Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Benjamin Collins | 1495 | 87.17% | 1 | 4.17% |
Hans Verkuil | 89 | 5.19% | 2 | 8.33% |
Mauro Carvalho Chehab | 44 | 2.57% | 2 | 8.33% |
Krzysztof Hałasa | 32 | 1.87% | 3 | 12.50% |
Takashi Iwai | 23 | 1.34% | 5 | 20.83% |
Christophe Jaillet | 10 | 0.58% | 1 | 4.17% |
facugaich | 9 | 0.52% | 1 | 4.17% |
Qinglang Miao | 3 | 0.17% | 1 | 4.17% |
Paul Gortmaker | 2 | 0.12% | 1 | 4.17% |
Andrew Morton | 2 | 0.12% | 1 | 4.17% |
Julia Lawall | 1 | 0.06% | 1 | 4.17% |
Kees Cook | 1 | 0.06% | 1 | 4.17% |
Bhumika Goyal | 1 | 0.06% | 1 | 4.17% |
Ismael Luceno | 1 | 0.06% | 1 | 4.17% |
Thomas Gleixner | 1 | 0.06% | 1 | 4.17% |
Alexander A. Klimov | 1 | 0.06% | 1 | 4.17% |
Total | 1715 | 24 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (C) 2010-2013 Bluecherry, LLC <https://www.bluecherrydvr.com> * * Original author: * Ben Collins <bcollins@ubuntu.com> * * Additional work by: * John Brooks <john.brooks@bluecherry.net> */ #include <linux/kernel.h> #include <linux/mempool.h> #include <linux/poll.h> #include <linux/kthread.h> #include <linux/freezer.h> #include <linux/module.h> #include <linux/slab.h> #include <sound/core.h> #include <sound/initval.h> #include <sound/pcm.h> #include <sound/control.h> #include "solo6x10.h" #include "solo6x10-tw28.h" #define G723_FDMA_PAGES 32 #define G723_PERIOD_BYTES 48 #define G723_PERIOD_BLOCK 1024 #define G723_FRAMES_PER_PAGE 48 /* Sets up channels 16-19 for decoding and 0-15 for encoding */ #define OUTMODE_MASK 0x300 #define SAMPLERATE 8000 #define BITRATE 25 /* The solo writes to 1k byte pages, 32 pages, in the dma. Each 1k page * is broken down to 20 * 48 byte regions (one for each channel possible) * with the rest of the page being dummy data. */ #define PERIODS G723_FDMA_PAGES #define G723_INTR_ORDER 4 /* 0 - 4 */ struct solo_snd_pcm { int on; spinlock_t lock; struct solo_dev *solo_dev; u8 *g723_buf; dma_addr_t g723_dma; }; static void solo_g723_config(struct solo_dev *solo_dev) { int clk_div; clk_div = (solo_dev->clock_mhz * 1000000) / (SAMPLERATE * (BITRATE * 2) * 2); solo_reg_write(solo_dev, SOLO_AUDIO_SAMPLE, SOLO_AUDIO_BITRATE(BITRATE) | SOLO_AUDIO_CLK_DIV(clk_div)); solo_reg_write(solo_dev, SOLO_AUDIO_FDMA_INTR, SOLO_AUDIO_FDMA_INTERVAL(1) | SOLO_AUDIO_INTR_ORDER(G723_INTR_ORDER) | SOLO_AUDIO_FDMA_BASE(SOLO_G723_EXT_ADDR(solo_dev) >> 16)); solo_reg_write(solo_dev, SOLO_AUDIO_CONTROL, SOLO_AUDIO_ENABLE | SOLO_AUDIO_I2S_MODE | SOLO_AUDIO_I2S_MULTI(3) | SOLO_AUDIO_MODE(OUTMODE_MASK)); } void solo_g723_isr(struct solo_dev *solo_dev) { struct snd_pcm_str *pstr = &solo_dev->snd_pcm->streams[SNDRV_PCM_STREAM_CAPTURE]; struct snd_pcm_substream *ss; struct solo_snd_pcm *solo_pcm; for (ss = pstr->substream; ss != NULL; ss = ss->next) { if (snd_pcm_substream_chip(ss) == NULL) continue; /* This means open() hasn't been called on this one */ if (snd_pcm_substream_chip(ss) == solo_dev) continue; /* Haven't triggered a start yet */ solo_pcm = snd_pcm_substream_chip(ss); if (!solo_pcm->on) continue; snd_pcm_period_elapsed(ss); } } static const struct snd_pcm_hardware snd_solo_pcm_hw = { .info = (SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED | SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_MMAP_VALID), .formats = SNDRV_PCM_FMTBIT_U8, .rates = SNDRV_PCM_RATE_8000, .rate_min = SAMPLERATE, .rate_max = SAMPLERATE, .channels_min = 1, .channels_max = 1, .buffer_bytes_max = G723_PERIOD_BYTES * PERIODS, .period_bytes_min = G723_PERIOD_BYTES, .period_bytes_max = G723_PERIOD_BYTES, .periods_min = PERIODS, .periods_max = PERIODS, }; static int snd_solo_pcm_open(struct snd_pcm_substream *ss) { struct solo_dev *solo_dev = snd_pcm_substream_chip(ss); struct solo_snd_pcm *solo_pcm; solo_pcm = kzalloc(sizeof(*solo_pcm), GFP_KERNEL); if (solo_pcm == NULL) goto oom; solo_pcm->g723_buf = dma_alloc_coherent(&solo_dev->pdev->dev, G723_PERIOD_BYTES, &solo_pcm->g723_dma, GFP_KERNEL); if (solo_pcm->g723_buf == NULL) goto oom; spin_lock_init(&solo_pcm->lock); solo_pcm->solo_dev = solo_dev; ss->runtime->hw = snd_solo_pcm_hw; snd_pcm_substream_chip(ss) = solo_pcm; return 0; oom: kfree(solo_pcm); return -ENOMEM; } static int snd_solo_pcm_close(struct snd_pcm_substream *ss) { struct solo_snd_pcm *solo_pcm = snd_pcm_substream_chip(ss); snd_pcm_substream_chip(ss) = solo_pcm->solo_dev; dma_free_coherent(&solo_pcm->solo_dev->pdev->dev, G723_PERIOD_BYTES, solo_pcm->g723_buf, solo_pcm->g723_dma); kfree(solo_pcm); return 0; } static int snd_solo_pcm_trigger(struct snd_pcm_substream *ss, int cmd) { struct solo_snd_pcm *solo_pcm = snd_pcm_substream_chip(ss); struct solo_dev *solo_dev = solo_pcm->solo_dev; int ret = 0; spin_lock(&solo_pcm->lock); switch (cmd) { case SNDRV_PCM_TRIGGER_START: if (solo_pcm->on == 0) { /* If this is the first user, switch on interrupts */ if (atomic_inc_return(&solo_dev->snd_users) == 1) solo_irq_on(solo_dev, SOLO_IRQ_G723); solo_pcm->on = 1; } break; case SNDRV_PCM_TRIGGER_STOP: if (solo_pcm->on) { /* If this was our last user, switch them off */ if (atomic_dec_return(&solo_dev->snd_users) == 0) solo_irq_off(solo_dev, SOLO_IRQ_G723); solo_pcm->on = 0; } break; default: ret = -EINVAL; } spin_unlock(&solo_pcm->lock); return ret; } static int snd_solo_pcm_prepare(struct snd_pcm_substream *ss) { return 0; } static snd_pcm_uframes_t snd_solo_pcm_pointer(struct snd_pcm_substream *ss) { struct solo_snd_pcm *solo_pcm = snd_pcm_substream_chip(ss); struct solo_dev *solo_dev = solo_pcm->solo_dev; snd_pcm_uframes_t idx = solo_reg_read(solo_dev, SOLO_AUDIO_STA) & 0x1f; return idx * G723_FRAMES_PER_PAGE; } static int snd_solo_pcm_copy(struct snd_pcm_substream *ss, int channel, unsigned long pos, struct iov_iter *dst, unsigned long count) { struct solo_snd_pcm *solo_pcm = snd_pcm_substream_chip(ss); struct solo_dev *solo_dev = solo_pcm->solo_dev; int err, i; for (i = 0; i < (count / G723_FRAMES_PER_PAGE); i++) { int page = (pos / G723_FRAMES_PER_PAGE) + i; err = solo_p2m_dma_t(solo_dev, 0, solo_pcm->g723_dma, SOLO_G723_EXT_ADDR(solo_dev) + (page * G723_PERIOD_BLOCK) + (ss->number * G723_PERIOD_BYTES), G723_PERIOD_BYTES, 0, 0); if (err) return err; if (copy_to_iter(solo_pcm->g723_buf, G723_PERIOD_BYTES, dst) != G723_PERIOD_BYTES) return -EFAULT; } return 0; } static const struct snd_pcm_ops snd_solo_pcm_ops = { .open = snd_solo_pcm_open, .close = snd_solo_pcm_close, .prepare = snd_solo_pcm_prepare, .trigger = snd_solo_pcm_trigger, .pointer = snd_solo_pcm_pointer, .copy = snd_solo_pcm_copy, }; static int snd_solo_capture_volume_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *info) { info->type = SNDRV_CTL_ELEM_TYPE_INTEGER; info->count = 1; info->value.integer.min = 0; info->value.integer.max = 15; info->value.integer.step = 1; return 0; } static int snd_solo_capture_volume_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { struct solo_dev *solo_dev = snd_kcontrol_chip(kcontrol); u8 ch = value->id.numid - 1; value->value.integer.value[0] = tw28_get_audio_gain(solo_dev, ch); return 0; } static int snd_solo_capture_volume_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *value) { struct solo_dev *solo_dev = snd_kcontrol_chip(kcontrol); u8 ch = value->id.numid - 1; u8 old_val; old_val = tw28_get_audio_gain(solo_dev, ch); if (old_val == value->value.integer.value[0]) return 0; tw28_set_audio_gain(solo_dev, ch, value->value.integer.value[0]); return 1; } static const struct snd_kcontrol_new snd_solo_capture_volume = { .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = "Capture Volume", .info = snd_solo_capture_volume_info, .get = snd_solo_capture_volume_get, .put = snd_solo_capture_volume_put, }; static int solo_snd_pcm_init(struct solo_dev *solo_dev) { struct snd_card *card = solo_dev->snd_card; struct snd_pcm *pcm; struct snd_pcm_substream *ss; int ret; int i; ret = snd_pcm_new(card, card->driver, 0, 0, solo_dev->nr_chans, &pcm); if (ret < 0) return ret; snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_solo_pcm_ops); snd_pcm_chip(pcm) = solo_dev; pcm->info_flags = 0; strscpy(pcm->name, card->shortname, sizeof(pcm->name)); for (i = 0, ss = pcm->streams[SNDRV_PCM_STREAM_CAPTURE].substream; ss; ss = ss->next, i++) sprintf(ss->name, "Camera #%d Audio", i); snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_CONTINUOUS, NULL, G723_PERIOD_BYTES * PERIODS, G723_PERIOD_BYTES * PERIODS); solo_dev->snd_pcm = pcm; return 0; } int solo_g723_init(struct solo_dev *solo_dev) { static struct snd_device_ops ops = { }; struct snd_card *card; struct snd_kcontrol_new kctl; char name[32]; int ret; atomic_set(&solo_dev->snd_users, 0); /* Allows for easier mapping between video and audio */ sprintf(name, "Softlogic%d", solo_dev->vfd->num); ret = snd_card_new(&solo_dev->pdev->dev, SNDRV_DEFAULT_IDX1, name, THIS_MODULE, 0, &solo_dev->snd_card); if (ret < 0) return ret; card = solo_dev->snd_card; strscpy(card->driver, SOLO6X10_NAME, sizeof(card->driver)); strscpy(card->shortname, "SOLO-6x10 Audio", sizeof(card->shortname)); sprintf(card->longname, "%s on %s IRQ %d", card->shortname, pci_name(solo_dev->pdev), solo_dev->pdev->irq); ret = snd_device_new(card, SNDRV_DEV_LOWLEVEL, solo_dev, &ops); if (ret < 0) goto snd_error; /* Mixer controls */ strscpy(card->mixername, "SOLO-6x10", sizeof(card->mixername)); kctl = snd_solo_capture_volume; kctl.count = solo_dev->nr_chans; ret = snd_ctl_add(card, snd_ctl_new1(&kctl, solo_dev)); if (ret < 0) goto snd_error; ret = solo_snd_pcm_init(solo_dev); if (ret < 0) goto snd_error; ret = snd_card_register(card); if (ret < 0) goto snd_error; solo_g723_config(solo_dev); dev_info(&solo_dev->pdev->dev, "Alsa sound card as %s\n", name); return 0; snd_error: snd_card_free(card); return ret; } void solo_g723_exit(struct solo_dev *solo_dev) { if (!solo_dev->snd_card) return; solo_reg_write(solo_dev, SOLO_AUDIO_CONTROL, 0); solo_irq_off(solo_dev, SOLO_IRQ_G723); snd_card_free(solo_dev->snd_card); solo_dev->snd_card = NULL; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1