Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Shawn Tu | 5043 | 99.86% | 1 | 16.67% |
Sakari Ailus | 4 | 0.08% | 2 | 33.33% |
Uwe Kleine-König | 2 | 0.04% | 2 | 33.33% |
Laurent Pinchart | 1 | 0.02% | 1 | 16.67% |
Total | 5050 | 6 |
// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2022 Intel Corporation. #include <asm/unaligned.h> #include <linux/acpi.h> #include <linux/delay.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/pm_runtime.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-device.h> #include <media/v4l2-fwnode.h> #define OG01A1B_REG_VALUE_08BIT 1 #define OG01A1B_REG_VALUE_16BIT 2 #define OG01A1B_REG_VALUE_24BIT 3 #define OG01A1B_LINK_FREQ_500MHZ 500000000ULL #define OG01A1B_SCLK 120000000LL #define OG01A1B_MCLK 19200000 #define OG01A1B_DATA_LANES 2 #define OG01A1B_RGB_DEPTH 10 #define OG01A1B_REG_CHIP_ID 0x300a #define OG01A1B_CHIP_ID 0x470141 #define OG01A1B_REG_MODE_SELECT 0x0100 #define OG01A1B_MODE_STANDBY 0x00 #define OG01A1B_MODE_STREAMING 0x01 /* vertical-timings from sensor */ #define OG01A1B_REG_VTS 0x380e #define OG01A1B_VTS_120FPS 0x0498 #define OG01A1B_VTS_120FPS_MIN 0x0498 #define OG01A1B_VTS_MAX 0x7fff /* horizontal-timings from sensor */ #define OG01A1B_REG_HTS 0x380c /* Exposure controls from sensor */ #define OG01A1B_REG_EXPOSURE 0x3501 #define OG01A1B_EXPOSURE_MIN 1 #define OG01A1B_EXPOSURE_MAX_MARGIN 14 #define OG01A1B_EXPOSURE_STEP 1 /* Analog gain controls from sensor */ #define OG01A1B_REG_ANALOG_GAIN 0x3508 #define OG01A1B_ANAL_GAIN_MIN 16 #define OG01A1B_ANAL_GAIN_MAX 248 /* Max = 15.5x */ #define OG01A1B_ANAL_GAIN_STEP 1 /* Digital gain controls from sensor */ #define OG01A1B_REG_DIG_GAIN 0x350a #define OG01A1B_DGTL_GAIN_MIN 1024 #define OG01A1B_DGTL_GAIN_MAX 16384 /* Max = 16x */ #define OG01A1B_DGTL_GAIN_STEP 1 #define OG01A1B_DGTL_GAIN_DEFAULT 1024 /* Group Access */ #define OG01A1B_REG_GROUP_ACCESS 0x3208 #define OG01A1B_GROUP_HOLD_START 0x0 #define OG01A1B_GROUP_HOLD_END 0x10 #define OG01A1B_GROUP_HOLD_LAUNCH 0xa0 /* Test Pattern Control */ #define OG01A1B_REG_TEST_PATTERN 0x5100 #define OG01A1B_TEST_PATTERN_ENABLE BIT(7) #define OG01A1B_TEST_PATTERN_BAR_SHIFT 2 #define to_og01a1b(_sd) container_of(_sd, struct og01a1b, sd) enum { OG01A1B_LINK_FREQ_1000MBPS, }; struct og01a1b_reg { u16 address; u8 val; }; struct og01a1b_reg_list { u32 num_of_regs; const struct og01a1b_reg *regs; }; struct og01a1b_link_freq_config { const struct og01a1b_reg_list reg_list; }; struct og01a1b_mode { /* Frame width in pixels */ u32 width; /* Frame height in pixels */ u32 height; /* Horizontal timining size */ u32 hts; /* Default vertical timining size */ u32 vts_def; /* Min vertical timining size */ u32 vts_min; /* Link frequency needed for this resolution */ u32 link_freq_index; /* Sensor register settings for this resolution */ const struct og01a1b_reg_list reg_list; }; static const struct og01a1b_reg mipi_data_rate_1000mbps[] = { {0x0103, 0x01}, {0x0303, 0x02}, {0x0304, 0x00}, {0x0305, 0xd2}, {0x0323, 0x02}, {0x0324, 0x01}, {0x0325, 0x77}, }; static const struct og01a1b_reg mode_1280x1024_regs[] = { {0x0300, 0x0a}, {0x0301, 0x29}, {0x0302, 0x31}, {0x0303, 0x02}, {0x0304, 0x00}, {0x0305, 0xd2}, {0x0306, 0x00}, {0x0307, 0x01}, {0x0308, 0x02}, {0x0309, 0x00}, {0x0310, 0x00}, {0x0311, 0x00}, {0x0312, 0x07}, {0x0313, 0x00}, {0x0314, 0x00}, {0x0315, 0x00}, {0x0320, 0x02}, {0x0321, 0x01}, {0x0322, 0x01}, {0x0323, 0x02}, {0x0324, 0x01}, {0x0325, 0x77}, {0x0326, 0xce}, {0x0327, 0x04}, {0x0329, 0x02}, {0x032a, 0x04}, {0x032b, 0x04}, {0x032c, 0x02}, {0x032d, 0x01}, {0x032e, 0x00}, {0x300d, 0x02}, {0x300e, 0x04}, {0x3021, 0x08}, {0x301e, 0x03}, {0x3103, 0x00}, {0x3106, 0x08}, {0x3107, 0x40}, {0x3216, 0x01}, {0x3217, 0x00}, {0x3218, 0xc0}, {0x3219, 0x55}, {0x3500, 0x00}, {0x3501, 0x04}, {0x3502, 0x8a}, {0x3506, 0x01}, {0x3507, 0x72}, {0x3508, 0x01}, {0x3509, 0x00}, {0x350a, 0x01}, {0x350b, 0x00}, {0x350c, 0x00}, {0x3541, 0x00}, {0x3542, 0x40}, {0x3605, 0xe0}, {0x3606, 0x41}, {0x3614, 0x20}, {0x3620, 0x0b}, {0x3630, 0x07}, {0x3636, 0xa0}, {0x3637, 0xf9}, {0x3638, 0x09}, {0x3639, 0x38}, {0x363f, 0x09}, {0x3640, 0x17}, {0x3662, 0x04}, {0x3665, 0x80}, {0x3670, 0x68}, {0x3674, 0x00}, {0x3677, 0x3f}, {0x3679, 0x00}, {0x369f, 0x19}, {0x36a0, 0x03}, {0x36a2, 0x19}, {0x36a3, 0x03}, {0x370d, 0x66}, {0x370f, 0x00}, {0x3710, 0x03}, {0x3715, 0x03}, {0x3716, 0x03}, {0x3717, 0x06}, {0x3733, 0x00}, {0x3778, 0x00}, {0x37a8, 0x0f}, {0x37a9, 0x01}, {0x37aa, 0x07}, {0x37bd, 0x1c}, {0x37c1, 0x2f}, {0x37c3, 0x09}, {0x37c8, 0x1d}, {0x37ca, 0x30}, {0x37df, 0x00}, {0x3800, 0x00}, {0x3801, 0x00}, {0x3802, 0x00}, {0x3803, 0x00}, {0x3804, 0x05}, {0x3805, 0x0f}, {0x3806, 0x04}, {0x3807, 0x0f}, {0x3808, 0x05}, {0x3809, 0x00}, {0x380a, 0x04}, {0x380b, 0x00}, {0x380c, 0x03}, {0x380d, 0x50}, {0x380e, 0x04}, {0x380f, 0x98}, {0x3810, 0x00}, {0x3811, 0x08}, {0x3812, 0x00}, {0x3813, 0x08}, {0x3814, 0x11}, {0x3815, 0x11}, {0x3820, 0x40}, {0x3821, 0x04}, {0x3826, 0x00}, {0x3827, 0x00}, {0x382a, 0x08}, {0x382b, 0x52}, {0x382d, 0xba}, {0x383d, 0x14}, {0x384a, 0xa2}, {0x3866, 0x0e}, {0x3867, 0x07}, {0x3884, 0x00}, {0x3885, 0x08}, {0x3893, 0x68}, {0x3894, 0x2a}, {0x3898, 0x00}, {0x3899, 0x31}, {0x389a, 0x04}, {0x389b, 0x00}, {0x389c, 0x0b}, {0x389d, 0xad}, {0x389f, 0x08}, {0x38a0, 0x00}, {0x38a1, 0x00}, {0x38a8, 0x70}, {0x38ac, 0xea}, {0x38b2, 0x00}, {0x38b3, 0x08}, {0x38bc, 0x20}, {0x38c4, 0x0c}, {0x38c5, 0x3a}, {0x38c7, 0x3a}, {0x38e1, 0xc0}, {0x38ec, 0x3c}, {0x38f0, 0x09}, {0x38f1, 0x6f}, {0x38fe, 0x3c}, {0x391e, 0x00}, {0x391f, 0x00}, {0x3920, 0xa5}, {0x3921, 0x00}, {0x3922, 0x00}, {0x3923, 0x00}, {0x3924, 0x05}, {0x3925, 0x00}, {0x3926, 0x00}, {0x3927, 0x00}, {0x3928, 0x1a}, {0x3929, 0x01}, {0x392a, 0xb4}, {0x392b, 0x00}, {0x392c, 0x10}, {0x392f, 0x40}, {0x4000, 0xcf}, {0x4003, 0x40}, {0x4008, 0x00}, {0x4009, 0x07}, {0x400a, 0x02}, {0x400b, 0x54}, {0x400c, 0x00}, {0x400d, 0x07}, {0x4010, 0xc0}, {0x4012, 0x02}, {0x4014, 0x04}, {0x4015, 0x04}, {0x4017, 0x02}, {0x4042, 0x01}, {0x4306, 0x04}, {0x4307, 0x12}, {0x4509, 0x00}, {0x450b, 0x83}, {0x4604, 0x68}, {0x4608, 0x0a}, {0x4700, 0x06}, {0x4800, 0x64}, {0x481b, 0x3c}, {0x4825, 0x32}, {0x4833, 0x18}, {0x4837, 0x0f}, {0x4850, 0x40}, {0x4860, 0x00}, {0x4861, 0xec}, {0x4864, 0x00}, {0x4883, 0x00}, {0x4888, 0x90}, {0x4889, 0x05}, {0x488b, 0x04}, {0x4f00, 0x04}, {0x4f10, 0x04}, {0x4f21, 0x01}, {0x4f22, 0x40}, {0x4f23, 0x44}, {0x4f24, 0x51}, {0x4f25, 0x41}, {0x5000, 0x1f}, {0x500a, 0x00}, {0x5100, 0x00}, {0x5111, 0x20}, {0x3020, 0x20}, {0x3613, 0x03}, {0x38c9, 0x02}, {0x5304, 0x01}, {0x3620, 0x08}, {0x3639, 0x58}, {0x363a, 0x10}, {0x3674, 0x04}, {0x3780, 0xff}, {0x3781, 0xff}, {0x3782, 0x00}, {0x3783, 0x01}, {0x3798, 0xa3}, {0x37aa, 0x10}, {0x38a8, 0xf0}, {0x38c4, 0x09}, {0x38c5, 0xb0}, {0x38df, 0x80}, {0x38ff, 0x05}, {0x4010, 0xf1}, {0x4011, 0x70}, {0x3667, 0x80}, {0x4d00, 0x4a}, {0x4d01, 0x18}, {0x4d02, 0xbb}, {0x4d03, 0xde}, {0x4d04, 0x93}, {0x4d05, 0xff}, {0x4d09, 0x0a}, {0x37aa, 0x16}, {0x3606, 0x42}, {0x3605, 0x00}, {0x36a2, 0x17}, {0x300d, 0x0a}, {0x4d00, 0x4d}, {0x4d01, 0x95}, {0x3d8C, 0x70}, {0x3d8d, 0xE9}, {0x5300, 0x00}, {0x5301, 0x10}, {0x5302, 0x00}, {0x5303, 0xE3}, {0x3d88, 0x00}, {0x3d89, 0x10}, {0x3d8a, 0x00}, {0x3d8b, 0xE3}, {0x4f22, 0x00}, }; static const char * const og01a1b_test_pattern_menu[] = { "Disabled", "Standard Color Bar", "Top-Bottom Darker Color Bar", "Right-Left Darker Color Bar", "Bottom-Top Darker Color Bar" }; static const s64 link_freq_menu_items[] = { OG01A1B_LINK_FREQ_500MHZ, }; static const struct og01a1b_link_freq_config link_freq_configs[] = { [OG01A1B_LINK_FREQ_1000MBPS] = { .reg_list = { .num_of_regs = ARRAY_SIZE(mipi_data_rate_1000mbps), .regs = mipi_data_rate_1000mbps, } } }; static const struct og01a1b_mode supported_modes[] = { { .width = 1280, .height = 1024, .hts = 848, .vts_def = OG01A1B_VTS_120FPS, .vts_min = OG01A1B_VTS_120FPS_MIN, .reg_list = { .num_of_regs = ARRAY_SIZE(mode_1280x1024_regs), .regs = mode_1280x1024_regs, }, .link_freq_index = OG01A1B_LINK_FREQ_1000MBPS, }, }; struct og01a1b { struct v4l2_subdev sd; struct media_pad pad; struct v4l2_ctrl_handler ctrl_handler; /* V4L2 Controls */ struct v4l2_ctrl *link_freq; struct v4l2_ctrl *pixel_rate; struct v4l2_ctrl *vblank; struct v4l2_ctrl *hblank; struct v4l2_ctrl *exposure; /* Current mode */ const struct og01a1b_mode *cur_mode; /* To serialize asynchronus callbacks */ struct mutex mutex; }; static u64 to_pixel_rate(u32 f_index) { u64 pixel_rate = link_freq_menu_items[f_index] * 2 * OG01A1B_DATA_LANES; do_div(pixel_rate, OG01A1B_RGB_DEPTH); return pixel_rate; } static u64 to_pixels_per_line(u32 hts, u32 f_index) { u64 ppl = hts * to_pixel_rate(f_index); do_div(ppl, OG01A1B_SCLK); return ppl; } static int og01a1b_read_reg(struct og01a1b *og01a1b, u16 reg, u16 len, u32 *val) { struct i2c_client *client = v4l2_get_subdevdata(&og01a1b->sd); struct i2c_msg msgs[2]; u8 addr_buf[2]; u8 data_buf[4] = {0}; int ret; if (len > 4) return -EINVAL; put_unaligned_be16(reg, addr_buf); msgs[0].addr = client->addr; msgs[0].flags = 0; msgs[0].len = sizeof(addr_buf); msgs[0].buf = addr_buf; msgs[1].addr = client->addr; msgs[1].flags = I2C_M_RD; msgs[1].len = len; msgs[1].buf = &data_buf[4 - len]; ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs)); if (ret != ARRAY_SIZE(msgs)) return -EIO; *val = get_unaligned_be32(data_buf); return 0; } static int og01a1b_write_reg(struct og01a1b *og01a1b, u16 reg, u16 len, u32 val) { struct i2c_client *client = v4l2_get_subdevdata(&og01a1b->sd); u8 buf[6]; if (len > 4) return -EINVAL; put_unaligned_be16(reg, buf); put_unaligned_be32(val << 8 * (4 - len), buf + 2); if (i2c_master_send(client, buf, len + 2) != len + 2) return -EIO; return 0; } static int og01a1b_write_reg_list(struct og01a1b *og01a1b, const struct og01a1b_reg_list *r_list) { struct i2c_client *client = v4l2_get_subdevdata(&og01a1b->sd); unsigned int i; int ret; for (i = 0; i < r_list->num_of_regs; i++) { ret = og01a1b_write_reg(og01a1b, r_list->regs[i].address, 1, r_list->regs[i].val); if (ret) { dev_err_ratelimited(&client->dev, "failed to write reg 0x%4.4x. error = %d", r_list->regs[i].address, ret); return ret; } } return 0; } static int og01a1b_test_pattern(struct og01a1b *og01a1b, u32 pattern) { if (pattern) pattern = (pattern - 1) << OG01A1B_TEST_PATTERN_BAR_SHIFT | OG01A1B_TEST_PATTERN_ENABLE; return og01a1b_write_reg(og01a1b, OG01A1B_REG_TEST_PATTERN, OG01A1B_REG_VALUE_08BIT, pattern); } static int og01a1b_set_ctrl(struct v4l2_ctrl *ctrl) { struct og01a1b *og01a1b = container_of(ctrl->handler, struct og01a1b, ctrl_handler); struct i2c_client *client = v4l2_get_subdevdata(&og01a1b->sd); s64 exposure_max; int ret = 0; /* Propagate change of current control to all related controls */ if (ctrl->id == V4L2_CID_VBLANK) { /* Update max exposure while meeting expected vblanking */ exposure_max = og01a1b->cur_mode->height + ctrl->val - OG01A1B_EXPOSURE_MAX_MARGIN; __v4l2_ctrl_modify_range(og01a1b->exposure, og01a1b->exposure->minimum, exposure_max, og01a1b->exposure->step, exposure_max); } /* V4L2 controls values will be applied only when power is already up */ if (!pm_runtime_get_if_in_use(&client->dev)) return 0; switch (ctrl->id) { case V4L2_CID_ANALOGUE_GAIN: ret = og01a1b_write_reg(og01a1b, OG01A1B_REG_ANALOG_GAIN, OG01A1B_REG_VALUE_16BIT, ctrl->val << 4); break; case V4L2_CID_DIGITAL_GAIN: ret = og01a1b_write_reg(og01a1b, OG01A1B_REG_DIG_GAIN, OG01A1B_REG_VALUE_24BIT, ctrl->val << 6); break; case V4L2_CID_EXPOSURE: ret = og01a1b_write_reg(og01a1b, OG01A1B_REG_EXPOSURE, OG01A1B_REG_VALUE_16BIT, ctrl->val); break; case V4L2_CID_VBLANK: ret = og01a1b_write_reg(og01a1b, OG01A1B_REG_VTS, OG01A1B_REG_VALUE_16BIT, og01a1b->cur_mode->height + ctrl->val); break; case V4L2_CID_TEST_PATTERN: ret = og01a1b_test_pattern(og01a1b, ctrl->val); break; default: ret = -EINVAL; break; } pm_runtime_put(&client->dev); return ret; } static const struct v4l2_ctrl_ops og01a1b_ctrl_ops = { .s_ctrl = og01a1b_set_ctrl, }; static int og01a1b_init_controls(struct og01a1b *og01a1b) { struct v4l2_ctrl_handler *ctrl_hdlr; s64 exposure_max, h_blank; int ret; ctrl_hdlr = &og01a1b->ctrl_handler; ret = v4l2_ctrl_handler_init(ctrl_hdlr, 8); if (ret) return ret; ctrl_hdlr->lock = &og01a1b->mutex; og01a1b->link_freq = v4l2_ctrl_new_int_menu(ctrl_hdlr, &og01a1b_ctrl_ops, V4L2_CID_LINK_FREQ, ARRAY_SIZE (link_freq_menu_items) - 1, 0, link_freq_menu_items); if (og01a1b->link_freq) og01a1b->link_freq->flags |= V4L2_CTRL_FLAG_READ_ONLY; og01a1b->pixel_rate = v4l2_ctrl_new_std(ctrl_hdlr, &og01a1b_ctrl_ops, V4L2_CID_PIXEL_RATE, 0, to_pixel_rate (OG01A1B_LINK_FREQ_1000MBPS), 1, to_pixel_rate (OG01A1B_LINK_FREQ_1000MBPS)); og01a1b->vblank = v4l2_ctrl_new_std(ctrl_hdlr, &og01a1b_ctrl_ops, V4L2_CID_VBLANK, og01a1b->cur_mode->vts_min - og01a1b->cur_mode->height, OG01A1B_VTS_MAX - og01a1b->cur_mode->height, 1, og01a1b->cur_mode->vts_def - og01a1b->cur_mode->height); h_blank = to_pixels_per_line(og01a1b->cur_mode->hts, og01a1b->cur_mode->link_freq_index) - og01a1b->cur_mode->width; og01a1b->hblank = v4l2_ctrl_new_std(ctrl_hdlr, &og01a1b_ctrl_ops, V4L2_CID_HBLANK, h_blank, h_blank, 1, h_blank); if (og01a1b->hblank) og01a1b->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY; v4l2_ctrl_new_std(ctrl_hdlr, &og01a1b_ctrl_ops, V4L2_CID_ANALOGUE_GAIN, OG01A1B_ANAL_GAIN_MIN, OG01A1B_ANAL_GAIN_MAX, OG01A1B_ANAL_GAIN_STEP, OG01A1B_ANAL_GAIN_MIN); v4l2_ctrl_new_std(ctrl_hdlr, &og01a1b_ctrl_ops, V4L2_CID_DIGITAL_GAIN, OG01A1B_DGTL_GAIN_MIN, OG01A1B_DGTL_GAIN_MAX, OG01A1B_DGTL_GAIN_STEP, OG01A1B_DGTL_GAIN_DEFAULT); exposure_max = (og01a1b->cur_mode->vts_def - OG01A1B_EXPOSURE_MAX_MARGIN); og01a1b->exposure = v4l2_ctrl_new_std(ctrl_hdlr, &og01a1b_ctrl_ops, V4L2_CID_EXPOSURE, OG01A1B_EXPOSURE_MIN, exposure_max, OG01A1B_EXPOSURE_STEP, exposure_max); v4l2_ctrl_new_std_menu_items(ctrl_hdlr, &og01a1b_ctrl_ops, V4L2_CID_TEST_PATTERN, ARRAY_SIZE(og01a1b_test_pattern_menu) - 1, 0, 0, og01a1b_test_pattern_menu); if (ctrl_hdlr->error) return ctrl_hdlr->error; og01a1b->sd.ctrl_handler = ctrl_hdlr; return 0; } static void og01a1b_update_pad_format(const struct og01a1b_mode *mode, struct v4l2_mbus_framefmt *fmt) { fmt->width = mode->width; fmt->height = mode->height; fmt->code = MEDIA_BUS_FMT_SGRBG10_1X10; fmt->field = V4L2_FIELD_NONE; } static int og01a1b_start_streaming(struct og01a1b *og01a1b) { struct i2c_client *client = v4l2_get_subdevdata(&og01a1b->sd); const struct og01a1b_reg_list *reg_list; int link_freq_index, ret; link_freq_index = og01a1b->cur_mode->link_freq_index; reg_list = &link_freq_configs[link_freq_index].reg_list; ret = og01a1b_write_reg_list(og01a1b, reg_list); if (ret) { dev_err(&client->dev, "failed to set plls"); return ret; } reg_list = &og01a1b->cur_mode->reg_list; ret = og01a1b_write_reg_list(og01a1b, reg_list); if (ret) { dev_err(&client->dev, "failed to set mode"); return ret; } ret = __v4l2_ctrl_handler_setup(og01a1b->sd.ctrl_handler); if (ret) return ret; ret = og01a1b_write_reg(og01a1b, OG01A1B_REG_MODE_SELECT, OG01A1B_REG_VALUE_08BIT, OG01A1B_MODE_STREAMING); if (ret) { dev_err(&client->dev, "failed to set stream"); return ret; } return 0; } static void og01a1b_stop_streaming(struct og01a1b *og01a1b) { struct i2c_client *client = v4l2_get_subdevdata(&og01a1b->sd); if (og01a1b_write_reg(og01a1b, OG01A1B_REG_MODE_SELECT, OG01A1B_REG_VALUE_08BIT, OG01A1B_MODE_STANDBY)) dev_err(&client->dev, "failed to set stream"); } static int og01a1b_set_stream(struct v4l2_subdev *sd, int enable) { struct og01a1b *og01a1b = to_og01a1b(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); int ret = 0; mutex_lock(&og01a1b->mutex); if (enable) { ret = pm_runtime_resume_and_get(&client->dev); if (ret) { mutex_unlock(&og01a1b->mutex); return ret; } ret = og01a1b_start_streaming(og01a1b); if (ret) { enable = 0; og01a1b_stop_streaming(og01a1b); pm_runtime_put(&client->dev); } } else { og01a1b_stop_streaming(og01a1b); pm_runtime_put(&client->dev); } mutex_unlock(&og01a1b->mutex); return ret; } static int og01a1b_set_format(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct og01a1b *og01a1b = to_og01a1b(sd); const struct og01a1b_mode *mode; s32 vblank_def, h_blank; mode = v4l2_find_nearest_size(supported_modes, ARRAY_SIZE(supported_modes), width, height, fmt->format.width, fmt->format.height); mutex_lock(&og01a1b->mutex); og01a1b_update_pad_format(mode, &fmt->format); if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { *v4l2_subdev_state_get_format(sd_state, fmt->pad) = fmt->format; } else { og01a1b->cur_mode = mode; __v4l2_ctrl_s_ctrl(og01a1b->link_freq, mode->link_freq_index); __v4l2_ctrl_s_ctrl_int64(og01a1b->pixel_rate, to_pixel_rate(mode->link_freq_index)); /* Update limits and set FPS to default */ vblank_def = mode->vts_def - mode->height; __v4l2_ctrl_modify_range(og01a1b->vblank, mode->vts_min - mode->height, OG01A1B_VTS_MAX - mode->height, 1, vblank_def); __v4l2_ctrl_s_ctrl(og01a1b->vblank, vblank_def); h_blank = to_pixels_per_line(mode->hts, mode->link_freq_index) - mode->width; __v4l2_ctrl_modify_range(og01a1b->hblank, h_blank, h_blank, 1, h_blank); } mutex_unlock(&og01a1b->mutex); return 0; } static int og01a1b_get_format(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct og01a1b *og01a1b = to_og01a1b(sd); mutex_lock(&og01a1b->mutex); if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) fmt->format = *v4l2_subdev_state_get_format(sd_state, fmt->pad); else og01a1b_update_pad_format(og01a1b->cur_mode, &fmt->format); mutex_unlock(&og01a1b->mutex); return 0; } static int og01a1b_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { if (code->index > 0) return -EINVAL; code->code = MEDIA_BUS_FMT_SGRBG10_1X10; return 0; } static int og01a1b_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_size_enum *fse) { if (fse->index >= ARRAY_SIZE(supported_modes)) return -EINVAL; if (fse->code != MEDIA_BUS_FMT_SGRBG10_1X10) return -EINVAL; fse->min_width = supported_modes[fse->index].width; fse->max_width = fse->min_width; fse->min_height = supported_modes[fse->index].height; fse->max_height = fse->min_height; return 0; } static int og01a1b_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) { struct og01a1b *og01a1b = to_og01a1b(sd); mutex_lock(&og01a1b->mutex); og01a1b_update_pad_format(&supported_modes[0], v4l2_subdev_state_get_format(fh->state, 0)); mutex_unlock(&og01a1b->mutex); return 0; } static const struct v4l2_subdev_video_ops og01a1b_video_ops = { .s_stream = og01a1b_set_stream, }; static const struct v4l2_subdev_pad_ops og01a1b_pad_ops = { .set_fmt = og01a1b_set_format, .get_fmt = og01a1b_get_format, .enum_mbus_code = og01a1b_enum_mbus_code, .enum_frame_size = og01a1b_enum_frame_size, }; static const struct v4l2_subdev_ops og01a1b_subdev_ops = { .video = &og01a1b_video_ops, .pad = &og01a1b_pad_ops, }; static const struct media_entity_operations og01a1b_subdev_entity_ops = { .link_validate = v4l2_subdev_link_validate, }; static const struct v4l2_subdev_internal_ops og01a1b_internal_ops = { .open = og01a1b_open, }; static int og01a1b_identify_module(struct og01a1b *og01a1b) { struct i2c_client *client = v4l2_get_subdevdata(&og01a1b->sd); int ret; u32 val; ret = og01a1b_read_reg(og01a1b, OG01A1B_REG_CHIP_ID, OG01A1B_REG_VALUE_24BIT, &val); if (ret) return ret; if (val != OG01A1B_CHIP_ID) { dev_err(&client->dev, "chip id mismatch: %x!=%x", OG01A1B_CHIP_ID, val); return -ENXIO; } return 0; } static int og01a1b_check_hwcfg(struct device *dev) { struct fwnode_handle *ep; struct fwnode_handle *fwnode = dev_fwnode(dev); struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_CSI2_DPHY }; u32 mclk; int ret; unsigned int i, j; if (!fwnode) return -ENXIO; ret = fwnode_property_read_u32(fwnode, "clock-frequency", &mclk); if (ret) { dev_err(dev, "can't get clock frequency"); return ret; } if (mclk != OG01A1B_MCLK) { dev_err(dev, "external clock %d is not supported", mclk); return -EINVAL; } ep = fwnode_graph_get_next_endpoint(fwnode, NULL); if (!ep) return -ENXIO; ret = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg); fwnode_handle_put(ep); if (ret) return ret; if (bus_cfg.bus.mipi_csi2.num_data_lanes != OG01A1B_DATA_LANES) { dev_err(dev, "number of CSI2 data lanes %d is not supported", bus_cfg.bus.mipi_csi2.num_data_lanes); ret = -EINVAL; goto check_hwcfg_error; } if (!bus_cfg.nr_of_link_frequencies) { dev_err(dev, "no link frequencies defined"); ret = -EINVAL; goto check_hwcfg_error; } for (i = 0; i < ARRAY_SIZE(link_freq_menu_items); i++) { for (j = 0; j < bus_cfg.nr_of_link_frequencies; j++) { if (link_freq_menu_items[i] == bus_cfg.link_frequencies[j]) break; } if (j == bus_cfg.nr_of_link_frequencies) { dev_err(dev, "no link frequency %lld supported", link_freq_menu_items[i]); ret = -EINVAL; goto check_hwcfg_error; } } check_hwcfg_error: v4l2_fwnode_endpoint_free(&bus_cfg); return ret; } static void og01a1b_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct og01a1b *og01a1b = to_og01a1b(sd); v4l2_async_unregister_subdev(sd); media_entity_cleanup(&sd->entity); v4l2_ctrl_handler_free(sd->ctrl_handler); pm_runtime_disable(&client->dev); mutex_destroy(&og01a1b->mutex); } static int og01a1b_probe(struct i2c_client *client) { struct og01a1b *og01a1b; int ret; ret = og01a1b_check_hwcfg(&client->dev); if (ret) { dev_err(&client->dev, "failed to check HW configuration: %d", ret); return ret; } og01a1b = devm_kzalloc(&client->dev, sizeof(*og01a1b), GFP_KERNEL); if (!og01a1b) return -ENOMEM; v4l2_i2c_subdev_init(&og01a1b->sd, client, &og01a1b_subdev_ops); ret = og01a1b_identify_module(og01a1b); if (ret) { dev_err(&client->dev, "failed to find sensor: %d", ret); return ret; } mutex_init(&og01a1b->mutex); og01a1b->cur_mode = &supported_modes[0]; ret = og01a1b_init_controls(og01a1b); if (ret) { dev_err(&client->dev, "failed to init controls: %d", ret); goto probe_error_v4l2_ctrl_handler_free; } og01a1b->sd.internal_ops = &og01a1b_internal_ops; og01a1b->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; og01a1b->sd.entity.ops = &og01a1b_subdev_entity_ops; og01a1b->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; og01a1b->pad.flags = MEDIA_PAD_FL_SOURCE; ret = media_entity_pads_init(&og01a1b->sd.entity, 1, &og01a1b->pad); if (ret) { dev_err(&client->dev, "failed to init entity pads: %d", ret); goto probe_error_v4l2_ctrl_handler_free; } ret = v4l2_async_register_subdev_sensor(&og01a1b->sd); if (ret < 0) { dev_err(&client->dev, "failed to register V4L2 subdev: %d", ret); goto probe_error_media_entity_cleanup; } /* * Device is already turned on by i2c-core with ACPI domain PM. * Enable runtime PM and turn off the device. */ pm_runtime_set_active(&client->dev); pm_runtime_enable(&client->dev); pm_runtime_idle(&client->dev); return 0; probe_error_media_entity_cleanup: media_entity_cleanup(&og01a1b->sd.entity); probe_error_v4l2_ctrl_handler_free: v4l2_ctrl_handler_free(og01a1b->sd.ctrl_handler); mutex_destroy(&og01a1b->mutex); return ret; } #ifdef CONFIG_ACPI static const struct acpi_device_id og01a1b_acpi_ids[] = { {"OVTI01AC"}, {} }; MODULE_DEVICE_TABLE(acpi, og01a1b_acpi_ids); #endif static struct i2c_driver og01a1b_i2c_driver = { .driver = { .name = "og01a1b", .acpi_match_table = ACPI_PTR(og01a1b_acpi_ids), }, .probe = og01a1b_probe, .remove = og01a1b_remove, }; module_i2c_driver(og01a1b_i2c_driver); MODULE_AUTHOR("Shawn Tu"); MODULE_DESCRIPTION("OmniVision OG01A1B sensor driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1