ack->opcode = opcode; ack->mask = rxe_opcode[opcode].mask; ack->paylen = paylen; ack->psn = psn; bth_init(ack, opcode, 0, 0, pad, IB_DEFAULT_PKEY_FULL, qp->attr.dest_qp_num, 0, psn); if (ack->mask & RXE_AETH_MASK) { aeth_set_syn(ack, syndrome); aeth_set_msn(ack, qp->resp.msn); } if (ack->mask & RXE_ATMACK_MASK) atmack_set_orig(ack, qp->resp.res->atomic.orig_val); err = rxe_prepare(&qp->pri_av, ack, skb); if (err) { kfree_skb(skb); return NULL; } return skb; } /** * rxe_recheck_mr - revalidate MR from rkey and get a reference * @qp: the qp * @rkey: the rkey * * This code allows the MR to be invalidated or deregistered or * the MW if one was used to be invalidated or deallocated. * It is assumed that the access permissions if originally good * are OK and the mappings to be unchanged. * * TODO: If someone reregisters an MR to change its size or * access permissions during the processing of an RDMA read * we should kill the responder resource and complete the * operation with an error. * * Return: mr on success else NULL */ static struct rxe_mr *rxe_recheck_mr(struct rxe_qp *qp, u32 rkey) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); struct rxe_mr *mr; struct rxe_mw *mw; if (rkey_is_mw(rkey)) { mw = rxe_pool_get_index(&rxe->mw_pool, rkey >> 8); if (!mw) return NULL; mr = mw->mr; if (mw->rkey != rkey || mw->state != RXE_MW_STATE_VALID || !mr || mr->state != RXE_MR_STATE_VALID) { rxe_put(mw); return NULL; } rxe_get(mr); rxe_put(mw); return mr; } mr = rxe_pool_get_index(&rxe->mr_pool, rkey >> 8); if (!mr) return NULL; if (mr->rkey != rkey || mr->state != RXE_MR_STATE_VALID) { rxe_put(mr); return NULL; } return mr; } /* RDMA read response. If res is not NULL, then we have a current RDMA request * being processed or replayed. */ static enum resp_states read_reply(struct rxe_qp *qp, struct rxe_pkt_info *req_pkt) { struct rxe_pkt_info ack_pkt; struct sk_buff *skb; int mtu = qp->mtu; enum resp_states state; int payload; int opcode; int err; struct resp_res *res = qp->resp.res; struct rxe_mr *mr; if (!res) { res = rxe_prepare_res(qp, req_pkt, RXE_READ_MASK); qp->resp.res = res; } if (res->state == rdatm_res_state_new) { if (!res->replay || qp->resp.length == 0) { /* if length == 0 mr will be NULL (is ok) * otherwise qp->resp.mr holds a ref on mr * which we transfer to mr and drop below. */ mr = qp->resp.mr; qp->resp.mr = NULL; } else { mr = rxe_recheck_mr(qp, res->read.rkey); if (!mr) return RESPST_ERR_RKEY_VIOLATION; } if (res->read.resid <= mtu) opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY; else opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST; } else { /* re-lookup mr from rkey on all later packets. * length will be non-zero. This can fail if someone * modifies or destroys the mr since the first packet. */ mr = rxe_recheck_mr(qp, res->read.rkey); if (!mr) return RESPST_ERR_RKEY_VIOLATION; if (res->read.resid > mtu) opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_MIDDLE; else opcode = IB_OPCODE_RC_RDMA_READ_RESPONSE_LAST; } res->state = rdatm_res_state_next; payload = min_t(int, res->read.resid, mtu); skb = prepare_ack_packet(qp, &ack_pkt, opcode, payload, res->cur_psn, AETH_ACK_UNLIMITED); if (!skb) { state = RESPST_ERR_RNR; goto err_out; } err = rxe_mr_copy(mr, res->read.va, payload_addr(&ack_pkt), payload, RXE_FROM_MR_OBJ); if (err) { kfree_skb(skb); state = RESPST_ERR_RKEY_VIOLATION; goto err_out; } if (bth_pad(&ack_pkt)) { u8 *pad = payload_addr(&ack_pkt) + payload; memset(pad, 0, bth_pad(&ack_pkt)); } /* rxe_xmit_packet always consumes the skb */ err = rxe_xmit_packet(qp, &ack_pkt, skb); if (err) { state = RESPST_ERR_RNR; goto err_out; } res->read.va += payload; res->read.resid -= payload; res->cur_psn = (res->cur_psn + 1) & BTH_PSN_MASK; if (res->read.resid > 0) { state = RESPST_DONE; } else { qp->resp.res = NULL; if (!res->replay) qp->resp.opcode = -1; if (psn_compare(res->cur_psn, qp->resp.psn) >= 0) qp->resp.psn = res->cur_psn; state = RESPST_CLEANUP; } err_out: if (mr) rxe_put(mr); return state; } static int invalidate_rkey(struct rxe_qp *qp, u32 rkey) { if (rkey_is_mw(rkey)) return rxe_invalidate_mw(qp, rkey); else return rxe_invalidate_mr(qp, rkey); } /* Executes a new request. A retried request never reach that function (send * and writes are discarded, and reads and atomics are retried elsewhere. */ static enum resp_states execute(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { enum resp_states err; struct sk_buff *skb = PKT_TO_SKB(pkt); union rdma_network_hdr hdr; if (pkt->mask & RXE_SEND_MASK) { if (qp_type(qp) == IB_QPT_UD || qp_type(qp) == IB_QPT_GSI) { if (skb->protocol == htons(ETH_P_IP)) { memset(&hdr.reserved, 0, sizeof(hdr.reserved)); memcpy(&hdr.roce4grh, ip_hdr(skb), sizeof(hdr.roce4grh)); err = send_data_in(qp, &hdr, sizeof(hdr)); } else { err = send_data_in(qp, ipv6_hdr(skb), sizeof(hdr)); } if (err) return err; } err = send_data_in(qp, payload_addr(pkt), payload_size(pkt)); if (err) return err; } else if (pkt->mask & RXE_WRITE_MASK) { err = write_data_in(qp, pkt); if (err) return err; } else if (pkt->mask & RXE_READ_MASK) { /* For RDMA Read we can increment the msn now. See C9-148. */ qp->resp.msn++; return RESPST_READ_REPLY; } else if (pkt->mask & RXE_ATOMIC_MASK) { return RESPST_ATOMIC_REPLY; } else if (pkt->mask & RXE_ATOMIC_WRITE_MASK) { return RESPST_ATOMIC_WRITE_REPLY; } else if (pkt->mask & RXE_FLUSH_MASK) { return RESPST_PROCESS_FLUSH; } else { /* Unreachable */ WARN_ON_ONCE(1); } if (pkt->mask & RXE_IETH_MASK) { u32 rkey = ieth_rkey(pkt); err = invalidate_rkey(qp, rkey); if (err) return RESPST_ERR_INVALIDATE_RKEY; } if (pkt->mask & RXE_END_MASK) /* We successfully processed this new request. */ qp->resp.msn++; /* next expected psn, read handles this separately */ qp->resp.psn = (pkt->psn + 1) & BTH_PSN_MASK; qp->resp.ack_psn = qp->resp.psn; qp->resp.opcode = pkt->opcode; qp->resp.status = IB_WC_SUCCESS; if (pkt->mask & RXE_COMP_MASK) return RESPST_COMPLETE; else if (qp_type(qp) == IB_QPT_RC) return RESPST_ACKNOWLEDGE; else return RESPST_CLEANUP; } static enum resp_states do_complete(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct rxe_cqe cqe; struct ib_wc *wc = &cqe.ibwc; struct ib_uverbs_wc *uwc = &cqe.uibwc; struct rxe_recv_wqe *wqe = qp->resp.wqe; struct rxe_dev *rxe = to_rdev(qp->ibqp.device); unsigned long flags; if (!wqe) goto finish; memset(&cqe, 0, sizeof(cqe)); if (qp->rcq->is_user) { uwc->status = qp->resp.status; uwc->qp_num = qp->ibqp.qp_num; uwc->wr_id = wqe->wr_id; } else { wc->status = qp->resp.status; wc->qp = &qp->ibqp; wc->wr_id = wqe->wr_id; } if (wc->status == IB_WC_SUCCESS) { rxe_counter_inc(rxe, RXE_CNT_RDMA_RECV); wc->opcode = (pkt->mask & RXE_IMMDT_MASK && pkt->mask & RXE_WRITE_MASK) ? IB_WC_RECV_RDMA_WITH_IMM : IB_WC_RECV; wc->byte_len = (pkt->mask & RXE_IMMDT_MASK && pkt->mask & RXE_WRITE_MASK) ? qp->resp.length : wqe->dma.length - wqe->dma.resid; /* fields after byte_len are different between kernel and user * space */ if (qp->rcq->is_user) { uwc->wc_flags = IB_WC_GRH; if (pkt->mask & RXE_IMMDT_MASK) { uwc->wc_flags |= IB_WC_WITH_IMM; uwc->ex.imm_data = immdt_imm(pkt); } if (pkt->mask & RXE_IETH_MASK) { uwc->wc_flags |= IB_WC_WITH_INVALIDATE; uwc->ex.invalidate_rkey = ieth_rkey(pkt); } if (pkt->mask & RXE_DETH_MASK) uwc->src_qp = deth_sqp(pkt); uwc->port_num = qp->attr.port_num; } else { struct sk_buff *skb = PKT_TO_SKB(pkt); wc->wc_flags = IB_WC_GRH | IB_WC_WITH_NETWORK_HDR_TYPE; if (skb->protocol == htons(ETH_P_IP)) wc->network_hdr_type = RDMA_NETWORK_IPV4; else wc->network_hdr_type = RDMA_NETWORK_IPV6; if (is_vlan_dev(skb->dev)) { wc->wc_flags |= IB_WC_WITH_VLAN; wc->vlan_id = vlan_dev_vlan_id(skb->dev); } if (pkt->mask & RXE_IMMDT_MASK) { wc->wc_flags |= IB_WC_WITH_IMM; wc->ex.imm_data = immdt_imm(pkt); } if (pkt->mask & RXE_IETH_MASK) { wc->wc_flags |= IB_WC_WITH_INVALIDATE; wc->ex.invalidate_rkey = ieth_rkey(pkt); } if (pkt->mask & RXE_DETH_MASK) wc->src_qp = deth_sqp(pkt); wc->port_num = qp->attr.port_num; } } else { if (wc->status != IB_WC_WR_FLUSH_ERR) rxe_err_qp(qp, "non-flush error status = %d\n", wc->status); } /* have copy for srq and reference for !srq */ if (!qp->srq) queue_advance_consumer(qp->rq.queue, QUEUE_TYPE_FROM_CLIENT); qp->resp.wqe = NULL; if (rxe_cq_post(qp->rcq, &cqe, pkt ? bth_se(pkt) : 1)) return RESPST_ERR_CQ_OVERFLOW; finish: spin_lock_irqsave(&qp->state_lock, flags); if (unlikely(qp_state(qp) == IB_QPS_ERR)) { spin_unlock_irqrestore(&qp->state_lock, flags); return RESPST_CHK_RESOURCE; } spin_unlock_irqrestore(&qp->state_lock, flags); if (unlikely(!pkt)) return RESPST_DONE; if (qp_type(qp) == IB_QPT_RC) return RESPST_ACKNOWLEDGE; else return RESPST_CLEANUP; } static int send_common_ack(struct rxe_qp *qp, u8 syndrome, u32 psn, int opcode, const char *msg) { int err; struct rxe_pkt_info ack_pkt; struct sk_buff *skb; skb = prepare_ack_packet(qp, &ack_pkt, opcode, 0, psn, syndrome); if (!skb) return -ENOMEM; err = rxe_xmit_packet(qp, &ack_pkt, skb); if (err) rxe_dbg_qp(qp, "Failed sending %s\n", msg); return err; } static int send_ack(struct rxe_qp *qp, u8 syndrome, u32 psn) { return send_common_ack(qp, syndrome, psn, IB_OPCODE_RC_ACKNOWLEDGE, "ACK"); } static int send_atomic_ack(struct rxe_qp *qp, u8 syndrome, u32 psn) { int ret = send_common_ack(qp, syndrome, psn, IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE, "ATOMIC ACK"); /* have to clear this since it is used to trigger * long read replies */ qp->resp.res = NULL; return ret; } static int send_read_response_ack(struct rxe_qp *qp, u8 syndrome, u32 psn) { int ret = send_common_ack(qp, syndrome, psn, IB_OPCODE_RC_RDMA_READ_RESPONSE_ONLY, "RDMA READ response of length zero ACK"); /* have to clear this since it is used to trigger * long read replies */ qp->resp.res = NULL; return ret; } static enum resp_states acknowledge(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { if (qp_type(qp) != IB_QPT_RC) return RESPST_CLEANUP; if (qp->resp.aeth_syndrome != AETH_ACK_UNLIMITED) send_ack(qp, qp->resp.aeth_syndrome, pkt->psn); else if (pkt->mask & RXE_ATOMIC_MASK) send_atomic_ack(qp, AETH_ACK_UNLIMITED, pkt->psn); else if (pkt->mask & (RXE_FLUSH_MASK | RXE_ATOMIC_WRITE_MASK)) send_read_response_ack(qp, AETH_ACK_UNLIMITED, pkt->psn); else if (bth_ack(pkt)) send_ack(qp, AETH_ACK_UNLIMITED, pkt->psn); return RESPST_CLEANUP; } static enum resp_states cleanup(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { struct sk_buff *skb; if (pkt) { skb = skb_dequeue(&qp->req_pkts); rxe_put(qp); kfree_skb(skb); ib_device_put(qp->ibqp.device); } if (qp->resp.mr) { rxe_put(qp->resp.mr); qp->resp.mr = NULL; } return RESPST_DONE; } static struct resp_res *find_resource(struct rxe_qp *qp, u32 psn) { int i; for (i = 0; i < qp->attr.max_dest_rd_atomic; i++) { struct resp_res *res = &qp->resp.resources[i]; if (res->type == 0) continue; if (psn_compare(psn, res->first_psn) >= 0 && psn_compare(psn, res->last_psn) <= 0) { return res; } } return NULL; } static enum resp_states duplicate_request(struct rxe_qp *qp, struct rxe_pkt_info *pkt) { enum resp_states rc; u32 prev_psn = (qp->resp.ack_psn - 1) & BTH_PSN_MASK; if (pkt->mask & RXE_SEND_MASK || pkt->mask & RXE_WRITE_MASK) { /* SEND. Ack again and cleanup. C9-105. */ send_ack(qp, AETH_ACK_UNLIMITED, prev_psn); return RESPST_CLEANUP; } else if (pkt->mask & RXE_FLUSH_MASK) { struct resp_res *res; /* Find the operation in our list of responder resources. */ res = find_resource(qp, pkt->psn); if (res) { res->replay = 1; res->cur_psn = pkt->psn; qp->resp.res = res; rc = RESPST_PROCESS_FLUSH; goto out; } /* Resource not found. Class D error. Drop the request. */ rc = RESPST_CLEANUP; goto out; } else if (pkt->mask & RXE_READ_MASK) { struct resp_res *res; res = find_resource(qp, pkt->psn); if (!res) { /* Resource not found. Class D error. Drop the * request. */ rc = RESPST_CLEANUP; goto out; } else { /* Ensure this new request is the same as the previous * one or a subset of it. */ u64 iova = reth_va(pkt); u32 resid = reth_len(pkt); if (iova < res->read.va_org || resid > res->read.length || (iova + resid) > (res->read.va_org + res->read.length)) { rc = RESPST_CLEANUP; goto out; } if (reth_rkey(pkt) != res->read.rkey) { rc = RESPST_CLEANUP; goto out; } res->cur_psn = pkt->psn; res->state = (pkt->psn == res->first_psn) ? rdatm_res_state_new : rdatm_res_state_replay; res->replay = 1; /* Reset the resource, except length. */ res->read.va_org = iova; res->read.va = iova; res->read.resid = resid; /* Replay the RDMA read reply. */ qp->resp.res = res; rc = RESPST_READ_REPLY; goto out; } } else { struct resp_res *res; /* Find the operation in our list of responder resources. */ res = find_resource(qp, pkt->psn); if (res) { res->replay = 1; res->cur_psn = pkt->psn; qp->resp.res = res; rc = pkt->mask & RXE_ATOMIC_MASK ? RESPST_ATOMIC_REPLY : RESPST_ATOMIC_WRITE_REPLY; goto out; } /* Resource not found. Class D error. Drop the request. */ rc = RESPST_CLEANUP; goto out; } out: return rc; } /* Process a class A or C. Both are treated the same in this implementation. */ static void do_class_ac_error(struct rxe_qp *qp, u8 syndrome, enum ib_wc_status status) { qp->resp.aeth_syndrome = syndrome; qp->resp.status = status; /* indicate that we should go through the ERROR state */ qp->resp.goto_error = 1; } static enum resp_states do_class_d1e_error(struct rxe_qp *qp) { /* UC */ if (qp->srq) { /* Class E */ qp->resp.drop_msg = 1; if (qp->resp.wqe) { qp->resp.status = IB_WC_REM_INV_REQ_ERR; return RESPST_COMPLETE; } else { return RESPST_CLEANUP; } } else { /* Class D1. This packet may be the start of a * new message and could be valid. The previous * message is invalid and ignored. reset the * recv wr to its original state */ if (qp->resp.wqe) { qp->resp.wqe->dma.resid = qp->resp.wqe->dma.length; qp->resp.wqe->dma.cur_sge = 0; qp->resp.wqe->dma.sge_offset = 0; qp->resp.opcode = -1; } if (qp->resp.mr) { rxe_put(qp->resp.mr); qp->resp.mr = NULL; } return RESPST_CLEANUP; } } /* drain incoming request packet queue */ static void drain_req_pkts(struct rxe_qp *qp) { struct sk_buff *skb; while ((skb = skb_dequeue(&qp->req_pkts))) { rxe_put(qp); kfree_skb(skb); ib_device_put(qp->ibqp.device); } } /* complete receive wqe with flush error */ static int flush_recv_wqe(struct rxe_qp *qp, struct rxe_recv_wqe *wqe) { struct rxe_cqe cqe = {}; struct ib_wc *wc = &cqe.ibwc; struct ib_uverbs_wc *uwc = &cqe.uibwc; int err; if (qp->rcq->is_user) { uwc->wr_id = wqe->wr_id; uwc->status = IB_WC_WR_FLUSH_ERR; uwc->qp_num = qp_num(qp); } else { wc->wr_id = wqe->wr_id; wc->status = IB_WC_WR_FLUSH_ERR; wc->qp = &qp->ibqp; } err = rxe_cq_post(qp->rcq, &cqe, 0); if (err) rxe_dbg_cq(qp->rcq, "post cq failed err = %d\n", err); return err; } /* drain and optionally complete the recive queue * if unable to complete a wqe stop completing and * just flush the remaining wqes */ static void flush_recv_queue(struct rxe_qp *qp, bool notify) { struct rxe_queue *q = qp->rq.queue; struct rxe_recv_wqe *wqe; int err; if (qp->srq) { if (notify && qp->ibqp.event_handler) { struct ib_event ev; ev.device = qp->ibqp.device; ev.element.qp = &qp->ibqp; ev.event = IB_EVENT_QP_LAST_WQE_REACHED; qp->ibqp.event_handler(&ev, qp->ibqp.qp_context); } return; } /* recv queue not created. nothing to do. */ if (!qp->rq.queue) return; while ((wqe = queue_head(q, q->type))) { if (notify) { err = flush_recv_wqe(qp, wqe); if (err) notify = 0; } queue_advance_consumer(q, q->type); } qp->resp.wqe = NULL; } int rxe_receiver(struct rxe_qp *qp) { struct rxe_dev *rxe = to_rdev(qp->ibqp.device); enum resp_states state; struct rxe_pkt_info *pkt = NULL; int ret; unsigned long flags; spin_lock_irqsave(&qp->state_lock, flags); if (!qp->valid || qp_state(qp) == IB_QPS_ERR || qp_state(qp) == IB_QPS_RESET) { bool notify = qp->valid && (qp_state(qp) == IB_QPS_ERR); drain_req_pkts(qp); flush_recv_queue(qp, notify); spin_unlock_irqrestore(&qp->state_lock, flags); goto exit; } spin_unlock_irqrestore(&qp->state_lock, flags); qp->resp.aeth_syndrome = AETH_ACK_UNLIMITED; state = RESPST_GET_REQ; while (1) { rxe_dbg_qp(qp, "state = %s\n", resp_state_name[state]); switch (state) { case RESPST_GET_REQ: state = get_req(qp, &pkt); break; case RESPST_CHK_PSN: state = check_psn(qp, pkt); break; case RESPST_CHK_OP_SEQ: state = check_op_seq(qp, pkt); break; case RESPST_CHK_OP_VALID: state = check_op_valid(qp, pkt); break; case RESPST_CHK_RESOURCE: state = check_resource(qp, pkt); break; case RESPST_CHK_LENGTH: state = rxe_resp_check_length(qp, pkt); break; case RESPST_CHK_RKEY: state = check_rkey(qp, pkt); break; case RESPST_EXECUTE: state = execute(qp, pkt); break; case RESPST_COMPLETE: state = do_complete(qp, pkt); break; case RESPST_READ_REPLY: state = read_reply(qp, pkt); break; case RESPST_ATOMIC_REPLY: state = atomic_reply(qp, pkt); break; case RESPST_ATOMIC_WRITE_REPLY: state = atomic_write_reply(qp, pkt); break; case RESPST_PROCESS_FLUSH: state = process_flush(qp, pkt); break; case RESPST_ACKNOWLEDGE: state = acknowledge(qp, pkt); break; case RESPST_CLEANUP: state = cleanup(qp, pkt); break; case RESPST_DUPLICATE_REQUEST: state = duplicate_request(qp, pkt); break; case RESPST_ERR_PSN_OUT_OF_SEQ: /* RC only - Class B. Drop packet. */ send_ack(qp, AETH_NAK_PSN_SEQ_ERROR, qp->resp.psn); state = RESPST_CLEANUP; break; case RESPST_ERR_TOO_MANY_RDMA_ATM_REQ: case RESPST_ERR_MISSING_OPCODE_FIRST: case RESPST_ERR_MISSING_OPCODE_LAST_C: case RESPST_ERR_UNSUPPORTED_OPCODE: case RESPST_ERR_MISALIGNED_ATOMIC: /* RC Only - Class C. */ do_class_ac_error(qp, AETH_NAK_INVALID_REQ, IB_WC_REM_INV_REQ_ERR); state = RESPST_COMPLETE; break; case RESPST_ERR_MISSING_OPCODE_LAST_D1E: state = do_class_d1e_error(qp); break; case RESPST_ERR_RNR: if (qp_type(qp) == IB_QPT_RC) { rxe_counter_inc(rxe, RXE_CNT_SND_RNR); /* RC - class B */ send_ack(qp, AETH_RNR_NAK | (~AETH_TYPE_MASK & qp->attr.min_rnr_timer), pkt->psn); } else { /* UD/UC - class D */ qp->resp.drop_msg = 1; } state = RESPST_CLEANUP; break; case RESPST_ERR_RKEY_VIOLATION: if (qp_type(qp) == IB_QPT_RC) { /* Class C */ do_class_ac_error(qp, AETH_NAK_REM_ACC_ERR, IB_WC_REM_ACCESS_ERR); state = RESPST_COMPLETE; } else { qp->resp.drop_msg = 1; if (qp->srq) { /* UC/SRQ Class D */ qp->resp.status = IB_WC_REM_ACCESS_ERR; state = RESPST_COMPLETE; } else { /* UC/non-SRQ Class E. */ state = RESPST_CLEANUP; } } break; case RESPST_ERR_INVALIDATE_RKEY: /* RC - Class J. */ qp->resp.goto_error = 1; qp->resp.status = IB_WC_REM_INV_REQ_ERR; state = RESPST_COMPLETE; break; case RESPST_ERR_LENGTH: if (qp_type(qp) == IB_QPT_RC) { /* Class C */ do_class_ac_error(qp, AETH_NAK_INVALID_REQ, IB_WC_REM_INV_REQ_ERR); state = RESPST_COMPLETE; } else if (qp->srq) { /* UC/UD - class E */ qp->resp.status = IB_WC_REM_INV_REQ_ERR; state = RESPST_COMPLETE; } else { /* UC/UD - class D */ qp->resp.drop_msg = 1; state = RESPST_CLEANUP; } break; case RESPST_ERR_MALFORMED_WQE: /* All, Class A. */ do_class_ac_error(qp, AETH_NAK_REM_OP_ERR, IB_WC_LOC_QP_OP_ERR); state = RESPST_COMPLETE; break; case RESPST_ERR_CQ_OVERFLOW: /* All - Class G */ state = RESPST_ERROR; break; case RESPST_DONE: if (qp->resp.goto_error) { state = RESPST_ERROR; break; } goto done; case RESPST_EXIT: if (qp->resp.goto_error) { state = RESPST_ERROR; break; } goto exit; case RESPST_ERROR: qp->resp.goto_error = 0; rxe_dbg_qp(qp, "moved to error state\n"); rxe_qp_error(qp); goto exit; default: WARN_ON_ONCE(1); } } /* A non-zero return value will cause rxe_do_task to * exit its loop and end the work item. A zero return * will continue looping and return to rxe_responder */ done: ret = 0; goto out; exit: ret = -EAGAIN; out: return ret; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1