Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Hunold | 3037 | 88.93% | 9 | 22.50% |
Uwe Bugla | 82 | 2.40% | 1 | 2.50% |
Mauro Carvalho Chehab | 72 | 2.11% | 9 | 22.50% |
Andrew de Quincey | 67 | 1.96% | 2 | 5.00% |
Johannes Stezenbach | 52 | 1.52% | 2 | 5.00% |
Manu Abraham | 23 | 0.67% | 2 | 5.00% |
Alan Cox | 20 | 0.59% | 1 | 2.50% |
Adam Szalkowski | 18 | 0.53% | 1 | 2.50% |
Michael Ira Krufky | 8 | 0.23% | 1 | 2.50% |
Patrick Boettcher | 8 | 0.23% | 1 | 2.50% |
Andrew Morton | 8 | 0.23% | 1 | 2.50% |
Hans Verkuil | 5 | 0.15% | 1 | 2.50% |
Harvey Harrison | 3 | 0.09% | 1 | 2.50% |
Ahmed S. Darwish | 2 | 0.06% | 1 | 2.50% |
Max Kellermann | 2 | 0.06% | 1 | 2.50% |
Lawrence Rust | 2 | 0.06% | 1 | 2.50% |
Thomas Gleixner | 2 | 0.06% | 1 | 2.50% |
Matthias Schwarzott | 1 | 0.03% | 1 | 2.50% |
André Goddard Rosa | 1 | 0.03% | 1 | 2.50% |
Greg Kroah-Hartman | 1 | 0.03% | 1 | 2.50% |
Lucas De Marchi | 1 | 0.03% | 1 | 2.50% |
Total | 3415 | 40 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656
// SPDX-License-Identifier: GPL-2.0-or-later /* cx24110 - Single Chip Satellite Channel Receiver driver module Copyright (C) 2002 Peter Hettkamp <peter.hettkamp@htp-tel.de> based on work Copyright (C) 1999 Convergence Integrated Media GmbH <ralph@convergence.de> */ #include <linux/slab.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/init.h> #include <media/dvb_frontend.h> #include "cx24110.h" struct cx24110_state { struct i2c_adapter* i2c; const struct cx24110_config* config; struct dvb_frontend frontend; u32 lastber; u32 lastbler; u32 lastesn0; }; static int debug; #define dprintk(args...) \ do { \ if (debug) printk(KERN_DEBUG "cx24110: " args); \ } while (0) static struct {u8 reg; u8 data;} cx24110_regdata[]= /* Comments beginning with @ denote this value should be the default */ {{0x09,0x01}, /* SoftResetAll */ {0x09,0x00}, /* release reset */ {0x01,0xe8}, /* MSB of code rate 27.5MS/s */ {0x02,0x17}, /* middle byte " */ {0x03,0x29}, /* LSB " */ {0x05,0x03}, /* @ DVB mode, standard code rate 3/4 */ {0x06,0xa5}, /* @ PLL 60MHz */ {0x07,0x01}, /* @ Fclk, i.e. sampling clock, 60MHz */ {0x0a,0x00}, /* @ partial chip disables, do not set */ {0x0b,0x01}, /* set output clock in gapped mode, start signal low active for first byte */ {0x0c,0x11}, /* no parity bytes, large hold time, serial data out */ {0x0d,0x6f}, /* @ RS Sync/Unsync thresholds */ {0x10,0x40}, /* chip doc is misleading here: write bit 6 as 1 to avoid starting the BER counter. Reset the CRC test bit. Finite counting selected */ {0x15,0xff}, /* @ size of the limited time window for RS BER estimation. It is <value>*256 RS blocks, this gives approx. 2.6 sec at 27.5MS/s, rate 3/4 */ {0x16,0x00}, /* @ enable all RS output ports */ {0x17,0x04}, /* @ time window allowed for the RS to sync */ {0x18,0xae}, /* @ allow all standard DVB code rates to be scanned for automatically */ /* leave the current code rate and normalization registers as they are after reset... */ {0x21,0x10}, /* @ during AutoAcq, search each viterbi setting only once */ {0x23,0x18}, /* @ size of the limited time window for Viterbi BER estimation. It is <value>*65536 channel bits, i.e. approx. 38ms at 27.5MS/s, rate 3/4 */ {0x24,0x24}, /* do not trigger Viterbi CRC test. Finite count window */ /* leave front-end AGC parameters at default values */ /* leave decimation AGC parameters at default values */ {0x35,0x40}, /* disable all interrupts. They are not connected anyway */ {0x36,0xff}, /* clear all interrupt pending flags */ {0x37,0x00}, /* @ fully enable AutoAcqq state machine */ {0x38,0x07}, /* @ enable fade recovery, but not autostart AutoAcq */ /* leave the equalizer parameters on their default values */ /* leave the final AGC parameters on their default values */ {0x41,0x00}, /* @ MSB of front-end derotator frequency */ {0x42,0x00}, /* @ middle bytes " */ {0x43,0x00}, /* @ LSB " */ /* leave the carrier tracking loop parameters on default */ /* leave the bit timing loop parameters at default */ {0x56,0x4d}, /* set the filtune voltage to 2.7V, as recommended by */ /* the cx24108 data sheet for symbol rates above 15MS/s */ {0x57,0x00}, /* @ Filter sigma delta enabled, positive */ {0x61,0x95}, /* GPIO pins 1-4 have special function */ {0x62,0x05}, /* GPIO pin 5 has special function, pin 6 is GPIO */ {0x63,0x00}, /* All GPIO pins use CMOS output characteristics */ {0x64,0x20}, /* GPIO 6 is input, all others are outputs */ {0x6d,0x30}, /* tuner auto mode clock freq 62kHz */ {0x70,0x15}, /* use auto mode, tuner word is 21 bits long */ {0x73,0x00}, /* @ disable several demod bypasses */ {0x74,0x00}, /* @ " */ {0x75,0x00} /* @ " */ /* the remaining registers are for SEC */ }; static int cx24110_writereg (struct cx24110_state* state, int reg, int data) { u8 buf [] = { reg, data }; struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 }; int err; if ((err = i2c_transfer(state->i2c, &msg, 1)) != 1) { dprintk("%s: writereg error (err == %i, reg == 0x%02x, data == 0x%02x)\n", __func__, err, reg, data); return -EREMOTEIO; } return 0; } static int cx24110_readreg (struct cx24110_state* state, u8 reg) { int ret; u8 b0 [] = { reg }; u8 b1 [] = { 0 }; struct i2c_msg msg [] = { { .addr = state->config->demod_address, .flags = 0, .buf = b0, .len = 1 }, { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b1, .len = 1 } }; ret = i2c_transfer(state->i2c, msg, 2); if (ret != 2) return ret; return b1[0]; } static int cx24110_set_inversion(struct cx24110_state *state, enum fe_spectral_inversion inversion) { /* fixme (low): error handling */ switch (inversion) { case INVERSION_OFF: cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)|0x1); /* AcqSpectrInvDis on. No idea why someone should want this */ cx24110_writereg(state,0x5,cx24110_readreg(state,0x5)&0xf7); /* Initial value 0 at start of acq */ cx24110_writereg(state,0x22,cx24110_readreg(state,0x22)&0xef); /* current value 0 */ /* The cx24110 manual tells us this reg is read-only. But what the heck... set it ayways */ break; case INVERSION_ON: cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)|0x1); /* AcqSpectrInvDis on. No idea why someone should want this */ cx24110_writereg(state,0x5,cx24110_readreg(state,0x5)|0x08); /* Initial value 1 at start of acq */ cx24110_writereg(state,0x22,cx24110_readreg(state,0x22)|0x10); /* current value 1 */ break; case INVERSION_AUTO: cx24110_writereg(state,0x37,cx24110_readreg(state,0x37)&0xfe); /* AcqSpectrInvDis off. Leave initial & current states as is */ break; default: return -EINVAL; } return 0; } static int cx24110_set_fec(struct cx24110_state *state, enum fe_code_rate fec) { static const int rate[FEC_AUTO] = {-1, 1, 2, 3, 5, 7, -1}; static const int g1[FEC_AUTO] = {-1, 0x01, 0x02, 0x05, 0x15, 0x45, -1}; static const int g2[FEC_AUTO] = {-1, 0x01, 0x03, 0x06, 0x1a, 0x7a, -1}; /* Well, the AutoAcq engine of the cx24106 and 24110 automatically searches all enabled viterbi rates, and can handle non-standard rates as well. */ if (fec > FEC_AUTO) fec = FEC_AUTO; if (fec == FEC_AUTO) { /* (re-)establish AutoAcq behaviour */ cx24110_writereg(state, 0x37, cx24110_readreg(state, 0x37) & 0xdf); /* clear AcqVitDis bit */ cx24110_writereg(state, 0x18, 0xae); /* allow all DVB standard code rates */ cx24110_writereg(state, 0x05, (cx24110_readreg(state, 0x05) & 0xf0) | 0x3); /* set nominal Viterbi rate 3/4 */ cx24110_writereg(state, 0x22, (cx24110_readreg(state, 0x22) & 0xf0) | 0x3); /* set current Viterbi rate 3/4 */ cx24110_writereg(state, 0x1a, 0x05); cx24110_writereg(state, 0x1b, 0x06); /* set the puncture registers for code rate 3/4 */ return 0; } else { cx24110_writereg(state, 0x37, cx24110_readreg(state, 0x37) | 0x20); /* set AcqVitDis bit */ if (rate[fec] < 0) return -EINVAL; cx24110_writereg(state, 0x05, (cx24110_readreg(state, 0x05) & 0xf0) | rate[fec]); /* set nominal Viterbi rate */ cx24110_writereg(state, 0x22, (cx24110_readreg(state, 0x22) & 0xf0) | rate[fec]); /* set current Viterbi rate */ cx24110_writereg(state, 0x1a, g1[fec]); cx24110_writereg(state, 0x1b, g2[fec]); /* not sure if this is the right way: I always used AutoAcq mode */ } return 0; } static enum fe_code_rate cx24110_get_fec(struct cx24110_state *state) { int i; i=cx24110_readreg(state,0x22)&0x0f; if(!(i&0x08)) { return FEC_1_2 + i - 1; } else { /* fixme (low): a special code rate has been selected. In theory, we need to return a denominator value, a numerator value, and a pair of puncture maps to correctly describe this mode. But this should never happen in practice, because it cannot be set by cx24110_get_fec. */ return FEC_NONE; } } static int cx24110_set_symbolrate (struct cx24110_state *state, u32 srate) { /* fixme (low): add error handling */ u32 ratio; u32 tmp, fclk, BDRI; static const u32 bands[] = {5000000UL, 15000000UL, 90999000UL/2}; int i; dprintk("cx24110 debug: entering %s(%d)\n",__func__,srate); if (srate>90999000UL/2) srate=90999000UL/2; if (srate<500000) srate=500000; for(i = 0; (i < ARRAY_SIZE(bands)) && (srate>bands[i]); i++) ; /* first, check which sample rate is appropriate: 45, 60 80 or 90 MHz, and set the PLL accordingly (R07[1:0] Fclk, R06[7:4] PLLmult, R06[3:0] PLLphaseDetGain */ tmp=cx24110_readreg(state,0x07)&0xfc; if(srate<90999000UL/4) { /* sample rate 45MHz*/ cx24110_writereg(state,0x07,tmp); cx24110_writereg(state,0x06,0x78); fclk=90999000UL/2; } else if(srate<60666000UL/2) { /* sample rate 60MHz */ cx24110_writereg(state,0x07,tmp|0x1); cx24110_writereg(state,0x06,0xa5); fclk=60666000UL; } else if(srate<80888000UL/2) { /* sample rate 80MHz */ cx24110_writereg(state,0x07,tmp|0x2); cx24110_writereg(state,0x06,0x87); fclk=80888000UL; } else { /* sample rate 90MHz */ cx24110_writereg(state,0x07,tmp|0x3); cx24110_writereg(state,0x06,0x78); fclk=90999000UL; } dprintk("cx24110 debug: fclk %d Hz\n",fclk); /* we need to divide two integers with approx. 27 bits in 32 bit arithmetic giving a 25 bit result */ /* the maximum dividend is 90999000/2, 0x02b6446c, this number is also the most complex divisor. Hence, the dividend has, assuming 32bit unsigned arithmetic, 6 clear bits on top, the divisor 2 unused bits at the bottom. Also, the quotient is always less than 1/2. Borrowed from VES1893.c, of course */ tmp=srate<<6; BDRI=fclk>>2; ratio=(tmp/BDRI); tmp=(tmp%BDRI)<<8; ratio=(ratio<<8)+(tmp/BDRI); tmp=(tmp%BDRI)<<8; ratio=(ratio<<8)+(tmp/BDRI); tmp=(tmp%BDRI)<<1; ratio=(ratio<<1)+(tmp/BDRI); dprintk("srate= %d (range %d, up to %d)\n", srate,i,bands[i]); dprintk("fclk = %d\n", fclk); dprintk("ratio= %08x\n", ratio); cx24110_writereg(state, 0x1, (ratio>>16)&0xff); cx24110_writereg(state, 0x2, (ratio>>8)&0xff); cx24110_writereg(state, 0x3, (ratio)&0xff); return 0; } static int _cx24110_pll_write (struct dvb_frontend* fe, const u8 buf[], int len) { struct cx24110_state *state = fe->demodulator_priv; if (len != 3) return -EINVAL; /* tuner data is 21 bits long, must be left-aligned in data */ /* tuner cx24108 is written through a dedicated 3wire interface on the demod chip */ /* FIXME (low): add error handling, avoid infinite loops if HW fails... */ cx24110_writereg(state,0x6d,0x30); /* auto mode at 62kHz */ cx24110_writereg(state,0x70,0x15); /* auto mode 21 bits */ /* if the auto tuner writer is still busy, clear it out */ while (cx24110_readreg(state,0x6d)&0x80) cx24110_writereg(state,0x72,0); /* write the topmost 8 bits */ cx24110_writereg(state,0x72,buf[0]); /* wait for the send to be completed */ while ((cx24110_readreg(state,0x6d)&0xc0)==0x80) ; /* send another 8 bytes */ cx24110_writereg(state,0x72,buf[1]); while ((cx24110_readreg(state,0x6d)&0xc0)==0x80) ; /* and the topmost 5 bits of this byte */ cx24110_writereg(state,0x72,buf[2]); while ((cx24110_readreg(state,0x6d)&0xc0)==0x80) ; /* now strobe the enable line once */ cx24110_writereg(state,0x6d,0x32); cx24110_writereg(state,0x6d,0x30); return 0; } static int cx24110_initfe(struct dvb_frontend* fe) { struct cx24110_state *state = fe->demodulator_priv; /* fixme (low): error handling */ int i; dprintk("%s: init chip\n", __func__); for(i = 0; i < ARRAY_SIZE(cx24110_regdata); i++) { cx24110_writereg(state, cx24110_regdata[i].reg, cx24110_regdata[i].data); } return 0; } static int cx24110_set_voltage(struct dvb_frontend *fe, enum fe_sec_voltage voltage) { struct cx24110_state *state = fe->demodulator_priv; switch (voltage) { case SEC_VOLTAGE_13: return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&0x3b)|0xc0); case SEC_VOLTAGE_18: return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&0x3b)|0x40); default: return -EINVAL; } } static int cx24110_diseqc_send_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd burst) { int rv, bit; struct cx24110_state *state = fe->demodulator_priv; unsigned long timeout; if (burst == SEC_MINI_A) bit = 0x00; else if (burst == SEC_MINI_B) bit = 0x08; else return -EINVAL; rv = cx24110_readreg(state, 0x77); if (!(rv & 0x04)) cx24110_writereg(state, 0x77, rv | 0x04); rv = cx24110_readreg(state, 0x76); cx24110_writereg(state, 0x76, ((rv & 0x90) | 0x40 | bit)); timeout = jiffies + msecs_to_jiffies(100); while (!time_after(jiffies, timeout) && !(cx24110_readreg(state, 0x76) & 0x40)) ; /* wait for LNB ready */ return 0; } static int cx24110_send_diseqc_msg(struct dvb_frontend* fe, struct dvb_diseqc_master_cmd *cmd) { int i, rv; struct cx24110_state *state = fe->demodulator_priv; unsigned long timeout; if (cmd->msg_len < 3 || cmd->msg_len > 6) return -EINVAL; /* not implemented */ for (i = 0; i < cmd->msg_len; i++) cx24110_writereg(state, 0x79 + i, cmd->msg[i]); rv = cx24110_readreg(state, 0x77); if (rv & 0x04) { cx24110_writereg(state, 0x77, rv & ~0x04); msleep(30); /* reportedly fixes switching problems */ } rv = cx24110_readreg(state, 0x76); cx24110_writereg(state, 0x76, ((rv & 0x90) | 0x40) | ((cmd->msg_len-3) & 3)); timeout = jiffies + msecs_to_jiffies(100); while (!time_after(jiffies, timeout) && !(cx24110_readreg(state, 0x76) & 0x40)) ; /* wait for LNB ready */ return 0; } static int cx24110_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct cx24110_state *state = fe->demodulator_priv; int sync = cx24110_readreg (state, 0x55); *status = 0; if (sync & 0x10) *status |= FE_HAS_SIGNAL; if (sync & 0x08) *status |= FE_HAS_CARRIER; sync = cx24110_readreg (state, 0x08); if (sync & 0x40) *status |= FE_HAS_VITERBI; if (sync & 0x20) *status |= FE_HAS_SYNC; if ((sync & 0x60) == 0x60) *status |= FE_HAS_LOCK; return 0; } static int cx24110_read_ber(struct dvb_frontend* fe, u32* ber) { struct cx24110_state *state = fe->demodulator_priv; /* fixme (maybe): value range is 16 bit. Scale? */ if(cx24110_readreg(state,0x24)&0x10) { /* the Viterbi error counter has finished one counting window */ cx24110_writereg(state,0x24,0x04); /* select the ber reg */ state->lastber=cx24110_readreg(state,0x25)| (cx24110_readreg(state,0x26)<<8); cx24110_writereg(state,0x24,0x04); /* start new count window */ cx24110_writereg(state,0x24,0x14); } *ber = state->lastber; return 0; } static int cx24110_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength) { struct cx24110_state *state = fe->demodulator_priv; /* no provision in hardware. Read the frontend AGC accumulator. No idea how to scale this, but I know it is 2s complement */ u8 signal = cx24110_readreg (state, 0x27)+128; *signal_strength = (signal << 8) | signal; return 0; } static int cx24110_read_snr(struct dvb_frontend* fe, u16* snr) { struct cx24110_state *state = fe->demodulator_priv; /* no provision in hardware. Can be computed from the Es/N0 estimator, but I don't know how. */ if(cx24110_readreg(state,0x6a)&0x80) { /* the Es/N0 error counter has finished one counting window */ state->lastesn0=cx24110_readreg(state,0x69)| (cx24110_readreg(state,0x68)<<8); cx24110_writereg(state,0x6a,0x84); /* start new count window */ } *snr = state->lastesn0; return 0; } static int cx24110_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks) { struct cx24110_state *state = fe->demodulator_priv; if(cx24110_readreg(state,0x10)&0x40) { /* the RS error counter has finished one counting window */ cx24110_writereg(state,0x10,0x60); /* select the byer reg */ (void)(cx24110_readreg(state, 0x12) | (cx24110_readreg(state, 0x13) << 8) | (cx24110_readreg(state, 0x14) << 16)); cx24110_writereg(state,0x10,0x70); /* select the bler reg */ state->lastbler=cx24110_readreg(state,0x12)| (cx24110_readreg(state,0x13)<<8)| (cx24110_readreg(state,0x14)<<16); cx24110_writereg(state,0x10,0x20); /* start new count window */ } *ucblocks = state->lastbler; return 0; } static int cx24110_set_frontend(struct dvb_frontend *fe) { struct cx24110_state *state = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; if (fe->ops.tuner_ops.set_params) { fe->ops.tuner_ops.set_params(fe); if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0); } cx24110_set_inversion(state, p->inversion); cx24110_set_fec(state, p->fec_inner); cx24110_set_symbolrate(state, p->symbol_rate); cx24110_writereg(state,0x04,0x05); /* start acquisition */ return 0; } static int cx24110_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *p) { struct cx24110_state *state = fe->demodulator_priv; s32 afc; unsigned sclk; /* cannot read back tuner settings (freq). Need to have some private storage */ sclk = cx24110_readreg (state, 0x07) & 0x03; /* ok, real AFC (FEDR) freq. is afc/2^24*fsamp, fsamp=45/60/80/90MHz. * Need 64 bit arithmetic. Is thiss possible in the kernel? */ if (sclk==0) sclk=90999000L/2L; else if (sclk==1) sclk=60666000L; else if (sclk==2) sclk=80888000L; else sclk=90999000L; sclk>>=8; afc = sclk*(cx24110_readreg (state, 0x44)&0x1f)+ ((sclk*cx24110_readreg (state, 0x45))>>8)+ ((sclk*cx24110_readreg (state, 0x46))>>16); p->frequency += afc; p->inversion = (cx24110_readreg (state, 0x22) & 0x10) ? INVERSION_ON : INVERSION_OFF; p->fec_inner = cx24110_get_fec(state); return 0; } static int cx24110_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone) { struct cx24110_state *state = fe->demodulator_priv; return cx24110_writereg(state,0x76,(cx24110_readreg(state,0x76)&~0x10)|(((tone==SEC_TONE_ON))?0x10:0)); } static void cx24110_release(struct dvb_frontend* fe) { struct cx24110_state* state = fe->demodulator_priv; kfree(state); } static const struct dvb_frontend_ops cx24110_ops; struct dvb_frontend* cx24110_attach(const struct cx24110_config* config, struct i2c_adapter* i2c) { struct cx24110_state* state = NULL; int ret; /* allocate memory for the internal state */ state = kzalloc(sizeof(struct cx24110_state), GFP_KERNEL); if (state == NULL) goto error; /* setup the state */ state->config = config; state->i2c = i2c; state->lastber = 0; state->lastbler = 0; state->lastesn0 = 0; /* check if the demod is there */ ret = cx24110_readreg(state, 0x00); if ((ret != 0x5a) && (ret != 0x69)) goto error; /* create dvb_frontend */ memcpy(&state->frontend.ops, &cx24110_ops, sizeof(struct dvb_frontend_ops)); state->frontend.demodulator_priv = state; return &state->frontend; error: kfree(state); return NULL; } static const struct dvb_frontend_ops cx24110_ops = { .delsys = { SYS_DVBS }, .info = { .name = "Conexant CX24110 DVB-S", .frequency_min_hz = 950 * MHz, .frequency_max_hz = 2150 * MHz, .frequency_stepsize_hz = 1011 * kHz, .frequency_tolerance_hz = 29500 * kHz, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_RECOVER }, .release = cx24110_release, .init = cx24110_initfe, .write = _cx24110_pll_write, .set_frontend = cx24110_set_frontend, .get_frontend = cx24110_get_frontend, .read_status = cx24110_read_status, .read_ber = cx24110_read_ber, .read_signal_strength = cx24110_read_signal_strength, .read_snr = cx24110_read_snr, .read_ucblocks = cx24110_read_ucblocks, .diseqc_send_master_cmd = cx24110_send_diseqc_msg, .set_tone = cx24110_set_tone, .set_voltage = cx24110_set_voltage, .diseqc_send_burst = cx24110_diseqc_send_burst, }; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off)."); MODULE_DESCRIPTION("Conexant CX24110 DVB-S Demodulator driver"); MODULE_AUTHOR("Peter Hettkamp"); MODULE_LICENSE("GPL"); EXPORT_SYMBOL_GPL(cx24110_attach);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1