Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Krishna Reddy | 870 | 57.81% | 2 | 7.69% |
Thierry Reding | 247 | 16.41% | 2 | 7.69% |
Robin Murphy | 209 | 13.89% | 13 | 50.00% |
Will Deacon | 85 | 5.65% | 3 | 11.54% |
Ashish Mhetre | 80 | 5.32% | 1 | 3.85% |
R Sricharan | 7 | 0.47% | 1 | 3.85% |
Rob Clark | 2 | 0.13% | 1 | 3.85% |
Julia Lawall | 2 | 0.13% | 1 | 3.85% |
Jason Gunthorpe | 2 | 0.13% | 1 | 3.85% |
Thomas Gleixner | 1 | 0.07% | 1 | 3.85% |
Total | 1505 | 26 |
// SPDX-License-Identifier: GPL-2.0-only // Copyright (C) 2019-2020 NVIDIA CORPORATION. All rights reserved. #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <soc/tegra/mc.h> #include "arm-smmu.h" /* * Tegra194 has three ARM MMU-500 Instances. * Two of them are used together and must be programmed identically for * interleaved IOVA accesses across them and translates accesses from * non-isochronous HW devices. * Third one is used for translating accesses from isochronous HW devices. * * In addition, the SMMU driver needs to coordinate with the memory controller * driver to ensure that the right SID override is programmed for any given * memory client. This is necessary to allow for use-case such as seamlessly * handing over the display controller configuration from the firmware to the * kernel. * * This implementation supports programming of the two instances that must * be programmed identically and takes care of invoking the memory controller * driver for SID override programming after devices have been attached to an * SMMU instance. */ #define MAX_SMMU_INSTANCES 2 struct nvidia_smmu { struct arm_smmu_device smmu; void __iomem *bases[MAX_SMMU_INSTANCES]; unsigned int num_instances; struct tegra_mc *mc; }; static inline struct nvidia_smmu *to_nvidia_smmu(struct arm_smmu_device *smmu) { return container_of(smmu, struct nvidia_smmu, smmu); } static inline void __iomem *nvidia_smmu_page(struct arm_smmu_device *smmu, unsigned int inst, int page) { struct nvidia_smmu *nvidia_smmu; nvidia_smmu = container_of(smmu, struct nvidia_smmu, smmu); return nvidia_smmu->bases[inst] + (page << smmu->pgshift); } static u32 nvidia_smmu_read_reg(struct arm_smmu_device *smmu, int page, int offset) { void __iomem *reg = nvidia_smmu_page(smmu, 0, page) + offset; return readl_relaxed(reg); } static void nvidia_smmu_write_reg(struct arm_smmu_device *smmu, int page, int offset, u32 val) { struct nvidia_smmu *nvidia = to_nvidia_smmu(smmu); unsigned int i; for (i = 0; i < nvidia->num_instances; i++) { void __iomem *reg = nvidia_smmu_page(smmu, i, page) + offset; writel_relaxed(val, reg); } } static u64 nvidia_smmu_read_reg64(struct arm_smmu_device *smmu, int page, int offset) { void __iomem *reg = nvidia_smmu_page(smmu, 0, page) + offset; return readq_relaxed(reg); } static void nvidia_smmu_write_reg64(struct arm_smmu_device *smmu, int page, int offset, u64 val) { struct nvidia_smmu *nvidia = to_nvidia_smmu(smmu); unsigned int i; for (i = 0; i < nvidia->num_instances; i++) { void __iomem *reg = nvidia_smmu_page(smmu, i, page) + offset; writeq_relaxed(val, reg); } } static void nvidia_smmu_tlb_sync(struct arm_smmu_device *smmu, int page, int sync, int status) { struct nvidia_smmu *nvidia = to_nvidia_smmu(smmu); unsigned int delay; arm_smmu_writel(smmu, page, sync, 0); for (delay = 1; delay < TLB_LOOP_TIMEOUT; delay *= 2) { unsigned int spin_cnt; for (spin_cnt = TLB_SPIN_COUNT; spin_cnt > 0; spin_cnt--) { u32 val = 0; unsigned int i; for (i = 0; i < nvidia->num_instances; i++) { void __iomem *reg; reg = nvidia_smmu_page(smmu, i, page) + status; val |= readl_relaxed(reg); } if (!(val & ARM_SMMU_sTLBGSTATUS_GSACTIVE)) return; cpu_relax(); } udelay(delay); } dev_err_ratelimited(smmu->dev, "TLB sync timed out -- SMMU may be deadlocked\n"); } static int nvidia_smmu_reset(struct arm_smmu_device *smmu) { struct nvidia_smmu *nvidia = to_nvidia_smmu(smmu); unsigned int i; for (i = 0; i < nvidia->num_instances; i++) { u32 val; void __iomem *reg = nvidia_smmu_page(smmu, i, ARM_SMMU_GR0) + ARM_SMMU_GR0_sGFSR; /* clear global FSR */ val = readl_relaxed(reg); writel_relaxed(val, reg); } return 0; } static irqreturn_t nvidia_smmu_global_fault_inst(int irq, struct arm_smmu_device *smmu, int inst) { u32 gfsr, gfsynr0, gfsynr1, gfsynr2; void __iomem *gr0_base = nvidia_smmu_page(smmu, inst, 0); gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR); if (!gfsr) return IRQ_NONE; gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0); gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1); gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2); dev_err_ratelimited(smmu->dev, "Unexpected global fault, this could be serious\n"); dev_err_ratelimited(smmu->dev, "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n", gfsr, gfsynr0, gfsynr1, gfsynr2); writel_relaxed(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR); return IRQ_HANDLED; } static irqreturn_t nvidia_smmu_global_fault(int irq, void *dev) { unsigned int inst; irqreturn_t ret = IRQ_NONE; struct arm_smmu_device *smmu = dev; struct nvidia_smmu *nvidia = to_nvidia_smmu(smmu); for (inst = 0; inst < nvidia->num_instances; inst++) { irqreturn_t irq_ret; irq_ret = nvidia_smmu_global_fault_inst(irq, smmu, inst); if (irq_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } return ret; } static irqreturn_t nvidia_smmu_context_fault_bank(int irq, struct arm_smmu_device *smmu, int idx, int inst) { u32 fsr, fsynr, cbfrsynra; unsigned long iova; void __iomem *gr1_base = nvidia_smmu_page(smmu, inst, 1); void __iomem *cb_base = nvidia_smmu_page(smmu, inst, smmu->numpage + idx); fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR); if (!(fsr & ARM_SMMU_FSR_FAULT)) return IRQ_NONE; fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0); iova = readq_relaxed(cb_base + ARM_SMMU_CB_FAR); cbfrsynra = readl_relaxed(gr1_base + ARM_SMMU_GR1_CBFRSYNRA(idx)); dev_err_ratelimited(smmu->dev, "Unhandled context fault: fsr=0x%x, iova=0x%08lx, fsynr=0x%x, cbfrsynra=0x%x, cb=%d\n", fsr, iova, fsynr, cbfrsynra, idx); writel_relaxed(fsr, cb_base + ARM_SMMU_CB_FSR); return IRQ_HANDLED; } static irqreturn_t nvidia_smmu_context_fault(int irq, void *dev) { int idx; unsigned int inst; irqreturn_t ret = IRQ_NONE; struct arm_smmu_device *smmu; struct arm_smmu_domain *smmu_domain = dev; struct nvidia_smmu *nvidia; smmu = smmu_domain->smmu; nvidia = to_nvidia_smmu(smmu); for (inst = 0; inst < nvidia->num_instances; inst++) { irqreturn_t irq_ret; /* * Interrupt line is shared between all contexts. * Check for faults across all contexts. */ for (idx = 0; idx < smmu->num_context_banks; idx++) { irq_ret = nvidia_smmu_context_fault_bank(irq, smmu, idx, inst); if (irq_ret == IRQ_HANDLED) ret = IRQ_HANDLED; } } return ret; } static void nvidia_smmu_probe_finalize(struct arm_smmu_device *smmu, struct device *dev) { struct nvidia_smmu *nvidia = to_nvidia_smmu(smmu); int err; err = tegra_mc_probe_device(nvidia->mc, dev); if (err < 0) dev_err(smmu->dev, "memory controller probe failed for %s: %d\n", dev_name(dev), err); } static int nvidia_smmu_init_context(struct arm_smmu_domain *smmu_domain, struct io_pgtable_cfg *pgtbl_cfg, struct device *dev) { struct arm_smmu_device *smmu = smmu_domain->smmu; const struct device_node *np = smmu->dev->of_node; /* * Tegra194 and Tegra234 SoCs have the erratum that causes walk cache * entries to not be invalidated correctly. The problem is that the walk * cache index generated for IOVA is not same across translation and * invalidation requests. This is leading to page faults when PMD entry * is released during unmap and populated with new PTE table during * subsequent map request. Disabling large page mappings avoids the * release of PMD entry and avoid translations seeing stale PMD entry in * walk cache. * Fix this by limiting the page mappings to PAGE_SIZE on Tegra194 and * Tegra234. */ if (of_device_is_compatible(np, "nvidia,tegra234-smmu") || of_device_is_compatible(np, "nvidia,tegra194-smmu")) { smmu->pgsize_bitmap = PAGE_SIZE; pgtbl_cfg->pgsize_bitmap = smmu->pgsize_bitmap; } return 0; } static const struct arm_smmu_impl nvidia_smmu_impl = { .read_reg = nvidia_smmu_read_reg, .write_reg = nvidia_smmu_write_reg, .read_reg64 = nvidia_smmu_read_reg64, .write_reg64 = nvidia_smmu_write_reg64, .reset = nvidia_smmu_reset, .tlb_sync = nvidia_smmu_tlb_sync, .global_fault = nvidia_smmu_global_fault, .context_fault = nvidia_smmu_context_fault, .probe_finalize = nvidia_smmu_probe_finalize, .init_context = nvidia_smmu_init_context, }; static const struct arm_smmu_impl nvidia_smmu_single_impl = { .probe_finalize = nvidia_smmu_probe_finalize, .init_context = nvidia_smmu_init_context, }; struct arm_smmu_device *nvidia_smmu_impl_init(struct arm_smmu_device *smmu) { struct resource *res; struct device *dev = smmu->dev; struct nvidia_smmu *nvidia_smmu; struct platform_device *pdev = to_platform_device(dev); unsigned int i; nvidia_smmu = devm_krealloc(dev, smmu, sizeof(*nvidia_smmu), GFP_KERNEL); if (!nvidia_smmu) return ERR_PTR(-ENOMEM); nvidia_smmu->mc = devm_tegra_memory_controller_get(dev); if (IS_ERR(nvidia_smmu->mc)) return ERR_CAST(nvidia_smmu->mc); /* Instance 0 is ioremapped by arm-smmu.c. */ nvidia_smmu->bases[0] = smmu->base; nvidia_smmu->num_instances++; for (i = 1; i < MAX_SMMU_INSTANCES; i++) { res = platform_get_resource(pdev, IORESOURCE_MEM, i); if (!res) break; nvidia_smmu->bases[i] = devm_ioremap_resource(dev, res); if (IS_ERR(nvidia_smmu->bases[i])) return ERR_CAST(nvidia_smmu->bases[i]); nvidia_smmu->num_instances++; } if (nvidia_smmu->num_instances == 1) nvidia_smmu->smmu.impl = &nvidia_smmu_single_impl; else nvidia_smmu->smmu.impl = &nvidia_smmu_impl; return &nvidia_smmu->smmu; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1