Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Laurent Pinchart | 5212 | 99.52% | 4 | 40.00% |
Sakari Ailus | 9 | 0.17% | 1 | 10.00% |
Javier Martin | 6 | 0.11% | 1 | 10.00% |
Dan Carpenter | 4 | 0.08% | 1 | 10.00% |
Steve Longerbeam | 4 | 0.08% | 1 | 10.00% |
Rob Herring | 1 | 0.02% | 1 | 10.00% |
Uwe Kleine-König | 1 | 0.02% | 1 | 10.00% |
Total | 5237 | 10 |
// SPDX-License-Identifier: GPL-2.0 /* * Driver for IMX296 CMOS Image Sensor from Sony * * Copyright 2019 Laurent Pinchart <laurent.pinchart@ideasonboard.com> */ #include <linux/clk.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/of.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include <linux/videodev2.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-fwnode.h> #include <media/v4l2-subdev.h> #define IMX296_PIXEL_ARRAY_WIDTH 1456 #define IMX296_PIXEL_ARRAY_HEIGHT 1088 #define IMX296_REG_8BIT(n) ((1 << 16) | (n)) #define IMX296_REG_16BIT(n) ((2 << 16) | (n)) #define IMX296_REG_24BIT(n) ((3 << 16) | (n)) #define IMX296_REG_SIZE_SHIFT 16 #define IMX296_REG_ADDR_MASK 0xffff #define IMX296_CTRL00 IMX296_REG_8BIT(0x3000) #define IMX296_CTRL00_STANDBY BIT(0) #define IMX296_CTRL08 IMX296_REG_8BIT(0x3008) #define IMX296_CTRL08_REGHOLD BIT(0) #define IMX296_CTRL0A IMX296_REG_8BIT(0x300a) #define IMX296_CTRL0A_XMSTA BIT(0) #define IMX296_CTRL0B IMX296_REG_8BIT(0x300b) #define IMX296_CTRL0B_TRIGEN BIT(0) #define IMX296_CTRL0D IMX296_REG_8BIT(0x300d) #define IMX296_CTRL0D_WINMODE_ALL (0 << 0) #define IMX296_CTRL0D_WINMODE_FD_BINNING (2 << 0) #define IMX296_CTRL0D_HADD_ON_BINNING BIT(5) #define IMX296_CTRL0D_SAT_CNT BIT(6) #define IMX296_CTRL0E IMX296_REG_8BIT(0x300e) #define IMX296_CTRL0E_VREVERSE BIT(0) #define IMX296_CTRL0E_HREVERSE BIT(1) #define IMX296_VMAX IMX296_REG_24BIT(0x3010) #define IMX296_HMAX IMX296_REG_16BIT(0x3014) #define IMX296_TMDCTRL IMX296_REG_8BIT(0x301d) #define IMX296_TMDCTRL_LATCH BIT(0) #define IMX296_TMDOUT IMX296_REG_16BIT(0x301e) #define IMX296_TMDOUT_MASK 0x3ff #define IMX296_WDSEL IMX296_REG_8BIT(0x3021) #define IMX296_WDSEL_NORMAL (0 << 0) #define IMX296_WDSEL_MULTI_2 (1 << 0) #define IMX296_WDSEL_MULTI_4 (3 << 0) #define IMX296_BLKLEVELAUTO IMX296_REG_8BIT(0x3022) #define IMX296_BLKLEVELAUTO_ON 0x01 #define IMX296_BLKLEVELAUTO_OFF 0xf0 #define IMX296_SST IMX296_REG_8BIT(0x3024) #define IMX296_SST_EN BIT(0) #define IMX296_CTRLTOUT IMX296_REG_8BIT(0x3026) #define IMX296_CTRLTOUT_TOUT1SEL_LOW (0 << 0) #define IMX296_CTRLTOUT_TOUT1SEL_PULSE (3 << 0) #define IMX296_CTRLTOUT_TOUT2SEL_LOW (0 << 2) #define IMX296_CTRLTOUT_TOUT2SEL_PULSE (3 << 2) #define IMX296_CTRLTRIG IMX296_REG_8BIT(0x3029) #define IMX296_CTRLTRIG_TOUT1_SEL_LOW (0 << 0) #define IMX296_CTRLTRIG_TOUT1_SEL_PULSE1 (1 << 0) #define IMX296_CTRLTRIG_TOUT2_SEL_LOW (0 << 4) #define IMX296_CTRLTRIG_TOUT2_SEL_PULSE2 (2 << 4) #define IMX296_SYNCSEL IMX296_REG_8BIT(0x3036) #define IMX296_SYNCSEL_NORMAL 0xc0 #define IMX296_SYNCSEL_HIZ 0xf0 #define IMX296_PULSE1 IMX296_REG_8BIT(0x306d) #define IMX296_PULSE1_EN_NOR BIT(0) #define IMX296_PULSE1_EN_TRIG BIT(1) #define IMX296_PULSE1_POL_HIGH (0 << 2) #define IMX296_PULSE1_POL_LOW (1 << 2) #define IMX296_PULSE1_UP IMX296_REG_24BIT(0x3070) #define IMX296_PULSE1_DN IMX296_REG_24BIT(0x3074) #define IMX296_PULSE2 IMX296_REG_8BIT(0x3079) #define IMX296_PULSE2_EN_NOR BIT(0) #define IMX296_PULSE2_EN_TRIG BIT(1) #define IMX296_PULSE2_POL_HIGH (0 << 2) #define IMX296_PULSE2_POL_LOW (1 << 2) #define IMX296_PULSE2_UP IMX296_REG_24BIT(0x307c) #define IMX296_PULSE2_DN IMX296_REG_24BIT(0x3080) #define IMX296_INCKSEL(n) IMX296_REG_8BIT(0x3089 + (n)) #define IMX296_SHS1 IMX296_REG_24BIT(0x308d) #define IMX296_SHS2 IMX296_REG_24BIT(0x3090) #define IMX296_SHS3 IMX296_REG_24BIT(0x3094) #define IMX296_SHS4 IMX296_REG_24BIT(0x3098) #define IMX296_VBLANKLP IMX296_REG_8BIT(0x309c) #define IMX296_VBLANKLP_NORMAL 0x04 #define IMX296_VBLANKLP_LOW_POWER 0x2c #define IMX296_EXP_CNT IMX296_REG_8BIT(0x30a3) #define IMX296_EXP_CNT_RESET BIT(0) #define IMX296_EXP_MAX IMX296_REG_16BIT(0x30a6) #define IMX296_VINT IMX296_REG_8BIT(0x30aa) #define IMX296_VINT_EN BIT(0) #define IMX296_LOWLAGTRG IMX296_REG_8BIT(0x30ae) #define IMX296_LOWLAGTRG_FAST BIT(0) #define IMX296_I2CCTRL IMX296_REG_8BIT(0x30ef) #define IMX296_I2CCTRL_I2CACKEN BIT(0) #define IMX296_SENSOR_INFO IMX296_REG_16BIT(0x3148) #define IMX296_SENSOR_INFO_MONO BIT(15) #define IMX296_SENSOR_INFO_IMX296LQ 0x4a00 #define IMX296_SENSOR_INFO_IMX296LL 0xca00 #define IMX296_S_SHSA IMX296_REG_16BIT(0x31ca) #define IMX296_S_SHSB IMX296_REG_16BIT(0x31d2) /* * Registers 0x31c8 to 0x31cd, 0x31d0 to 0x31d5, 0x31e2, 0x31e3, 0x31ea and * 0x31eb are related to exposure mode but otherwise not documented. */ #define IMX296_GAINCTRL IMX296_REG_8BIT(0x3200) #define IMX296_GAINCTRL_WD_GAIN_MODE_NORMAL 0x01 #define IMX296_GAINCTRL_WD_GAIN_MODE_MULTI 0x41 #define IMX296_GAIN IMX296_REG_16BIT(0x3204) #define IMX296_GAIN_MIN 0 #define IMX296_GAIN_MAX 480 #define IMX296_GAIN1 IMX296_REG_16BIT(0x3208) #define IMX296_GAIN2 IMX296_REG_16BIT(0x320c) #define IMX296_GAIN3 IMX296_REG_16BIT(0x3210) #define IMX296_GAINDLY IMX296_REG_8BIT(0x3212) #define IMX296_GAINDLY_NONE 0x08 #define IMX296_GAINDLY_1FRAME 0x09 #define IMX296_PGCTRL IMX296_REG_8BIT(0x3238) #define IMX296_PGCTRL_REGEN BIT(0) #define IMX296_PGCTRL_THRU BIT(1) #define IMX296_PGCTRL_CLKEN BIT(2) #define IMX296_PGCTRL_MODE(n) ((n) << 3) #define IMX296_PGHPOS IMX296_REG_16BIT(0x3239) #define IMX296_PGVPOS IMX296_REG_16BIT(0x323c) #define IMX296_PGHPSTEP IMX296_REG_8BIT(0x323e) #define IMX296_PGVPSTEP IMX296_REG_8BIT(0x323f) #define IMX296_PGHPNUM IMX296_REG_8BIT(0x3240) #define IMX296_PGVPNUM IMX296_REG_8BIT(0x3241) #define IMX296_PGDATA1 IMX296_REG_16BIT(0x3244) #define IMX296_PGDATA2 IMX296_REG_16BIT(0x3246) #define IMX296_PGHGSTEP IMX296_REG_8BIT(0x3249) #define IMX296_BLKLEVEL IMX296_REG_16BIT(0x3254) #define IMX296_FID0_ROI IMX296_REG_8BIT(0x3300) #define IMX296_FID0_ROIH1ON BIT(0) #define IMX296_FID0_ROIV1ON BIT(1) #define IMX296_FID0_ROIPH1 IMX296_REG_16BIT(0x3310) #define IMX296_FID0_ROIPV1 IMX296_REG_16BIT(0x3312) #define IMX296_FID0_ROIWH1 IMX296_REG_16BIT(0x3314) #define IMX296_FID0_ROIWH1_MIN 80 #define IMX296_FID0_ROIWV1 IMX296_REG_16BIT(0x3316) #define IMX296_FID0_ROIWV1_MIN 4 #define IMX296_CM_HSST_STARTTMG IMX296_REG_16BIT(0x4018) #define IMX296_CM_HSST_ENDTMG IMX296_REG_16BIT(0x401a) #define IMX296_DA_HSST_STARTTMG IMX296_REG_16BIT(0x404d) #define IMX296_DA_HSST_ENDTMG IMX296_REG_16BIT(0x4050) #define IMX296_LM_HSST_STARTTMG IMX296_REG_16BIT(0x4094) #define IMX296_LM_HSST_ENDTMG IMX296_REG_16BIT(0x4096) #define IMX296_SST_SIEASTA1_SET IMX296_REG_8BIT(0x40c9) #define IMX296_SST_SIEASTA1PRE_1U IMX296_REG_16BIT(0x40cc) #define IMX296_SST_SIEASTA1PRE_1D IMX296_REG_16BIT(0x40ce) #define IMX296_SST_SIEASTA1PRE_2U IMX296_REG_16BIT(0x40d0) #define IMX296_SST_SIEASTA1PRE_2D IMX296_REG_16BIT(0x40d2) #define IMX296_HSST IMX296_REG_8BIT(0x40dc) #define IMX296_HSST_EN BIT(2) #define IMX296_CKREQSEL IMX296_REG_8BIT(0x4101) #define IMX296_CKREQSEL_HS BIT(2) #define IMX296_GTTABLENUM IMX296_REG_8BIT(0x4114) #define IMX296_CTRL418C IMX296_REG_8BIT(0x418c) struct imx296_clk_params { unsigned int freq; u8 incksel[4]; u8 ctrl418c; }; static const struct imx296_clk_params imx296_clk_params[] = { { 37125000, { 0x80, 0x0b, 0x80, 0x08 }, 116 }, { 54000000, { 0xb0, 0x0f, 0xb0, 0x0c }, 168 }, { 74250000, { 0x80, 0x0f, 0x80, 0x0c }, 232 }, }; static const char * const imx296_supply_names[] = { "dvdd", "ovdd", "avdd", }; struct imx296 { struct device *dev; struct clk *clk; struct regulator_bulk_data supplies[ARRAY_SIZE(imx296_supply_names)]; struct gpio_desc *reset; struct regmap *regmap; const struct imx296_clk_params *clk_params; bool mono; struct v4l2_subdev subdev; struct media_pad pad; struct v4l2_ctrl_handler ctrls; struct v4l2_ctrl *hblank; struct v4l2_ctrl *vblank; }; static inline struct imx296 *to_imx296(struct v4l2_subdev *sd) { return container_of(sd, struct imx296, subdev); } static int imx296_read(struct imx296 *sensor, u32 addr) { u8 data[3] = { 0, 0, 0 }; int ret; ret = regmap_raw_read(sensor->regmap, addr & IMX296_REG_ADDR_MASK, data, (addr >> IMX296_REG_SIZE_SHIFT) & 3); if (ret < 0) return ret; return (data[2] << 16) | (data[1] << 8) | data[0]; } static int imx296_write(struct imx296 *sensor, u32 addr, u32 value, int *err) { u8 data[3] = { value & 0xff, (value >> 8) & 0xff, value >> 16 }; int ret; if (err && *err) return *err; ret = regmap_raw_write(sensor->regmap, addr & IMX296_REG_ADDR_MASK, data, (addr >> IMX296_REG_SIZE_SHIFT) & 3); if (ret < 0) { dev_err(sensor->dev, "%u-bit write to 0x%04x failed: %d\n", ((addr >> IMX296_REG_SIZE_SHIFT) & 3) * 8, addr & IMX296_REG_ADDR_MASK, ret); if (err) *err = ret; } return ret; } static int imx296_power_on(struct imx296 *sensor) { int ret; ret = regulator_bulk_enable(ARRAY_SIZE(sensor->supplies), sensor->supplies); if (ret < 0) return ret; udelay(1); ret = gpiod_direction_output(sensor->reset, 0); if (ret < 0) goto err_supply; udelay(1); ret = clk_prepare_enable(sensor->clk); if (ret < 0) goto err_reset; /* * The documentation doesn't explicitly say how much time is required * after providing a clock and before starting I2C communication. It * mentions a delay of 20µs in 4-wire mode, but tests showed that a * delay of 100µs resulted in I2C communication failures, while 500µs * seems to be enough. Be conservative. */ usleep_range(1000, 2000); return 0; err_reset: gpiod_direction_output(sensor->reset, 1); err_supply: regulator_bulk_disable(ARRAY_SIZE(sensor->supplies), sensor->supplies); return ret; } static void imx296_power_off(struct imx296 *sensor) { clk_disable_unprepare(sensor->clk); gpiod_direction_output(sensor->reset, 1); regulator_bulk_disable(ARRAY_SIZE(sensor->supplies), sensor->supplies); } /* ----------------------------------------------------------------------------- * Controls */ static const char * const imx296_test_pattern_menu[] = { "Disabled", "Multiple Pixels", "Sequence 1", "Sequence 2", "Gradient", "Row", "Column", "Cross", "Stripe", "Checks", }; static int imx296_s_ctrl(struct v4l2_ctrl *ctrl) { struct imx296 *sensor = container_of(ctrl->handler, struct imx296, ctrls); const struct v4l2_mbus_framefmt *format; struct v4l2_subdev_state *state; unsigned int vmax; int ret = 0; if (!pm_runtime_get_if_in_use(sensor->dev)) return 0; state = v4l2_subdev_get_locked_active_state(&sensor->subdev); format = v4l2_subdev_state_get_format(state, 0); switch (ctrl->id) { case V4L2_CID_EXPOSURE: /* Clamp the exposure value to VMAX. */ vmax = format->height + sensor->vblank->cur.val; ctrl->val = min_t(int, ctrl->val, vmax); imx296_write(sensor, IMX296_SHS1, vmax - ctrl->val, &ret); break; case V4L2_CID_ANALOGUE_GAIN: imx296_write(sensor, IMX296_GAIN, ctrl->val, &ret); break; case V4L2_CID_VBLANK: imx296_write(sensor, IMX296_VMAX, format->height + ctrl->val, &ret); break; case V4L2_CID_TEST_PATTERN: if (ctrl->val) { imx296_write(sensor, IMX296_PGHPOS, 8, &ret); imx296_write(sensor, IMX296_PGVPOS, 8, &ret); imx296_write(sensor, IMX296_PGHPSTEP, 8, &ret); imx296_write(sensor, IMX296_PGVPSTEP, 8, &ret); imx296_write(sensor, IMX296_PGHPNUM, 100, &ret); imx296_write(sensor, IMX296_PGVPNUM, 100, &ret); imx296_write(sensor, IMX296_PGDATA1, 0x300, &ret); imx296_write(sensor, IMX296_PGDATA2, 0x100, &ret); imx296_write(sensor, IMX296_PGHGSTEP, 0, &ret); imx296_write(sensor, IMX296_BLKLEVEL, 0, &ret); imx296_write(sensor, IMX296_BLKLEVELAUTO, IMX296_BLKLEVELAUTO_OFF, &ret); imx296_write(sensor, IMX296_PGCTRL, IMX296_PGCTRL_REGEN | IMX296_PGCTRL_CLKEN | IMX296_PGCTRL_MODE(ctrl->val - 1), &ret); } else { imx296_write(sensor, IMX296_PGCTRL, IMX296_PGCTRL_CLKEN, &ret); imx296_write(sensor, IMX296_BLKLEVEL, 0x3c, &ret); imx296_write(sensor, IMX296_BLKLEVELAUTO, IMX296_BLKLEVELAUTO_ON, &ret); } break; default: ret = -EINVAL; break; } pm_runtime_put(sensor->dev); return ret; } static const struct v4l2_ctrl_ops imx296_ctrl_ops = { .s_ctrl = imx296_s_ctrl, }; static int imx296_ctrls_init(struct imx296 *sensor) { struct v4l2_fwnode_device_properties props; unsigned int hblank; int ret; ret = v4l2_fwnode_device_parse(sensor->dev, &props); if (ret < 0) return ret; v4l2_ctrl_handler_init(&sensor->ctrls, 9); v4l2_ctrl_new_std(&sensor->ctrls, &imx296_ctrl_ops, V4L2_CID_EXPOSURE, 1, 1048575, 1, 1104); v4l2_ctrl_new_std(&sensor->ctrls, &imx296_ctrl_ops, V4L2_CID_ANALOGUE_GAIN, IMX296_GAIN_MIN, IMX296_GAIN_MAX, 1, IMX296_GAIN_MIN); /* * Horizontal blanking is controlled through the HMAX register, which * contains a line length in INCK clock units. The INCK frequency is * fixed to 74.25 MHz. The HMAX value is currently fixed to 1100, * convert it to a number of pixels based on the nominal pixel rate. */ hblank = 1100 * 1188000000ULL / 10 / 74250000 - IMX296_PIXEL_ARRAY_WIDTH; sensor->hblank = v4l2_ctrl_new_std(&sensor->ctrls, &imx296_ctrl_ops, V4L2_CID_HBLANK, hblank, hblank, 1, hblank); if (sensor->hblank) sensor->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY; sensor->vblank = v4l2_ctrl_new_std(&sensor->ctrls, &imx296_ctrl_ops, V4L2_CID_VBLANK, 30, 1048575 - IMX296_PIXEL_ARRAY_HEIGHT, 1, 30); /* * The sensor calculates the MIPI timings internally to achieve a bit * rate between 1122 and 1198 Mbps. The exact value is unfortunately not * reported, at least according to the documentation. Report a nominal * rate of 1188 Mbps as that is used by the datasheet in multiple * examples. */ v4l2_ctrl_new_std(&sensor->ctrls, NULL, V4L2_CID_PIXEL_RATE, 1122000000 / 10, 1198000000 / 10, 1, 1188000000 / 10); v4l2_ctrl_new_std_menu_items(&sensor->ctrls, &imx296_ctrl_ops, V4L2_CID_TEST_PATTERN, ARRAY_SIZE(imx296_test_pattern_menu) - 1, 0, 0, imx296_test_pattern_menu); v4l2_ctrl_new_fwnode_properties(&sensor->ctrls, &imx296_ctrl_ops, &props); if (sensor->ctrls.error) { dev_err(sensor->dev, "failed to add controls (%d)\n", sensor->ctrls.error); v4l2_ctrl_handler_free(&sensor->ctrls); return sensor->ctrls.error; } sensor->subdev.ctrl_handler = &sensor->ctrls; return 0; } /* ----------------------------------------------------------------------------- * V4L2 Subdev Operations */ /* * This table is extracted from vendor data that is entirely undocumented. The * first register write is required to activate the CSI-2 output. The other * entries may or may not be optional? */ static const struct { unsigned int reg; unsigned int value; } imx296_init_table[] = { { IMX296_REG_8BIT(0x3005), 0xf0 }, { IMX296_REG_8BIT(0x309e), 0x04 }, { IMX296_REG_8BIT(0x30a0), 0x04 }, { IMX296_REG_8BIT(0x30a1), 0x3c }, { IMX296_REG_8BIT(0x30a4), 0x5f }, { IMX296_REG_8BIT(0x30a8), 0x91 }, { IMX296_REG_8BIT(0x30ac), 0x28 }, { IMX296_REG_8BIT(0x30af), 0x09 }, { IMX296_REG_8BIT(0x30df), 0x00 }, { IMX296_REG_8BIT(0x3165), 0x00 }, { IMX296_REG_8BIT(0x3169), 0x10 }, { IMX296_REG_8BIT(0x316a), 0x02 }, { IMX296_REG_8BIT(0x31c8), 0xf3 }, /* Exposure-related */ { IMX296_REG_8BIT(0x31d0), 0xf4 }, /* Exposure-related */ { IMX296_REG_8BIT(0x321a), 0x00 }, { IMX296_REG_8BIT(0x3226), 0x02 }, { IMX296_REG_8BIT(0x3256), 0x01 }, { IMX296_REG_8BIT(0x3541), 0x72 }, { IMX296_REG_8BIT(0x3516), 0x77 }, { IMX296_REG_8BIT(0x350b), 0x7f }, { IMX296_REG_8BIT(0x3758), 0xa3 }, { IMX296_REG_8BIT(0x3759), 0x00 }, { IMX296_REG_8BIT(0x375a), 0x85 }, { IMX296_REG_8BIT(0x375b), 0x00 }, { IMX296_REG_8BIT(0x3832), 0xf5 }, { IMX296_REG_8BIT(0x3833), 0x00 }, { IMX296_REG_8BIT(0x38a2), 0xf6 }, { IMX296_REG_8BIT(0x38a3), 0x00 }, { IMX296_REG_8BIT(0x3a00), 0x80 }, { IMX296_REG_8BIT(0x3d48), 0xa3 }, { IMX296_REG_8BIT(0x3d49), 0x00 }, { IMX296_REG_8BIT(0x3d4a), 0x85 }, { IMX296_REG_8BIT(0x3d4b), 0x00 }, { IMX296_REG_8BIT(0x400e), 0x58 }, { IMX296_REG_8BIT(0x4014), 0x1c }, { IMX296_REG_8BIT(0x4041), 0x2a }, { IMX296_REG_8BIT(0x40a2), 0x06 }, { IMX296_REG_8BIT(0x40c1), 0xf6 }, { IMX296_REG_8BIT(0x40c7), 0x0f }, { IMX296_REG_8BIT(0x40c8), 0x00 }, { IMX296_REG_8BIT(0x4174), 0x00 }, }; static int imx296_setup(struct imx296 *sensor, struct v4l2_subdev_state *state) { const struct v4l2_mbus_framefmt *format; const struct v4l2_rect *crop; unsigned int i; int ret = 0; format = v4l2_subdev_state_get_format(state, 0); crop = v4l2_subdev_state_get_crop(state, 0); for (i = 0; i < ARRAY_SIZE(imx296_init_table); ++i) imx296_write(sensor, imx296_init_table[i].reg, imx296_init_table[i].value, &ret); if (crop->width != IMX296_PIXEL_ARRAY_WIDTH || crop->height != IMX296_PIXEL_ARRAY_HEIGHT) { imx296_write(sensor, IMX296_FID0_ROI, IMX296_FID0_ROIH1ON | IMX296_FID0_ROIV1ON, &ret); imx296_write(sensor, IMX296_FID0_ROIPH1, crop->left, &ret); imx296_write(sensor, IMX296_FID0_ROIPV1, crop->top, &ret); imx296_write(sensor, IMX296_FID0_ROIWH1, crop->width, &ret); imx296_write(sensor, IMX296_FID0_ROIWV1, crop->height, &ret); } else { imx296_write(sensor, IMX296_FID0_ROI, 0, &ret); } imx296_write(sensor, IMX296_CTRL0D, (crop->width != format->width ? IMX296_CTRL0D_HADD_ON_BINNING : 0) | (crop->height != format->height ? IMX296_CTRL0D_WINMODE_FD_BINNING : 0), &ret); /* * HMAX and VMAX configure horizontal and vertical blanking by * specifying the total line time and frame time respectively. The line * time is specified in operational clock units (which appears to be the * output of an internal PLL, fixed at 74.25 MHz regardless of the * exernal clock frequency), while the frame time is specified as a * number of lines. * * In the vertical direction the sensor outputs the following: * * - one line for the FS packet * - two lines of embedded data (DT 0x12) * - six null lines (DT 0x10) * - four lines of vertical effective optical black (DT 0x37) * - 8 to 1088 lines of active image data (RAW10, DT 0x2b) * - one line for the FE packet * - 16 or more lines of vertical blanking */ imx296_write(sensor, IMX296_HMAX, 1100, &ret); imx296_write(sensor, IMX296_VMAX, format->height + sensor->vblank->cur.val, &ret); for (i = 0; i < ARRAY_SIZE(sensor->clk_params->incksel); ++i) imx296_write(sensor, IMX296_INCKSEL(i), sensor->clk_params->incksel[i], &ret); imx296_write(sensor, IMX296_GTTABLENUM, 0xc5, &ret); imx296_write(sensor, IMX296_CTRL418C, sensor->clk_params->ctrl418c, &ret); imx296_write(sensor, IMX296_GAINDLY, IMX296_GAINDLY_NONE, &ret); imx296_write(sensor, IMX296_BLKLEVEL, 0x03c, &ret); return ret; } static int imx296_stream_on(struct imx296 *sensor) { int ret = 0; imx296_write(sensor, IMX296_CTRL00, 0, &ret); usleep_range(2000, 5000); imx296_write(sensor, IMX296_CTRL0A, 0, &ret); return ret; } static int imx296_stream_off(struct imx296 *sensor) { int ret = 0; imx296_write(sensor, IMX296_CTRL0A, IMX296_CTRL0A_XMSTA, &ret); imx296_write(sensor, IMX296_CTRL00, IMX296_CTRL00_STANDBY, &ret); return ret; } static int imx296_s_stream(struct v4l2_subdev *sd, int enable) { struct imx296 *sensor = to_imx296(sd); struct v4l2_subdev_state *state; int ret; state = v4l2_subdev_lock_and_get_active_state(sd); if (!enable) { ret = imx296_stream_off(sensor); pm_runtime_mark_last_busy(sensor->dev); pm_runtime_put_autosuspend(sensor->dev); goto unlock; } ret = pm_runtime_resume_and_get(sensor->dev); if (ret < 0) goto unlock; ret = imx296_setup(sensor, state); if (ret < 0) goto err_pm; ret = __v4l2_ctrl_handler_setup(&sensor->ctrls); if (ret < 0) goto err_pm; ret = imx296_stream_on(sensor); if (ret) goto err_pm; unlock: v4l2_subdev_unlock_state(state); return ret; err_pm: /* * In case of error, turn the power off synchronously as the device * likely has no other chance to recover. */ pm_runtime_put_sync(sensor->dev); goto unlock; } static int imx296_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, struct v4l2_subdev_mbus_code_enum *code) { struct imx296 *sensor = to_imx296(sd); if (code->index != 0) return -EINVAL; code->code = sensor->mono ? MEDIA_BUS_FMT_Y10_1X10 : MEDIA_BUS_FMT_SBGGR10_1X10; return 0; } static int imx296_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, struct v4l2_subdev_frame_size_enum *fse) { const struct v4l2_mbus_framefmt *format; format = v4l2_subdev_state_get_format(state, fse->pad); if (fse->index >= 2 || fse->code != format->code) return -EINVAL; fse->min_width = IMX296_PIXEL_ARRAY_WIDTH / (fse->index + 1); fse->max_width = fse->min_width; fse->min_height = IMX296_PIXEL_ARRAY_HEIGHT / (fse->index + 1); fse->max_height = fse->min_height; return 0; } static int imx296_set_format(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, struct v4l2_subdev_format *fmt) { struct imx296 *sensor = to_imx296(sd); struct v4l2_mbus_framefmt *format; struct v4l2_rect *crop; crop = v4l2_subdev_state_get_crop(state, fmt->pad); format = v4l2_subdev_state_get_format(state, fmt->pad); /* * Binning is only allowed when cropping is disabled according to the * documentation. This should be double-checked. */ if (crop->width == IMX296_PIXEL_ARRAY_WIDTH && crop->height == IMX296_PIXEL_ARRAY_HEIGHT) { unsigned int width; unsigned int height; unsigned int hratio; unsigned int vratio; /* Clamp the width and height to avoid dividing by zero. */ width = clamp_t(unsigned int, fmt->format.width, crop->width / 2, crop->width); height = clamp_t(unsigned int, fmt->format.height, crop->height / 2, crop->height); hratio = DIV_ROUND_CLOSEST(crop->width, width); vratio = DIV_ROUND_CLOSEST(crop->height, height); format->width = crop->width / hratio; format->height = crop->height / vratio; } else { format->width = crop->width; format->height = crop->height; } format->code = sensor->mono ? MEDIA_BUS_FMT_Y10_1X10 : MEDIA_BUS_FMT_SBGGR10_1X10; format->field = V4L2_FIELD_NONE; format->colorspace = V4L2_COLORSPACE_RAW; format->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT; format->quantization = V4L2_QUANTIZATION_FULL_RANGE; format->xfer_func = V4L2_XFER_FUNC_NONE; fmt->format = *format; return 0; } static int imx296_get_selection(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, struct v4l2_subdev_selection *sel) { switch (sel->target) { case V4L2_SEL_TGT_CROP: sel->r = *v4l2_subdev_state_get_crop(state, sel->pad); break; case V4L2_SEL_TGT_CROP_DEFAULT: case V4L2_SEL_TGT_CROP_BOUNDS: case V4L2_SEL_TGT_NATIVE_SIZE: sel->r.left = 0; sel->r.top = 0; sel->r.width = IMX296_PIXEL_ARRAY_WIDTH; sel->r.height = IMX296_PIXEL_ARRAY_HEIGHT; break; default: return -EINVAL; } return 0; } static int imx296_set_selection(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, struct v4l2_subdev_selection *sel) { struct v4l2_mbus_framefmt *format; struct v4l2_rect *crop; struct v4l2_rect rect; if (sel->target != V4L2_SEL_TGT_CROP) return -EINVAL; /* * Clamp the crop rectangle boundaries and align them to a multiple of 4 * pixels to satisfy hardware requirements. */ rect.left = clamp(ALIGN(sel->r.left, 4), 0, IMX296_PIXEL_ARRAY_WIDTH - IMX296_FID0_ROIWH1_MIN); rect.top = clamp(ALIGN(sel->r.top, 4), 0, IMX296_PIXEL_ARRAY_HEIGHT - IMX296_FID0_ROIWV1_MIN); rect.width = clamp_t(unsigned int, ALIGN(sel->r.width, 4), IMX296_FID0_ROIWH1_MIN, IMX296_PIXEL_ARRAY_WIDTH); rect.height = clamp_t(unsigned int, ALIGN(sel->r.height, 4), IMX296_FID0_ROIWV1_MIN, IMX296_PIXEL_ARRAY_HEIGHT); rect.width = min_t(unsigned int, rect.width, IMX296_PIXEL_ARRAY_WIDTH - rect.left); rect.height = min_t(unsigned int, rect.height, IMX296_PIXEL_ARRAY_HEIGHT - rect.top); crop = v4l2_subdev_state_get_crop(state, sel->pad); if (rect.width != crop->width || rect.height != crop->height) { /* * Reset the output image size if the crop rectangle size has * been modified. */ format = v4l2_subdev_state_get_format(state, sel->pad); format->width = rect.width; format->height = rect.height; } *crop = rect; sel->r = rect; return 0; } static int imx296_init_state(struct v4l2_subdev *sd, struct v4l2_subdev_state *state) { struct v4l2_subdev_selection sel = { .target = V4L2_SEL_TGT_CROP, .r.width = IMX296_PIXEL_ARRAY_WIDTH, .r.height = IMX296_PIXEL_ARRAY_HEIGHT, }; struct v4l2_subdev_format format = { .format = { .width = IMX296_PIXEL_ARRAY_WIDTH, .height = IMX296_PIXEL_ARRAY_HEIGHT, }, }; imx296_set_selection(sd, state, &sel); imx296_set_format(sd, state, &format); return 0; } static const struct v4l2_subdev_video_ops imx296_subdev_video_ops = { .s_stream = imx296_s_stream, }; static const struct v4l2_subdev_pad_ops imx296_subdev_pad_ops = { .enum_mbus_code = imx296_enum_mbus_code, .enum_frame_size = imx296_enum_frame_size, .get_fmt = v4l2_subdev_get_fmt, .set_fmt = imx296_set_format, .get_selection = imx296_get_selection, .set_selection = imx296_set_selection, }; static const struct v4l2_subdev_ops imx296_subdev_ops = { .video = &imx296_subdev_video_ops, .pad = &imx296_subdev_pad_ops, }; static const struct v4l2_subdev_internal_ops imx296_internal_ops = { .init_state = imx296_init_state, }; static int imx296_subdev_init(struct imx296 *sensor) { struct i2c_client *client = to_i2c_client(sensor->dev); int ret; v4l2_i2c_subdev_init(&sensor->subdev, client, &imx296_subdev_ops); sensor->subdev.internal_ops = &imx296_internal_ops; ret = imx296_ctrls_init(sensor); if (ret < 0) return ret; sensor->subdev.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; sensor->pad.flags = MEDIA_PAD_FL_SOURCE; sensor->subdev.entity.function = MEDIA_ENT_F_CAM_SENSOR; ret = media_entity_pads_init(&sensor->subdev.entity, 1, &sensor->pad); if (ret < 0) { v4l2_ctrl_handler_free(&sensor->ctrls); return ret; } sensor->subdev.state_lock = sensor->subdev.ctrl_handler->lock; v4l2_subdev_init_finalize(&sensor->subdev); return ret; } static void imx296_subdev_cleanup(struct imx296 *sensor) { media_entity_cleanup(&sensor->subdev.entity); v4l2_ctrl_handler_free(&sensor->ctrls); } /* ----------------------------------------------------------------------------- * Power management */ static int __maybe_unused imx296_runtime_resume(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct v4l2_subdev *subdev = i2c_get_clientdata(client); struct imx296 *sensor = to_imx296(subdev); return imx296_power_on(sensor); } static int __maybe_unused imx296_runtime_suspend(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct v4l2_subdev *subdev = i2c_get_clientdata(client); struct imx296 *sensor = to_imx296(subdev); imx296_power_off(sensor); return 0; } static const struct dev_pm_ops imx296_pm_ops = { SET_RUNTIME_PM_OPS(imx296_runtime_suspend, imx296_runtime_resume, NULL) }; /* ----------------------------------------------------------------------------- * Probe & Remove */ static int imx296_read_temperature(struct imx296 *sensor, int *temp) { int tmdout; int ret; ret = imx296_write(sensor, IMX296_TMDCTRL, IMX296_TMDCTRL_LATCH, NULL); if (ret < 0) return ret; tmdout = imx296_read(sensor, IMX296_TMDOUT); if (tmdout < 0) return tmdout; tmdout &= IMX296_TMDOUT_MASK; /* T(°C) = 246.312 - 0.304 * TMDOUT */; *temp = 246312 - 304 * tmdout; return imx296_write(sensor, IMX296_TMDCTRL, 0, NULL); } static int imx296_identify_model(struct imx296 *sensor) { unsigned int model; int temp = 0; int ret; model = (uintptr_t)of_device_get_match_data(sensor->dev); if (model) { dev_dbg(sensor->dev, "sensor model auto-detection disabled, forcing 0x%04x\n", model); sensor->mono = model & IMX296_SENSOR_INFO_MONO; return 0; } /* * While most registers can be read when the sensor is in standby, this * is not the case of the sensor info register :-( */ ret = imx296_write(sensor, IMX296_CTRL00, 0, NULL); if (ret < 0) { dev_err(sensor->dev, "failed to get sensor out of standby (%d)\n", ret); return ret; } ret = imx296_read(sensor, IMX296_SENSOR_INFO); if (ret < 0) { dev_err(sensor->dev, "failed to read sensor information (%d)\n", ret); goto done; } model = (ret >> 6) & 0x1ff; switch (model) { case 296: sensor->mono = ret & IMX296_SENSOR_INFO_MONO; break; /* * The IMX297 seems to share features with the IMX296, it may be * possible to support it in the same driver. */ case 297: default: dev_err(sensor->dev, "invalid device model 0x%04x\n", ret); ret = -ENODEV; goto done; } ret = imx296_read_temperature(sensor, &temp); if (ret < 0) goto done; dev_info(sensor->dev, "found IMX%u%s (%u.%uC)\n", model, sensor->mono ? "LL" : "LQ", temp / 1000, (temp / 100) % 10); done: imx296_write(sensor, IMX296_CTRL00, IMX296_CTRL00_STANDBY, NULL); return ret; } static const struct regmap_config imx296_regmap_config = { .reg_bits = 16, .val_bits = 8, .wr_table = &(const struct regmap_access_table) { .no_ranges = (const struct regmap_range[]) { { .range_min = IMX296_SENSOR_INFO & 0xffff, .range_max = (IMX296_SENSOR_INFO & 0xffff) + 1, }, }, .n_no_ranges = 1, }, }; static int imx296_probe(struct i2c_client *client) { struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent); unsigned long clk_rate; struct imx296 *sensor; unsigned int i; int ret; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA)) { dev_warn(&adapter->dev, "I2C-Adapter doesn't support I2C_FUNC_SMBUS_BYTE\n"); return -EIO; } sensor = devm_kzalloc(&client->dev, sizeof(*sensor), GFP_KERNEL); if (!sensor) return -ENOMEM; sensor->dev = &client->dev; /* Acquire resources. */ for (i = 0; i < ARRAY_SIZE(sensor->supplies); ++i) sensor->supplies[i].supply = imx296_supply_names[i]; ret = devm_regulator_bulk_get(sensor->dev, ARRAY_SIZE(sensor->supplies), sensor->supplies); if (ret) { dev_err_probe(sensor->dev, ret, "failed to get supplies\n"); return ret; } sensor->reset = devm_gpiod_get_optional(sensor->dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(sensor->reset)) return dev_err_probe(sensor->dev, PTR_ERR(sensor->reset), "failed to get reset GPIO\n"); sensor->clk = devm_clk_get(sensor->dev, "inck"); if (IS_ERR(sensor->clk)) return dev_err_probe(sensor->dev, PTR_ERR(sensor->clk), "failed to get clock\n"); clk_rate = clk_get_rate(sensor->clk); for (i = 0; i < ARRAY_SIZE(imx296_clk_params); ++i) { if (clk_rate == imx296_clk_params[i].freq) { sensor->clk_params = &imx296_clk_params[i]; break; } } if (!sensor->clk_params) { dev_err(sensor->dev, "unsupported clock rate %lu\n", clk_rate); return -EINVAL; } sensor->regmap = devm_regmap_init_i2c(client, &imx296_regmap_config); if (IS_ERR(sensor->regmap)) return PTR_ERR(sensor->regmap); /* * Enable power management. The driver supports runtime PM, but needs to * work when runtime PM is disabled in the kernel. To that end, power * the sensor on manually here, identify it, and fully initialize it. */ ret = imx296_power_on(sensor); if (ret < 0) return ret; ret = imx296_identify_model(sensor); if (ret < 0) goto err_power; /* Initialize the V4L2 subdev. */ ret = imx296_subdev_init(sensor); if (ret < 0) goto err_power; /* * Enable runtime PM. As the device has been powered manually, mark it * as active, and increase the usage count without resuming the device. */ pm_runtime_set_active(sensor->dev); pm_runtime_get_noresume(sensor->dev); pm_runtime_enable(sensor->dev); /* Register the V4L2 subdev. */ ret = v4l2_async_register_subdev(&sensor->subdev); if (ret < 0) goto err_pm; /* * Finally, enable autosuspend and decrease the usage count. The device * will get suspended after the autosuspend delay, turning the power * off. */ pm_runtime_set_autosuspend_delay(sensor->dev, 1000); pm_runtime_use_autosuspend(sensor->dev); pm_runtime_put_autosuspend(sensor->dev); return 0; err_pm: pm_runtime_disable(sensor->dev); pm_runtime_put_noidle(sensor->dev); imx296_subdev_cleanup(sensor); err_power: imx296_power_off(sensor); return ret; } static void imx296_remove(struct i2c_client *client) { struct v4l2_subdev *subdev = i2c_get_clientdata(client); struct imx296 *sensor = to_imx296(subdev); v4l2_async_unregister_subdev(subdev); imx296_subdev_cleanup(sensor); /* * Disable runtime PM. In case runtime PM is disabled in the kernel, * make sure to turn power off manually. */ pm_runtime_disable(sensor->dev); if (!pm_runtime_status_suspended(sensor->dev)) imx296_power_off(sensor); pm_runtime_set_suspended(sensor->dev); } static const struct of_device_id imx296_of_match[] = { { .compatible = "sony,imx296", .data = NULL }, { .compatible = "sony,imx296ll", .data = (void *)IMX296_SENSOR_INFO_IMX296LL }, { .compatible = "sony,imx296lq", .data = (void *)IMX296_SENSOR_INFO_IMX296LQ }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, imx296_of_match); static struct i2c_driver imx296_i2c_driver = { .driver = { .of_match_table = imx296_of_match, .name = "imx296", .pm = &imx296_pm_ops }, .probe = imx296_probe, .remove = imx296_remove, }; module_i2c_driver(imx296_i2c_driver); MODULE_DESCRIPTION("Sony IMX296 Camera driver"); MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1