Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Helen Mae Koike Fornazier | 2695 | 57.86% | 3 | 4.48% |
Laurent Pinchart | 1252 | 26.88% | 29 | 43.28% |
Dafna Hirschfeld | 189 | 4.06% | 17 | 25.37% |
Sebastian Fricke | 132 | 2.83% | 1 | 1.49% |
Tomi Valkeinen | 123 | 2.64% | 4 | 5.97% |
Jacob Chen | 92 | 1.98% | 2 | 2.99% |
Paul Elder | 84 | 1.80% | 3 | 4.48% |
Sakari Ailus | 42 | 0.90% | 3 | 4.48% |
Heiko Stübner | 37 | 0.79% | 2 | 2.99% |
Steve Longerbeam | 11 | 0.24% | 2 | 2.99% |
Hans Verkuil | 1 | 0.02% | 1 | 1.49% |
Total | 4658 | 67 |
// SPDX-License-Identifier: (GPL-2.0+ OR MIT) /* * Rockchip ISP1 Driver - ISP Subdevice * * Copyright (C) 2019 Collabora, Ltd. * * Based on Rockchip ISP1 driver by Rockchip Electronics Co., Ltd. * Copyright (C) 2017 Rockchip Electronics Co., Ltd. */ #include <linux/iopoll.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/videodev2.h> #include <linux/vmalloc.h> #include <media/v4l2-event.h> #include "rkisp1-common.h" #define RKISP1_DEF_SINK_PAD_FMT MEDIA_BUS_FMT_SRGGB10_1X10 #define RKISP1_DEF_SRC_PAD_FMT MEDIA_BUS_FMT_YUYV8_2X8 #define RKISP1_ISP_DEV_NAME RKISP1_DRIVER_NAME "_isp" /* * NOTE: MIPI controller and input MUX are also configured in this file. * This is because ISP Subdev describes not only ISP submodule (input size, * format, output size, format), but also a virtual route device. */ /* * There are many variables named with format/frame in below code, * please see here for their meaning. * Cropping in the sink pad defines the image region from the sensor. * Cropping in the source pad defines the region for the Image Stabilizer (IS) * * Cropping regions of ISP * * +---------------------------------------------------------+ * | Sensor image | * | +---------------------------------------------------+ | * | | CIF_ISP_ACQ (for black level) | | * | | sink pad format | | * | | +--------------------------------------------+ | | * | | | CIF_ISP_OUT | | | * | | | sink pad crop | | | * | | | +---------------------------------+ | | | * | | | | CIF_ISP_IS | | | | * | | | | source pad crop and format | | | | * | | | +---------------------------------+ | | | * | | +--------------------------------------------+ | | * | +---------------------------------------------------+ | * +---------------------------------------------------------+ */ /* ----------------------------------------------------------------------------- * Media block control (i.MX8MP only) */ #define ISP_DEWARP_CONTROL 0x0138 #define ISP_DEWARP_CONTROL_MIPI_CSI2_HS_POLARITY BIT(22) #define ISP_DEWARP_CONTROL_MIPI_CSI2_VS_SEL_RISING (0 << 20) #define ISP_DEWARP_CONTROL_MIPI_CSI2_VS_SEL_NEGATIVE (1 << 20) #define ISP_DEWARP_CONTROL_MIPI_CSI2_VS_SEL_POSITIVE (2 << 20) #define ISP_DEWARP_CONTROL_MIPI_CSI2_VS_SEL_FALLING (3 << 20) #define ISP_DEWARP_CONTROL_MIPI_CSI2_VS_SEL_MASK GENMASK(21, 20) #define ISP_DEWARP_CONTROL_MIPI_ISP2_LEFT_JUST_MODE BIT(19) #define ISP_DEWARP_CONTROL_MIPI_ISP2_DATA_TYPE(dt) ((dt) << 13) #define ISP_DEWARP_CONTROL_MIPI_ISP2_DATA_TYPE_MASK GENMASK(18, 13) #define ISP_DEWARP_CONTROL_MIPI_CSI1_HS_POLARITY BIT(12) #define ISP_DEWARP_CONTROL_MIPI_CSI1_VS_SEL_RISING (0 << 10) #define ISP_DEWARP_CONTROL_MIPI_CSI1_VS_SEL_NEGATIVE (1 << 10) #define ISP_DEWARP_CONTROL_MIPI_CSI1_VS_SEL_POSITIVE (2 << 10) #define ISP_DEWARP_CONTROL_MIPI_CSI1_VS_SEL_FALLING (3 << 10) #define ISP_DEWARP_CONTROL_MIPI_CSI1_VS_SEL_MASK GENMASK(11, 10) #define ISP_DEWARP_CONTROL_MIPI_ISP1_LEFT_JUST_MODE BIT(9) #define ISP_DEWARP_CONTROL_MIPI_ISP1_DATA_TYPE(dt) ((dt) << 3) #define ISP_DEWARP_CONTROL_MIPI_ISP1_DATA_TYPE_MASK GENMASK(8, 3) #define ISP_DEWARP_CONTROL_GPR_ISP_1_DISABLE BIT(1) #define ISP_DEWARP_CONTROL_GPR_ISP_0_DISABLE BIT(0) static int rkisp1_gasket_enable(struct rkisp1_device *rkisp1, struct media_pad *source) { struct v4l2_subdev *source_sd; struct v4l2_mbus_frame_desc fd; unsigned int dt; u32 mask; u32 val; int ret; /* * Configure and enable the gasket with the CSI-2 data type. Set the * vsync polarity as active high, as that is what the ISP is configured * to expect in ISP_ACQ_PROP. Enable left justification, as the i.MX8MP * ISP has a 16-bit wide input and expects data to be left-aligned. */ source_sd = media_entity_to_v4l2_subdev(source->entity); ret = v4l2_subdev_call(source_sd, pad, get_frame_desc, source->index, &fd); if (ret) { dev_err(rkisp1->dev, "failed to get frame descriptor from '%s':%u: %d\n", source_sd->name, 0, ret); return ret; } if (fd.num_entries != 1) { dev_err(rkisp1->dev, "invalid frame descriptor for '%s':%u\n", source_sd->name, 0); return -EINVAL; } dt = fd.entry[0].bus.csi2.dt; if (rkisp1->gasket_id == 0) { mask = ISP_DEWARP_CONTROL_MIPI_CSI1_HS_POLARITY | ISP_DEWARP_CONTROL_MIPI_CSI1_VS_SEL_MASK | ISP_DEWARP_CONTROL_MIPI_ISP1_LEFT_JUST_MODE | ISP_DEWARP_CONTROL_MIPI_ISP1_DATA_TYPE_MASK | ISP_DEWARP_CONTROL_GPR_ISP_0_DISABLE; val = ISP_DEWARP_CONTROL_MIPI_CSI1_VS_SEL_POSITIVE | ISP_DEWARP_CONTROL_MIPI_ISP1_LEFT_JUST_MODE | ISP_DEWARP_CONTROL_MIPI_ISP1_DATA_TYPE(dt); } else { mask = ISP_DEWARP_CONTROL_MIPI_CSI2_HS_POLARITY | ISP_DEWARP_CONTROL_MIPI_CSI2_VS_SEL_MASK | ISP_DEWARP_CONTROL_MIPI_ISP2_LEFT_JUST_MODE | ISP_DEWARP_CONTROL_MIPI_ISP2_DATA_TYPE_MASK | ISP_DEWARP_CONTROL_GPR_ISP_1_DISABLE; val = ISP_DEWARP_CONTROL_MIPI_CSI2_VS_SEL_POSITIVE | ISP_DEWARP_CONTROL_MIPI_ISP2_LEFT_JUST_MODE | ISP_DEWARP_CONTROL_MIPI_ISP2_DATA_TYPE(dt); } regmap_update_bits(rkisp1->gasket, ISP_DEWARP_CONTROL, mask, val); return 0; } static void rkisp1_gasket_disable(struct rkisp1_device *rkisp1) { u32 mask; u32 val; if (rkisp1->gasket_id == 1) { mask = ISP_DEWARP_CONTROL_MIPI_ISP2_LEFT_JUST_MODE | ISP_DEWARP_CONTROL_MIPI_ISP2_DATA_TYPE_MASK | ISP_DEWARP_CONTROL_GPR_ISP_1_DISABLE; val = ISP_DEWARP_CONTROL_GPR_ISP_1_DISABLE; } else { mask = ISP_DEWARP_CONTROL_MIPI_ISP1_LEFT_JUST_MODE | ISP_DEWARP_CONTROL_MIPI_ISP1_DATA_TYPE_MASK | ISP_DEWARP_CONTROL_GPR_ISP_0_DISABLE; val = ISP_DEWARP_CONTROL_GPR_ISP_0_DISABLE; } regmap_update_bits(rkisp1->gasket, ISP_DEWARP_CONTROL, mask, val); } /* ---------------------------------------------------------------------------- * Camera Interface registers configurations */ /* * Image Stabilization. * This should only be called when configuring CIF * or at the frame end interrupt */ static void rkisp1_config_ism(struct rkisp1_isp *isp, struct v4l2_subdev_state *sd_state) { const struct v4l2_rect *src_crop = v4l2_subdev_state_get_crop(sd_state, RKISP1_ISP_PAD_SOURCE_VIDEO); struct rkisp1_device *rkisp1 = isp->rkisp1; u32 val; rkisp1_write(rkisp1, RKISP1_CIF_ISP_IS_RECENTER, 0); rkisp1_write(rkisp1, RKISP1_CIF_ISP_IS_MAX_DX, 0); rkisp1_write(rkisp1, RKISP1_CIF_ISP_IS_MAX_DY, 0); rkisp1_write(rkisp1, RKISP1_CIF_ISP_IS_DISPLACE, 0); rkisp1_write(rkisp1, RKISP1_CIF_ISP_IS_H_OFFS, src_crop->left); rkisp1_write(rkisp1, RKISP1_CIF_ISP_IS_V_OFFS, src_crop->top); rkisp1_write(rkisp1, RKISP1_CIF_ISP_IS_H_SIZE, src_crop->width); rkisp1_write(rkisp1, RKISP1_CIF_ISP_IS_V_SIZE, src_crop->height); /* IS(Image Stabilization) is always on, working as output crop */ rkisp1_write(rkisp1, RKISP1_CIF_ISP_IS_CTRL, 1); val = rkisp1_read(rkisp1, RKISP1_CIF_ISP_CTRL); val |= RKISP1_CIF_ISP_CTRL_ISP_CFG_UPD; rkisp1_write(rkisp1, RKISP1_CIF_ISP_CTRL, val); } /* * configure ISP blocks with input format, size...... */ static int rkisp1_config_isp(struct rkisp1_isp *isp, struct v4l2_subdev_state *sd_state, enum v4l2_mbus_type mbus_type, u32 mbus_flags) { struct rkisp1_device *rkisp1 = isp->rkisp1; u32 isp_ctrl = 0, irq_mask = 0, acq_mult = 0, acq_prop = 0; const struct rkisp1_mbus_info *sink_fmt; const struct rkisp1_mbus_info *src_fmt; const struct v4l2_mbus_framefmt *src_frm; const struct v4l2_mbus_framefmt *sink_frm; const struct v4l2_rect *sink_crop; sink_frm = v4l2_subdev_state_get_format(sd_state, RKISP1_ISP_PAD_SINK_VIDEO); sink_crop = v4l2_subdev_state_get_crop(sd_state, RKISP1_ISP_PAD_SINK_VIDEO); src_frm = v4l2_subdev_state_get_format(sd_state, RKISP1_ISP_PAD_SOURCE_VIDEO); sink_fmt = rkisp1_mbus_info_get_by_code(sink_frm->code); src_fmt = rkisp1_mbus_info_get_by_code(src_frm->code); if (sink_fmt->pixel_enc == V4L2_PIXEL_ENC_BAYER) { acq_mult = 1; if (src_fmt->pixel_enc == V4L2_PIXEL_ENC_BAYER) { if (mbus_type == V4L2_MBUS_BT656) isp_ctrl = RKISP1_CIF_ISP_CTRL_ISP_MODE_RAW_PICT_ITU656; else isp_ctrl = RKISP1_CIF_ISP_CTRL_ISP_MODE_RAW_PICT; } else { rkisp1_write(rkisp1, RKISP1_CIF_ISP_DEMOSAIC, RKISP1_CIF_ISP_DEMOSAIC_TH(0xc)); if (mbus_type == V4L2_MBUS_BT656) isp_ctrl = RKISP1_CIF_ISP_CTRL_ISP_MODE_BAYER_ITU656; else isp_ctrl = RKISP1_CIF_ISP_CTRL_ISP_MODE_BAYER_ITU601; } } else if (sink_fmt->pixel_enc == V4L2_PIXEL_ENC_YUV) { acq_mult = 2; if (mbus_type == V4L2_MBUS_CSI2_DPHY) { isp_ctrl = RKISP1_CIF_ISP_CTRL_ISP_MODE_ITU601; } else { if (mbus_type == V4L2_MBUS_BT656) isp_ctrl = RKISP1_CIF_ISP_CTRL_ISP_MODE_ITU656; else isp_ctrl = RKISP1_CIF_ISP_CTRL_ISP_MODE_ITU601; } irq_mask |= RKISP1_CIF_ISP_DATA_LOSS; } /* Set up input acquisition properties */ if (mbus_type == V4L2_MBUS_BT656 || mbus_type == V4L2_MBUS_PARALLEL) { if (mbus_flags & V4L2_MBUS_PCLK_SAMPLE_RISING) acq_prop |= RKISP1_CIF_ISP_ACQ_PROP_POS_EDGE; switch (sink_fmt->bus_width) { case 8: acq_prop |= RKISP1_CIF_ISP_ACQ_PROP_IN_SEL_8B_ZERO; break; case 10: acq_prop |= RKISP1_CIF_ISP_ACQ_PROP_IN_SEL_10B_ZERO; break; case 12: acq_prop |= RKISP1_CIF_ISP_ACQ_PROP_IN_SEL_12B; break; default: dev_err(rkisp1->dev, "Invalid bus width %u\n", sink_fmt->bus_width); return -EINVAL; } } if (mbus_type == V4L2_MBUS_PARALLEL) { if (mbus_flags & V4L2_MBUS_VSYNC_ACTIVE_LOW) acq_prop |= RKISP1_CIF_ISP_ACQ_PROP_VSYNC_LOW; if (mbus_flags & V4L2_MBUS_HSYNC_ACTIVE_LOW) acq_prop |= RKISP1_CIF_ISP_ACQ_PROP_HSYNC_LOW; } rkisp1_write(rkisp1, RKISP1_CIF_ISP_CTRL, isp_ctrl); rkisp1_write(rkisp1, RKISP1_CIF_ISP_ACQ_PROP, acq_prop | sink_fmt->yuv_seq | RKISP1_CIF_ISP_ACQ_PROP_BAYER_PAT(sink_fmt->bayer_pat) | RKISP1_CIF_ISP_ACQ_PROP_FIELD_SEL_ALL); rkisp1_write(rkisp1, RKISP1_CIF_ISP_ACQ_NR_FRAMES, 0); /* Acquisition Size */ rkisp1_write(rkisp1, RKISP1_CIF_ISP_ACQ_H_OFFS, 0); rkisp1_write(rkisp1, RKISP1_CIF_ISP_ACQ_V_OFFS, 0); rkisp1_write(rkisp1, RKISP1_CIF_ISP_ACQ_H_SIZE, acq_mult * sink_frm->width); rkisp1_write(rkisp1, RKISP1_CIF_ISP_ACQ_V_SIZE, sink_frm->height); /* ISP Out Area */ rkisp1_write(rkisp1, RKISP1_CIF_ISP_OUT_H_OFFS, sink_crop->left); rkisp1_write(rkisp1, RKISP1_CIF_ISP_OUT_V_OFFS, sink_crop->top); rkisp1_write(rkisp1, RKISP1_CIF_ISP_OUT_H_SIZE, sink_crop->width); rkisp1_write(rkisp1, RKISP1_CIF_ISP_OUT_V_SIZE, sink_crop->height); irq_mask |= RKISP1_CIF_ISP_FRAME | RKISP1_CIF_ISP_V_START | RKISP1_CIF_ISP_PIC_SIZE_ERROR; rkisp1_write(rkisp1, RKISP1_CIF_ISP_IMSC, irq_mask); if (src_fmt->pixel_enc == V4L2_PIXEL_ENC_BAYER) { rkisp1_params_disable(&rkisp1->params); } else { struct v4l2_mbus_framefmt *src_frm; src_frm = v4l2_subdev_state_get_format(sd_state, RKISP1_ISP_PAD_SOURCE_VIDEO); rkisp1_params_pre_configure(&rkisp1->params, sink_fmt->bayer_pat, src_frm->quantization, src_frm->ycbcr_enc); } isp->sink_fmt = sink_fmt; return 0; } /* Configure MUX */ static void rkisp1_config_path(struct rkisp1_isp *isp, enum v4l2_mbus_type mbus_type) { struct rkisp1_device *rkisp1 = isp->rkisp1; u32 dpcl = rkisp1_read(rkisp1, RKISP1_CIF_VI_DPCL); if (mbus_type == V4L2_MBUS_BT656 || mbus_type == V4L2_MBUS_PARALLEL) dpcl |= RKISP1_CIF_VI_DPCL_IF_SEL_PARALLEL; else if (mbus_type == V4L2_MBUS_CSI2_DPHY) dpcl |= RKISP1_CIF_VI_DPCL_IF_SEL_MIPI; rkisp1_write(rkisp1, RKISP1_CIF_VI_DPCL, dpcl); } /* Hardware configure Entry */ static int rkisp1_config_cif(struct rkisp1_isp *isp, struct v4l2_subdev_state *sd_state, enum v4l2_mbus_type mbus_type, u32 mbus_flags) { int ret; ret = rkisp1_config_isp(isp, sd_state, mbus_type, mbus_flags); if (ret) return ret; rkisp1_config_path(isp, mbus_type); rkisp1_config_ism(isp, sd_state); return 0; } static void rkisp1_isp_stop(struct rkisp1_isp *isp) { struct rkisp1_device *rkisp1 = isp->rkisp1; u32 val; /* * ISP(mi) stop in mi frame end -> Stop ISP(mipi) -> * Stop ISP(isp) ->wait for ISP isp off */ /* Mask MI and ISP interrupts */ rkisp1_write(rkisp1, RKISP1_CIF_ISP_IMSC, 0); rkisp1_write(rkisp1, RKISP1_CIF_MI_IMSC, 0); /* Flush posted writes */ rkisp1_read(rkisp1, RKISP1_CIF_MI_IMSC); /* * Wait until the IRQ handler has ended. The IRQ handler may get called * even after this, but it will return immediately as the MI and ISP * interrupts have been masked. */ synchronize_irq(rkisp1->irqs[RKISP1_IRQ_ISP]); if (rkisp1->irqs[RKISP1_IRQ_ISP] != rkisp1->irqs[RKISP1_IRQ_MI]) synchronize_irq(rkisp1->irqs[RKISP1_IRQ_MI]); /* Clear MI and ISP interrupt status */ rkisp1_write(rkisp1, RKISP1_CIF_ISP_ICR, ~0); rkisp1_write(rkisp1, RKISP1_CIF_MI_ICR, ~0); /* stop ISP */ val = rkisp1_read(rkisp1, RKISP1_CIF_ISP_CTRL); val &= ~(RKISP1_CIF_ISP_CTRL_ISP_INFORM_ENABLE | RKISP1_CIF_ISP_CTRL_ISP_ENABLE); rkisp1_write(rkisp1, RKISP1_CIF_ISP_CTRL, val); val = rkisp1_read(rkisp1, RKISP1_CIF_ISP_CTRL); rkisp1_write(rkisp1, RKISP1_CIF_ISP_CTRL, val | RKISP1_CIF_ISP_CTRL_ISP_CFG_UPD); readx_poll_timeout(readl, rkisp1->base_addr + RKISP1_CIF_ISP_RIS, val, val & RKISP1_CIF_ISP_OFF, 20, 100); rkisp1_write(rkisp1, RKISP1_CIF_VI_IRCL, RKISP1_CIF_VI_IRCL_MIPI_SW_RST | RKISP1_CIF_VI_IRCL_ISP_SW_RST); rkisp1_write(rkisp1, RKISP1_CIF_VI_IRCL, 0x0); if (rkisp1->info->isp_ver == RKISP1_V_IMX8MP) rkisp1_gasket_disable(rkisp1); } static void rkisp1_config_clk(struct rkisp1_isp *isp) { struct rkisp1_device *rkisp1 = isp->rkisp1; u32 val = RKISP1_CIF_VI_ICCL_ISP_CLK | RKISP1_CIF_VI_ICCL_CP_CLK | RKISP1_CIF_VI_ICCL_MRSZ_CLK | RKISP1_CIF_VI_ICCL_SRSZ_CLK | RKISP1_CIF_VI_ICCL_JPEG_CLK | RKISP1_CIF_VI_ICCL_MI_CLK | RKISP1_CIF_VI_ICCL_IE_CLK | RKISP1_CIF_VI_ICCL_MIPI_CLK | RKISP1_CIF_VI_ICCL_DCROP_CLK; rkisp1_write(rkisp1, RKISP1_CIF_VI_ICCL, val); /* ensure sp and mp can run at the same time in V12 */ if (rkisp1->info->isp_ver == RKISP1_V12) { val = RKISP1_CIF_CLK_CTRL_MI_Y12 | RKISP1_CIF_CLK_CTRL_MI_SP | RKISP1_CIF_CLK_CTRL_MI_RAW0 | RKISP1_CIF_CLK_CTRL_MI_RAW1 | RKISP1_CIF_CLK_CTRL_MI_READ | RKISP1_CIF_CLK_CTRL_MI_RAWRD | RKISP1_CIF_CLK_CTRL_CP | RKISP1_CIF_CLK_CTRL_IE; rkisp1_write(rkisp1, RKISP1_CIF_VI_ISP_CLK_CTRL_V12, val); } } static int rkisp1_isp_start(struct rkisp1_isp *isp, struct v4l2_subdev_state *sd_state, struct media_pad *source) { struct rkisp1_device *rkisp1 = isp->rkisp1; const struct v4l2_mbus_framefmt *src_fmt; const struct rkisp1_mbus_info *src_info; u32 val; int ret; rkisp1_config_clk(isp); if (rkisp1->info->isp_ver == RKISP1_V_IMX8MP) { ret = rkisp1_gasket_enable(rkisp1, source); if (ret) return ret; } /* Activate ISP */ val = rkisp1_read(rkisp1, RKISP1_CIF_ISP_CTRL); val |= RKISP1_CIF_ISP_CTRL_ISP_CFG_UPD | RKISP1_CIF_ISP_CTRL_ISP_ENABLE | RKISP1_CIF_ISP_CTRL_ISP_INFORM_ENABLE; rkisp1_write(rkisp1, RKISP1_CIF_ISP_CTRL, val); src_fmt = v4l2_subdev_state_get_format(sd_state, RKISP1_ISP_PAD_SOURCE_VIDEO); src_info = rkisp1_mbus_info_get_by_code(src_fmt->code); if (src_info->pixel_enc != V4L2_PIXEL_ENC_BAYER) rkisp1_params_post_configure(&rkisp1->params); return 0; } /* ---------------------------------------------------------------------------- * Subdev pad operations */ static inline struct rkisp1_isp *to_rkisp1_isp(struct v4l2_subdev *sd) { return container_of(sd, struct rkisp1_isp, sd); } static int rkisp1_isp_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { unsigned int i, dir; int pos = 0; if (code->pad == RKISP1_ISP_PAD_SINK_VIDEO) { dir = RKISP1_ISP_SD_SINK; } else if (code->pad == RKISP1_ISP_PAD_SOURCE_VIDEO) { dir = RKISP1_ISP_SD_SRC; } else { if (code->index > 0) return -EINVAL; code->code = MEDIA_BUS_FMT_METADATA_FIXED; return 0; } for (i = 0; ; i++) { const struct rkisp1_mbus_info *fmt = rkisp1_mbus_info_get_by_index(i); if (!fmt) return -EINVAL; if (fmt->direction & dir) pos++; if (code->index == pos - 1) { code->code = fmt->mbus_code; if (fmt->pixel_enc == V4L2_PIXEL_ENC_YUV && dir == RKISP1_ISP_SD_SRC) code->flags = V4L2_SUBDEV_MBUS_CODE_CSC_QUANTIZATION; return 0; } } return -EINVAL; } static int rkisp1_isp_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_size_enum *fse) { const struct rkisp1_mbus_info *mbus_info; if (fse->pad == RKISP1_ISP_PAD_SINK_PARAMS || fse->pad == RKISP1_ISP_PAD_SOURCE_STATS) return -ENOTTY; if (fse->index > 0) return -EINVAL; mbus_info = rkisp1_mbus_info_get_by_code(fse->code); if (!mbus_info) return -EINVAL; if (!(mbus_info->direction & RKISP1_ISP_SD_SINK) && fse->pad == RKISP1_ISP_PAD_SINK_VIDEO) return -EINVAL; if (!(mbus_info->direction & RKISP1_ISP_SD_SRC) && fse->pad == RKISP1_ISP_PAD_SOURCE_VIDEO) return -EINVAL; fse->min_width = RKISP1_ISP_MIN_WIDTH; fse->max_width = RKISP1_ISP_MAX_WIDTH; fse->min_height = RKISP1_ISP_MIN_HEIGHT; fse->max_height = RKISP1_ISP_MAX_HEIGHT; return 0; } static int rkisp1_isp_init_state(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state) { struct v4l2_mbus_framefmt *sink_fmt, *src_fmt; struct v4l2_rect *sink_crop, *src_crop; /* Video. */ sink_fmt = v4l2_subdev_state_get_format(sd_state, RKISP1_ISP_PAD_SINK_VIDEO); sink_fmt->width = RKISP1_DEFAULT_WIDTH; sink_fmt->height = RKISP1_DEFAULT_HEIGHT; sink_fmt->field = V4L2_FIELD_NONE; sink_fmt->code = RKISP1_DEF_SINK_PAD_FMT; sink_fmt->colorspace = V4L2_COLORSPACE_RAW; sink_fmt->xfer_func = V4L2_XFER_FUNC_NONE; sink_fmt->ycbcr_enc = V4L2_YCBCR_ENC_601; sink_fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; sink_crop = v4l2_subdev_state_get_crop(sd_state, RKISP1_ISP_PAD_SINK_VIDEO); sink_crop->width = RKISP1_DEFAULT_WIDTH; sink_crop->height = RKISP1_DEFAULT_HEIGHT; sink_crop->left = 0; sink_crop->top = 0; src_fmt = v4l2_subdev_state_get_format(sd_state, RKISP1_ISP_PAD_SOURCE_VIDEO); *src_fmt = *sink_fmt; src_fmt->code = RKISP1_DEF_SRC_PAD_FMT; src_fmt->colorspace = V4L2_COLORSPACE_SRGB; src_fmt->xfer_func = V4L2_XFER_FUNC_SRGB; src_fmt->ycbcr_enc = V4L2_YCBCR_ENC_601; src_fmt->quantization = V4L2_QUANTIZATION_LIM_RANGE; src_crop = v4l2_subdev_state_get_crop(sd_state, RKISP1_ISP_PAD_SOURCE_VIDEO); *src_crop = *sink_crop; /* Parameters and statistics. */ sink_fmt = v4l2_subdev_state_get_format(sd_state, RKISP1_ISP_PAD_SINK_PARAMS); src_fmt = v4l2_subdev_state_get_format(sd_state, RKISP1_ISP_PAD_SOURCE_STATS); sink_fmt->width = 0; sink_fmt->height = 0; sink_fmt->field = V4L2_FIELD_NONE; sink_fmt->code = MEDIA_BUS_FMT_METADATA_FIXED; *src_fmt = *sink_fmt; return 0; } static void rkisp1_isp_set_src_fmt(struct rkisp1_isp *isp, struct v4l2_subdev_state *sd_state, struct v4l2_mbus_framefmt *format) { const struct rkisp1_mbus_info *sink_info; const struct rkisp1_mbus_info *src_info; struct v4l2_mbus_framefmt *sink_fmt; struct v4l2_mbus_framefmt *src_fmt; const struct v4l2_rect *src_crop; bool set_csc; sink_fmt = v4l2_subdev_state_get_format(sd_state, RKISP1_ISP_PAD_SINK_VIDEO); src_fmt = v4l2_subdev_state_get_format(sd_state, RKISP1_ISP_PAD_SOURCE_VIDEO); src_crop = v4l2_subdev_state_get_crop(sd_state, RKISP1_ISP_PAD_SOURCE_VIDEO); /* * Media bus code. The ISP can operate in pass-through mode (Bayer in, * Bayer out or YUV in, YUV out) or process Bayer data to YUV, but * can't convert from YUV to Bayer. */ sink_info = rkisp1_mbus_info_get_by_code(sink_fmt->code); src_fmt->code = format->code; src_info = rkisp1_mbus_info_get_by_code(src_fmt->code); if (!src_info || !(src_info->direction & RKISP1_ISP_SD_SRC)) { src_fmt->code = RKISP1_DEF_SRC_PAD_FMT; src_info = rkisp1_mbus_info_get_by_code(src_fmt->code); } if (sink_info->pixel_enc == V4L2_PIXEL_ENC_YUV && src_info->pixel_enc == V4L2_PIXEL_ENC_BAYER) { src_fmt->code = sink_fmt->code; src_info = sink_info; } /* * The source width and height must be identical to the source crop * size. */ src_fmt->width = src_crop->width; src_fmt->height = src_crop->height; /* * Copy the color space for the sink pad. When converting from Bayer to * YUV, default to a limited quantization range. */ src_fmt->colorspace = sink_fmt->colorspace; src_fmt->xfer_func = sink_fmt->xfer_func; src_fmt->ycbcr_enc = sink_fmt->ycbcr_enc; if (sink_info->pixel_enc == V4L2_PIXEL_ENC_BAYER && src_info->pixel_enc == V4L2_PIXEL_ENC_YUV) src_fmt->quantization = V4L2_QUANTIZATION_LIM_RANGE; else src_fmt->quantization = sink_fmt->quantization; /* * Allow setting the source color space fields when the SET_CSC flag is * set and the source format is YUV. If the sink format is YUV, don't * set the color primaries, transfer function or YCbCr encoding as the * ISP is bypassed in that case and passes YUV data through without * modifications. * * The color primaries and transfer function are configured through the * cross-talk matrix and tone curve respectively. Settings for those * hardware blocks are conveyed through the ISP parameters buffer, as * they need to combine color space information with other image tuning * characteristics and can't thus be computed by the kernel based on the * color space. The source pad colorspace and xfer_func fields are thus * ignored by the driver, but can be set by userspace to propagate * accurate color space information down the pipeline. */ set_csc = format->flags & V4L2_MBUS_FRAMEFMT_SET_CSC; if (set_csc && src_info->pixel_enc == V4L2_PIXEL_ENC_YUV) { if (sink_info->pixel_enc == V4L2_PIXEL_ENC_BAYER) { if (format->colorspace != V4L2_COLORSPACE_DEFAULT) src_fmt->colorspace = format->colorspace; if (format->xfer_func != V4L2_XFER_FUNC_DEFAULT) src_fmt->xfer_func = format->xfer_func; if (format->ycbcr_enc != V4L2_YCBCR_ENC_DEFAULT) src_fmt->ycbcr_enc = format->ycbcr_enc; } if (format->quantization != V4L2_QUANTIZATION_DEFAULT) src_fmt->quantization = format->quantization; } *format = *src_fmt; /* * Restore the SET_CSC flag if it was set to indicate support for the * CSC setting API. */ if (set_csc) format->flags |= V4L2_MBUS_FRAMEFMT_SET_CSC; } static void rkisp1_isp_set_src_crop(struct rkisp1_isp *isp, struct v4l2_subdev_state *sd_state, struct v4l2_rect *r) { struct v4l2_mbus_framefmt *src_fmt; const struct v4l2_rect *sink_crop; struct v4l2_rect *src_crop; src_crop = v4l2_subdev_state_get_crop(sd_state, RKISP1_ISP_PAD_SOURCE_VIDEO); sink_crop = v4l2_subdev_state_get_crop(sd_state, RKISP1_ISP_PAD_SINK_VIDEO); src_crop->left = ALIGN(r->left, 2); src_crop->width = ALIGN(r->width, 2); src_crop->top = r->top; src_crop->height = r->height; rkisp1_sd_adjust_crop_rect(src_crop, sink_crop); *r = *src_crop; /* Propagate to out format */ src_fmt = v4l2_subdev_state_get_format(sd_state, RKISP1_ISP_PAD_SOURCE_VIDEO); rkisp1_isp_set_src_fmt(isp, sd_state, src_fmt); } static void rkisp1_isp_set_sink_crop(struct rkisp1_isp *isp, struct v4l2_subdev_state *sd_state, struct v4l2_rect *r) { struct v4l2_rect *sink_crop, *src_crop; const struct v4l2_mbus_framefmt *sink_fmt; sink_crop = v4l2_subdev_state_get_crop(sd_state, RKISP1_ISP_PAD_SINK_VIDEO); sink_fmt = v4l2_subdev_state_get_format(sd_state, RKISP1_ISP_PAD_SINK_VIDEO); sink_crop->left = ALIGN(r->left, 2); sink_crop->width = ALIGN(r->width, 2); sink_crop->top = r->top; sink_crop->height = r->height; rkisp1_sd_adjust_crop(sink_crop, sink_fmt); *r = *sink_crop; /* Propagate to out crop */ src_crop = v4l2_subdev_state_get_crop(sd_state, RKISP1_ISP_PAD_SOURCE_VIDEO); rkisp1_isp_set_src_crop(isp, sd_state, src_crop); } static void rkisp1_isp_set_sink_fmt(struct rkisp1_isp *isp, struct v4l2_subdev_state *sd_state, struct v4l2_mbus_framefmt *format) { const struct rkisp1_mbus_info *mbus_info; struct v4l2_mbus_framefmt *sink_fmt; struct v4l2_rect *sink_crop; bool is_yuv; sink_fmt = v4l2_subdev_state_get_format(sd_state, RKISP1_ISP_PAD_SINK_VIDEO); sink_fmt->code = format->code; mbus_info = rkisp1_mbus_info_get_by_code(sink_fmt->code); if (!mbus_info || !(mbus_info->direction & RKISP1_ISP_SD_SINK)) { sink_fmt->code = RKISP1_DEF_SINK_PAD_FMT; mbus_info = rkisp1_mbus_info_get_by_code(sink_fmt->code); } sink_fmt->width = clamp_t(u32, format->width, RKISP1_ISP_MIN_WIDTH, RKISP1_ISP_MAX_WIDTH); sink_fmt->height = clamp_t(u32, format->height, RKISP1_ISP_MIN_HEIGHT, RKISP1_ISP_MAX_HEIGHT); /* * Adjust the color space fields. Accept any color primaries and * transfer function for both YUV and Bayer. For YUV any YCbCr encoding * and quantization range is also accepted. For Bayer formats, the YCbCr * encoding isn't applicable, and the quantization range can only be * full. */ is_yuv = mbus_info->pixel_enc == V4L2_PIXEL_ENC_YUV; sink_fmt->colorspace = format->colorspace ? : (is_yuv ? V4L2_COLORSPACE_SRGB : V4L2_COLORSPACE_RAW); sink_fmt->xfer_func = format->xfer_func ? : V4L2_MAP_XFER_FUNC_DEFAULT(sink_fmt->colorspace); if (is_yuv) { sink_fmt->ycbcr_enc = format->ycbcr_enc ? : V4L2_MAP_YCBCR_ENC_DEFAULT(sink_fmt->colorspace); sink_fmt->quantization = format->quantization ? : V4L2_MAP_QUANTIZATION_DEFAULT(false, sink_fmt->colorspace, sink_fmt->ycbcr_enc); } else { /* * The YCbCr encoding isn't applicable for non-YUV formats, but * V4L2 has no "no encoding" value. Hardcode it to Rec. 601, it * should be ignored by userspace. */ sink_fmt->ycbcr_enc = V4L2_YCBCR_ENC_601; sink_fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; } *format = *sink_fmt; /* Propagate to in crop */ sink_crop = v4l2_subdev_state_get_crop(sd_state, RKISP1_ISP_PAD_SINK_VIDEO); rkisp1_isp_set_sink_crop(isp, sd_state, sink_crop); } static int rkisp1_isp_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct rkisp1_isp *isp = to_rkisp1_isp(sd); if (fmt->pad == RKISP1_ISP_PAD_SINK_VIDEO) rkisp1_isp_set_sink_fmt(isp, sd_state, &fmt->format); else if (fmt->pad == RKISP1_ISP_PAD_SOURCE_VIDEO) rkisp1_isp_set_src_fmt(isp, sd_state, &fmt->format); else fmt->format = *v4l2_subdev_state_get_format(sd_state, fmt->pad); return 0; } static int rkisp1_isp_get_selection(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_selection *sel) { int ret = 0; if (sel->pad != RKISP1_ISP_PAD_SOURCE_VIDEO && sel->pad != RKISP1_ISP_PAD_SINK_VIDEO) return -EINVAL; switch (sel->target) { case V4L2_SEL_TGT_CROP_BOUNDS: if (sel->pad == RKISP1_ISP_PAD_SINK_VIDEO) { struct v4l2_mbus_framefmt *fmt; fmt = v4l2_subdev_state_get_format(sd_state, sel->pad); sel->r.height = fmt->height; sel->r.width = fmt->width; sel->r.left = 0; sel->r.top = 0; } else { sel->r = *v4l2_subdev_state_get_crop(sd_state, RKISP1_ISP_PAD_SINK_VIDEO); } break; case V4L2_SEL_TGT_CROP: sel->r = *v4l2_subdev_state_get_crop(sd_state, sel->pad); break; default: ret = -EINVAL; break; } return ret; } static int rkisp1_isp_set_selection(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_selection *sel) { struct rkisp1_isp *isp = to_rkisp1_isp(sd); int ret = 0; if (sel->target != V4L2_SEL_TGT_CROP) return -EINVAL; dev_dbg(isp->rkisp1->dev, "%s: pad: %d sel(%d,%d)/%dx%d\n", __func__, sel->pad, sel->r.left, sel->r.top, sel->r.width, sel->r.height); if (sel->pad == RKISP1_ISP_PAD_SINK_VIDEO) rkisp1_isp_set_sink_crop(isp, sd_state, &sel->r); else if (sel->pad == RKISP1_ISP_PAD_SOURCE_VIDEO) rkisp1_isp_set_src_crop(isp, sd_state, &sel->r); else ret = -EINVAL; return ret; } static int rkisp1_subdev_link_validate(struct media_link *link) { if (link->sink->index == RKISP1_ISP_PAD_SINK_PARAMS) return 0; return v4l2_subdev_link_validate(link); } static const struct v4l2_subdev_pad_ops rkisp1_isp_pad_ops = { .enum_mbus_code = rkisp1_isp_enum_mbus_code, .enum_frame_size = rkisp1_isp_enum_frame_size, .get_selection = rkisp1_isp_get_selection, .set_selection = rkisp1_isp_set_selection, .get_fmt = v4l2_subdev_get_fmt, .set_fmt = rkisp1_isp_set_fmt, .link_validate = v4l2_subdev_link_validate_default, }; /* ---------------------------------------------------------------------------- * Stream operations */ static int rkisp1_isp_s_stream(struct v4l2_subdev *sd, int enable) { struct rkisp1_isp *isp = to_rkisp1_isp(sd); struct rkisp1_device *rkisp1 = isp->rkisp1; struct v4l2_subdev_state *sd_state; struct media_pad *source_pad; struct media_pad *sink_pad; enum v4l2_mbus_type mbus_type; u32 mbus_flags; int ret; if (!enable) { v4l2_subdev_call(rkisp1->source, video, s_stream, false); rkisp1_isp_stop(isp); return 0; } sink_pad = &isp->pads[RKISP1_ISP_PAD_SINK_VIDEO]; source_pad = media_pad_remote_pad_unique(sink_pad); if (IS_ERR(source_pad)) { dev_dbg(rkisp1->dev, "Failed to get source for ISP: %ld\n", PTR_ERR(source_pad)); return -EPIPE; } rkisp1->source = media_entity_to_v4l2_subdev(source_pad->entity); if (!rkisp1->source) { /* This should really not happen, so is not worth a message. */ return -EPIPE; } if (rkisp1->source == &rkisp1->csi.sd) { mbus_type = V4L2_MBUS_CSI2_DPHY; mbus_flags = 0; } else { const struct rkisp1_sensor_async *asd; struct v4l2_async_connection *asc; asc = v4l2_async_connection_unique(rkisp1->source); if (!asc) return -EPIPE; asd = container_of(asc, struct rkisp1_sensor_async, asd); mbus_type = asd->mbus_type; mbus_flags = asd->mbus_flags; } isp->frame_sequence = -1; sd_state = v4l2_subdev_lock_and_get_active_state(sd); ret = rkisp1_config_cif(isp, sd_state, mbus_type, mbus_flags); if (ret) goto out_unlock; ret = rkisp1_isp_start(isp, sd_state, source_pad); if (ret) goto out_unlock; ret = v4l2_subdev_call(rkisp1->source, video, s_stream, true); if (ret) { rkisp1_isp_stop(isp); goto out_unlock; } out_unlock: v4l2_subdev_unlock_state(sd_state); return ret; } static int rkisp1_isp_subs_evt(struct v4l2_subdev *sd, struct v4l2_fh *fh, struct v4l2_event_subscription *sub) { if (sub->type != V4L2_EVENT_FRAME_SYNC) return -EINVAL; /* V4L2_EVENT_FRAME_SYNC doesn't require an id, so zero should be set */ if (sub->id != 0) return -EINVAL; return v4l2_event_subscribe(fh, sub, 0, NULL); } static const struct media_entity_operations rkisp1_isp_media_ops = { .link_validate = rkisp1_subdev_link_validate, }; static const struct v4l2_subdev_video_ops rkisp1_isp_video_ops = { .s_stream = rkisp1_isp_s_stream, }; static const struct v4l2_subdev_core_ops rkisp1_isp_core_ops = { .subscribe_event = rkisp1_isp_subs_evt, .unsubscribe_event = v4l2_event_subdev_unsubscribe, }; static const struct v4l2_subdev_ops rkisp1_isp_ops = { .core = &rkisp1_isp_core_ops, .video = &rkisp1_isp_video_ops, .pad = &rkisp1_isp_pad_ops, }; static const struct v4l2_subdev_internal_ops rkisp1_isp_internal_ops = { .init_state = rkisp1_isp_init_state, }; int rkisp1_isp_register(struct rkisp1_device *rkisp1) { struct rkisp1_isp *isp = &rkisp1->isp; struct media_pad *pads = isp->pads; struct v4l2_subdev *sd = &isp->sd; int ret; isp->rkisp1 = rkisp1; v4l2_subdev_init(sd, &rkisp1_isp_ops); sd->internal_ops = &rkisp1_isp_internal_ops; sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS; sd->entity.ops = &rkisp1_isp_media_ops; sd->entity.function = MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER; sd->owner = THIS_MODULE; strscpy(sd->name, RKISP1_ISP_DEV_NAME, sizeof(sd->name)); pads[RKISP1_ISP_PAD_SINK_VIDEO].flags = MEDIA_PAD_FL_SINK | MEDIA_PAD_FL_MUST_CONNECT; pads[RKISP1_ISP_PAD_SINK_PARAMS].flags = MEDIA_PAD_FL_SINK; pads[RKISP1_ISP_PAD_SOURCE_VIDEO].flags = MEDIA_PAD_FL_SOURCE; pads[RKISP1_ISP_PAD_SOURCE_STATS].flags = MEDIA_PAD_FL_SOURCE; ret = media_entity_pads_init(&sd->entity, RKISP1_ISP_PAD_MAX, pads); if (ret) goto err_entity_cleanup; ret = v4l2_subdev_init_finalize(sd); if (ret) goto err_subdev_cleanup; ret = v4l2_device_register_subdev(&rkisp1->v4l2_dev, sd); if (ret) { dev_err(rkisp1->dev, "Failed to register isp subdev\n"); goto err_subdev_cleanup; } return 0; err_subdev_cleanup: v4l2_subdev_cleanup(sd); err_entity_cleanup: media_entity_cleanup(&sd->entity); isp->sd.v4l2_dev = NULL; return ret; } void rkisp1_isp_unregister(struct rkisp1_device *rkisp1) { struct rkisp1_isp *isp = &rkisp1->isp; if (!isp->sd.v4l2_dev) return; v4l2_device_unregister_subdev(&isp->sd); v4l2_subdev_cleanup(&isp->sd); media_entity_cleanup(&isp->sd.entity); } /* ---------------------------------------------------------------------------- * Interrupt handlers */ static void rkisp1_isp_queue_event_sof(struct rkisp1_isp *isp) { struct v4l2_event event = { .type = V4L2_EVENT_FRAME_SYNC, }; event.u.frame_sync.frame_sequence = isp->frame_sequence; v4l2_event_queue(isp->sd.devnode, &event); } irqreturn_t rkisp1_isp_isr(int irq, void *ctx) { struct device *dev = ctx; struct rkisp1_device *rkisp1 = dev_get_drvdata(dev); u32 status, isp_err; if (!rkisp1->irqs_enabled) return IRQ_NONE; status = rkisp1_read(rkisp1, RKISP1_CIF_ISP_MIS); if (!status) return IRQ_NONE; rkisp1_write(rkisp1, RKISP1_CIF_ISP_ICR, status); /* Vertical sync signal, starting generating new frame */ if (status & RKISP1_CIF_ISP_V_START) { rkisp1->isp.frame_sequence++; rkisp1_isp_queue_event_sof(&rkisp1->isp); if (status & RKISP1_CIF_ISP_FRAME) { WARN_ONCE(1, "irq delay is too long, buffers might not be in sync\n"); rkisp1->debug.irq_delay++; } } if (status & RKISP1_CIF_ISP_PIC_SIZE_ERROR) { /* Clear pic_size_error */ isp_err = rkisp1_read(rkisp1, RKISP1_CIF_ISP_ERR); if (isp_err & RKISP1_CIF_ISP_ERR_INFORM_SIZE) rkisp1->debug.inform_size_error++; if (isp_err & RKISP1_CIF_ISP_ERR_IS_SIZE) rkisp1->debug.img_stabilization_size_error++; if (isp_err & RKISP1_CIF_ISP_ERR_OUTFORM_SIZE) rkisp1->debug.outform_size_error++; rkisp1_write(rkisp1, RKISP1_CIF_ISP_ERR_CLR, isp_err); } else if (status & RKISP1_CIF_ISP_DATA_LOSS) { /* keep track of data_loss in debugfs */ rkisp1->debug.data_loss++; } if (status & RKISP1_CIF_ISP_FRAME) { u32 isp_ris; rkisp1->debug.complete_frames++; /* New frame from the sensor received */ isp_ris = rkisp1_read(rkisp1, RKISP1_CIF_ISP_RIS); if (isp_ris & RKISP1_STATS_MEAS_MASK) rkisp1_stats_isr(&rkisp1->stats, isp_ris); /* * Then update changed configs. Some of them involve * lot of register writes. Do those only one per frame. * Do the updates in the order of the processing flow. */ rkisp1_params_isr(rkisp1); } return IRQ_HANDLED; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1