Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lars-Peter Clausen | 3508 | 48.57% | 18 | 20.93% |
Richard Röjfors | 1444 | 19.99% | 4 | 4.65% |
Federico Vaga | 748 | 10.36% | 2 | 2.33% |
Steve Longerbeam | 230 | 3.18% | 4 | 4.65% |
Fabio Estevam | 222 | 3.07% | 4 | 4.65% |
Niklas Söderlund | 216 | 2.99% | 8 | 9.30% |
Hans Verkuil | 212 | 2.94% | 4 | 4.65% |
Frieder Schrempf | 112 | 1.55% | 1 | 1.16% |
Vladimir Barinov | 106 | 1.47% | 2 | 2.33% |
Matthew Michilot | 76 | 1.05% | 1 | 1.16% |
Laurent Pinchart | 54 | 0.75% | 7 | 8.14% |
Biju Das | 54 | 0.75% | 2 | 2.33% |
Julian Scheel | 48 | 0.66% | 1 | 1.16% |
Tim Harvey | 47 | 0.65% | 1 | 1.16% |
Ben Dooks | 27 | 0.37% | 1 | 1.16% |
Wolfram Sang | 20 | 0.28% | 1 | 1.16% |
Ulrich Hecht | 17 | 0.24% | 3 | 3.49% |
Tomi Valkeinen | 14 | 0.19% | 1 | 1.16% |
Alexey Khoroshilov | 13 | 0.18% | 1 | 1.16% |
Jacopo Mondi | 10 | 0.14% | 1 | 1.16% |
Benjamin Marty | 9 | 0.12% | 1 | 1.16% |
Michael Grzeschik | 7 | 0.10% | 1 | 1.16% |
Uwe Kleine-König | 4 | 0.06% | 3 | 3.49% |
Krzysztof Kozlowski | 4 | 0.06% | 1 | 1.16% |
Sakari Ailus | 3 | 0.04% | 2 | 2.33% |
Axel Lin | 2 | 0.03% | 1 | 1.16% |
Mauro Carvalho Chehab | 2 | 0.03% | 2 | 2.33% |
Gustavo A. R. Silva | 2 | 0.03% | 1 | 1.16% |
Bhavin Sharma | 2 | 0.03% | 1 | 1.16% |
Ezequiel García | 2 | 0.03% | 1 | 1.16% |
Ricardo Ribalda Delgado | 2 | 0.03% | 1 | 1.16% |
Linus Torvalds (pre-git) | 2 | 0.03% | 1 | 1.16% |
Kuninori Morimoto | 2 | 0.03% | 1 | 1.16% |
Linus Torvalds | 1 | 0.01% | 1 | 1.16% |
Akinobu Mita | 1 | 0.01% | 1 | 1.16% |
Total | 7223 | 86 |
// SPDX-License-Identifier: GPL-2.0 /* * adv7180.c Analog Devices ADV7180 video decoder driver * Copyright (c) 2009 Intel Corporation * Copyright (C) 2013 Cogent Embedded, Inc. * Copyright (C) 2013 Renesas Solutions Corp. */ #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/init.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/interrupt.h> #include <linux/i2c.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/gpio/consumer.h> #include <linux/videodev2.h> #include <media/v4l2-ioctl.h> #include <media/v4l2-event.h> #include <media/v4l2-device.h> #include <media/v4l2-ctrls.h> #include <linux/mutex.h> #include <linux/delay.h> #define ADV7180_STD_AD_PAL_BG_NTSC_J_SECAM 0x0 #define ADV7180_STD_AD_PAL_BG_NTSC_J_SECAM_PED 0x1 #define ADV7180_STD_AD_PAL_N_NTSC_J_SECAM 0x2 #define ADV7180_STD_AD_PAL_N_NTSC_M_SECAM 0x3 #define ADV7180_STD_NTSC_J 0x4 #define ADV7180_STD_NTSC_M 0x5 #define ADV7180_STD_PAL60 0x6 #define ADV7180_STD_NTSC_443 0x7 #define ADV7180_STD_PAL_BG 0x8 #define ADV7180_STD_PAL_N 0x9 #define ADV7180_STD_PAL_M 0xa #define ADV7180_STD_PAL_M_PED 0xb #define ADV7180_STD_PAL_COMB_N 0xc #define ADV7180_STD_PAL_COMB_N_PED 0xd #define ADV7180_STD_PAL_SECAM 0xe #define ADV7180_STD_PAL_SECAM_PED 0xf #define ADV7180_REG_INPUT_CONTROL 0x0000 #define ADV7180_INPUT_CONTROL_INSEL_MASK 0x0f #define ADV7182_REG_INPUT_VIDSEL 0x0002 #define ADV7182_REG_INPUT_RESERVED BIT(2) #define ADV7180_REG_OUTPUT_CONTROL 0x0003 #define ADV7180_REG_EXTENDED_OUTPUT_CONTROL 0x0004 #define ADV7180_EXTENDED_OUTPUT_CONTROL_NTSCDIS 0xC5 #define ADV7180_REG_AUTODETECT_ENABLE 0x0007 #define ADV7180_AUTODETECT_DEFAULT 0x7f /* Contrast */ #define ADV7180_REG_CON 0x0008 /*Unsigned */ #define ADV7180_CON_MIN 0 #define ADV7180_CON_DEF 128 #define ADV7180_CON_MAX 255 /* Brightness*/ #define ADV7180_REG_BRI 0x000a /*Signed */ #define ADV7180_BRI_MIN -128 #define ADV7180_BRI_DEF 0 #define ADV7180_BRI_MAX 127 /* Hue */ #define ADV7180_REG_HUE 0x000b /*Signed, inverted */ #define ADV7180_HUE_MIN -127 #define ADV7180_HUE_DEF 0 #define ADV7180_HUE_MAX 128 #define ADV7180_REG_DEF_VALUE_Y 0x000c #define ADV7180_DEF_VAL_EN 0x1 #define ADV7180_DEF_VAL_AUTO_EN 0x2 #define ADV7180_REG_CTRL 0x000e #define ADV7180_CTRL_IRQ_SPACE 0x20 #define ADV7180_REG_PWR_MAN 0x0f #define ADV7180_PWR_MAN_ON 0x04 #define ADV7180_PWR_MAN_OFF 0x24 #define ADV7180_PWR_MAN_RES 0x80 #define ADV7180_REG_STATUS1 0x0010 #define ADV7180_STATUS1_IN_LOCK 0x01 #define ADV7180_STATUS1_AUTOD_MASK 0x70 #define ADV7180_STATUS1_AUTOD_NTSM_M_J 0x00 #define ADV7180_STATUS1_AUTOD_NTSC_4_43 0x10 #define ADV7180_STATUS1_AUTOD_PAL_M 0x20 #define ADV7180_STATUS1_AUTOD_PAL_60 0x30 #define ADV7180_STATUS1_AUTOD_PAL_B_G 0x40 #define ADV7180_STATUS1_AUTOD_SECAM 0x50 #define ADV7180_STATUS1_AUTOD_PAL_COMB 0x60 #define ADV7180_STATUS1_AUTOD_SECAM_525 0x70 #define ADV7180_REG_IDENT 0x0011 #define ADV7180_ID_7180 0x18 #define ADV7180_REG_STATUS3 0x0013 #define ADV7180_REG_ANALOG_CLAMP_CTL 0x0014 #define ADV7180_REG_SHAP_FILTER_CTL_1 0x0017 #define ADV7180_REG_CTRL_2 0x001d #define ADV7180_REG_VSYNC_FIELD_CTL_1 0x0031 #define ADV7180_VSYNC_FIELD_CTL_1_NEWAV 0x12 #define ADV7180_REG_MANUAL_WIN_CTL_1 0x003d #define ADV7180_REG_MANUAL_WIN_CTL_2 0x003e #define ADV7180_REG_MANUAL_WIN_CTL_3 0x003f #define ADV7180_REG_LOCK_CNT 0x0051 #define ADV7180_REG_CVBS_TRIM 0x0052 #define ADV7180_REG_CLAMP_ADJ 0x005a #define ADV7180_REG_RES_CIR 0x005f #define ADV7180_REG_DIFF_MODE 0x0060 #define ADV7180_REG_ICONF1 0x2040 #define ADV7180_ICONF1_ACTIVE_LOW 0x01 #define ADV7180_ICONF1_PSYNC_ONLY 0x10 #define ADV7180_ICONF1_ACTIVE_TO_CLR 0xC0 /* Saturation */ #define ADV7180_REG_SD_SAT_CB 0x00e3 /*Unsigned */ #define ADV7180_REG_SD_SAT_CR 0x00e4 /*Unsigned */ #define ADV7180_SAT_MIN 0 #define ADV7180_SAT_DEF 128 #define ADV7180_SAT_MAX 255 #define ADV7180_IRQ1_LOCK 0x01 #define ADV7180_IRQ1_UNLOCK 0x02 #define ADV7180_REG_ISR1 0x2042 #define ADV7180_REG_ICR1 0x2043 #define ADV7180_REG_IMR1 0x2044 #define ADV7180_REG_IMR2 0x2048 #define ADV7180_IRQ3_AD_CHANGE 0x08 #define ADV7180_REG_ISR3 0x204A #define ADV7180_REG_ICR3 0x204B #define ADV7180_REG_IMR3 0x204C #define ADV7180_REG_IMR4 0x2050 #define ADV7180_REG_NTSC_V_BIT_END 0x00E6 #define ADV7180_NTSC_V_BIT_END_MANUAL_NVEND 0x4F #define ADV7180_REG_VPP_SLAVE_ADDR 0xFD #define ADV7180_REG_CSI_SLAVE_ADDR 0xFE #define ADV7180_REG_ACE_CTRL1 0x4080 #define ADV7180_REG_ACE_CTRL5 0x4084 #define ADV7180_REG_FLCONTROL 0x40e0 #define ADV7180_FLCONTROL_FL_ENABLE 0x1 #define ADV7180_REG_RST_CLAMP 0x809c #define ADV7180_REG_AGC_ADJ1 0x80b6 #define ADV7180_REG_AGC_ADJ2 0x80c0 #define ADV7180_CSI_REG_PWRDN 0x00 #define ADV7180_CSI_PWRDN 0x80 #define ADV7180_INPUT_CVBS_AIN1 0x00 #define ADV7180_INPUT_CVBS_AIN2 0x01 #define ADV7180_INPUT_CVBS_AIN3 0x02 #define ADV7180_INPUT_CVBS_AIN4 0x03 #define ADV7180_INPUT_CVBS_AIN5 0x04 #define ADV7180_INPUT_CVBS_AIN6 0x05 #define ADV7180_INPUT_SVIDEO_AIN1_AIN2 0x06 #define ADV7180_INPUT_SVIDEO_AIN3_AIN4 0x07 #define ADV7180_INPUT_SVIDEO_AIN5_AIN6 0x08 #define ADV7180_INPUT_YPRPB_AIN1_AIN2_AIN3 0x09 #define ADV7180_INPUT_YPRPB_AIN4_AIN5_AIN6 0x0a #define ADV7182_INPUT_CVBS_AIN1 0x00 #define ADV7182_INPUT_CVBS_AIN2 0x01 #define ADV7182_INPUT_CVBS_AIN3 0x02 #define ADV7182_INPUT_CVBS_AIN4 0x03 #define ADV7182_INPUT_CVBS_AIN5 0x04 #define ADV7182_INPUT_CVBS_AIN6 0x05 #define ADV7182_INPUT_CVBS_AIN7 0x06 #define ADV7182_INPUT_CVBS_AIN8 0x07 #define ADV7182_INPUT_SVIDEO_AIN1_AIN2 0x08 #define ADV7182_INPUT_SVIDEO_AIN3_AIN4 0x09 #define ADV7182_INPUT_SVIDEO_AIN5_AIN6 0x0a #define ADV7182_INPUT_SVIDEO_AIN7_AIN8 0x0b #define ADV7182_INPUT_YPRPB_AIN1_AIN2_AIN3 0x0c #define ADV7182_INPUT_YPRPB_AIN4_AIN5_AIN6 0x0d #define ADV7182_INPUT_DIFF_CVBS_AIN1_AIN2 0x0e #define ADV7182_INPUT_DIFF_CVBS_AIN3_AIN4 0x0f #define ADV7182_INPUT_DIFF_CVBS_AIN5_AIN6 0x10 #define ADV7182_INPUT_DIFF_CVBS_AIN7_AIN8 0x11 #define ADV7180_DEFAULT_CSI_I2C_ADDR 0x44 #define ADV7180_DEFAULT_VPP_I2C_ADDR 0x42 #define V4L2_CID_ADV_FAST_SWITCH (V4L2_CID_USER_ADV7180_BASE + 0x00) /* Initial number of frames to skip to avoid possible garbage */ #define ADV7180_NUM_OF_SKIP_FRAMES 2 struct adv7180_state; #define ADV7180_FLAG_RESET_POWERED BIT(0) #define ADV7180_FLAG_V2 BIT(1) #define ADV7180_FLAG_MIPI_CSI2 BIT(2) #define ADV7180_FLAG_I2P BIT(3) struct adv7180_chip_info { unsigned int flags; unsigned int valid_input_mask; int (*set_std)(struct adv7180_state *st, unsigned int std); int (*select_input)(struct adv7180_state *st, unsigned int input); int (*init)(struct adv7180_state *state); }; struct adv7180_state { struct v4l2_ctrl_handler ctrl_hdl; struct v4l2_subdev sd; struct media_pad pad; struct mutex mutex; /* mutual excl. when accessing chip */ int irq; struct gpio_desc *pwdn_gpio; struct gpio_desc *rst_gpio; v4l2_std_id curr_norm; bool powered; bool streaming; u8 input; struct i2c_client *client; unsigned int register_page; struct i2c_client *csi_client; struct i2c_client *vpp_client; const struct adv7180_chip_info *chip_info; enum v4l2_field field; bool force_bt656_4; }; #define to_adv7180_sd(_ctrl) (&container_of(_ctrl->handler, \ struct adv7180_state, \ ctrl_hdl)->sd) static int adv7180_select_page(struct adv7180_state *state, unsigned int page) { if (state->register_page != page) { i2c_smbus_write_byte_data(state->client, ADV7180_REG_CTRL, page); state->register_page = page; } return 0; } static int adv7180_write(struct adv7180_state *state, unsigned int reg, unsigned int value) { lockdep_assert_held(&state->mutex); adv7180_select_page(state, reg >> 8); return i2c_smbus_write_byte_data(state->client, reg & 0xff, value); } static int adv7180_read(struct adv7180_state *state, unsigned int reg) { lockdep_assert_held(&state->mutex); adv7180_select_page(state, reg >> 8); return i2c_smbus_read_byte_data(state->client, reg & 0xff); } static int adv7180_csi_write(struct adv7180_state *state, unsigned int reg, unsigned int value) { return i2c_smbus_write_byte_data(state->csi_client, reg, value); } static int adv7180_set_video_standard(struct adv7180_state *state, unsigned int std) { return state->chip_info->set_std(state, std); } static int adv7180_vpp_write(struct adv7180_state *state, unsigned int reg, unsigned int value) { return i2c_smbus_write_byte_data(state->vpp_client, reg, value); } static v4l2_std_id adv7180_std_to_v4l2(u8 status1) { /* in case V4L2_IN_ST_NO_SIGNAL */ if (!(status1 & ADV7180_STATUS1_IN_LOCK)) return V4L2_STD_UNKNOWN; switch (status1 & ADV7180_STATUS1_AUTOD_MASK) { case ADV7180_STATUS1_AUTOD_NTSM_M_J: return V4L2_STD_NTSC; case ADV7180_STATUS1_AUTOD_NTSC_4_43: return V4L2_STD_NTSC_443; case ADV7180_STATUS1_AUTOD_PAL_M: return V4L2_STD_PAL_M; case ADV7180_STATUS1_AUTOD_PAL_60: return V4L2_STD_PAL_60; case ADV7180_STATUS1_AUTOD_PAL_B_G: return V4L2_STD_PAL; case ADV7180_STATUS1_AUTOD_SECAM: return V4L2_STD_SECAM; case ADV7180_STATUS1_AUTOD_PAL_COMB: return V4L2_STD_PAL_Nc | V4L2_STD_PAL_N; case ADV7180_STATUS1_AUTOD_SECAM_525: return V4L2_STD_SECAM; default: return V4L2_STD_UNKNOWN; } } static int v4l2_std_to_adv7180(v4l2_std_id std) { if (std == V4L2_STD_PAL_60) return ADV7180_STD_PAL60; if (std == V4L2_STD_NTSC_443) return ADV7180_STD_NTSC_443; if (std == V4L2_STD_PAL_N) return ADV7180_STD_PAL_N; if (std == V4L2_STD_PAL_M) return ADV7180_STD_PAL_M; if (std == V4L2_STD_PAL_Nc) return ADV7180_STD_PAL_COMB_N; if (std & V4L2_STD_PAL) return ADV7180_STD_PAL_BG; if (std & V4L2_STD_NTSC) return ADV7180_STD_NTSC_M; if (std & V4L2_STD_SECAM) return ADV7180_STD_PAL_SECAM; return -EINVAL; } static u32 adv7180_status_to_v4l2(u8 status1) { if (!(status1 & ADV7180_STATUS1_IN_LOCK)) return V4L2_IN_ST_NO_SIGNAL; return 0; } static int __adv7180_status(struct adv7180_state *state, u32 *status, v4l2_std_id *std) { int status1 = adv7180_read(state, ADV7180_REG_STATUS1); if (status1 < 0) return status1; if (status) *status = adv7180_status_to_v4l2(status1); if (std) *std = adv7180_std_to_v4l2(status1); return 0; } static inline struct adv7180_state *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct adv7180_state, sd); } static int adv7180_querystd(struct v4l2_subdev *sd, v4l2_std_id *std) { struct adv7180_state *state = to_state(sd); int err = mutex_lock_interruptible(&state->mutex); if (err) return err; if (state->streaming) { err = -EBUSY; goto unlock; } err = adv7180_set_video_standard(state, ADV7180_STD_AD_PAL_BG_NTSC_J_SECAM); if (err) goto unlock; msleep(100); __adv7180_status(state, NULL, std); err = v4l2_std_to_adv7180(state->curr_norm); if (err < 0) goto unlock; err = adv7180_set_video_standard(state, err); unlock: mutex_unlock(&state->mutex); return err; } static int adv7180_s_routing(struct v4l2_subdev *sd, u32 input, u32 output, u32 config) { struct adv7180_state *state = to_state(sd); int ret = mutex_lock_interruptible(&state->mutex); if (ret) return ret; if (input > 31 || !(BIT(input) & state->chip_info->valid_input_mask)) { ret = -EINVAL; goto out; } ret = state->chip_info->select_input(state, input); if (ret == 0) state->input = input; out: mutex_unlock(&state->mutex); return ret; } static int adv7180_g_input_status(struct v4l2_subdev *sd, u32 *status) { struct adv7180_state *state = to_state(sd); int ret = mutex_lock_interruptible(&state->mutex); if (ret) return ret; ret = __adv7180_status(state, status, NULL); mutex_unlock(&state->mutex); return ret; } static int adv7180_program_std(struct adv7180_state *state) { int ret; ret = v4l2_std_to_adv7180(state->curr_norm); if (ret < 0) return ret; ret = adv7180_set_video_standard(state, ret); if (ret < 0) return ret; return 0; } static int adv7180_s_std(struct v4l2_subdev *sd, v4l2_std_id std) { struct adv7180_state *state = to_state(sd); int ret = mutex_lock_interruptible(&state->mutex); if (ret) return ret; /* Make sure we can support this std */ ret = v4l2_std_to_adv7180(std); if (ret < 0) goto out; state->curr_norm = std; ret = adv7180_program_std(state); out: mutex_unlock(&state->mutex); return ret; } static int adv7180_g_std(struct v4l2_subdev *sd, v4l2_std_id *norm) { struct adv7180_state *state = to_state(sd); *norm = state->curr_norm; return 0; } static int adv7180_get_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_interval *fi) { struct adv7180_state *state = to_state(sd); /* * FIXME: Implement support for V4L2_SUBDEV_FORMAT_TRY, using the V4L2 * subdev active state API. */ if (fi->which != V4L2_SUBDEV_FORMAT_ACTIVE) return -EINVAL; if (state->curr_norm & V4L2_STD_525_60) { fi->interval.numerator = 1001; fi->interval.denominator = 30000; } else { fi->interval.numerator = 1; fi->interval.denominator = 25; } return 0; } static void adv7180_set_power_pin(struct adv7180_state *state, bool on) { if (!state->pwdn_gpio) return; if (on) { gpiod_set_value_cansleep(state->pwdn_gpio, 0); usleep_range(5000, 10000); } else { gpiod_set_value_cansleep(state->pwdn_gpio, 1); } } static void adv7180_set_reset_pin(struct adv7180_state *state, bool on) { if (!state->rst_gpio) return; if (on) { gpiod_set_value_cansleep(state->rst_gpio, 1); } else { gpiod_set_value_cansleep(state->rst_gpio, 0); usleep_range(5000, 10000); } } static int adv7180_set_power(struct adv7180_state *state, bool on) { u8 val; int ret; if (on) val = ADV7180_PWR_MAN_ON; else val = ADV7180_PWR_MAN_OFF; ret = adv7180_write(state, ADV7180_REG_PWR_MAN, val); if (ret) return ret; if (state->chip_info->flags & ADV7180_FLAG_MIPI_CSI2) { if (on) { adv7180_csi_write(state, 0xDE, 0x02); adv7180_csi_write(state, 0xD2, 0xF7); adv7180_csi_write(state, 0xD8, 0x65); adv7180_csi_write(state, 0xE0, 0x09); adv7180_csi_write(state, 0x2C, 0x00); if (state->field == V4L2_FIELD_NONE) adv7180_csi_write(state, 0x1D, 0x80); adv7180_csi_write(state, 0x00, 0x00); } else { adv7180_csi_write(state, 0x00, 0x80); } } return 0; } static int adv7180_s_power(struct v4l2_subdev *sd, int on) { struct adv7180_state *state = to_state(sd); int ret; ret = mutex_lock_interruptible(&state->mutex); if (ret) return ret; ret = adv7180_set_power(state, on); if (ret == 0) state->powered = on; mutex_unlock(&state->mutex); return ret; } static const char * const test_pattern_menu[] = { "Single color", "Color bars", "Luma ramp", "Boundary box", "Disable", }; static int adv7180_test_pattern(struct adv7180_state *state, int value) { unsigned int reg = 0; /* Map menu value into register value */ if (value < 3) reg = value; if (value == 3) reg = 5; adv7180_write(state, ADV7180_REG_ANALOG_CLAMP_CTL, reg); if (value == ARRAY_SIZE(test_pattern_menu) - 1) { reg = adv7180_read(state, ADV7180_REG_DEF_VALUE_Y); reg &= ~ADV7180_DEF_VAL_EN; adv7180_write(state, ADV7180_REG_DEF_VALUE_Y, reg); return 0; } reg = adv7180_read(state, ADV7180_REG_DEF_VALUE_Y); reg |= ADV7180_DEF_VAL_EN | ADV7180_DEF_VAL_AUTO_EN; adv7180_write(state, ADV7180_REG_DEF_VALUE_Y, reg); return 0; } static int adv7180_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = to_adv7180_sd(ctrl); struct adv7180_state *state = to_state(sd); int ret = mutex_lock_interruptible(&state->mutex); int val; if (ret) return ret; val = ctrl->val; switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: ret = adv7180_write(state, ADV7180_REG_BRI, val); break; case V4L2_CID_HUE: /*Hue is inverted according to HSL chart */ ret = adv7180_write(state, ADV7180_REG_HUE, -val); break; case V4L2_CID_CONTRAST: ret = adv7180_write(state, ADV7180_REG_CON, val); break; case V4L2_CID_SATURATION: /* *This could be V4L2_CID_BLUE_BALANCE/V4L2_CID_RED_BALANCE *Let's not confuse the user, everybody understands saturation */ ret = adv7180_write(state, ADV7180_REG_SD_SAT_CB, val); if (ret < 0) break; ret = adv7180_write(state, ADV7180_REG_SD_SAT_CR, val); break; case V4L2_CID_ADV_FAST_SWITCH: if (ctrl->val) { /* ADI required write */ adv7180_write(state, 0x80d9, 0x44); adv7180_write(state, ADV7180_REG_FLCONTROL, ADV7180_FLCONTROL_FL_ENABLE); } else { /* ADI required write */ adv7180_write(state, 0x80d9, 0xc4); adv7180_write(state, ADV7180_REG_FLCONTROL, 0x00); } break; case V4L2_CID_TEST_PATTERN: ret = adv7180_test_pattern(state, val); break; default: ret = -EINVAL; } mutex_unlock(&state->mutex); return ret; } static const struct v4l2_ctrl_ops adv7180_ctrl_ops = { .s_ctrl = adv7180_s_ctrl, }; static const struct v4l2_ctrl_config adv7180_ctrl_fast_switch = { .ops = &adv7180_ctrl_ops, .id = V4L2_CID_ADV_FAST_SWITCH, .name = "Fast Switching", .type = V4L2_CTRL_TYPE_BOOLEAN, .min = 0, .max = 1, .step = 1, }; static int adv7180_init_controls(struct adv7180_state *state) { v4l2_ctrl_handler_init(&state->ctrl_hdl, 4); v4l2_ctrl_new_std(&state->ctrl_hdl, &adv7180_ctrl_ops, V4L2_CID_BRIGHTNESS, ADV7180_BRI_MIN, ADV7180_BRI_MAX, 1, ADV7180_BRI_DEF); v4l2_ctrl_new_std(&state->ctrl_hdl, &adv7180_ctrl_ops, V4L2_CID_CONTRAST, ADV7180_CON_MIN, ADV7180_CON_MAX, 1, ADV7180_CON_DEF); v4l2_ctrl_new_std(&state->ctrl_hdl, &adv7180_ctrl_ops, V4L2_CID_SATURATION, ADV7180_SAT_MIN, ADV7180_SAT_MAX, 1, ADV7180_SAT_DEF); v4l2_ctrl_new_std(&state->ctrl_hdl, &adv7180_ctrl_ops, V4L2_CID_HUE, ADV7180_HUE_MIN, ADV7180_HUE_MAX, 1, ADV7180_HUE_DEF); v4l2_ctrl_new_custom(&state->ctrl_hdl, &adv7180_ctrl_fast_switch, NULL); v4l2_ctrl_new_std_menu_items(&state->ctrl_hdl, &adv7180_ctrl_ops, V4L2_CID_TEST_PATTERN, ARRAY_SIZE(test_pattern_menu) - 1, 0, ARRAY_SIZE(test_pattern_menu) - 1, test_pattern_menu); state->sd.ctrl_handler = &state->ctrl_hdl; if (state->ctrl_hdl.error) { int err = state->ctrl_hdl.error; v4l2_ctrl_handler_free(&state->ctrl_hdl); return err; } v4l2_ctrl_handler_setup(&state->ctrl_hdl); return 0; } static void adv7180_exit_controls(struct adv7180_state *state) { v4l2_ctrl_handler_free(&state->ctrl_hdl); } static int adv7180_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { if (code->index != 0) return -EINVAL; code->code = MEDIA_BUS_FMT_UYVY8_2X8; return 0; } static int adv7180_mbus_fmt(struct v4l2_subdev *sd, struct v4l2_mbus_framefmt *fmt) { struct adv7180_state *state = to_state(sd); fmt->code = MEDIA_BUS_FMT_UYVY8_2X8; fmt->colorspace = V4L2_COLORSPACE_SMPTE170M; fmt->width = 720; fmt->height = state->curr_norm & V4L2_STD_525_60 ? 480 : 576; if (state->field == V4L2_FIELD_ALTERNATE) fmt->height /= 2; return 0; } static int adv7180_set_field_mode(struct adv7180_state *state) { if (!(state->chip_info->flags & ADV7180_FLAG_I2P)) return 0; if (state->field == V4L2_FIELD_NONE) { if (state->chip_info->flags & ADV7180_FLAG_MIPI_CSI2) { adv7180_csi_write(state, 0x01, 0x20); adv7180_csi_write(state, 0x02, 0x28); adv7180_csi_write(state, 0x03, 0x38); adv7180_csi_write(state, 0x04, 0x30); adv7180_csi_write(state, 0x05, 0x30); adv7180_csi_write(state, 0x06, 0x80); adv7180_csi_write(state, 0x07, 0x70); adv7180_csi_write(state, 0x08, 0x50); } adv7180_vpp_write(state, 0xa3, 0x00); adv7180_vpp_write(state, 0x5b, 0x00); adv7180_vpp_write(state, 0x55, 0x80); } else { if (state->chip_info->flags & ADV7180_FLAG_MIPI_CSI2) { adv7180_csi_write(state, 0x01, 0x18); adv7180_csi_write(state, 0x02, 0x18); adv7180_csi_write(state, 0x03, 0x30); adv7180_csi_write(state, 0x04, 0x20); adv7180_csi_write(state, 0x05, 0x28); adv7180_csi_write(state, 0x06, 0x40); adv7180_csi_write(state, 0x07, 0x58); adv7180_csi_write(state, 0x08, 0x30); } adv7180_vpp_write(state, 0xa3, 0x70); adv7180_vpp_write(state, 0x5b, 0x80); adv7180_vpp_write(state, 0x55, 0x00); } return 0; } static int adv7180_get_pad_format(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct adv7180_state *state = to_state(sd); if (format->which == V4L2_SUBDEV_FORMAT_TRY) { format->format = *v4l2_subdev_state_get_format(sd_state, 0); } else { adv7180_mbus_fmt(sd, &format->format); format->format.field = state->field; } return 0; } static int adv7180_set_pad_format(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct adv7180_state *state = to_state(sd); struct v4l2_mbus_framefmt *framefmt; int ret; switch (format->format.field) { case V4L2_FIELD_NONE: if (state->chip_info->flags & ADV7180_FLAG_I2P) break; fallthrough; default: format->format.field = V4L2_FIELD_ALTERNATE; break; } ret = adv7180_mbus_fmt(sd, &format->format); if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) { if (state->field != format->format.field) { state->field = format->format.field; adv7180_set_power(state, false); adv7180_set_field_mode(state); adv7180_set_power(state, true); } } else { framefmt = v4l2_subdev_state_get_format(sd_state, 0); *framefmt = format->format; } return ret; } static int adv7180_init_state(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state) { struct v4l2_subdev_format fmt = { .which = sd_state ? V4L2_SUBDEV_FORMAT_TRY : V4L2_SUBDEV_FORMAT_ACTIVE, }; return adv7180_set_pad_format(sd, sd_state, &fmt); } static int adv7180_get_mbus_config(struct v4l2_subdev *sd, unsigned int pad, struct v4l2_mbus_config *cfg) { struct adv7180_state *state = to_state(sd); if (state->chip_info->flags & ADV7180_FLAG_MIPI_CSI2) { cfg->type = V4L2_MBUS_CSI2_DPHY; cfg->bus.mipi_csi2.num_data_lanes = 1; cfg->bus.mipi_csi2.flags = 0; } else { /* * The ADV7180 sensor supports BT.601/656 output modes. * The BT.656 is default and not yet configurable by s/w. */ cfg->bus.parallel.flags = V4L2_MBUS_MASTER | V4L2_MBUS_PCLK_SAMPLE_RISING | V4L2_MBUS_DATA_ACTIVE_HIGH; cfg->type = V4L2_MBUS_BT656; } return 0; } static int adv7180_get_skip_frames(struct v4l2_subdev *sd, u32 *frames) { *frames = ADV7180_NUM_OF_SKIP_FRAMES; return 0; } static int adv7180_g_pixelaspect(struct v4l2_subdev *sd, struct v4l2_fract *aspect) { struct adv7180_state *state = to_state(sd); if (state->curr_norm & V4L2_STD_525_60) { aspect->numerator = 11; aspect->denominator = 10; } else { aspect->numerator = 54; aspect->denominator = 59; } return 0; } static int adv7180_g_tvnorms(struct v4l2_subdev *sd, v4l2_std_id *norm) { *norm = V4L2_STD_ALL; return 0; } static int adv7180_s_stream(struct v4l2_subdev *sd, int enable) { struct adv7180_state *state = to_state(sd); int ret; /* It's always safe to stop streaming, no need to take the lock */ if (!enable) { state->streaming = enable; return 0; } /* Must wait until querystd released the lock */ ret = mutex_lock_interruptible(&state->mutex); if (ret) return ret; state->streaming = enable; mutex_unlock(&state->mutex); return 0; } static int adv7180_subscribe_event(struct v4l2_subdev *sd, struct v4l2_fh *fh, struct v4l2_event_subscription *sub) { switch (sub->type) { case V4L2_EVENT_SOURCE_CHANGE: return v4l2_src_change_event_subdev_subscribe(sd, fh, sub); case V4L2_EVENT_CTRL: return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub); default: return -EINVAL; } } static const struct v4l2_subdev_video_ops adv7180_video_ops = { .s_std = adv7180_s_std, .g_std = adv7180_g_std, .querystd = adv7180_querystd, .g_input_status = adv7180_g_input_status, .s_routing = adv7180_s_routing, .g_pixelaspect = adv7180_g_pixelaspect, .g_tvnorms = adv7180_g_tvnorms, .s_stream = adv7180_s_stream, }; static const struct v4l2_subdev_core_ops adv7180_core_ops = { .s_power = adv7180_s_power, .subscribe_event = adv7180_subscribe_event, .unsubscribe_event = v4l2_event_subdev_unsubscribe, }; static const struct v4l2_subdev_pad_ops adv7180_pad_ops = { .enum_mbus_code = adv7180_enum_mbus_code, .set_fmt = adv7180_set_pad_format, .get_fmt = adv7180_get_pad_format, .get_frame_interval = adv7180_get_frame_interval, .get_mbus_config = adv7180_get_mbus_config, }; static const struct v4l2_subdev_sensor_ops adv7180_sensor_ops = { .g_skip_frames = adv7180_get_skip_frames, }; static const struct v4l2_subdev_ops adv7180_ops = { .core = &adv7180_core_ops, .video = &adv7180_video_ops, .pad = &adv7180_pad_ops, .sensor = &adv7180_sensor_ops, }; static const struct v4l2_subdev_internal_ops adv7180_internal_ops = { .init_state = adv7180_init_state, }; static irqreturn_t adv7180_irq(int irq, void *devid) { struct adv7180_state *state = devid; u8 isr3; mutex_lock(&state->mutex); isr3 = adv7180_read(state, ADV7180_REG_ISR3); /* clear */ adv7180_write(state, ADV7180_REG_ICR3, isr3); if (isr3 & ADV7180_IRQ3_AD_CHANGE) { static const struct v4l2_event src_ch = { .type = V4L2_EVENT_SOURCE_CHANGE, .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION, }; v4l2_subdev_notify_event(&state->sd, &src_ch); } mutex_unlock(&state->mutex); return IRQ_HANDLED; } static int adv7180_init(struct adv7180_state *state) { int ret; /* ITU-R BT.656-4 compatible */ ret = adv7180_write(state, ADV7180_REG_EXTENDED_OUTPUT_CONTROL, ADV7180_EXTENDED_OUTPUT_CONTROL_NTSCDIS); if (ret < 0) return ret; /* Manually set V bit end position in NTSC mode */ return adv7180_write(state, ADV7180_REG_NTSC_V_BIT_END, ADV7180_NTSC_V_BIT_END_MANUAL_NVEND); } static int adv7180_set_std(struct adv7180_state *state, unsigned int std) { return adv7180_write(state, ADV7180_REG_INPUT_CONTROL, (std << 4) | state->input); } static int adv7180_select_input(struct adv7180_state *state, unsigned int input) { int ret; ret = adv7180_read(state, ADV7180_REG_INPUT_CONTROL); if (ret < 0) return ret; ret &= ~ADV7180_INPUT_CONTROL_INSEL_MASK; ret |= input; return adv7180_write(state, ADV7180_REG_INPUT_CONTROL, ret); } static int adv7182_init(struct adv7180_state *state) { if (state->chip_info->flags & ADV7180_FLAG_MIPI_CSI2) adv7180_write(state, ADV7180_REG_CSI_SLAVE_ADDR, ADV7180_DEFAULT_CSI_I2C_ADDR << 1); if (state->chip_info->flags & ADV7180_FLAG_I2P) adv7180_write(state, ADV7180_REG_VPP_SLAVE_ADDR, ADV7180_DEFAULT_VPP_I2C_ADDR << 1); if (state->chip_info->flags & ADV7180_FLAG_V2) { /* ADI recommended writes for improved video quality */ adv7180_write(state, 0x0080, 0x51); adv7180_write(state, 0x0081, 0x51); adv7180_write(state, 0x0082, 0x68); } /* ADI required writes */ if (state->chip_info->flags & ADV7180_FLAG_MIPI_CSI2) { adv7180_write(state, ADV7180_REG_OUTPUT_CONTROL, 0x4e); adv7180_write(state, ADV7180_REG_EXTENDED_OUTPUT_CONTROL, 0x57); adv7180_write(state, ADV7180_REG_CTRL_2, 0xc0); } else { if (state->chip_info->flags & ADV7180_FLAG_V2) { if (state->force_bt656_4) { /* ITU-R BT.656-4 compatible */ adv7180_write(state, ADV7180_REG_EXTENDED_OUTPUT_CONTROL, ADV7180_EXTENDED_OUTPUT_CONTROL_NTSCDIS); /* Manually set NEWAVMODE */ adv7180_write(state, ADV7180_REG_VSYNC_FIELD_CTL_1, ADV7180_VSYNC_FIELD_CTL_1_NEWAV); /* Manually set V bit end position in NTSC mode */ adv7180_write(state, ADV7180_REG_NTSC_V_BIT_END, ADV7180_NTSC_V_BIT_END_MANUAL_NVEND); } else { adv7180_write(state, ADV7180_REG_EXTENDED_OUTPUT_CONTROL, 0x17); } } else { adv7180_write(state, ADV7180_REG_EXTENDED_OUTPUT_CONTROL, 0x07); } adv7180_write(state, ADV7180_REG_OUTPUT_CONTROL, 0x0c); adv7180_write(state, ADV7180_REG_CTRL_2, 0x40); } adv7180_write(state, 0x0013, 0x00); return 0; } static int adv7182_set_std(struct adv7180_state *state, unsigned int std) { /* Failing to set the reserved bit can result in increased video noise */ return adv7180_write(state, ADV7182_REG_INPUT_VIDSEL, (std << 4) | ADV7182_REG_INPUT_RESERVED); } enum adv7182_input_type { ADV7182_INPUT_TYPE_CVBS, ADV7182_INPUT_TYPE_DIFF_CVBS, ADV7182_INPUT_TYPE_SVIDEO, ADV7182_INPUT_TYPE_YPBPR, }; static enum adv7182_input_type adv7182_get_input_type(unsigned int input) { switch (input) { case ADV7182_INPUT_CVBS_AIN1: case ADV7182_INPUT_CVBS_AIN2: case ADV7182_INPUT_CVBS_AIN3: case ADV7182_INPUT_CVBS_AIN4: case ADV7182_INPUT_CVBS_AIN5: case ADV7182_INPUT_CVBS_AIN6: case ADV7182_INPUT_CVBS_AIN7: case ADV7182_INPUT_CVBS_AIN8: return ADV7182_INPUT_TYPE_CVBS; case ADV7182_INPUT_SVIDEO_AIN1_AIN2: case ADV7182_INPUT_SVIDEO_AIN3_AIN4: case ADV7182_INPUT_SVIDEO_AIN5_AIN6: case ADV7182_INPUT_SVIDEO_AIN7_AIN8: return ADV7182_INPUT_TYPE_SVIDEO; case ADV7182_INPUT_YPRPB_AIN1_AIN2_AIN3: case ADV7182_INPUT_YPRPB_AIN4_AIN5_AIN6: return ADV7182_INPUT_TYPE_YPBPR; case ADV7182_INPUT_DIFF_CVBS_AIN1_AIN2: case ADV7182_INPUT_DIFF_CVBS_AIN3_AIN4: case ADV7182_INPUT_DIFF_CVBS_AIN5_AIN6: case ADV7182_INPUT_DIFF_CVBS_AIN7_AIN8: return ADV7182_INPUT_TYPE_DIFF_CVBS; default: /* Will never happen */ return 0; } } /* ADI recommended writes to registers 0x52, 0x53, 0x54 */ static unsigned int adv7182_lbias_settings[][3] = { [ADV7182_INPUT_TYPE_CVBS] = { 0xCB, 0x4E, 0x80 }, [ADV7182_INPUT_TYPE_DIFF_CVBS] = { 0xC0, 0x4E, 0x80 }, [ADV7182_INPUT_TYPE_SVIDEO] = { 0x0B, 0xCE, 0x80 }, [ADV7182_INPUT_TYPE_YPBPR] = { 0x0B, 0x4E, 0xC0 }, }; static unsigned int adv7280_lbias_settings[][3] = { [ADV7182_INPUT_TYPE_CVBS] = { 0xCD, 0x4E, 0x80 }, [ADV7182_INPUT_TYPE_DIFF_CVBS] = { 0xC0, 0x4E, 0x80 }, [ADV7182_INPUT_TYPE_SVIDEO] = { 0x0B, 0xCE, 0x80 }, [ADV7182_INPUT_TYPE_YPBPR] = { 0x0B, 0x4E, 0xC0 }, }; static int adv7182_select_input(struct adv7180_state *state, unsigned int input) { enum adv7182_input_type input_type; unsigned int *lbias; unsigned int i; int ret; ret = adv7180_write(state, ADV7180_REG_INPUT_CONTROL, input); if (ret) return ret; /* Reset clamp circuitry - ADI recommended writes */ adv7180_write(state, ADV7180_REG_RST_CLAMP, 0x00); adv7180_write(state, ADV7180_REG_RST_CLAMP, 0xff); input_type = adv7182_get_input_type(input); switch (input_type) { case ADV7182_INPUT_TYPE_CVBS: case ADV7182_INPUT_TYPE_DIFF_CVBS: /* ADI recommends to use the SH1 filter */ adv7180_write(state, ADV7180_REG_SHAP_FILTER_CTL_1, 0x41); break; default: adv7180_write(state, ADV7180_REG_SHAP_FILTER_CTL_1, 0x01); break; } if (state->chip_info->flags & ADV7180_FLAG_V2) lbias = adv7280_lbias_settings[input_type]; else lbias = adv7182_lbias_settings[input_type]; for (i = 0; i < ARRAY_SIZE(adv7182_lbias_settings[0]); i++) adv7180_write(state, ADV7180_REG_CVBS_TRIM + i, lbias[i]); if (input_type == ADV7182_INPUT_TYPE_DIFF_CVBS) { /* ADI required writes to make differential CVBS work */ adv7180_write(state, ADV7180_REG_RES_CIR, 0xa8); adv7180_write(state, ADV7180_REG_CLAMP_ADJ, 0x90); adv7180_write(state, ADV7180_REG_DIFF_MODE, 0xb0); adv7180_write(state, ADV7180_REG_AGC_ADJ1, 0x08); adv7180_write(state, ADV7180_REG_AGC_ADJ2, 0xa0); } else { adv7180_write(state, ADV7180_REG_RES_CIR, 0xf0); adv7180_write(state, ADV7180_REG_CLAMP_ADJ, 0xd0); adv7180_write(state, ADV7180_REG_DIFF_MODE, 0x10); adv7180_write(state, ADV7180_REG_AGC_ADJ1, 0x9c); adv7180_write(state, ADV7180_REG_AGC_ADJ2, 0x00); } return 0; } static const struct adv7180_chip_info adv7180_info = { .flags = ADV7180_FLAG_RESET_POWERED, /* We cannot discriminate between LQFP and 40-pin LFCSP, so accept * all inputs and let the card driver take care of validation */ .valid_input_mask = BIT(ADV7180_INPUT_CVBS_AIN1) | BIT(ADV7180_INPUT_CVBS_AIN2) | BIT(ADV7180_INPUT_CVBS_AIN3) | BIT(ADV7180_INPUT_CVBS_AIN4) | BIT(ADV7180_INPUT_CVBS_AIN5) | BIT(ADV7180_INPUT_CVBS_AIN6) | BIT(ADV7180_INPUT_SVIDEO_AIN1_AIN2) | BIT(ADV7180_INPUT_SVIDEO_AIN3_AIN4) | BIT(ADV7180_INPUT_SVIDEO_AIN5_AIN6) | BIT(ADV7180_INPUT_YPRPB_AIN1_AIN2_AIN3) | BIT(ADV7180_INPUT_YPRPB_AIN4_AIN5_AIN6), .init = adv7180_init, .set_std = adv7180_set_std, .select_input = adv7180_select_input, }; static const struct adv7180_chip_info adv7182_info = { .valid_input_mask = BIT(ADV7182_INPUT_CVBS_AIN1) | BIT(ADV7182_INPUT_CVBS_AIN2) | BIT(ADV7182_INPUT_CVBS_AIN3) | BIT(ADV7182_INPUT_CVBS_AIN4) | BIT(ADV7182_INPUT_SVIDEO_AIN1_AIN2) | BIT(ADV7182_INPUT_SVIDEO_AIN3_AIN4) | BIT(ADV7182_INPUT_YPRPB_AIN1_AIN2_AIN3) | BIT(ADV7182_INPUT_DIFF_CVBS_AIN1_AIN2) | BIT(ADV7182_INPUT_DIFF_CVBS_AIN3_AIN4), .init = adv7182_init, .set_std = adv7182_set_std, .select_input = adv7182_select_input, }; static const struct adv7180_chip_info adv7280_info = { .flags = ADV7180_FLAG_V2 | ADV7180_FLAG_I2P, .valid_input_mask = BIT(ADV7182_INPUT_CVBS_AIN1) | BIT(ADV7182_INPUT_CVBS_AIN2) | BIT(ADV7182_INPUT_CVBS_AIN3) | BIT(ADV7182_INPUT_CVBS_AIN4) | BIT(ADV7182_INPUT_SVIDEO_AIN1_AIN2) | BIT(ADV7182_INPUT_SVIDEO_AIN3_AIN4) | BIT(ADV7182_INPUT_YPRPB_AIN1_AIN2_AIN3), .init = adv7182_init, .set_std = adv7182_set_std, .select_input = adv7182_select_input, }; static const struct adv7180_chip_info adv7280_m_info = { .flags = ADV7180_FLAG_V2 | ADV7180_FLAG_MIPI_CSI2 | ADV7180_FLAG_I2P, .valid_input_mask = BIT(ADV7182_INPUT_CVBS_AIN1) | BIT(ADV7182_INPUT_CVBS_AIN2) | BIT(ADV7182_INPUT_CVBS_AIN3) | BIT(ADV7182_INPUT_CVBS_AIN4) | BIT(ADV7182_INPUT_CVBS_AIN5) | BIT(ADV7182_INPUT_CVBS_AIN6) | BIT(ADV7182_INPUT_CVBS_AIN7) | BIT(ADV7182_INPUT_CVBS_AIN8) | BIT(ADV7182_INPUT_SVIDEO_AIN1_AIN2) | BIT(ADV7182_INPUT_SVIDEO_AIN3_AIN4) | BIT(ADV7182_INPUT_SVIDEO_AIN5_AIN6) | BIT(ADV7182_INPUT_SVIDEO_AIN7_AIN8) | BIT(ADV7182_INPUT_YPRPB_AIN1_AIN2_AIN3) | BIT(ADV7182_INPUT_YPRPB_AIN4_AIN5_AIN6), .init = adv7182_init, .set_std = adv7182_set_std, .select_input = adv7182_select_input, }; static const struct adv7180_chip_info adv7281_info = { .flags = ADV7180_FLAG_V2 | ADV7180_FLAG_MIPI_CSI2, .valid_input_mask = BIT(ADV7182_INPUT_CVBS_AIN1) | BIT(ADV7182_INPUT_CVBS_AIN2) | BIT(ADV7182_INPUT_CVBS_AIN7) | BIT(ADV7182_INPUT_CVBS_AIN8) | BIT(ADV7182_INPUT_SVIDEO_AIN1_AIN2) | BIT(ADV7182_INPUT_SVIDEO_AIN7_AIN8) | BIT(ADV7182_INPUT_DIFF_CVBS_AIN1_AIN2) | BIT(ADV7182_INPUT_DIFF_CVBS_AIN7_AIN8), .init = adv7182_init, .set_std = adv7182_set_std, .select_input = adv7182_select_input, }; static const struct adv7180_chip_info adv7281_m_info = { .flags = ADV7180_FLAG_V2 | ADV7180_FLAG_MIPI_CSI2, .valid_input_mask = BIT(ADV7182_INPUT_CVBS_AIN1) | BIT(ADV7182_INPUT_CVBS_AIN2) | BIT(ADV7182_INPUT_CVBS_AIN3) | BIT(ADV7182_INPUT_CVBS_AIN4) | BIT(ADV7182_INPUT_CVBS_AIN7) | BIT(ADV7182_INPUT_CVBS_AIN8) | BIT(ADV7182_INPUT_SVIDEO_AIN1_AIN2) | BIT(ADV7182_INPUT_SVIDEO_AIN3_AIN4) | BIT(ADV7182_INPUT_SVIDEO_AIN7_AIN8) | BIT(ADV7182_INPUT_YPRPB_AIN1_AIN2_AIN3) | BIT(ADV7182_INPUT_DIFF_CVBS_AIN1_AIN2) | BIT(ADV7182_INPUT_DIFF_CVBS_AIN3_AIN4) | BIT(ADV7182_INPUT_DIFF_CVBS_AIN7_AIN8), .init = adv7182_init, .set_std = adv7182_set_std, .select_input = adv7182_select_input, }; static const struct adv7180_chip_info adv7281_ma_info = { .flags = ADV7180_FLAG_V2 | ADV7180_FLAG_MIPI_CSI2, .valid_input_mask = BIT(ADV7182_INPUT_CVBS_AIN1) | BIT(ADV7182_INPUT_CVBS_AIN2) | BIT(ADV7182_INPUT_CVBS_AIN3) | BIT(ADV7182_INPUT_CVBS_AIN4) | BIT(ADV7182_INPUT_CVBS_AIN5) | BIT(ADV7182_INPUT_CVBS_AIN6) | BIT(ADV7182_INPUT_CVBS_AIN7) | BIT(ADV7182_INPUT_CVBS_AIN8) | BIT(ADV7182_INPUT_SVIDEO_AIN1_AIN2) | BIT(ADV7182_INPUT_SVIDEO_AIN3_AIN4) | BIT(ADV7182_INPUT_SVIDEO_AIN5_AIN6) | BIT(ADV7182_INPUT_SVIDEO_AIN7_AIN8) | BIT(ADV7182_INPUT_YPRPB_AIN1_AIN2_AIN3) | BIT(ADV7182_INPUT_YPRPB_AIN4_AIN5_AIN6) | BIT(ADV7182_INPUT_DIFF_CVBS_AIN1_AIN2) | BIT(ADV7182_INPUT_DIFF_CVBS_AIN3_AIN4) | BIT(ADV7182_INPUT_DIFF_CVBS_AIN5_AIN6) | BIT(ADV7182_INPUT_DIFF_CVBS_AIN7_AIN8), .init = adv7182_init, .set_std = adv7182_set_std, .select_input = adv7182_select_input, }; static const struct adv7180_chip_info adv7282_info = { .flags = ADV7180_FLAG_V2 | ADV7180_FLAG_I2P, .valid_input_mask = BIT(ADV7182_INPUT_CVBS_AIN1) | BIT(ADV7182_INPUT_CVBS_AIN2) | BIT(ADV7182_INPUT_CVBS_AIN7) | BIT(ADV7182_INPUT_CVBS_AIN8) | BIT(ADV7182_INPUT_SVIDEO_AIN1_AIN2) | BIT(ADV7182_INPUT_SVIDEO_AIN7_AIN8) | BIT(ADV7182_INPUT_DIFF_CVBS_AIN1_AIN2) | BIT(ADV7182_INPUT_DIFF_CVBS_AIN7_AIN8), .init = adv7182_init, .set_std = adv7182_set_std, .select_input = adv7182_select_input, }; static const struct adv7180_chip_info adv7282_m_info = { .flags = ADV7180_FLAG_V2 | ADV7180_FLAG_MIPI_CSI2 | ADV7180_FLAG_I2P, .valid_input_mask = BIT(ADV7182_INPUT_CVBS_AIN1) | BIT(ADV7182_INPUT_CVBS_AIN2) | BIT(ADV7182_INPUT_CVBS_AIN3) | BIT(ADV7182_INPUT_CVBS_AIN4) | BIT(ADV7182_INPUT_CVBS_AIN7) | BIT(ADV7182_INPUT_CVBS_AIN8) | BIT(ADV7182_INPUT_SVIDEO_AIN1_AIN2) | BIT(ADV7182_INPUT_SVIDEO_AIN3_AIN4) | BIT(ADV7182_INPUT_SVIDEO_AIN7_AIN8) | BIT(ADV7182_INPUT_DIFF_CVBS_AIN1_AIN2) | BIT(ADV7182_INPUT_DIFF_CVBS_AIN3_AIN4) | BIT(ADV7182_INPUT_DIFF_CVBS_AIN7_AIN8), .init = adv7182_init, .set_std = adv7182_set_std, .select_input = adv7182_select_input, }; static int init_device(struct adv7180_state *state) { int ret; mutex_lock(&state->mutex); adv7180_set_power_pin(state, true); adv7180_set_reset_pin(state, false); adv7180_write(state, ADV7180_REG_PWR_MAN, ADV7180_PWR_MAN_RES); usleep_range(5000, 10000); ret = state->chip_info->init(state); if (ret) goto out_unlock; ret = adv7180_program_std(state); if (ret) goto out_unlock; adv7180_set_field_mode(state); /* register for interrupts */ if (state->irq > 0) { /* config the Interrupt pin to be active low */ ret = adv7180_write(state, ADV7180_REG_ICONF1, ADV7180_ICONF1_ACTIVE_LOW | ADV7180_ICONF1_PSYNC_ONLY); if (ret < 0) goto out_unlock; ret = adv7180_write(state, ADV7180_REG_IMR1, 0); if (ret < 0) goto out_unlock; ret = adv7180_write(state, ADV7180_REG_IMR2, 0); if (ret < 0) goto out_unlock; /* enable AD change interrupts interrupts */ ret = adv7180_write(state, ADV7180_REG_IMR3, ADV7180_IRQ3_AD_CHANGE); if (ret < 0) goto out_unlock; ret = adv7180_write(state, ADV7180_REG_IMR4, 0); if (ret < 0) goto out_unlock; } out_unlock: mutex_unlock(&state->mutex); return ret; } static int adv7180_probe(struct i2c_client *client) { struct device_node *np = client->dev.of_node; struct adv7180_state *state; struct v4l2_subdev *sd; int ret; /* Check if the adapter supports the needed features */ if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -EIO; state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL); if (state == NULL) return -ENOMEM; state->client = client; state->field = V4L2_FIELD_ALTERNATE; state->chip_info = i2c_get_match_data(client); state->pwdn_gpio = devm_gpiod_get_optional(&client->dev, "powerdown", GPIOD_OUT_HIGH); if (IS_ERR(state->pwdn_gpio)) { ret = PTR_ERR(state->pwdn_gpio); v4l_err(client, "request for power pin failed: %d\n", ret); return ret; } state->rst_gpio = devm_gpiod_get_optional(&client->dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(state->rst_gpio)) { ret = PTR_ERR(state->rst_gpio); v4l_err(client, "request for reset pin failed: %d\n", ret); return ret; } if (of_property_read_bool(np, "adv,force-bt656-4")) state->force_bt656_4 = true; if (state->chip_info->flags & ADV7180_FLAG_MIPI_CSI2) { state->csi_client = i2c_new_dummy_device(client->adapter, ADV7180_DEFAULT_CSI_I2C_ADDR); if (IS_ERR(state->csi_client)) return PTR_ERR(state->csi_client); } if (state->chip_info->flags & ADV7180_FLAG_I2P) { state->vpp_client = i2c_new_dummy_device(client->adapter, ADV7180_DEFAULT_VPP_I2C_ADDR); if (IS_ERR(state->vpp_client)) { ret = PTR_ERR(state->vpp_client); goto err_unregister_csi_client; } } state->irq = client->irq; mutex_init(&state->mutex); state->curr_norm = V4L2_STD_NTSC; if (state->chip_info->flags & ADV7180_FLAG_RESET_POWERED) state->powered = true; else state->powered = false; state->input = 0; sd = &state->sd; v4l2_i2c_subdev_init(sd, client, &adv7180_ops); sd->internal_ops = &adv7180_internal_ops; sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS; ret = adv7180_init_controls(state); if (ret) goto err_unregister_vpp_client; state->pad.flags = MEDIA_PAD_FL_SOURCE; sd->entity.function = MEDIA_ENT_F_ATV_DECODER; ret = media_entity_pads_init(&sd->entity, 1, &state->pad); if (ret) goto err_free_ctrl; ret = init_device(state); if (ret) goto err_media_entity_cleanup; if (state->irq > 0) { ret = request_threaded_irq(client->irq, NULL, adv7180_irq, IRQF_ONESHOT | IRQF_TRIGGER_FALLING, KBUILD_MODNAME, state); if (ret) goto err_media_entity_cleanup; } ret = v4l2_async_register_subdev(sd); if (ret) goto err_free_irq; mutex_lock(&state->mutex); ret = adv7180_read(state, ADV7180_REG_IDENT); mutex_unlock(&state->mutex); if (ret < 0) goto err_v4l2_async_unregister; v4l_info(client, "chip id 0x%x found @ 0x%02x (%s)\n", ret, client->addr, client->adapter->name); return 0; err_v4l2_async_unregister: v4l2_async_unregister_subdev(sd); err_free_irq: if (state->irq > 0) free_irq(client->irq, state); err_media_entity_cleanup: media_entity_cleanup(&sd->entity); err_free_ctrl: adv7180_exit_controls(state); err_unregister_vpp_client: i2c_unregister_device(state->vpp_client); err_unregister_csi_client: i2c_unregister_device(state->csi_client); mutex_destroy(&state->mutex); return ret; } static void adv7180_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct adv7180_state *state = to_state(sd); v4l2_async_unregister_subdev(sd); if (state->irq > 0) free_irq(client->irq, state); media_entity_cleanup(&sd->entity); adv7180_exit_controls(state); i2c_unregister_device(state->vpp_client); i2c_unregister_device(state->csi_client); adv7180_set_reset_pin(state, true); adv7180_set_power_pin(state, false); mutex_destroy(&state->mutex); } #ifdef CONFIG_PM_SLEEP static int adv7180_suspend(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct adv7180_state *state = to_state(sd); return adv7180_set_power(state, false); } static int adv7180_resume(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct adv7180_state *state = to_state(sd); int ret; ret = init_device(state); if (ret < 0) return ret; ret = adv7180_set_power(state, state->powered); if (ret) return ret; return 0; } static SIMPLE_DEV_PM_OPS(adv7180_pm_ops, adv7180_suspend, adv7180_resume); #define ADV7180_PM_OPS (&adv7180_pm_ops) #else #define ADV7180_PM_OPS NULL #endif static const struct i2c_device_id adv7180_id[] = { { "adv7180", (kernel_ulong_t)&adv7180_info }, { "adv7180cp", (kernel_ulong_t)&adv7180_info }, { "adv7180st", (kernel_ulong_t)&adv7180_info }, { "adv7182", (kernel_ulong_t)&adv7182_info }, { "adv7280", (kernel_ulong_t)&adv7280_info }, { "adv7280-m", (kernel_ulong_t)&adv7280_m_info }, { "adv7281", (kernel_ulong_t)&adv7281_info }, { "adv7281-m", (kernel_ulong_t)&adv7281_m_info }, { "adv7281-ma", (kernel_ulong_t)&adv7281_ma_info }, { "adv7282", (kernel_ulong_t)&adv7282_info }, { "adv7282-m", (kernel_ulong_t)&adv7282_m_info }, {} }; MODULE_DEVICE_TABLE(i2c, adv7180_id); static const struct of_device_id adv7180_of_id[] = { { .compatible = "adi,adv7180", &adv7180_info }, { .compatible = "adi,adv7180cp", &adv7180_info }, { .compatible = "adi,adv7180st", &adv7180_info }, { .compatible = "adi,adv7182", &adv7182_info }, { .compatible = "adi,adv7280", &adv7280_info }, { .compatible = "adi,adv7280-m", &adv7280_m_info }, { .compatible = "adi,adv7281", &adv7281_info }, { .compatible = "adi,adv7281-m", &adv7281_m_info }, { .compatible = "adi,adv7281-ma", &adv7281_ma_info }, { .compatible = "adi,adv7282", &adv7282_info }, { .compatible = "adi,adv7282-m", &adv7282_m_info }, {} }; MODULE_DEVICE_TABLE(of, adv7180_of_id); static struct i2c_driver adv7180_driver = { .driver = { .name = KBUILD_MODNAME, .pm = ADV7180_PM_OPS, .of_match_table = adv7180_of_id, }, .probe = adv7180_probe, .remove = adv7180_remove, .id_table = adv7180_id, }; module_i2c_driver(adv7180_driver); MODULE_DESCRIPTION("Analog Devices ADV7180 video decoder driver"); MODULE_AUTHOR("Mocean Laboratories"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1