Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Martin Kepplinger | 3833 | 98.66% | 4 | 26.67% |
Sakari Ailus | 21 | 0.54% | 4 | 26.67% |
Laurent Pinchart | 18 | 0.46% | 2 | 13.33% |
Steve Longerbeam | 4 | 0.10% | 1 | 6.67% |
Jacopo Mondi | 3 | 0.08% | 1 | 6.67% |
Muhammad Usama Anjum | 2 | 0.05% | 1 | 6.67% |
Uwe Kleine-König | 2 | 0.05% | 1 | 6.67% |
Hans Verkuil | 2 | 0.05% | 1 | 6.67% |
Total | 3885 | 15 |
// SPDX-License-Identifier: GPL-2.0 /* * NXP i.MX8MQ SoC series MIPI-CSI2 receiver driver * * Copyright (C) 2021 Purism SPC */ #include <linux/clk.h> #include <linux/clk-provider.h> #include <linux/delay.h> #include <linux/errno.h> #include <linux/interconnect.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/kernel.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/reset.h> #include <linux/spinlock.h> #include <media/v4l2-common.h> #include <media/v4l2-device.h> #include <media/v4l2-fwnode.h> #include <media/v4l2-mc.h> #include <media/v4l2-subdev.h> #define MIPI_CSI2_DRIVER_NAME "imx8mq-mipi-csi2" #define MIPI_CSI2_SUBDEV_NAME MIPI_CSI2_DRIVER_NAME #define MIPI_CSI2_PAD_SINK 0 #define MIPI_CSI2_PAD_SOURCE 1 #define MIPI_CSI2_PADS_NUM 2 #define MIPI_CSI2_DEF_PIX_WIDTH 640 #define MIPI_CSI2_DEF_PIX_HEIGHT 480 /* Register map definition */ /* i.MX8MQ CSI-2 controller CSR */ #define CSI2RX_CFG_NUM_LANES 0x100 #define CSI2RX_CFG_DISABLE_DATA_LANES 0x104 #define CSI2RX_BIT_ERR 0x108 #define CSI2RX_IRQ_STATUS 0x10c #define CSI2RX_IRQ_MASK 0x110 #define CSI2RX_IRQ_MASK_ALL 0x1ff #define CSI2RX_IRQ_MASK_ULPS_STATUS_CHANGE 0x8 #define CSI2RX_ULPS_STATUS 0x114 #define CSI2RX_PPI_ERRSOT_HS 0x118 #define CSI2RX_PPI_ERRSOTSYNC_HS 0x11c #define CSI2RX_PPI_ERRESC 0x120 #define CSI2RX_PPI_ERRSYNCESC 0x124 #define CSI2RX_PPI_ERRCONTROL 0x128 #define CSI2RX_CFG_DISABLE_PAYLOAD_0 0x12c #define CSI2RX_CFG_VID_VC_IGNORE 0x180 #define CSI2RX_CFG_VID_VC 0x184 #define CSI2RX_CFG_VID_P_FIFO_SEND_LEVEL 0x188 #define CSI2RX_CFG_DISABLE_PAYLOAD_1 0x130 enum { ST_POWERED = 1, ST_STREAMING = 2, ST_SUSPENDED = 4, }; enum imx8mq_mipi_csi_clk { CSI2_CLK_CORE, CSI2_CLK_ESC, CSI2_CLK_UI, CSI2_NUM_CLKS, }; static const char * const imx8mq_mipi_csi_clk_id[CSI2_NUM_CLKS] = { [CSI2_CLK_CORE] = "core", [CSI2_CLK_ESC] = "esc", [CSI2_CLK_UI] = "ui", }; #define CSI2_NUM_CLKS ARRAY_SIZE(imx8mq_mipi_csi_clk_id) #define GPR_CSI2_1_RX_ENABLE BIT(13) #define GPR_CSI2_1_VID_INTFC_ENB BIT(12) #define GPR_CSI2_1_HSEL BIT(10) #define GPR_CSI2_1_CONT_CLK_MODE BIT(8) #define GPR_CSI2_1_S_PRG_RXHS_SETTLE(x) (((x) & 0x3f) << 2) /* * The send level configures the number of entries that must accumulate in * the Pixel FIFO before the data will be transferred to the video output. * The exact value needed for this configuration is dependent on the rate at * which the sensor transfers data to the CSI-2 Controller and the user * video clock. * * The calculation is the classical rate-in rate-out type of problem: If the * video bandwidth is 10% faster than the incoming mipi data and the video * line length is 500 pixels, then the fifo should be allowed to fill * 10% of the line length or 50 pixels. If the gap data is ok, then the level * can be set to 16 and ignored. */ #define CSI2RX_SEND_LEVEL 64 struct csi_state { struct device *dev; void __iomem *regs; struct clk_bulk_data clks[CSI2_NUM_CLKS]; struct reset_control *rst; struct regulator *mipi_phy_regulator; struct v4l2_subdev sd; struct media_pad pads[MIPI_CSI2_PADS_NUM]; struct v4l2_async_notifier notifier; struct v4l2_subdev *src_sd; struct v4l2_mbus_config_mipi_csi2 bus; struct mutex lock; /* Protect state */ u32 state; struct regmap *phy_gpr; u8 phy_gpr_reg; struct icc_path *icc_path; s32 icc_path_bw; }; /* ----------------------------------------------------------------------------- * Format helpers */ struct csi2_pix_format { u32 code; u8 width; }; static const struct csi2_pix_format imx8mq_mipi_csi_formats[] = { /* RAW (Bayer and greyscale) formats. */ { .code = MEDIA_BUS_FMT_SBGGR8_1X8, .width = 8, }, { .code = MEDIA_BUS_FMT_SGBRG8_1X8, .width = 8, }, { .code = MEDIA_BUS_FMT_SGRBG8_1X8, .width = 8, }, { .code = MEDIA_BUS_FMT_SRGGB8_1X8, .width = 8, }, { .code = MEDIA_BUS_FMT_Y8_1X8, .width = 8, }, { .code = MEDIA_BUS_FMT_SBGGR10_1X10, .width = 10, }, { .code = MEDIA_BUS_FMT_SGBRG10_1X10, .width = 10, }, { .code = MEDIA_BUS_FMT_SGRBG10_1X10, .width = 10, }, { .code = MEDIA_BUS_FMT_SRGGB10_1X10, .width = 10, }, { .code = MEDIA_BUS_FMT_Y10_1X10, .width = 10, }, { .code = MEDIA_BUS_FMT_SBGGR12_1X12, .width = 12, }, { .code = MEDIA_BUS_FMT_SGBRG12_1X12, .width = 12, }, { .code = MEDIA_BUS_FMT_SGRBG12_1X12, .width = 12, }, { .code = MEDIA_BUS_FMT_SRGGB12_1X12, .width = 12, }, { .code = MEDIA_BUS_FMT_Y12_1X12, .width = 12, }, { .code = MEDIA_BUS_FMT_SBGGR14_1X14, .width = 14, }, { .code = MEDIA_BUS_FMT_SGBRG14_1X14, .width = 14, }, { .code = MEDIA_BUS_FMT_SGRBG14_1X14, .width = 14, }, { .code = MEDIA_BUS_FMT_SRGGB14_1X14, .width = 14, }, /* YUV formats */ { .code = MEDIA_BUS_FMT_YUYV8_1X16, .width = 16, }, { .code = MEDIA_BUS_FMT_UYVY8_1X16, .width = 16, } }; static const struct csi2_pix_format *find_csi2_format(u32 code) { unsigned int i; for (i = 0; i < ARRAY_SIZE(imx8mq_mipi_csi_formats); i++) if (code == imx8mq_mipi_csi_formats[i].code) return &imx8mq_mipi_csi_formats[i]; return NULL; } /* ----------------------------------------------------------------------------- * Hardware configuration */ static inline void imx8mq_mipi_csi_write(struct csi_state *state, u32 reg, u32 val) { writel(val, state->regs + reg); } static int imx8mq_mipi_csi_sw_reset(struct csi_state *state) { int ret; /* * these are most likely self-clearing reset bits. to make it * more clear, the reset-imx7 driver should implement the * .reset() operation. */ ret = reset_control_assert(state->rst); if (ret < 0) { dev_err(state->dev, "Failed to assert resets: %d\n", ret); return ret; } return 0; } static void imx8mq_mipi_csi_set_params(struct csi_state *state) { int lanes = state->bus.num_data_lanes; imx8mq_mipi_csi_write(state, CSI2RX_CFG_NUM_LANES, lanes - 1); imx8mq_mipi_csi_write(state, CSI2RX_CFG_DISABLE_DATA_LANES, (0xf << lanes) & 0xf); imx8mq_mipi_csi_write(state, CSI2RX_IRQ_MASK, CSI2RX_IRQ_MASK_ALL); /* * 0x180 bit 0 controls the Virtual Channel behaviour: when set the * interface ignores the Virtual Channel (VC) field in received packets; * when cleared it causes the interface to only accept packets whose VC * matches the value to which VC is set at offset 0x184. */ imx8mq_mipi_csi_write(state, CSI2RX_CFG_VID_VC_IGNORE, 1); imx8mq_mipi_csi_write(state, CSI2RX_CFG_VID_P_FIFO_SEND_LEVEL, CSI2RX_SEND_LEVEL); } static int imx8mq_mipi_csi_clk_enable(struct csi_state *state) { return clk_bulk_prepare_enable(CSI2_NUM_CLKS, state->clks); } static void imx8mq_mipi_csi_clk_disable(struct csi_state *state) { clk_bulk_disable_unprepare(CSI2_NUM_CLKS, state->clks); } static int imx8mq_mipi_csi_clk_get(struct csi_state *state) { unsigned int i; for (i = 0; i < CSI2_NUM_CLKS; i++) state->clks[i].id = imx8mq_mipi_csi_clk_id[i]; return devm_clk_bulk_get(state->dev, CSI2_NUM_CLKS, state->clks); } static int imx8mq_mipi_csi_calc_hs_settle(struct csi_state *state, struct v4l2_subdev_state *sd_state, u32 *hs_settle) { s64 link_freq; u32 lane_rate; unsigned long esc_clk_rate; u32 min_ths_settle, max_ths_settle, ths_settle_ns, esc_clk_period_ns; const struct v4l2_mbus_framefmt *fmt; const struct csi2_pix_format *csi2_fmt; /* Calculate the line rate from the pixel rate. */ fmt = v4l2_subdev_state_get_format(sd_state, MIPI_CSI2_PAD_SINK); csi2_fmt = find_csi2_format(fmt->code); link_freq = v4l2_get_link_freq(state->src_sd->ctrl_handler, csi2_fmt->width, state->bus.num_data_lanes * 2); if (link_freq < 0) { dev_err(state->dev, "Unable to obtain link frequency: %d\n", (int)link_freq); return link_freq; } lane_rate = link_freq * 2; if (lane_rate < 80000000 || lane_rate > 1500000000) { dev_dbg(state->dev, "Out-of-bound lane rate %u\n", lane_rate); return -EINVAL; } /* * The D-PHY specification requires Ths-settle to be in the range * 85ns + 6*UI to 140ns + 10*UI, with the unit interval UI being half * the clock period. * * The Ths-settle value is expressed in the hardware as a multiple of * the Esc clock period: * * Ths-settle = (PRG_RXHS_SETTLE + 1) * Tperiod of RxClkInEsc * * Due to the one cycle inaccuracy introduced by rounding, the * documentation recommends picking a value away from the boundaries. * Let's pick the average. */ esc_clk_rate = clk_get_rate(state->clks[CSI2_CLK_ESC].clk); if (!esc_clk_rate) { dev_err(state->dev, "Could not get esc clock rate.\n"); return -EINVAL; } dev_dbg(state->dev, "esc clk rate: %lu\n", esc_clk_rate); esc_clk_period_ns = 1000000000 / esc_clk_rate; min_ths_settle = 85 + 6 * 1000000 / (lane_rate / 1000); max_ths_settle = 140 + 10 * 1000000 / (lane_rate / 1000); ths_settle_ns = (min_ths_settle + max_ths_settle) / 2; *hs_settle = ths_settle_ns / esc_clk_period_ns - 1; dev_dbg(state->dev, "lane rate %u Ths_settle %u hs_settle %u\n", lane_rate, ths_settle_ns, *hs_settle); return 0; } static int imx8mq_mipi_csi_start_stream(struct csi_state *state, struct v4l2_subdev_state *sd_state) { int ret; u32 hs_settle = 0; ret = imx8mq_mipi_csi_sw_reset(state); if (ret) return ret; imx8mq_mipi_csi_set_params(state); ret = imx8mq_mipi_csi_calc_hs_settle(state, sd_state, &hs_settle); if (ret) return ret; regmap_update_bits(state->phy_gpr, state->phy_gpr_reg, 0x3fff, GPR_CSI2_1_RX_ENABLE | GPR_CSI2_1_VID_INTFC_ENB | GPR_CSI2_1_HSEL | GPR_CSI2_1_CONT_CLK_MODE | GPR_CSI2_1_S_PRG_RXHS_SETTLE(hs_settle)); return 0; } static void imx8mq_mipi_csi_stop_stream(struct csi_state *state) { imx8mq_mipi_csi_write(state, CSI2RX_CFG_DISABLE_DATA_LANES, 0xf); } /* ----------------------------------------------------------------------------- * V4L2 subdev operations */ static struct csi_state *mipi_sd_to_csi2_state(struct v4l2_subdev *sdev) { return container_of(sdev, struct csi_state, sd); } static int imx8mq_mipi_csi_s_stream(struct v4l2_subdev *sd, int enable) { struct csi_state *state = mipi_sd_to_csi2_state(sd); struct v4l2_subdev_state *sd_state; int ret = 0; if (enable) { ret = pm_runtime_resume_and_get(state->dev); if (ret < 0) return ret; } mutex_lock(&state->lock); if (enable) { if (state->state & ST_SUSPENDED) { ret = -EBUSY; goto unlock; } sd_state = v4l2_subdev_lock_and_get_active_state(sd); ret = imx8mq_mipi_csi_start_stream(state, sd_state); v4l2_subdev_unlock_state(sd_state); if (ret < 0) goto unlock; ret = v4l2_subdev_call(state->src_sd, video, s_stream, 1); if (ret < 0) goto unlock; state->state |= ST_STREAMING; } else { v4l2_subdev_call(state->src_sd, video, s_stream, 0); imx8mq_mipi_csi_stop_stream(state); state->state &= ~ST_STREAMING; } unlock: mutex_unlock(&state->lock); if (!enable || ret < 0) pm_runtime_put(state->dev); return ret; } static int imx8mq_mipi_csi_init_state(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state) { struct v4l2_mbus_framefmt *fmt_sink; struct v4l2_mbus_framefmt *fmt_source; fmt_sink = v4l2_subdev_state_get_format(sd_state, MIPI_CSI2_PAD_SINK); fmt_source = v4l2_subdev_state_get_format(sd_state, MIPI_CSI2_PAD_SOURCE); fmt_sink->code = MEDIA_BUS_FMT_SGBRG10_1X10; fmt_sink->width = MIPI_CSI2_DEF_PIX_WIDTH; fmt_sink->height = MIPI_CSI2_DEF_PIX_HEIGHT; fmt_sink->field = V4L2_FIELD_NONE; fmt_sink->colorspace = V4L2_COLORSPACE_RAW; fmt_sink->xfer_func = V4L2_MAP_XFER_FUNC_DEFAULT(fmt_sink->colorspace); fmt_sink->ycbcr_enc = V4L2_MAP_YCBCR_ENC_DEFAULT(fmt_sink->colorspace); fmt_sink->quantization = V4L2_MAP_QUANTIZATION_DEFAULT(false, fmt_sink->colorspace, fmt_sink->ycbcr_enc); *fmt_source = *fmt_sink; return 0; } static int imx8mq_mipi_csi_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { /* * We can't transcode in any way, the source format is identical * to the sink format. */ if (code->pad == MIPI_CSI2_PAD_SOURCE) { struct v4l2_mbus_framefmt *fmt; if (code->index > 0) return -EINVAL; fmt = v4l2_subdev_state_get_format(sd_state, code->pad); code->code = fmt->code; return 0; } if (code->pad != MIPI_CSI2_PAD_SINK) return -EINVAL; if (code->index >= ARRAY_SIZE(imx8mq_mipi_csi_formats)) return -EINVAL; code->code = imx8mq_mipi_csi_formats[code->index].code; return 0; } static int imx8mq_mipi_csi_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *sdformat) { const struct csi2_pix_format *csi2_fmt; struct v4l2_mbus_framefmt *fmt; /* * The device can't transcode in any way, the source format can't be * modified. */ if (sdformat->pad == MIPI_CSI2_PAD_SOURCE) return v4l2_subdev_get_fmt(sd, sd_state, sdformat); if (sdformat->pad != MIPI_CSI2_PAD_SINK) return -EINVAL; csi2_fmt = find_csi2_format(sdformat->format.code); if (!csi2_fmt) csi2_fmt = &imx8mq_mipi_csi_formats[0]; fmt = v4l2_subdev_state_get_format(sd_state, sdformat->pad); fmt->code = csi2_fmt->code; fmt->width = sdformat->format.width; fmt->height = sdformat->format.height; sdformat->format = *fmt; /* Propagate the format from sink to source. */ fmt = v4l2_subdev_state_get_format(sd_state, MIPI_CSI2_PAD_SOURCE); *fmt = sdformat->format; return 0; } static const struct v4l2_subdev_video_ops imx8mq_mipi_csi_video_ops = { .s_stream = imx8mq_mipi_csi_s_stream, }; static const struct v4l2_subdev_pad_ops imx8mq_mipi_csi_pad_ops = { .enum_mbus_code = imx8mq_mipi_csi_enum_mbus_code, .get_fmt = v4l2_subdev_get_fmt, .set_fmt = imx8mq_mipi_csi_set_fmt, }; static const struct v4l2_subdev_ops imx8mq_mipi_csi_subdev_ops = { .video = &imx8mq_mipi_csi_video_ops, .pad = &imx8mq_mipi_csi_pad_ops, }; static const struct v4l2_subdev_internal_ops imx8mq_mipi_csi_internal_ops = { .init_state = imx8mq_mipi_csi_init_state, }; /* ----------------------------------------------------------------------------- * Media entity operations */ static const struct media_entity_operations imx8mq_mipi_csi_entity_ops = { .link_validate = v4l2_subdev_link_validate, .get_fwnode_pad = v4l2_subdev_get_fwnode_pad_1_to_1, }; /* ----------------------------------------------------------------------------- * Async subdev notifier */ static struct csi_state * mipi_notifier_to_csi2_state(struct v4l2_async_notifier *n) { return container_of(n, struct csi_state, notifier); } static int imx8mq_mipi_csi_notify_bound(struct v4l2_async_notifier *notifier, struct v4l2_subdev *sd, struct v4l2_async_connection *asd) { struct csi_state *state = mipi_notifier_to_csi2_state(notifier); struct media_pad *sink = &state->sd.entity.pads[MIPI_CSI2_PAD_SINK]; state->src_sd = sd; return v4l2_create_fwnode_links_to_pad(sd, sink, MEDIA_LNK_FL_ENABLED | MEDIA_LNK_FL_IMMUTABLE); } static const struct v4l2_async_notifier_operations imx8mq_mipi_csi_notify_ops = { .bound = imx8mq_mipi_csi_notify_bound, }; static int imx8mq_mipi_csi_async_register(struct csi_state *state) { struct v4l2_fwnode_endpoint vep = { .bus_type = V4L2_MBUS_CSI2_DPHY, }; struct v4l2_async_connection *asd; struct fwnode_handle *ep; unsigned int i; int ret; v4l2_async_subdev_nf_init(&state->notifier, &state->sd); ep = fwnode_graph_get_endpoint_by_id(dev_fwnode(state->dev), 0, 0, FWNODE_GRAPH_ENDPOINT_NEXT); if (!ep) return -ENOTCONN; ret = v4l2_fwnode_endpoint_parse(ep, &vep); if (ret) goto err_parse; for (i = 0; i < vep.bus.mipi_csi2.num_data_lanes; ++i) { if (vep.bus.mipi_csi2.data_lanes[i] != i + 1) { dev_err(state->dev, "data lanes reordering is not supported"); ret = -EINVAL; goto err_parse; } } state->bus = vep.bus.mipi_csi2; dev_dbg(state->dev, "data lanes: %d flags: 0x%08x\n", state->bus.num_data_lanes, state->bus.flags); asd = v4l2_async_nf_add_fwnode_remote(&state->notifier, ep, struct v4l2_async_connection); if (IS_ERR(asd)) { ret = PTR_ERR(asd); goto err_parse; } fwnode_handle_put(ep); state->notifier.ops = &imx8mq_mipi_csi_notify_ops; ret = v4l2_async_nf_register(&state->notifier); if (ret) return ret; return v4l2_async_register_subdev(&state->sd); err_parse: fwnode_handle_put(ep); return ret; } /* ----------------------------------------------------------------------------- * Suspend/resume */ static void imx8mq_mipi_csi_pm_suspend(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct csi_state *state = mipi_sd_to_csi2_state(sd); mutex_lock(&state->lock); if (state->state & ST_POWERED) { imx8mq_mipi_csi_stop_stream(state); imx8mq_mipi_csi_clk_disable(state); state->state &= ~ST_POWERED; } mutex_unlock(&state->lock); } static int imx8mq_mipi_csi_pm_resume(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct csi_state *state = mipi_sd_to_csi2_state(sd); struct v4l2_subdev_state *sd_state; int ret = 0; mutex_lock(&state->lock); if (!(state->state & ST_POWERED)) { state->state |= ST_POWERED; ret = imx8mq_mipi_csi_clk_enable(state); } if (state->state & ST_STREAMING) { sd_state = v4l2_subdev_lock_and_get_active_state(sd); ret = imx8mq_mipi_csi_start_stream(state, sd_state); v4l2_subdev_unlock_state(sd_state); if (ret) goto unlock; } state->state &= ~ST_SUSPENDED; unlock: mutex_unlock(&state->lock); return ret ? -EAGAIN : 0; } static int __maybe_unused imx8mq_mipi_csi_suspend(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct csi_state *state = mipi_sd_to_csi2_state(sd); imx8mq_mipi_csi_pm_suspend(dev); state->state |= ST_SUSPENDED; return 0; } static int __maybe_unused imx8mq_mipi_csi_resume(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct csi_state *state = mipi_sd_to_csi2_state(sd); if (!(state->state & ST_SUSPENDED)) return 0; return imx8mq_mipi_csi_pm_resume(dev); } static int __maybe_unused imx8mq_mipi_csi_runtime_suspend(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct csi_state *state = mipi_sd_to_csi2_state(sd); int ret; imx8mq_mipi_csi_pm_suspend(dev); ret = icc_set_bw(state->icc_path, 0, 0); if (ret) dev_err(dev, "icc_set_bw failed with %d\n", ret); return ret; } static int __maybe_unused imx8mq_mipi_csi_runtime_resume(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct csi_state *state = mipi_sd_to_csi2_state(sd); int ret; ret = icc_set_bw(state->icc_path, 0, state->icc_path_bw); if (ret) { dev_err(dev, "icc_set_bw failed with %d\n", ret); return ret; } return imx8mq_mipi_csi_pm_resume(dev); } static const struct dev_pm_ops imx8mq_mipi_csi_pm_ops = { SET_RUNTIME_PM_OPS(imx8mq_mipi_csi_runtime_suspend, imx8mq_mipi_csi_runtime_resume, NULL) SET_SYSTEM_SLEEP_PM_OPS(imx8mq_mipi_csi_suspend, imx8mq_mipi_csi_resume) }; /* ----------------------------------------------------------------------------- * Probe/remove & platform driver */ static int imx8mq_mipi_csi_subdev_init(struct csi_state *state) { struct v4l2_subdev *sd = &state->sd; int ret; v4l2_subdev_init(sd, &imx8mq_mipi_csi_subdev_ops); sd->internal_ops = &imx8mq_mipi_csi_internal_ops; sd->owner = THIS_MODULE; snprintf(sd->name, sizeof(sd->name), "%s %s", MIPI_CSI2_SUBDEV_NAME, dev_name(state->dev)); sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; sd->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE; sd->entity.ops = &imx8mq_mipi_csi_entity_ops; sd->dev = state->dev; state->pads[MIPI_CSI2_PAD_SINK].flags = MEDIA_PAD_FL_SINK | MEDIA_PAD_FL_MUST_CONNECT; state->pads[MIPI_CSI2_PAD_SOURCE].flags = MEDIA_PAD_FL_SOURCE | MEDIA_PAD_FL_MUST_CONNECT; ret = media_entity_pads_init(&sd->entity, MIPI_CSI2_PADS_NUM, state->pads); if (ret) return ret; ret = v4l2_subdev_init_finalize(sd); if (ret) { media_entity_cleanup(&sd->entity); return ret; } return 0; } static void imx8mq_mipi_csi_release_icc(struct platform_device *pdev) { struct v4l2_subdev *sd = dev_get_drvdata(&pdev->dev); struct csi_state *state = mipi_sd_to_csi2_state(sd); icc_put(state->icc_path); } static int imx8mq_mipi_csi_init_icc(struct platform_device *pdev) { struct v4l2_subdev *sd = dev_get_drvdata(&pdev->dev); struct csi_state *state = mipi_sd_to_csi2_state(sd); /* Optional interconnect request */ state->icc_path = of_icc_get(&pdev->dev, "dram"); if (IS_ERR_OR_NULL(state->icc_path)) return PTR_ERR_OR_ZERO(state->icc_path); state->icc_path_bw = MBps_to_icc(700); return 0; } static int imx8mq_mipi_csi_parse_dt(struct csi_state *state) { struct device *dev = state->dev; struct device_node *np = state->dev->of_node; struct device_node *node; phandle ph; u32 out_val[2]; int ret = 0; state->rst = devm_reset_control_array_get_exclusive(dev); if (IS_ERR(state->rst)) { dev_err(dev, "Failed to get reset: %pe\n", state->rst); return PTR_ERR(state->rst); } ret = of_property_read_u32_array(np, "fsl,mipi-phy-gpr", out_val, ARRAY_SIZE(out_val)); if (ret) { dev_err(dev, "no fsl,mipi-phy-gpr property found: %d\n", ret); return ret; } ph = *out_val; node = of_find_node_by_phandle(ph); if (!node) { dev_err(dev, "Error finding node by phandle\n"); return -ENODEV; } state->phy_gpr = syscon_node_to_regmap(node); of_node_put(node); if (IS_ERR(state->phy_gpr)) { dev_err(dev, "failed to get gpr regmap: %pe\n", state->phy_gpr); return PTR_ERR(state->phy_gpr); } state->phy_gpr_reg = out_val[1]; dev_dbg(dev, "phy gpr register set to 0x%x\n", state->phy_gpr_reg); return ret; } static int imx8mq_mipi_csi_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct csi_state *state; int ret; state = devm_kzalloc(dev, sizeof(*state), GFP_KERNEL); if (!state) return -ENOMEM; state->dev = dev; ret = imx8mq_mipi_csi_parse_dt(state); if (ret < 0) { dev_err(dev, "Failed to parse device tree: %d\n", ret); return ret; } /* Acquire resources. */ state->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(state->regs)) return PTR_ERR(state->regs); ret = imx8mq_mipi_csi_clk_get(state); if (ret < 0) return ret; platform_set_drvdata(pdev, &state->sd); mutex_init(&state->lock); ret = imx8mq_mipi_csi_subdev_init(state); if (ret < 0) goto mutex; ret = imx8mq_mipi_csi_init_icc(pdev); if (ret) goto mutex; /* Enable runtime PM. */ pm_runtime_enable(dev); if (!pm_runtime_enabled(dev)) { ret = imx8mq_mipi_csi_runtime_resume(dev); if (ret < 0) goto icc; } ret = imx8mq_mipi_csi_async_register(state); if (ret < 0) goto cleanup; return 0; cleanup: pm_runtime_disable(&pdev->dev); imx8mq_mipi_csi_runtime_suspend(&pdev->dev); media_entity_cleanup(&state->sd.entity); v4l2_subdev_cleanup(&state->sd); v4l2_async_nf_unregister(&state->notifier); v4l2_async_nf_cleanup(&state->notifier); v4l2_async_unregister_subdev(&state->sd); icc: imx8mq_mipi_csi_release_icc(pdev); mutex: mutex_destroy(&state->lock); return ret; } static void imx8mq_mipi_csi_remove(struct platform_device *pdev) { struct v4l2_subdev *sd = platform_get_drvdata(pdev); struct csi_state *state = mipi_sd_to_csi2_state(sd); v4l2_async_nf_unregister(&state->notifier); v4l2_async_nf_cleanup(&state->notifier); v4l2_async_unregister_subdev(&state->sd); pm_runtime_disable(&pdev->dev); imx8mq_mipi_csi_runtime_suspend(&pdev->dev); media_entity_cleanup(&state->sd.entity); v4l2_subdev_cleanup(&state->sd); mutex_destroy(&state->lock); pm_runtime_set_suspended(&pdev->dev); imx8mq_mipi_csi_release_icc(pdev); } static const struct of_device_id imx8mq_mipi_csi_of_match[] = { { .compatible = "fsl,imx8mq-mipi-csi2", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, imx8mq_mipi_csi_of_match); static struct platform_driver imx8mq_mipi_csi_driver = { .probe = imx8mq_mipi_csi_probe, .remove_new = imx8mq_mipi_csi_remove, .driver = { .of_match_table = imx8mq_mipi_csi_of_match, .name = MIPI_CSI2_DRIVER_NAME, .pm = &imx8mq_mipi_csi_pm_ops, }, }; module_platform_driver(imx8mq_mipi_csi_driver); MODULE_DESCRIPTION("i.MX8MQ MIPI CSI-2 receiver driver"); MODULE_AUTHOR("Martin Kepplinger <martin.kepplinger@puri.sm>"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:imx8mq-mipi-csi2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1