Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Björn Andersson | 6822 | 78.49% | 3 | 13.64% |
Anjelique Melendez | 1560 | 17.95% | 6 | 27.27% |
Uwe Kleine-König | 110 | 1.27% | 6 | 27.27% |
satya priya | 62 | 0.71% | 1 | 4.55% |
Luca Weiss | 50 | 0.58% | 1 | 4.55% |
Marijn Suijten | 32 | 0.37% | 1 | 4.55% |
Gianluca Boiano | 25 | 0.29% | 1 | 4.55% |
Lu Hongfei | 14 | 0.16% | 1 | 4.55% |
Dmitry Eremin-Solenikov | 11 | 0.13% | 1 | 4.55% |
Kees Cook | 5 | 0.06% | 1 | 4.55% |
Total | 8691 | 22 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2017-2022 Linaro Ltd * Copyright (c) 2010-2012, The Linux Foundation. All rights reserved. * Copyright (c) 2023, Qualcomm Innovation Center, Inc. All rights reserved. */ #include <linux/bits.h> #include <linux/bitfield.h> #include <linux/led-class-multicolor.h> #include <linux/module.h> #include <linux/nvmem-consumer.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pwm.h> #include <linux/regmap.h> #include <linux/slab.h> #include <linux/soc/qcom/qcom-pbs.h> #define LPG_SUBTYPE_REG 0x05 #define LPG_SUBTYPE_LPG 0x2 #define LPG_SUBTYPE_PWM 0xb #define LPG_SUBTYPE_HI_RES_PWM 0xc #define LPG_SUBTYPE_LPG_LITE 0x11 #define LPG_PATTERN_CONFIG_REG 0x40 #define LPG_SIZE_CLK_REG 0x41 #define PWM_CLK_SELECT_MASK GENMASK(1, 0) #define PWM_CLK_SELECT_HI_RES_MASK GENMASK(2, 0) #define PWM_SIZE_HI_RES_MASK GENMASK(6, 4) #define LPG_PREDIV_CLK_REG 0x42 #define PWM_FREQ_PRE_DIV_MASK GENMASK(6, 5) #define PWM_FREQ_EXP_MASK GENMASK(2, 0) #define PWM_TYPE_CONFIG_REG 0x43 #define PWM_VALUE_REG 0x44 #define PWM_ENABLE_CONTROL_REG 0x46 #define PWM_SYNC_REG 0x47 #define LPG_RAMP_DURATION_REG 0x50 #define LPG_HI_PAUSE_REG 0x52 #define LPG_LO_PAUSE_REG 0x54 #define LPG_HI_IDX_REG 0x56 #define LPG_LO_IDX_REG 0x57 #define PWM_SEC_ACCESS_REG 0xd0 #define PWM_DTEST_REG(x) (0xe2 + (x) - 1) #define SDAM_REG_PBS_SEQ_EN 0x42 #define SDAM_PBS_TRIG_SET 0xe5 #define SDAM_PBS_TRIG_CLR 0xe6 #define TRI_LED_SRC_SEL 0x45 #define TRI_LED_EN_CTL 0x46 #define TRI_LED_ATC_CTL 0x47 #define LPG_LUT_REG(x) (0x40 + (x) * 2) #define RAMP_CONTROL_REG 0xc8 #define LPG_RESOLUTION_9BIT BIT(9) #define LPG_RESOLUTION_15BIT BIT(15) #define PPG_MAX_LED_BRIGHTNESS 255 #define LPG_MAX_M 7 #define LPG_MAX_PREDIV 6 #define DEFAULT_TICK_DURATION_US 7800 #define RAMP_STEP_DURATION(x) (((x) * 1000 / DEFAULT_TICK_DURATION_US) & 0xff) #define SDAM_MAX_DEVICES 2 /* LPG common config settings for PPG */ #define SDAM_START_BASE 0x40 #define SDAM_REG_RAMP_STEP_DURATION 0x47 #define SDAM_LUT_SDAM_LUT_PATTERN_OFFSET 0x45 #define SDAM_LPG_SDAM_LUT_PATTERN_OFFSET 0x80 /* LPG per channel config settings for PPG */ #define SDAM_LUT_EN_OFFSET 0x0 #define SDAM_PATTERN_CONFIG_OFFSET 0x1 #define SDAM_END_INDEX_OFFSET 0x3 #define SDAM_START_INDEX_OFFSET 0x4 #define SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET 0x6 #define SDAM_PAUSE_HI_MULTIPLIER_OFFSET 0x8 #define SDAM_PAUSE_LO_MULTIPLIER_OFFSET 0x9 struct lpg_channel; struct lpg_data; /** * struct lpg - LPG device context * @dev: pointer to LPG device * @map: regmap for register access * @lock: used to synchronize LED and pwm callback requests * @pwm: PWM-chip object, if operating in PWM mode * @data: reference to version specific data * @lut_base: base address of the LUT block (optional) * @lut_size: number of entries in the LUT block * @lut_bitmap: allocation bitmap for LUT entries * @pbs_dev: PBS device * @lpg_chan_sdam: LPG SDAM peripheral device * @lut_sdam: LUT SDAM peripheral device * @pbs_en_bitmap: bitmap for tracking PBS triggers * @triled_base: base address of the TRILED block (optional) * @triled_src: power-source for the TRILED * @triled_has_atc_ctl: true if there is TRI_LED_ATC_CTL register * @triled_has_src_sel: true if there is TRI_LED_SRC_SEL register * @channels: list of PWM channels * @num_channels: number of @channels */ struct lpg { struct device *dev; struct regmap *map; struct mutex lock; struct pwm_chip *pwm; const struct lpg_data *data; u32 lut_base; u32 lut_size; unsigned long *lut_bitmap; struct pbs_dev *pbs_dev; struct nvmem_device *lpg_chan_sdam; struct nvmem_device *lut_sdam; unsigned long pbs_en_bitmap; u32 triled_base; u32 triled_src; bool triled_has_atc_ctl; bool triled_has_src_sel; struct lpg_channel *channels; unsigned int num_channels; }; /** * struct lpg_channel - per channel data * @lpg: reference to parent lpg * @base: base address of the PWM channel * @triled_mask: mask in TRILED to enable this channel * @lut_mask: mask in LUT to start pattern generator for this channel * @subtype: PMIC hardware block subtype * @sdam_offset: channel offset in LPG SDAM * @in_use: channel is exposed to LED framework * @color: color of the LED attached to this channel * @dtest_line: DTEST line for output, or 0 if disabled * @dtest_value: DTEST line configuration * @pwm_value: duty (in microseconds) of the generated pulses, overridden by LUT * @enabled: output enabled? * @period: period (in nanoseconds) of the generated pulses * @clk_sel: reference clock frequency selector * @pre_div_sel: divider selector of the reference clock * @pre_div_exp: exponential divider of the reference clock * @pwm_resolution_sel: pwm resolution selector * @ramp_enabled: duty cycle is driven by iterating over lookup table * @ramp_ping_pong: reverse through pattern, rather than wrapping to start * @ramp_oneshot: perform only a single pass over the pattern * @ramp_reverse: iterate over pattern backwards * @ramp_tick_ms: length (in milliseconds) of one step in the pattern * @ramp_lo_pause_ms: pause (in milliseconds) before iterating over pattern * @ramp_hi_pause_ms: pause (in milliseconds) after iterating over pattern * @pattern_lo_idx: start index of associated pattern * @pattern_hi_idx: last index of associated pattern */ struct lpg_channel { struct lpg *lpg; u32 base; unsigned int triled_mask; unsigned int lut_mask; unsigned int subtype; u32 sdam_offset; bool in_use; int color; u32 dtest_line; u32 dtest_value; u16 pwm_value; bool enabled; u64 period; unsigned int clk_sel; unsigned int pre_div_sel; unsigned int pre_div_exp; unsigned int pwm_resolution_sel; bool ramp_enabled; bool ramp_ping_pong; bool ramp_oneshot; bool ramp_reverse; unsigned short ramp_tick_ms; unsigned long ramp_lo_pause_ms; unsigned long ramp_hi_pause_ms; unsigned int pattern_lo_idx; unsigned int pattern_hi_idx; }; /** * struct lpg_led - logical LED object * @lpg: lpg context reference * @cdev: LED class device * @mcdev: Multicolor LED class device * @num_channels: number of @channels * @channels: list of channels associated with the LED */ struct lpg_led { struct lpg *lpg; struct led_classdev cdev; struct led_classdev_mc mcdev; unsigned int num_channels; struct lpg_channel *channels[] __counted_by(num_channels); }; /** * struct lpg_channel_data - per channel initialization data * @sdam_offset: Channel offset in LPG SDAM * @base: base address for PWM channel registers * @triled_mask: bitmask for controlling this channel in TRILED */ struct lpg_channel_data { unsigned int sdam_offset; unsigned int base; u8 triled_mask; }; /** * struct lpg_data - initialization data * @lut_base: base address of LUT block * @lut_size: number of entries in LUT * @triled_base: base address of TRILED * @triled_has_atc_ctl: true if there is TRI_LED_ATC_CTL register * @triled_has_src_sel: true if there is TRI_LED_SRC_SEL register * @num_channels: number of channels in LPG * @channels: list of channel initialization data */ struct lpg_data { unsigned int lut_base; unsigned int lut_size; unsigned int triled_base; bool triled_has_atc_ctl; bool triled_has_src_sel; int num_channels; const struct lpg_channel_data *channels; }; #define PBS_SW_TRIG_BIT BIT(0) static int lpg_clear_pbs_trigger(struct lpg *lpg, unsigned int lut_mask) { u8 val = 0; int rc; lpg->pbs_en_bitmap &= (~lut_mask); if (!lpg->pbs_en_bitmap) { rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_REG_PBS_SEQ_EN, 1, &val); if (rc < 0) return rc; if (lpg->lut_sdam) { val = PBS_SW_TRIG_BIT; rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_PBS_TRIG_CLR, 1, &val); if (rc < 0) return rc; } } return 0; } static int lpg_set_pbs_trigger(struct lpg *lpg, unsigned int lut_mask) { u8 val = PBS_SW_TRIG_BIT; int rc; if (!lpg->pbs_en_bitmap) { rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_REG_PBS_SEQ_EN, 1, &val); if (rc < 0) return rc; if (lpg->lut_sdam) { rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_PBS_TRIG_SET, 1, &val); if (rc < 0) return rc; } else { rc = qcom_pbs_trigger_event(lpg->pbs_dev, val); if (rc < 0) return rc; } } lpg->pbs_en_bitmap |= lut_mask; return 0; } static int lpg_sdam_configure_triggers(struct lpg_channel *chan, u8 set_trig) { u32 addr = SDAM_LUT_EN_OFFSET + chan->sdam_offset; if (!chan->lpg->lpg_chan_sdam) return 0; return nvmem_device_write(chan->lpg->lpg_chan_sdam, addr, 1, &set_trig); } static int triled_set(struct lpg *lpg, unsigned int mask, unsigned int enable) { /* Skip if we don't have a triled block */ if (!lpg->triled_base) return 0; return regmap_update_bits(lpg->map, lpg->triled_base + TRI_LED_EN_CTL, mask, enable); } static int lpg_lut_store_sdam(struct lpg *lpg, struct led_pattern *pattern, size_t len, unsigned int *lo_idx, unsigned int *hi_idx) { unsigned int idx; u8 brightness; int i, rc; u16 addr; if (len > lpg->lut_size) { dev_err(lpg->dev, "Pattern length (%zu) exceeds maximum pattern length (%d)\n", len, lpg->lut_size); return -EINVAL; } idx = bitmap_find_next_zero_area(lpg->lut_bitmap, lpg->lut_size, 0, len, 0); if (idx >= lpg->lut_size) return -ENOSPC; for (i = 0; i < len; i++) { brightness = pattern[i].brightness; if (lpg->lut_sdam) { addr = SDAM_LUT_SDAM_LUT_PATTERN_OFFSET + i + idx; rc = nvmem_device_write(lpg->lut_sdam, addr, 1, &brightness); } else { addr = SDAM_LPG_SDAM_LUT_PATTERN_OFFSET + i + idx; rc = nvmem_device_write(lpg->lpg_chan_sdam, addr, 1, &brightness); } if (rc < 0) return rc; } bitmap_set(lpg->lut_bitmap, idx, len); *lo_idx = idx; *hi_idx = idx + len - 1; return 0; } static int lpg_lut_store(struct lpg *lpg, struct led_pattern *pattern, size_t len, unsigned int *lo_idx, unsigned int *hi_idx) { unsigned int idx; u16 val; int i; idx = bitmap_find_next_zero_area(lpg->lut_bitmap, lpg->lut_size, 0, len, 0); if (idx >= lpg->lut_size) return -ENOMEM; for (i = 0; i < len; i++) { val = pattern[i].brightness; regmap_bulk_write(lpg->map, lpg->lut_base + LPG_LUT_REG(idx + i), &val, sizeof(val)); } bitmap_set(lpg->lut_bitmap, idx, len); *lo_idx = idx; *hi_idx = idx + len - 1; return 0; } static void lpg_lut_free(struct lpg *lpg, unsigned int lo_idx, unsigned int hi_idx) { int len; len = hi_idx - lo_idx + 1; if (len == 1) return; bitmap_clear(lpg->lut_bitmap, lo_idx, len); } static int lpg_lut_sync(struct lpg *lpg, unsigned int mask) { if (!lpg->lut_base) return 0; return regmap_write(lpg->map, lpg->lut_base + RAMP_CONTROL_REG, mask); } static const unsigned int lpg_clk_rates[] = {0, 1024, 32768, 19200000}; static const unsigned int lpg_clk_rates_hi_res[] = {0, 1024, 32768, 19200000, 76800000}; static const unsigned int lpg_pre_divs[] = {1, 3, 5, 6}; static const unsigned int lpg_pwm_resolution[] = {9}; static const unsigned int lpg_pwm_resolution_hi_res[] = {8, 9, 10, 11, 12, 13, 14, 15}; static int lpg_calc_freq(struct lpg_channel *chan, uint64_t period) { unsigned int i, pwm_resolution_count, best_pwm_resolution_sel = 0; const unsigned int *clk_rate_arr, *pwm_resolution_arr; unsigned int clk_sel, clk_len, best_clk = 0; unsigned int div, best_div = 0; unsigned int m, best_m = 0; unsigned int resolution; unsigned int error; unsigned int best_err = UINT_MAX; u64 max_period, min_period; u64 best_period = 0; u64 max_res; /* * The PWM period is determined by: * * resolution * pre_div * 2^M * period = -------------------------- * refclk * * Resolution = 2^9 bits for PWM or * 2^{8, 9, 10, 11, 12, 13, 14, 15} bits for high resolution PWM * pre_div = {1, 3, 5, 6} and * M = [0..7]. * * This allows for periods between 27uS and 384s for PWM channels and periods between * 3uS and 24576s for high resolution PWMs. * The PWM framework wants a period of equal or lower length than requested, * reject anything below minimum period. */ if (chan->subtype == LPG_SUBTYPE_HI_RES_PWM) { clk_rate_arr = lpg_clk_rates_hi_res; clk_len = ARRAY_SIZE(lpg_clk_rates_hi_res); pwm_resolution_arr = lpg_pwm_resolution_hi_res; pwm_resolution_count = ARRAY_SIZE(lpg_pwm_resolution_hi_res); max_res = LPG_RESOLUTION_15BIT; } else { clk_rate_arr = lpg_clk_rates; clk_len = ARRAY_SIZE(lpg_clk_rates); pwm_resolution_arr = lpg_pwm_resolution; pwm_resolution_count = ARRAY_SIZE(lpg_pwm_resolution); max_res = LPG_RESOLUTION_9BIT; } min_period = div64_u64((u64)NSEC_PER_SEC * (1 << pwm_resolution_arr[0]), clk_rate_arr[clk_len - 1]); if (period <= min_period) return -EINVAL; /* Limit period to largest possible value, to avoid overflows */ max_period = div64_u64((u64)NSEC_PER_SEC * max_res * LPG_MAX_PREDIV * (1 << LPG_MAX_M), 1024); if (period > max_period) period = max_period; /* * Search for the pre_div, refclk, resolution and M by solving the rewritten formula * for each refclk, resolution and pre_div value: * * period * refclk * M = log2 ------------------------------------- * NSEC_PER_SEC * pre_div * resolution */ for (i = 0; i < pwm_resolution_count; i++) { resolution = 1 << pwm_resolution_arr[i]; for (clk_sel = 1; clk_sel < clk_len; clk_sel++) { u64 numerator = period * clk_rate_arr[clk_sel]; for (div = 0; div < ARRAY_SIZE(lpg_pre_divs); div++) { u64 denominator = (u64)NSEC_PER_SEC * lpg_pre_divs[div] * resolution; u64 actual; u64 ratio; if (numerator < denominator) continue; ratio = div64_u64(numerator, denominator); m = ilog2(ratio); if (m > LPG_MAX_M) m = LPG_MAX_M; actual = DIV_ROUND_UP_ULL(denominator * (1 << m), clk_rate_arr[clk_sel]); error = period - actual; if (error < best_err) { best_err = error; best_div = div; best_m = m; best_clk = clk_sel; best_period = actual; best_pwm_resolution_sel = i; } } } } chan->clk_sel = best_clk; chan->pre_div_sel = best_div; chan->pre_div_exp = best_m; chan->period = best_period; chan->pwm_resolution_sel = best_pwm_resolution_sel; return 0; } static void lpg_calc_duty(struct lpg_channel *chan, uint64_t duty) { unsigned int max; unsigned int val; unsigned int clk_rate; if (chan->subtype == LPG_SUBTYPE_HI_RES_PWM) { max = LPG_RESOLUTION_15BIT - 1; clk_rate = lpg_clk_rates_hi_res[chan->clk_sel]; } else { max = LPG_RESOLUTION_9BIT - 1; clk_rate = lpg_clk_rates[chan->clk_sel]; } val = div64_u64(duty * clk_rate, (u64)NSEC_PER_SEC * lpg_pre_divs[chan->pre_div_sel] * (1 << chan->pre_div_exp)); chan->pwm_value = min(val, max); } static void lpg_apply_freq(struct lpg_channel *chan) { unsigned long val; struct lpg *lpg = chan->lpg; if (!chan->enabled) return; val = chan->clk_sel; /* Specify resolution, based on the subtype of the channel */ switch (chan->subtype) { case LPG_SUBTYPE_LPG: val |= GENMASK(5, 4); break; case LPG_SUBTYPE_PWM: val |= BIT(2); break; case LPG_SUBTYPE_HI_RES_PWM: val |= FIELD_PREP(PWM_SIZE_HI_RES_MASK, chan->pwm_resolution_sel); break; case LPG_SUBTYPE_LPG_LITE: default: val |= BIT(4); break; } regmap_write(lpg->map, chan->base + LPG_SIZE_CLK_REG, val); val = FIELD_PREP(PWM_FREQ_PRE_DIV_MASK, chan->pre_div_sel) | FIELD_PREP(PWM_FREQ_EXP_MASK, chan->pre_div_exp); regmap_write(lpg->map, chan->base + LPG_PREDIV_CLK_REG, val); } #define LPG_ENABLE_GLITCH_REMOVAL BIT(5) static void lpg_enable_glitch(struct lpg_channel *chan) { struct lpg *lpg = chan->lpg; regmap_update_bits(lpg->map, chan->base + PWM_TYPE_CONFIG_REG, LPG_ENABLE_GLITCH_REMOVAL, 0); } static void lpg_disable_glitch(struct lpg_channel *chan) { struct lpg *lpg = chan->lpg; regmap_update_bits(lpg->map, chan->base + PWM_TYPE_CONFIG_REG, LPG_ENABLE_GLITCH_REMOVAL, LPG_ENABLE_GLITCH_REMOVAL); } static void lpg_apply_pwm_value(struct lpg_channel *chan) { struct lpg *lpg = chan->lpg; u16 val = chan->pwm_value; if (!chan->enabled) return; regmap_bulk_write(lpg->map, chan->base + PWM_VALUE_REG, &val, sizeof(val)); } #define LPG_PATTERN_CONFIG_LO_TO_HI BIT(4) #define LPG_PATTERN_CONFIG_REPEAT BIT(3) #define LPG_PATTERN_CONFIG_TOGGLE BIT(2) #define LPG_PATTERN_CONFIG_PAUSE_HI BIT(1) #define LPG_PATTERN_CONFIG_PAUSE_LO BIT(0) static void lpg_sdam_apply_lut_control(struct lpg_channel *chan) { struct nvmem_device *lpg_chan_sdam = chan->lpg->lpg_chan_sdam; unsigned int lo_idx = chan->pattern_lo_idx; unsigned int hi_idx = chan->pattern_hi_idx; u8 val = 0, conf = 0, lut_offset = 0; unsigned int hi_pause, lo_pause; struct lpg *lpg = chan->lpg; if (!chan->ramp_enabled || chan->pattern_lo_idx == chan->pattern_hi_idx) return; hi_pause = DIV_ROUND_UP(chan->ramp_hi_pause_ms, chan->ramp_tick_ms); lo_pause = DIV_ROUND_UP(chan->ramp_lo_pause_ms, chan->ramp_tick_ms); if (!chan->ramp_oneshot) conf |= LPG_PATTERN_CONFIG_REPEAT; if (chan->ramp_hi_pause_ms && lpg->lut_sdam) conf |= LPG_PATTERN_CONFIG_PAUSE_HI; if (chan->ramp_lo_pause_ms && lpg->lut_sdam) conf |= LPG_PATTERN_CONFIG_PAUSE_LO; if (lpg->lut_sdam) { lut_offset = SDAM_LUT_SDAM_LUT_PATTERN_OFFSET - SDAM_START_BASE; hi_idx += lut_offset; lo_idx += lut_offset; } nvmem_device_write(lpg_chan_sdam, SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET + chan->sdam_offset, 1, &val); nvmem_device_write(lpg_chan_sdam, SDAM_PATTERN_CONFIG_OFFSET + chan->sdam_offset, 1, &conf); nvmem_device_write(lpg_chan_sdam, SDAM_END_INDEX_OFFSET + chan->sdam_offset, 1, &hi_idx); nvmem_device_write(lpg_chan_sdam, SDAM_START_INDEX_OFFSET + chan->sdam_offset, 1, &lo_idx); val = RAMP_STEP_DURATION(chan->ramp_tick_ms); nvmem_device_write(lpg_chan_sdam, SDAM_REG_RAMP_STEP_DURATION, 1, &val); if (lpg->lut_sdam) { nvmem_device_write(lpg_chan_sdam, SDAM_PAUSE_HI_MULTIPLIER_OFFSET + chan->sdam_offset, 1, &hi_pause); nvmem_device_write(lpg_chan_sdam, SDAM_PAUSE_LO_MULTIPLIER_OFFSET + chan->sdam_offset, 1, &lo_pause); } } static void lpg_apply_lut_control(struct lpg_channel *chan) { struct lpg *lpg = chan->lpg; unsigned int hi_pause; unsigned int lo_pause; unsigned int conf = 0; unsigned int lo_idx = chan->pattern_lo_idx; unsigned int hi_idx = chan->pattern_hi_idx; u16 step = chan->ramp_tick_ms; if (!chan->ramp_enabled || chan->pattern_lo_idx == chan->pattern_hi_idx) return; hi_pause = DIV_ROUND_UP(chan->ramp_hi_pause_ms, step); lo_pause = DIV_ROUND_UP(chan->ramp_lo_pause_ms, step); if (!chan->ramp_reverse) conf |= LPG_PATTERN_CONFIG_LO_TO_HI; if (!chan->ramp_oneshot) conf |= LPG_PATTERN_CONFIG_REPEAT; if (chan->ramp_ping_pong) conf |= LPG_PATTERN_CONFIG_TOGGLE; if (chan->ramp_hi_pause_ms) conf |= LPG_PATTERN_CONFIG_PAUSE_HI; if (chan->ramp_lo_pause_ms) conf |= LPG_PATTERN_CONFIG_PAUSE_LO; regmap_write(lpg->map, chan->base + LPG_PATTERN_CONFIG_REG, conf); regmap_write(lpg->map, chan->base + LPG_HI_IDX_REG, hi_idx); regmap_write(lpg->map, chan->base + LPG_LO_IDX_REG, lo_idx); regmap_bulk_write(lpg->map, chan->base + LPG_RAMP_DURATION_REG, &step, sizeof(step)); regmap_write(lpg->map, chan->base + LPG_HI_PAUSE_REG, hi_pause); regmap_write(lpg->map, chan->base + LPG_LO_PAUSE_REG, lo_pause); } #define LPG_ENABLE_CONTROL_OUTPUT BIT(7) #define LPG_ENABLE_CONTROL_BUFFER_TRISTATE BIT(5) #define LPG_ENABLE_CONTROL_SRC_PWM BIT(2) #define LPG_ENABLE_CONTROL_RAMP_GEN BIT(1) static void lpg_apply_control(struct lpg_channel *chan) { unsigned int ctrl; struct lpg *lpg = chan->lpg; ctrl = LPG_ENABLE_CONTROL_BUFFER_TRISTATE; if (chan->enabled) ctrl |= LPG_ENABLE_CONTROL_OUTPUT; if (chan->pattern_lo_idx != chan->pattern_hi_idx) ctrl |= LPG_ENABLE_CONTROL_RAMP_GEN; else ctrl |= LPG_ENABLE_CONTROL_SRC_PWM; regmap_write(lpg->map, chan->base + PWM_ENABLE_CONTROL_REG, ctrl); /* * Due to LPG hardware bug, in the PWM mode, having enabled PWM, * We have to write PWM values one more time. */ if (chan->enabled) lpg_apply_pwm_value(chan); } #define LPG_SYNC_PWM BIT(0) static void lpg_apply_sync(struct lpg_channel *chan) { struct lpg *lpg = chan->lpg; regmap_write(lpg->map, chan->base + PWM_SYNC_REG, LPG_SYNC_PWM); } static int lpg_parse_dtest(struct lpg *lpg) { struct lpg_channel *chan; struct device_node *np = lpg->dev->of_node; int count; int ret; int i; count = of_property_count_u32_elems(np, "qcom,dtest"); if (count == -EINVAL) { return 0; } else if (count < 0) { ret = count; goto err_malformed; } else if (count != lpg->data->num_channels * 2) { return dev_err_probe(lpg->dev, -EINVAL, "qcom,dtest needs to be %d items\n", lpg->data->num_channels * 2); } for (i = 0; i < lpg->data->num_channels; i++) { chan = &lpg->channels[i]; ret = of_property_read_u32_index(np, "qcom,dtest", i * 2, &chan->dtest_line); if (ret) goto err_malformed; ret = of_property_read_u32_index(np, "qcom,dtest", i * 2 + 1, &chan->dtest_value); if (ret) goto err_malformed; } return 0; err_malformed: return dev_err_probe(lpg->dev, ret, "malformed qcom,dtest\n"); } static void lpg_apply_dtest(struct lpg_channel *chan) { struct lpg *lpg = chan->lpg; if (!chan->dtest_line) return; regmap_write(lpg->map, chan->base + PWM_SEC_ACCESS_REG, 0xa5); regmap_write(lpg->map, chan->base + PWM_DTEST_REG(chan->dtest_line), chan->dtest_value); } static void lpg_apply(struct lpg_channel *chan) { lpg_disable_glitch(chan); lpg_apply_freq(chan); lpg_apply_pwm_value(chan); lpg_apply_control(chan); lpg_apply_sync(chan); if (chan->lpg->lpg_chan_sdam) lpg_sdam_apply_lut_control(chan); else lpg_apply_lut_control(chan); lpg_enable_glitch(chan); } static void lpg_brightness_set(struct lpg_led *led, struct led_classdev *cdev, struct mc_subled *subleds) { enum led_brightness brightness; struct lpg_channel *chan; unsigned int triled_enabled = 0; unsigned int triled_mask = 0; unsigned int lut_mask = 0; unsigned int duty; struct lpg *lpg = led->lpg; int i; for (i = 0; i < led->num_channels; i++) { chan = led->channels[i]; brightness = subleds[i].brightness; if (brightness == LED_OFF) { chan->enabled = false; chan->ramp_enabled = false; } else if (chan->pattern_lo_idx != chan->pattern_hi_idx) { lpg_calc_freq(chan, NSEC_PER_MSEC); lpg_sdam_configure_triggers(chan, 1); chan->enabled = true; chan->ramp_enabled = true; lut_mask |= chan->lut_mask; triled_enabled |= chan->triled_mask; } else { lpg_calc_freq(chan, NSEC_PER_MSEC); duty = div_u64(brightness * chan->period, cdev->max_brightness); lpg_calc_duty(chan, duty); chan->enabled = true; chan->ramp_enabled = false; triled_enabled |= chan->triled_mask; } triled_mask |= chan->triled_mask; lpg_apply(chan); } /* Toggle triled lines */ if (triled_mask) triled_set(lpg, triled_mask, triled_enabled); /* Trigger start of ramp generator(s) */ if (lut_mask) { lpg_lut_sync(lpg, lut_mask); lpg_set_pbs_trigger(lpg, lut_mask); } } static int lpg_brightness_single_set(struct led_classdev *cdev, enum led_brightness value) { struct lpg_led *led = container_of(cdev, struct lpg_led, cdev); struct mc_subled info; mutex_lock(&led->lpg->lock); info.brightness = value; lpg_brightness_set(led, cdev, &info); mutex_unlock(&led->lpg->lock); return 0; } static int lpg_brightness_mc_set(struct led_classdev *cdev, enum led_brightness value) { struct led_classdev_mc *mc = lcdev_to_mccdev(cdev); struct lpg_led *led = container_of(mc, struct lpg_led, mcdev); mutex_lock(&led->lpg->lock); led_mc_calc_color_components(mc, value); lpg_brightness_set(led, cdev, mc->subled_info); mutex_unlock(&led->lpg->lock); return 0; } static int lpg_blink_set(struct lpg_led *led, unsigned long *delay_on, unsigned long *delay_off) { struct lpg_channel *chan; unsigned int period; unsigned int triled_mask = 0; struct lpg *lpg = led->lpg; u64 duty; int i; if (!*delay_on && !*delay_off) { *delay_on = 500; *delay_off = 500; } duty = *delay_on * NSEC_PER_MSEC; period = (*delay_on + *delay_off) * NSEC_PER_MSEC; for (i = 0; i < led->num_channels; i++) { chan = led->channels[i]; lpg_calc_freq(chan, period); lpg_calc_duty(chan, duty); chan->enabled = true; chan->ramp_enabled = false; triled_mask |= chan->triled_mask; lpg_apply(chan); } /* Enable triled lines */ triled_set(lpg, triled_mask, triled_mask); chan = led->channels[0]; duty = div_u64(chan->pwm_value * chan->period, LPG_RESOLUTION_9BIT); *delay_on = div_u64(duty, NSEC_PER_MSEC); *delay_off = div_u64(chan->period - duty, NSEC_PER_MSEC); return 0; } static int lpg_blink_single_set(struct led_classdev *cdev, unsigned long *delay_on, unsigned long *delay_off) { struct lpg_led *led = container_of(cdev, struct lpg_led, cdev); int ret; mutex_lock(&led->lpg->lock); ret = lpg_blink_set(led, delay_on, delay_off); mutex_unlock(&led->lpg->lock); return ret; } static int lpg_blink_mc_set(struct led_classdev *cdev, unsigned long *delay_on, unsigned long *delay_off) { struct led_classdev_mc *mc = lcdev_to_mccdev(cdev); struct lpg_led *led = container_of(mc, struct lpg_led, mcdev); int ret; mutex_lock(&led->lpg->lock); ret = lpg_blink_set(led, delay_on, delay_off); mutex_unlock(&led->lpg->lock); return ret; } static int lpg_pattern_set(struct lpg_led *led, struct led_pattern *led_pattern, u32 len, int repeat) { struct lpg_channel *chan; struct lpg *lpg = led->lpg; struct led_pattern *pattern; unsigned int brightness_a; unsigned int brightness_b; unsigned int hi_pause = 0; unsigned int lo_pause = 0; unsigned int actual_len; unsigned int delta_t; unsigned int lo_idx; unsigned int hi_idx; unsigned int i; bool ping_pong = true; int ret = -EINVAL; /* Hardware only support oneshot or indefinite loops */ if (repeat != -1 && repeat != 1) return -EINVAL; /* * The standardized leds-trigger-pattern format defines that the * brightness of the LED follows a linear transition from one entry * in the pattern to the next, over the given delta_t time. It * describes that the way to perform instant transitions a zero-length * entry should be added following a pattern entry. * * The LPG hardware is only able to perform the latter (no linear * transitions), so require each entry in the pattern to be followed by * a zero-length transition. */ if (len % 2) return -EINVAL; pattern = kcalloc(len / 2, sizeof(*pattern), GFP_KERNEL); if (!pattern) return -ENOMEM; for (i = 0; i < len; i += 2) { if (led_pattern[i].brightness != led_pattern[i + 1].brightness) goto out_free_pattern; if (led_pattern[i + 1].delta_t != 0) goto out_free_pattern; pattern[i / 2].brightness = led_pattern[i].brightness; pattern[i / 2].delta_t = led_pattern[i].delta_t; } len /= 2; /* * Specifying a pattern of length 1 causes the hardware to iterate * through the entire LUT, so prohibit this. */ if (len < 2) goto out_free_pattern; /* * The LPG plays patterns with at a fixed pace, a "low pause" can be * used to stretch the first delay of the pattern and a "high pause" * the last one. * * In order to save space the pattern can be played in "ping pong" * mode, in which the pattern is first played forward, then "high * pause" is applied, then the pattern is played backwards and finally * the "low pause" is applied. * * The middle elements of the pattern are used to determine delta_t and * the "low pause" and "high pause" multipliers are derrived from this. * * The first element in the pattern is used to determine "low pause". * * If the specified pattern is a palindrome the ping pong mode is * enabled. In this scenario the delta_t of the middle entry (i.e. the * last in the programmed pattern) determines the "high pause". * * SDAM-based devices do not support "ping pong", and only supports * "low pause" and "high pause" with a dedicated SDAM LUT. */ /* Detect palindromes and use "ping pong" to reduce LUT usage */ if (lpg->lut_base) { for (i = 0; i < len / 2; i++) { brightness_a = pattern[i].brightness; brightness_b = pattern[len - i - 1].brightness; if (brightness_a != brightness_b) { ping_pong = false; break; } } } else ping_pong = false; /* The pattern length to be written to the LUT */ if (ping_pong) actual_len = (len + 1) / 2; else actual_len = len; /* * Validate that all delta_t in the pattern are the same, with the * exception of the middle element in case of ping_pong. */ delta_t = pattern[1].delta_t; for (i = 2; i < len; i++) { if (pattern[i].delta_t != delta_t) { /* * Allow last entry in the full or shortened pattern to * specify hi pause. Reject other variations. */ if (i != actual_len - 1) goto out_free_pattern; } } /* LPG_RAMP_DURATION_REG is a 9bit */ if (delta_t >= BIT(9)) goto out_free_pattern; /* * Find "low pause" and "high pause" in the pattern in the LUT case. * SDAM-based devices without dedicated LUT SDAM require equal * duration of all steps. */ if (lpg->lut_base || lpg->lut_sdam) { lo_pause = pattern[0].delta_t; hi_pause = pattern[actual_len - 1].delta_t; } else { if (delta_t != pattern[0].delta_t || delta_t != pattern[actual_len - 1].delta_t) goto out_free_pattern; } mutex_lock(&lpg->lock); if (lpg->lut_base) ret = lpg_lut_store(lpg, pattern, actual_len, &lo_idx, &hi_idx); else ret = lpg_lut_store_sdam(lpg, pattern, actual_len, &lo_idx, &hi_idx); if (ret < 0) goto out_unlock; for (i = 0; i < led->num_channels; i++) { chan = led->channels[i]; chan->ramp_tick_ms = delta_t; chan->ramp_ping_pong = ping_pong; chan->ramp_oneshot = repeat != -1; chan->ramp_lo_pause_ms = lo_pause; chan->ramp_hi_pause_ms = hi_pause; chan->pattern_lo_idx = lo_idx; chan->pattern_hi_idx = hi_idx; } out_unlock: mutex_unlock(&lpg->lock); out_free_pattern: kfree(pattern); return ret; } static int lpg_pattern_single_set(struct led_classdev *cdev, struct led_pattern *pattern, u32 len, int repeat) { struct lpg_led *led = container_of(cdev, struct lpg_led, cdev); int ret; ret = lpg_pattern_set(led, pattern, len, repeat); if (ret < 0) return ret; lpg_brightness_single_set(cdev, LED_FULL); return 0; } static int lpg_pattern_mc_set(struct led_classdev *cdev, struct led_pattern *pattern, u32 len, int repeat) { struct led_classdev_mc *mc = lcdev_to_mccdev(cdev); struct lpg_led *led = container_of(mc, struct lpg_led, mcdev); unsigned int triled_mask = 0; int ret, i; for (i = 0; i < led->num_channels; i++) triled_mask |= led->channels[i]->triled_mask; triled_set(led->lpg, triled_mask, 0); ret = lpg_pattern_set(led, pattern, len, repeat); if (ret < 0) return ret; led_mc_calc_color_components(mc, LED_FULL); lpg_brightness_set(led, cdev, mc->subled_info); return 0; } static int lpg_pattern_clear(struct lpg_led *led) { struct lpg_channel *chan; struct lpg *lpg = led->lpg; int i; mutex_lock(&lpg->lock); chan = led->channels[0]; lpg_lut_free(lpg, chan->pattern_lo_idx, chan->pattern_hi_idx); for (i = 0; i < led->num_channels; i++) { chan = led->channels[i]; lpg_sdam_configure_triggers(chan, 0); lpg_clear_pbs_trigger(chan->lpg, chan->lut_mask); chan->pattern_lo_idx = 0; chan->pattern_hi_idx = 0; } mutex_unlock(&lpg->lock); return 0; } static int lpg_pattern_single_clear(struct led_classdev *cdev) { struct lpg_led *led = container_of(cdev, struct lpg_led, cdev); return lpg_pattern_clear(led); } static int lpg_pattern_mc_clear(struct led_classdev *cdev) { struct led_classdev_mc *mc = lcdev_to_mccdev(cdev); struct lpg_led *led = container_of(mc, struct lpg_led, mcdev); return lpg_pattern_clear(led); } static inline struct lpg *lpg_pwm_from_chip(struct pwm_chip *chip) { return pwmchip_get_drvdata(chip); } static int lpg_pwm_request(struct pwm_chip *chip, struct pwm_device *pwm) { struct lpg *lpg = lpg_pwm_from_chip(chip); struct lpg_channel *chan = &lpg->channels[pwm->hwpwm]; return chan->in_use ? -EBUSY : 0; } /* * Limitations: * - Updating both duty and period is not done atomically, so the output signal * will momentarily be a mix of the settings. * - Changed parameters takes effect immediately. * - A disabled channel outputs a logical 0. */ static int lpg_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm, const struct pwm_state *state) { struct lpg *lpg = lpg_pwm_from_chip(chip); struct lpg_channel *chan = &lpg->channels[pwm->hwpwm]; int ret = 0; if (state->polarity != PWM_POLARITY_NORMAL) return -EINVAL; mutex_lock(&lpg->lock); if (state->enabled) { ret = lpg_calc_freq(chan, state->period); if (ret < 0) goto out_unlock; lpg_calc_duty(chan, state->duty_cycle); } chan->enabled = state->enabled; lpg_apply(chan); triled_set(lpg, chan->triled_mask, chan->enabled ? chan->triled_mask : 0); out_unlock: mutex_unlock(&lpg->lock); return ret; } static int lpg_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm, struct pwm_state *state) { struct lpg *lpg = lpg_pwm_from_chip(chip); struct lpg_channel *chan = &lpg->channels[pwm->hwpwm]; unsigned int resolution; unsigned int pre_div; unsigned int refclk; unsigned int val; unsigned int m; u16 pwm_value; int ret; ret = regmap_read(lpg->map, chan->base + LPG_SIZE_CLK_REG, &val); if (ret) return ret; if (chan->subtype == LPG_SUBTYPE_HI_RES_PWM) { refclk = lpg_clk_rates_hi_res[FIELD_GET(PWM_CLK_SELECT_HI_RES_MASK, val)]; resolution = lpg_pwm_resolution_hi_res[FIELD_GET(PWM_SIZE_HI_RES_MASK, val)]; } else { refclk = lpg_clk_rates[FIELD_GET(PWM_CLK_SELECT_MASK, val)]; resolution = 9; } if (refclk) { ret = regmap_read(lpg->map, chan->base + LPG_PREDIV_CLK_REG, &val); if (ret) return ret; pre_div = lpg_pre_divs[FIELD_GET(PWM_FREQ_PRE_DIV_MASK, val)]; m = FIELD_GET(PWM_FREQ_EXP_MASK, val); ret = regmap_bulk_read(lpg->map, chan->base + PWM_VALUE_REG, &pwm_value, sizeof(pwm_value)); if (ret) return ret; state->period = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * (1 << resolution) * pre_div * (1 << m), refclk); state->duty_cycle = DIV_ROUND_UP_ULL((u64)NSEC_PER_SEC * pwm_value * pre_div * (1 << m), refclk); } else { state->period = 0; state->duty_cycle = 0; } ret = regmap_read(lpg->map, chan->base + PWM_ENABLE_CONTROL_REG, &val); if (ret) return ret; state->enabled = FIELD_GET(LPG_ENABLE_CONTROL_OUTPUT, val); state->polarity = PWM_POLARITY_NORMAL; if (state->duty_cycle > state->period) state->duty_cycle = state->period; return 0; } static const struct pwm_ops lpg_pwm_ops = { .request = lpg_pwm_request, .apply = lpg_pwm_apply, .get_state = lpg_pwm_get_state, }; static int lpg_add_pwm(struct lpg *lpg) { struct pwm_chip *chip; int ret; lpg->pwm = chip = devm_pwmchip_alloc(lpg->dev, lpg->num_channels, 0); if (IS_ERR(chip)) return PTR_ERR(chip); chip->ops = &lpg_pwm_ops; pwmchip_set_drvdata(chip, lpg); ret = devm_pwmchip_add(lpg->dev, chip); if (ret) dev_err_probe(lpg->dev, ret, "failed to add PWM chip\n"); return ret; } static int lpg_parse_channel(struct lpg *lpg, struct device_node *np, struct lpg_channel **channel) { struct lpg_channel *chan; u32 color = LED_COLOR_ID_GREEN; u32 reg; int ret; ret = of_property_read_u32(np, "reg", ®); if (ret || !reg || reg > lpg->num_channels) return dev_err_probe(lpg->dev, -EINVAL, "invalid \"reg\" of %pOFn\n", np); chan = &lpg->channels[reg - 1]; chan->in_use = true; ret = of_property_read_u32(np, "color", &color); if (ret < 0 && ret != -EINVAL) return dev_err_probe(lpg->dev, ret, "failed to parse \"color\" of %pOF\n", np); chan->color = color; *channel = chan; return 0; } static int lpg_add_led(struct lpg *lpg, struct device_node *np) { struct led_init_data init_data = {}; struct led_classdev *cdev; struct device_node *child; struct mc_subled *info; struct lpg_led *led; const char *state; int num_channels; u32 color = 0; int ret; int i; ret = of_property_read_u32(np, "color", &color); if (ret < 0 && ret != -EINVAL) return dev_err_probe(lpg->dev, ret, "failed to parse \"color\" of %pOF\n", np); if (color == LED_COLOR_ID_RGB) num_channels = of_get_available_child_count(np); else num_channels = 1; led = devm_kzalloc(lpg->dev, struct_size(led, channels, num_channels), GFP_KERNEL); if (!led) return -ENOMEM; led->lpg = lpg; led->num_channels = num_channels; if (color == LED_COLOR_ID_RGB) { info = devm_kcalloc(lpg->dev, num_channels, sizeof(*info), GFP_KERNEL); if (!info) return -ENOMEM; i = 0; for_each_available_child_of_node(np, child) { ret = lpg_parse_channel(lpg, child, &led->channels[i]); if (ret < 0) { of_node_put(child); return ret; } info[i].color_index = led->channels[i]->color; info[i].intensity = 0; i++; } led->mcdev.subled_info = info; led->mcdev.num_colors = num_channels; cdev = &led->mcdev.led_cdev; cdev->brightness_set_blocking = lpg_brightness_mc_set; cdev->blink_set = lpg_blink_mc_set; /* Register pattern accessors if we have a LUT block or when using PPG */ if (lpg->lut_base || lpg->lpg_chan_sdam) { cdev->pattern_set = lpg_pattern_mc_set; cdev->pattern_clear = lpg_pattern_mc_clear; } } else { ret = lpg_parse_channel(lpg, np, &led->channels[0]); if (ret < 0) return ret; cdev = &led->cdev; cdev->brightness_set_blocking = lpg_brightness_single_set; cdev->blink_set = lpg_blink_single_set; /* Register pattern accessors if we have a LUT block or when using PPG */ if (lpg->lut_base || lpg->lpg_chan_sdam) { cdev->pattern_set = lpg_pattern_single_set; cdev->pattern_clear = lpg_pattern_single_clear; } } cdev->default_trigger = of_get_property(np, "linux,default-trigger", NULL); if (lpg->lpg_chan_sdam) cdev->max_brightness = PPG_MAX_LED_BRIGHTNESS; else cdev->max_brightness = LPG_RESOLUTION_9BIT - 1; if (!of_property_read_string(np, "default-state", &state) && !strcmp(state, "on")) cdev->brightness = cdev->max_brightness; else cdev->brightness = LED_OFF; cdev->brightness_set_blocking(cdev, cdev->brightness); init_data.fwnode = of_fwnode_handle(np); if (color == LED_COLOR_ID_RGB) ret = devm_led_classdev_multicolor_register_ext(lpg->dev, &led->mcdev, &init_data); else ret = devm_led_classdev_register_ext(lpg->dev, &led->cdev, &init_data); if (ret) dev_err_probe(lpg->dev, ret, "unable to register %s\n", cdev->name); return ret; } static int lpg_init_channels(struct lpg *lpg) { const struct lpg_data *data = lpg->data; struct lpg_channel *chan; int i; lpg->num_channels = data->num_channels; lpg->channels = devm_kcalloc(lpg->dev, data->num_channels, sizeof(struct lpg_channel), GFP_KERNEL); if (!lpg->channels) return -ENOMEM; for (i = 0; i < data->num_channels; i++) { chan = &lpg->channels[i]; chan->lpg = lpg; chan->base = data->channels[i].base; chan->triled_mask = data->channels[i].triled_mask; chan->lut_mask = BIT(i); chan->sdam_offset = data->channels[i].sdam_offset; regmap_read(lpg->map, chan->base + LPG_SUBTYPE_REG, &chan->subtype); } return 0; } static int lpg_init_triled(struct lpg *lpg) { struct device_node *np = lpg->dev->of_node; int ret; /* Skip initialization if we don't have a triled block */ if (!lpg->data->triled_base) return 0; lpg->triled_base = lpg->data->triled_base; lpg->triled_has_atc_ctl = lpg->data->triled_has_atc_ctl; lpg->triled_has_src_sel = lpg->data->triled_has_src_sel; if (lpg->triled_has_src_sel) { ret = of_property_read_u32(np, "qcom,power-source", &lpg->triled_src); if (ret || lpg->triled_src == 2 || lpg->triled_src > 3) return dev_err_probe(lpg->dev, -EINVAL, "invalid power source\n"); } /* Disable automatic trickle charge LED */ if (lpg->triled_has_atc_ctl) regmap_write(lpg->map, lpg->triled_base + TRI_LED_ATC_CTL, 0); /* Configure power source */ if (lpg->triled_has_src_sel) regmap_write(lpg->map, lpg->triled_base + TRI_LED_SRC_SEL, lpg->triled_src); /* Default all outputs to off */ regmap_write(lpg->map, lpg->triled_base + TRI_LED_EN_CTL, 0); return 0; } static int lpg_init_lut(struct lpg *lpg) { const struct lpg_data *data = lpg->data; if (!data->lut_size) return 0; lpg->lut_size = data->lut_size; if (data->lut_base) lpg->lut_base = data->lut_base; lpg->lut_bitmap = devm_bitmap_zalloc(lpg->dev, lpg->lut_size, GFP_KERNEL); if (!lpg->lut_bitmap) return -ENOMEM; return 0; } static int lpg_init_sdam(struct lpg *lpg) { int i, sdam_count, rc; u8 val = 0; sdam_count = of_property_count_strings(lpg->dev->of_node, "nvmem-names"); if (sdam_count <= 0) return 0; if (sdam_count > SDAM_MAX_DEVICES) return -EINVAL; /* Get the 1st SDAM device for LPG/LUT config */ lpg->lpg_chan_sdam = devm_nvmem_device_get(lpg->dev, "lpg_chan_sdam"); if (IS_ERR(lpg->lpg_chan_sdam)) return dev_err_probe(lpg->dev, PTR_ERR(lpg->lpg_chan_sdam), "Failed to get LPG chan SDAM device\n"); if (sdam_count == 1) { /* Get PBS device node if single SDAM device */ lpg->pbs_dev = get_pbs_client_device(lpg->dev); if (IS_ERR(lpg->pbs_dev)) return dev_err_probe(lpg->dev, PTR_ERR(lpg->pbs_dev), "Failed to get PBS client device\n"); } else if (sdam_count == 2) { /* Get the 2nd SDAM device for LUT pattern */ lpg->lut_sdam = devm_nvmem_device_get(lpg->dev, "lut_sdam"); if (IS_ERR(lpg->lut_sdam)) return dev_err_probe(lpg->dev, PTR_ERR(lpg->lut_sdam), "Failed to get LPG LUT SDAM device\n"); } for (i = 0; i < lpg->num_channels; i++) { struct lpg_channel *chan = &lpg->channels[i]; if (chan->sdam_offset) { rc = nvmem_device_write(lpg->lpg_chan_sdam, SDAM_PBS_SCRATCH_LUT_COUNTER_OFFSET + chan->sdam_offset, 1, &val); if (rc < 0) return rc; rc = lpg_sdam_configure_triggers(chan, 0); if (rc < 0) return rc; rc = lpg_clear_pbs_trigger(chan->lpg, chan->lut_mask); if (rc < 0) return rc; } } return 0; } static int lpg_probe(struct platform_device *pdev) { struct device_node *np; struct lpg *lpg; int ret; int i; lpg = devm_kzalloc(&pdev->dev, sizeof(*lpg), GFP_KERNEL); if (!lpg) return -ENOMEM; lpg->data = of_device_get_match_data(&pdev->dev); if (!lpg->data) return -EINVAL; lpg->dev = &pdev->dev; mutex_init(&lpg->lock); lpg->map = dev_get_regmap(pdev->dev.parent, NULL); if (!lpg->map) return dev_err_probe(&pdev->dev, -ENXIO, "parent regmap unavailable\n"); ret = lpg_init_channels(lpg); if (ret < 0) return ret; ret = lpg_parse_dtest(lpg); if (ret < 0) return ret; ret = lpg_init_triled(lpg); if (ret < 0) return ret; ret = lpg_init_sdam(lpg); if (ret < 0) return ret; ret = lpg_init_lut(lpg); if (ret < 0) return ret; for_each_available_child_of_node(pdev->dev.of_node, np) { ret = lpg_add_led(lpg, np); if (ret) { of_node_put(np); return ret; } } for (i = 0; i < lpg->num_channels; i++) lpg_apply_dtest(&lpg->channels[i]); return lpg_add_pwm(lpg); } static const struct lpg_data pm660l_lpg_data = { .lut_base = 0xb000, .lut_size = 49, .triled_base = 0xd000, .triled_has_atc_ctl = true, .triled_has_src_sel = true, .num_channels = 4, .channels = (const struct lpg_channel_data[]) { { .base = 0xb100, .triled_mask = BIT(5) }, { .base = 0xb200, .triled_mask = BIT(6) }, { .base = 0xb300, .triled_mask = BIT(7) }, { .base = 0xb400 }, }, }; static const struct lpg_data pm8916_pwm_data = { .num_channels = 1, .channels = (const struct lpg_channel_data[]) { { .base = 0xbc00 }, }, }; static const struct lpg_data pm8941_lpg_data = { .lut_base = 0xb000, .lut_size = 64, .triled_base = 0xd000, .triled_has_atc_ctl = true, .triled_has_src_sel = true, .num_channels = 8, .channels = (const struct lpg_channel_data[]) { { .base = 0xb100 }, { .base = 0xb200 }, { .base = 0xb300 }, { .base = 0xb400 }, { .base = 0xb500, .triled_mask = BIT(5) }, { .base = 0xb600, .triled_mask = BIT(6) }, { .base = 0xb700, .triled_mask = BIT(7) }, { .base = 0xb800 }, }, }; static const struct lpg_data pmi8950_pwm_data = { .num_channels = 1, .channels = (const struct lpg_channel_data[]) { { .base = 0xb000 }, }, }; static const struct lpg_data pm8994_lpg_data = { .lut_base = 0xb000, .lut_size = 64, .num_channels = 6, .channels = (const struct lpg_channel_data[]) { { .base = 0xb100 }, { .base = 0xb200 }, { .base = 0xb300 }, { .base = 0xb400 }, { .base = 0xb500 }, { .base = 0xb600 }, }, }; /* PMI632 uses SDAM instead of LUT for pattern */ static const struct lpg_data pmi632_lpg_data = { .triled_base = 0xd000, .lut_size = 64, .num_channels = 5, .channels = (const struct lpg_channel_data[]) { { .base = 0xb300, .triled_mask = BIT(7), .sdam_offset = 0x48 }, { .base = 0xb400, .triled_mask = BIT(6), .sdam_offset = 0x56 }, { .base = 0xb500, .triled_mask = BIT(5), .sdam_offset = 0x64 }, { .base = 0xb600 }, { .base = 0xb700 }, }, }; static const struct lpg_data pmi8994_lpg_data = { .lut_base = 0xb000, .lut_size = 24, .triled_base = 0xd000, .triled_has_atc_ctl = true, .triled_has_src_sel = true, .num_channels = 4, .channels = (const struct lpg_channel_data[]) { { .base = 0xb100, .triled_mask = BIT(5) }, { .base = 0xb200, .triled_mask = BIT(6) }, { .base = 0xb300, .triled_mask = BIT(7) }, { .base = 0xb400 }, }, }; static const struct lpg_data pmi8998_lpg_data = { .lut_base = 0xb000, .lut_size = 49, .triled_base = 0xd000, .num_channels = 6, .channels = (const struct lpg_channel_data[]) { { .base = 0xb100 }, { .base = 0xb200 }, { .base = 0xb300, .triled_mask = BIT(5) }, { .base = 0xb400, .triled_mask = BIT(6) }, { .base = 0xb500, .triled_mask = BIT(7) }, { .base = 0xb600 }, }, }; static const struct lpg_data pm8150b_lpg_data = { .lut_base = 0xb000, .lut_size = 24, .triled_base = 0xd000, .num_channels = 2, .channels = (const struct lpg_channel_data[]) { { .base = 0xb100, .triled_mask = BIT(7) }, { .base = 0xb200, .triled_mask = BIT(6) }, }, }; static const struct lpg_data pm8150l_lpg_data = { .lut_base = 0xb000, .lut_size = 48, .triled_base = 0xd000, .num_channels = 5, .channels = (const struct lpg_channel_data[]) { { .base = 0xb100, .triled_mask = BIT(7) }, { .base = 0xb200, .triled_mask = BIT(6) }, { .base = 0xb300, .triled_mask = BIT(5) }, { .base = 0xbc00 }, { .base = 0xbd00 }, }, }; static const struct lpg_data pm8350c_pwm_data = { .triled_base = 0xef00, .lut_size = 122, .num_channels = 4, .channels = (const struct lpg_channel_data[]) { { .base = 0xe800, .triled_mask = BIT(7), .sdam_offset = 0x48 }, { .base = 0xe900, .triled_mask = BIT(6), .sdam_offset = 0x56 }, { .base = 0xea00, .triled_mask = BIT(5), .sdam_offset = 0x64 }, { .base = 0xeb00 }, }, }; static const struct lpg_data pmk8550_pwm_data = { .num_channels = 2, .channels = (const struct lpg_channel_data[]) { { .base = 0xe800 }, { .base = 0xe900 }, }, }; static const struct of_device_id lpg_of_table[] = { { .compatible = "qcom,pm660l-lpg", .data = &pm660l_lpg_data }, { .compatible = "qcom,pm8150b-lpg", .data = &pm8150b_lpg_data }, { .compatible = "qcom,pm8150l-lpg", .data = &pm8150l_lpg_data }, { .compatible = "qcom,pm8350c-pwm", .data = &pm8350c_pwm_data }, { .compatible = "qcom,pm8916-pwm", .data = &pm8916_pwm_data }, { .compatible = "qcom,pm8941-lpg", .data = &pm8941_lpg_data }, { .compatible = "qcom,pm8994-lpg", .data = &pm8994_lpg_data }, { .compatible = "qcom,pmi632-lpg", .data = &pmi632_lpg_data }, { .compatible = "qcom,pmi8950-pwm", .data = &pmi8950_pwm_data }, { .compatible = "qcom,pmi8994-lpg", .data = &pmi8994_lpg_data }, { .compatible = "qcom,pmi8998-lpg", .data = &pmi8998_lpg_data }, { .compatible = "qcom,pmc8180c-lpg", .data = &pm8150l_lpg_data }, { .compatible = "qcom,pmk8550-pwm", .data = &pmk8550_pwm_data }, {} }; MODULE_DEVICE_TABLE(of, lpg_of_table); static struct platform_driver lpg_driver = { .probe = lpg_probe, .driver = { .name = "qcom-spmi-lpg", .of_match_table = lpg_of_table, }, }; module_platform_driver(lpg_driver); MODULE_DESCRIPTION("Qualcomm LPG LED driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1