Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Laurent Pinchart | 3086 | 79.97% | 25 | 40.32% |
Tomi Valkeinen | 544 | 14.10% | 23 | 37.10% |
Benoit Parrot | 212 | 5.49% | 7 | 11.29% |
Steve Longerbeam | 8 | 0.21% | 2 | 3.23% |
Sakari Ailus | 6 | 0.16% | 2 | 3.23% |
Zou Wei | 1 | 0.03% | 1 | 1.61% |
Jiang Jian | 1 | 0.03% | 1 | 1.61% |
Thomas Gleixner | 1 | 0.03% | 1 | 1.61% |
Total | 3859 | 62 |
// SPDX-License-Identifier: GPL-2.0-only /* * TI Camera Access Layer (CAL) - CAMERARX * * Copyright (c) 2015-2020 Texas Instruments Inc. * * Authors: * Benoit Parrot <bparrot@ti.com> * Laurent Pinchart <laurent.pinchart@ideasonboard.com> */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/mfd/syscon.h> #include <linux/module.h> #include <linux/of_graph.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/slab.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-fwnode.h> #include <media/v4l2-subdev.h> #include "cal.h" #include "cal_regs.h" /* ------------------------------------------------------------------ * I/O Register Accessors * ------------------------------------------------------------------ */ static inline u32 camerarx_read(struct cal_camerarx *phy, u32 offset) { return ioread32(phy->base + offset); } static inline void camerarx_write(struct cal_camerarx *phy, u32 offset, u32 val) { iowrite32(val, phy->base + offset); } /* ------------------------------------------------------------------ * CAMERARX Management * ------------------------------------------------------------------ */ static s64 cal_camerarx_get_ext_link_freq(struct cal_camerarx *phy) { struct v4l2_mbus_config_mipi_csi2 *mipi_csi2 = &phy->endpoint.bus.mipi_csi2; u32 num_lanes = mipi_csi2->num_data_lanes; const struct cal_format_info *fmtinfo; struct v4l2_subdev_state *state; struct v4l2_mbus_framefmt *fmt; u32 bpp; s64 freq; state = v4l2_subdev_get_locked_active_state(&phy->subdev); fmt = v4l2_subdev_state_get_format(state, CAL_CAMERARX_PAD_SINK); fmtinfo = cal_format_by_code(fmt->code); if (!fmtinfo) return -EINVAL; bpp = fmtinfo->bpp; freq = v4l2_get_link_freq(phy->source->ctrl_handler, bpp, 2 * num_lanes); if (freq < 0) { phy_err(phy, "failed to get link freq for subdev '%s'\n", phy->source->name); return freq; } phy_dbg(3, phy, "Source Link Freq: %llu\n", freq); return freq; } static void cal_camerarx_lane_config(struct cal_camerarx *phy) { u32 val = cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance)); u32 lane_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POSITION_MASK; u32 polarity_mask = CAL_CSI2_COMPLEXIO_CFG_CLOCK_POL_MASK; struct v4l2_mbus_config_mipi_csi2 *mipi_csi2 = &phy->endpoint.bus.mipi_csi2; int lane; cal_set_field(&val, mipi_csi2->clock_lane + 1, lane_mask); cal_set_field(&val, mipi_csi2->lane_polarities[0], polarity_mask); for (lane = 0; lane < mipi_csi2->num_data_lanes; lane++) { /* * Every lane are one nibble apart starting with the * clock followed by the data lanes so shift masks by 4. */ lane_mask <<= 4; polarity_mask <<= 4; cal_set_field(&val, mipi_csi2->data_lanes[lane] + 1, lane_mask); cal_set_field(&val, mipi_csi2->lane_polarities[lane + 1], polarity_mask); } cal_write(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), val); phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x\n", phy->instance, val); } static void cal_camerarx_enable(struct cal_camerarx *phy) { u32 num_lanes = phy->cal->data->camerarx[phy->instance].num_lanes; regmap_field_write(phy->fields[F_CAMMODE], 0); /* Always enable all lanes at the phy control level */ regmap_field_write(phy->fields[F_LANEENABLE], (1 << num_lanes) - 1); /* F_CSI_MODE is not present on every architecture */ if (phy->fields[F_CSI_MODE]) regmap_field_write(phy->fields[F_CSI_MODE], 1); regmap_field_write(phy->fields[F_CTRLCLKEN], 1); } void cal_camerarx_disable(struct cal_camerarx *phy) { regmap_field_write(phy->fields[F_CTRLCLKEN], 0); } /* * TCLK values are OK at their reset values */ #define TCLK_TERM 0 #define TCLK_MISS 1 #define TCLK_SETTLE 14 static void cal_camerarx_config(struct cal_camerarx *phy, s64 link_freq) { unsigned int reg0, reg1; unsigned int ths_term, ths_settle; /* DPHY timing configuration */ /* THS_TERM: Programmed value = floor(20 ns/DDRClk period) */ ths_term = div_s64(20 * link_freq, 1000 * 1000 * 1000); phy_dbg(1, phy, "ths_term: %d (0x%02x)\n", ths_term, ths_term); /* THS_SETTLE: Programmed value = floor(105 ns/DDRClk period) + 4 */ ths_settle = div_s64(105 * link_freq, 1000 * 1000 * 1000) + 4; phy_dbg(1, phy, "ths_settle: %d (0x%02x)\n", ths_settle, ths_settle); reg0 = camerarx_read(phy, CAL_CSI2_PHY_REG0); cal_set_field(®0, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_DISABLE, CAL_CSI2_PHY_REG0_HSCLOCKCONFIG_MASK); cal_set_field(®0, ths_term, CAL_CSI2_PHY_REG0_THS_TERM_MASK); cal_set_field(®0, ths_settle, CAL_CSI2_PHY_REG0_THS_SETTLE_MASK); phy_dbg(1, phy, "CSI2_%d_REG0 = 0x%08x\n", phy->instance, reg0); camerarx_write(phy, CAL_CSI2_PHY_REG0, reg0); reg1 = camerarx_read(phy, CAL_CSI2_PHY_REG1); cal_set_field(®1, TCLK_TERM, CAL_CSI2_PHY_REG1_TCLK_TERM_MASK); cal_set_field(®1, 0xb8, CAL_CSI2_PHY_REG1_DPHY_HS_SYNC_PATTERN_MASK); cal_set_field(®1, TCLK_MISS, CAL_CSI2_PHY_REG1_CTRLCLK_DIV_FACTOR_MASK); cal_set_field(®1, TCLK_SETTLE, CAL_CSI2_PHY_REG1_TCLK_SETTLE_MASK); phy_dbg(1, phy, "CSI2_%d_REG1 = 0x%08x\n", phy->instance, reg1); camerarx_write(phy, CAL_CSI2_PHY_REG1, reg1); } static void cal_camerarx_power(struct cal_camerarx *phy, bool enable) { u32 target_state; unsigned int i; target_state = enable ? CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_ON : CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_STATE_OFF; cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), target_state, CAL_CSI2_COMPLEXIO_CFG_PWR_CMD_MASK); for (i = 0; i < 10; i++) { u32 current_state; current_state = cal_read_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), CAL_CSI2_COMPLEXIO_CFG_PWR_STATUS_MASK); if (current_state == target_state) break; usleep_range(1000, 1100); } if (i == 10) phy_err(phy, "Failed to power %s complexio\n", enable ? "up" : "down"); } static void cal_camerarx_wait_reset(struct cal_camerarx *phy) { unsigned long timeout; timeout = jiffies + msecs_to_jiffies(750); while (time_before(jiffies, timeout)) { if (cal_read_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) == CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED) break; usleep_range(500, 5000); } if (cal_read_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_MASK) != CAL_CSI2_COMPLEXIO_CFG_RESET_DONE_RESETCOMPLETED) phy_err(phy, "Timeout waiting for Complex IO reset done\n"); } static void cal_camerarx_wait_stop_state(struct cal_camerarx *phy) { unsigned long timeout; timeout = jiffies + msecs_to_jiffies(750); while (time_before(jiffies, timeout)) { if (cal_read_field(phy->cal, CAL_CSI2_TIMING(phy->instance), CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) == 0) break; usleep_range(500, 5000); } if (cal_read_field(phy->cal, CAL_CSI2_TIMING(phy->instance), CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK) != 0) phy_err(phy, "Timeout waiting for stop state\n"); } static void cal_camerarx_enable_irqs(struct cal_camerarx *phy) { const u32 cio_err_mask = CAL_CSI2_COMPLEXIO_IRQ_LANE_ERRORS_MASK | CAL_CSI2_COMPLEXIO_IRQ_FIFO_OVR_MASK | CAL_CSI2_COMPLEXIO_IRQ_SHORT_PACKET_MASK | CAL_CSI2_COMPLEXIO_IRQ_ECC_NO_CORRECTION_MASK; const u32 vc_err_mask = CAL_CSI2_VC_IRQ_CS_IRQ_MASK(0) | CAL_CSI2_VC_IRQ_CS_IRQ_MASK(1) | CAL_CSI2_VC_IRQ_CS_IRQ_MASK(2) | CAL_CSI2_VC_IRQ_CS_IRQ_MASK(3) | CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(0) | CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(1) | CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(2) | CAL_CSI2_VC_IRQ_ECC_CORRECTION_IRQ_MASK(3); /* Enable CIO & VC error IRQs. */ cal_write(phy->cal, CAL_HL_IRQENABLE_SET(0), CAL_HL_IRQ_CIO_MASK(phy->instance) | CAL_HL_IRQ_VC_MASK(phy->instance)); cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance), cio_err_mask); cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(phy->instance), vc_err_mask); } static void cal_camerarx_disable_irqs(struct cal_camerarx *phy) { /* Disable CIO error irqs */ cal_write(phy->cal, CAL_HL_IRQENABLE_CLR(0), CAL_HL_IRQ_CIO_MASK(phy->instance) | CAL_HL_IRQ_VC_MASK(phy->instance)); cal_write(phy->cal, CAL_CSI2_COMPLEXIO_IRQENABLE(phy->instance), 0); cal_write(phy->cal, CAL_CSI2_VC_IRQENABLE(phy->instance), 0); } static void cal_camerarx_ppi_enable(struct cal_camerarx *phy) { cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance), 1, CAL_CSI2_PPI_CTRL_ECC_EN_MASK); cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance), 1, CAL_CSI2_PPI_CTRL_IF_EN_MASK); } static void cal_camerarx_ppi_disable(struct cal_camerarx *phy) { cal_write_field(phy->cal, CAL_CSI2_PPI_CTRL(phy->instance), 0, CAL_CSI2_PPI_CTRL_IF_EN_MASK); } static int cal_camerarx_start(struct cal_camerarx *phy) { s64 link_freq; u32 sscounter; u32 val; int ret; if (phy->enable_count > 0) { phy->enable_count++; return 0; } link_freq = cal_camerarx_get_ext_link_freq(phy); if (link_freq < 0) return link_freq; ret = v4l2_subdev_call(phy->source, core, s_power, 1); if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) { phy_err(phy, "power on failed in subdev\n"); return ret; } cal_camerarx_enable_irqs(phy); /* * CSI-2 PHY Link Initialization Sequence, according to the DRA74xP / * DRA75xP / DRA76xP / DRA77xP TRM. The DRA71x / DRA72x and the AM65x / * DRA80xM TRMs have a slightly simplified sequence. */ /* * 1. Configure all CSI-2 low level protocol registers to be ready to * receive signals/data from the CSI-2 PHY. * * i.-v. Configure the lanes position and polarity. */ cal_camerarx_lane_config(phy); /* * vi.-vii. Configure D-PHY mode, enable the required lanes and * enable the CAMERARX clock. */ cal_camerarx_enable(phy); /* * 2. CSI PHY and link initialization sequence. * * a. Deassert the CSI-2 PHY reset. Do not wait for reset completion * at this point, as it requires the external source to send the * CSI-2 HS clock. */ cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_OPERATIONAL, CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK); phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x De-assert Complex IO Reset\n", phy->instance, cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance))); /* Dummy read to allow SCP reset to complete. */ camerarx_read(phy, CAL_CSI2_PHY_REG0); /* Program the PHY timing parameters. */ cal_camerarx_config(phy, link_freq); /* * b. Assert the FORCERXMODE signal. * * The stop-state-counter is based on fclk cycles, and we always use * the x16 and x4 settings, so stop-state-timeout = * fclk-cycle * 16 * 4 * counter. * * Stop-state-timeout must be more than 100us as per CSI-2 spec, so we * calculate a timeout that's 100us (rounding up). */ sscounter = DIV_ROUND_UP(clk_get_rate(phy->cal->fclk), 10000 * 16 * 4); val = cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance)); cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X16_IO1_MASK); cal_set_field(&val, 1, CAL_CSI2_TIMING_STOP_STATE_X4_IO1_MASK); cal_set_field(&val, sscounter, CAL_CSI2_TIMING_STOP_STATE_COUNTER_IO1_MASK); cal_write(phy->cal, CAL_CSI2_TIMING(phy->instance), val); phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Stop States\n", phy->instance, cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance))); /* Assert the FORCERXMODE signal. */ cal_write_field(phy->cal, CAL_CSI2_TIMING(phy->instance), 1, CAL_CSI2_TIMING_FORCE_RX_MODE_IO1_MASK); phy_dbg(3, phy, "CAL_CSI2_TIMING(%d) = 0x%08x Force RXMODE\n", phy->instance, cal_read(phy->cal, CAL_CSI2_TIMING(phy->instance))); /* * c. Connect pull-down on CSI-2 PHY link (using pad control). * * This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not * implemented. */ /* * d. Power up the CSI-2 PHY. * e. Check whether the state status reaches the ON state. */ cal_camerarx_power(phy, true); /* * Start the source to enable the CSI-2 HS clock. We can now wait for * CSI-2 PHY reset to complete. */ ret = v4l2_subdev_call(phy->source, video, s_stream, 1); if (ret) { v4l2_subdev_call(phy->source, core, s_power, 0); cal_camerarx_disable_irqs(phy); phy_err(phy, "stream on failed in subdev\n"); return ret; } cal_camerarx_wait_reset(phy); /* f. Wait for STOPSTATE=1 for all enabled lane modules. */ cal_camerarx_wait_stop_state(phy); phy_dbg(1, phy, "CSI2_%u_REG1 = 0x%08x (bits 31-28 should be set)\n", phy->instance, camerarx_read(phy, CAL_CSI2_PHY_REG1)); /* * g. Disable pull-down on CSI-2 PHY link (using pad control). * * This is not required on DRA71x, DRA72x, AM65x and DRA80xM. Not * implemented. */ /* Finally, enable the PHY Protocol Interface (PPI). */ cal_camerarx_ppi_enable(phy); phy->enable_count++; return 0; } static void cal_camerarx_stop(struct cal_camerarx *phy) { int ret; if (--phy->enable_count > 0) return; cal_camerarx_ppi_disable(phy); cal_camerarx_disable_irqs(phy); cal_camerarx_power(phy, false); /* Assert Complex IO Reset */ cal_write_field(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance), CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL, CAL_CSI2_COMPLEXIO_CFG_RESET_CTRL_MASK); phy_dbg(3, phy, "CAL_CSI2_COMPLEXIO_CFG(%d) = 0x%08x Complex IO in Reset\n", phy->instance, cal_read(phy->cal, CAL_CSI2_COMPLEXIO_CFG(phy->instance))); /* Disable the phy */ cal_camerarx_disable(phy); if (v4l2_subdev_call(phy->source, video, s_stream, 0)) phy_err(phy, "stream off failed in subdev\n"); ret = v4l2_subdev_call(phy->source, core, s_power, 0); if (ret < 0 && ret != -ENOIOCTLCMD && ret != -ENODEV) phy_err(phy, "power off failed in subdev\n"); } /* * Errata i913: CSI2 LDO Needs to be disabled when module is powered on * * Enabling CSI2 LDO shorts it to core supply. It is crucial the 2 CSI2 * LDOs on the device are disabled if CSI-2 module is powered on * (0x4845 B304 | 0x4845 B384 [28:27] = 0x1) or in ULPS (0x4845 B304 * | 0x4845 B384 [28:27] = 0x2) mode. Common concerns include: high * current draw on the module supply in active mode. * * Errata does not apply when CSI-2 module is powered off * (0x4845 B304 | 0x4845 B384 [28:27] = 0x0). * * SW Workaround: * Set the following register bits to disable the LDO, * which is essentially CSI2 REG10 bit 6: * * Core 0: 0x4845 B828 = 0x0000 0040 * Core 1: 0x4845 B928 = 0x0000 0040 */ void cal_camerarx_i913_errata(struct cal_camerarx *phy) { u32 reg10 = camerarx_read(phy, CAL_CSI2_PHY_REG10); cal_set_field(®10, 1, CAL_CSI2_PHY_REG10_I933_LDO_DISABLE_MASK); phy_dbg(1, phy, "CSI2_%d_REG10 = 0x%08x\n", phy->instance, reg10); camerarx_write(phy, CAL_CSI2_PHY_REG10, reg10); } static int cal_camerarx_regmap_init(struct cal_dev *cal, struct cal_camerarx *phy) { const struct cal_camerarx_data *phy_data; unsigned int i; if (!cal->data) return -EINVAL; phy_data = &cal->data->camerarx[phy->instance]; for (i = 0; i < F_MAX_FIELDS; i++) { struct reg_field field = { .reg = cal->syscon_camerrx_offset, .lsb = phy_data->fields[i].lsb, .msb = phy_data->fields[i].msb, }; /* * Here we update the reg offset with the * value found in DT */ phy->fields[i] = devm_regmap_field_alloc(cal->dev, cal->syscon_camerrx, field); if (IS_ERR(phy->fields[i])) { cal_err(cal, "Unable to allocate regmap fields\n"); return PTR_ERR(phy->fields[i]); } } return 0; } static int cal_camerarx_parse_dt(struct cal_camerarx *phy) { struct v4l2_fwnode_endpoint *endpoint = &phy->endpoint; char data_lanes[V4L2_MBUS_CSI2_MAX_DATA_LANES * 2]; struct device_node *ep_node; unsigned int i; int ret; /* * Find the endpoint node for the port corresponding to the PHY * instance, and parse its CSI-2-related properties. */ ep_node = of_graph_get_endpoint_by_regs(phy->cal->dev->of_node, phy->instance, 0); if (!ep_node) { /* * The endpoint is not mandatory, not all PHY instances need to * be connected in DT. */ phy_dbg(3, phy, "Port has no endpoint\n"); return 0; } endpoint->bus_type = V4L2_MBUS_CSI2_DPHY; ret = v4l2_fwnode_endpoint_parse(of_fwnode_handle(ep_node), endpoint); if (ret < 0) { phy_err(phy, "Failed to parse endpoint\n"); goto done; } for (i = 0; i < endpoint->bus.mipi_csi2.num_data_lanes; i++) { unsigned int lane = endpoint->bus.mipi_csi2.data_lanes[i]; if (lane > 4) { phy_err(phy, "Invalid position %u for data lane %u\n", lane, i); ret = -EINVAL; goto done; } data_lanes[i*2] = '0' + lane; data_lanes[i*2+1] = ' '; } data_lanes[i*2-1] = '\0'; phy_dbg(3, phy, "CSI-2 bus: clock lane <%u>, data lanes <%s>, flags 0x%08x\n", endpoint->bus.mipi_csi2.clock_lane, data_lanes, endpoint->bus.mipi_csi2.flags); /* Retrieve the connected device and store it for later use. */ phy->source_ep_node = of_graph_get_remote_endpoint(ep_node); phy->source_node = of_graph_get_port_parent(phy->source_ep_node); if (!phy->source_node) { phy_dbg(3, phy, "Can't get remote parent\n"); of_node_put(phy->source_ep_node); ret = -EINVAL; goto done; } phy_dbg(1, phy, "Found connected device %pOFn\n", phy->source_node); done: of_node_put(ep_node); return ret; } /* ------------------------------------------------------------------ * V4L2 Subdev Operations * ------------------------------------------------------------------ */ static inline struct cal_camerarx *to_cal_camerarx(struct v4l2_subdev *sd) { return container_of(sd, struct cal_camerarx, subdev); } static int cal_camerarx_sd_s_stream(struct v4l2_subdev *sd, int enable) { struct cal_camerarx *phy = to_cal_camerarx(sd); struct v4l2_subdev_state *state; int ret = 0; state = v4l2_subdev_lock_and_get_active_state(sd); if (enable) ret = cal_camerarx_start(phy); else cal_camerarx_stop(phy); v4l2_subdev_unlock_state(state); return ret; } static int cal_camerarx_sd_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, struct v4l2_subdev_mbus_code_enum *code) { /* No transcoding, source and sink codes must match. */ if (cal_rx_pad_is_source(code->pad)) { struct v4l2_mbus_framefmt *fmt; if (code->index > 0) return -EINVAL; fmt = v4l2_subdev_state_get_format(state, CAL_CAMERARX_PAD_SINK); code->code = fmt->code; } else { if (code->index >= cal_num_formats) return -EINVAL; code->code = cal_formats[code->index].code; } return 0; } static int cal_camerarx_sd_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, struct v4l2_subdev_frame_size_enum *fse) { const struct cal_format_info *fmtinfo; if (fse->index > 0) return -EINVAL; /* No transcoding, source and sink formats must match. */ if (cal_rx_pad_is_source(fse->pad)) { struct v4l2_mbus_framefmt *fmt; fmt = v4l2_subdev_state_get_format(state, CAL_CAMERARX_PAD_SINK); if (fse->code != fmt->code) return -EINVAL; fse->min_width = fmt->width; fse->max_width = fmt->width; fse->min_height = fmt->height; fse->max_height = fmt->height; } else { fmtinfo = cal_format_by_code(fse->code); if (!fmtinfo) return -EINVAL; fse->min_width = CAL_MIN_WIDTH_BYTES * 8 / ALIGN(fmtinfo->bpp, 8); fse->max_width = CAL_MAX_WIDTH_BYTES * 8 / ALIGN(fmtinfo->bpp, 8); fse->min_height = CAL_MIN_HEIGHT_LINES; fse->max_height = CAL_MAX_HEIGHT_LINES; } return 0; } static int cal_camerarx_sd_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, struct v4l2_subdev_format *format) { const struct cal_format_info *fmtinfo; struct v4l2_mbus_framefmt *fmt; unsigned int bpp; /* No transcoding, source and sink formats must match. */ if (cal_rx_pad_is_source(format->pad)) return v4l2_subdev_get_fmt(sd, state, format); /* * Default to the first format if the requested media bus code isn't * supported. */ fmtinfo = cal_format_by_code(format->format.code); if (!fmtinfo) fmtinfo = &cal_formats[0]; /* Clamp the size, update the code. The colorspace is accepted as-is. */ bpp = ALIGN(fmtinfo->bpp, 8); format->format.width = clamp_t(unsigned int, format->format.width, CAL_MIN_WIDTH_BYTES * 8 / bpp, CAL_MAX_WIDTH_BYTES * 8 / bpp); format->format.height = clamp_t(unsigned int, format->format.height, CAL_MIN_HEIGHT_LINES, CAL_MAX_HEIGHT_LINES); format->format.code = fmtinfo->code; format->format.field = V4L2_FIELD_NONE; /* Store the format and propagate it to the source pad. */ fmt = v4l2_subdev_state_get_format(state, CAL_CAMERARX_PAD_SINK); *fmt = format->format; fmt = v4l2_subdev_state_get_format(state, CAL_CAMERARX_PAD_FIRST_SOURCE); *fmt = format->format; return 0; } static int cal_camerarx_sd_init_state(struct v4l2_subdev *sd, struct v4l2_subdev_state *state) { struct v4l2_subdev_format format = { .which = state ? V4L2_SUBDEV_FORMAT_TRY : V4L2_SUBDEV_FORMAT_ACTIVE, .pad = CAL_CAMERARX_PAD_SINK, .format = { .width = 640, .height = 480, .code = MEDIA_BUS_FMT_UYVY8_1X16, .field = V4L2_FIELD_NONE, .colorspace = V4L2_COLORSPACE_SRGB, .ycbcr_enc = V4L2_YCBCR_ENC_601, .quantization = V4L2_QUANTIZATION_LIM_RANGE, .xfer_func = V4L2_XFER_FUNC_SRGB, }, }; return cal_camerarx_sd_set_fmt(sd, state, &format); } static int cal_camerarx_get_frame_desc(struct v4l2_subdev *sd, unsigned int pad, struct v4l2_mbus_frame_desc *fd) { struct cal_camerarx *phy = to_cal_camerarx(sd); struct v4l2_mbus_frame_desc remote_desc; const struct media_pad *remote_pad; int ret; remote_pad = media_pad_remote_pad_first(&phy->pads[CAL_CAMERARX_PAD_SINK]); if (!remote_pad) return -EPIPE; ret = v4l2_subdev_call(phy->source, pad, get_frame_desc, remote_pad->index, &remote_desc); if (ret) return ret; if (remote_desc.type != V4L2_MBUS_FRAME_DESC_TYPE_CSI2) { cal_err(phy->cal, "Frame descriptor does not describe CSI-2 link"); return -EINVAL; } if (remote_desc.num_entries > 1) cal_err(phy->cal, "Multiple streams not supported in remote frame descriptor, using the first one\n"); fd->type = V4L2_MBUS_FRAME_DESC_TYPE_CSI2; fd->num_entries = 1; fd->entry[0] = remote_desc.entry[0]; return 0; } static const struct v4l2_subdev_video_ops cal_camerarx_video_ops = { .s_stream = cal_camerarx_sd_s_stream, }; static const struct v4l2_subdev_pad_ops cal_camerarx_pad_ops = { .enum_mbus_code = cal_camerarx_sd_enum_mbus_code, .enum_frame_size = cal_camerarx_sd_enum_frame_size, .get_fmt = v4l2_subdev_get_fmt, .set_fmt = cal_camerarx_sd_set_fmt, .get_frame_desc = cal_camerarx_get_frame_desc, }; static const struct v4l2_subdev_ops cal_camerarx_subdev_ops = { .video = &cal_camerarx_video_ops, .pad = &cal_camerarx_pad_ops, }; static const struct v4l2_subdev_internal_ops cal_camerarx_internal_ops = { .init_state = cal_camerarx_sd_init_state, }; static struct media_entity_operations cal_camerarx_media_ops = { .link_validate = v4l2_subdev_link_validate, }; /* ------------------------------------------------------------------ * Create and Destroy * ------------------------------------------------------------------ */ struct cal_camerarx *cal_camerarx_create(struct cal_dev *cal, unsigned int instance) { struct platform_device *pdev = to_platform_device(cal->dev); struct cal_camerarx *phy; struct v4l2_subdev *sd; unsigned int i; int ret; phy = devm_kzalloc(cal->dev, sizeof(*phy), GFP_KERNEL); if (!phy) return ERR_PTR(-ENOMEM); phy->cal = cal; phy->instance = instance; spin_lock_init(&phy->vc_lock); phy->res = platform_get_resource_byname(pdev, IORESOURCE_MEM, (instance == 0) ? "cal_rx_core0" : "cal_rx_core1"); phy->base = devm_ioremap_resource(cal->dev, phy->res); if (IS_ERR(phy->base)) { cal_err(cal, "failed to ioremap\n"); return ERR_CAST(phy->base); } cal_dbg(1, cal, "ioresource %s at %pa - %pa\n", phy->res->name, &phy->res->start, &phy->res->end); ret = cal_camerarx_regmap_init(cal, phy); if (ret) return ERR_PTR(ret); ret = cal_camerarx_parse_dt(phy); if (ret) return ERR_PTR(ret); /* Initialize the V4L2 subdev and media entity. */ sd = &phy->subdev; v4l2_subdev_init(sd, &cal_camerarx_subdev_ops); sd->internal_ops = &cal_camerarx_internal_ops; sd->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE; sd->flags = V4L2_SUBDEV_FL_HAS_DEVNODE; snprintf(sd->name, sizeof(sd->name), "CAMERARX%u", instance); sd->dev = cal->dev; phy->pads[CAL_CAMERARX_PAD_SINK].flags = MEDIA_PAD_FL_SINK; for (i = CAL_CAMERARX_PAD_FIRST_SOURCE; i < CAL_CAMERARX_NUM_PADS; ++i) phy->pads[i].flags = MEDIA_PAD_FL_SOURCE; sd->entity.ops = &cal_camerarx_media_ops; ret = media_entity_pads_init(&sd->entity, ARRAY_SIZE(phy->pads), phy->pads); if (ret) goto err_node_put; ret = v4l2_subdev_init_finalize(sd); if (ret) goto err_entity_cleanup; ret = v4l2_device_register_subdev(&cal->v4l2_dev, sd); if (ret) goto err_free_state; return phy; err_free_state: v4l2_subdev_cleanup(sd); err_entity_cleanup: media_entity_cleanup(&phy->subdev.entity); err_node_put: of_node_put(phy->source_ep_node); of_node_put(phy->source_node); return ERR_PTR(ret); } void cal_camerarx_destroy(struct cal_camerarx *phy) { if (!phy) return; v4l2_device_unregister_subdev(&phy->subdev); v4l2_subdev_cleanup(&phy->subdev); media_entity_cleanup(&phy->subdev.entity); of_node_put(phy->source_ep_node); of_node_put(phy->source_node); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1