Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mikko Perttunen | 4160 | 68.64% | 2 | 7.41% |
Dmitry Osipenko | 1477 | 24.37% | 9 | 33.33% |
Thierry Reding | 371 | 6.12% | 4 | 14.81% |
Johan Hovold | 17 | 0.28% | 1 | 3.70% |
Viresh Kumar | 13 | 0.21% | 2 | 7.41% |
Amitoj Kaur Chawla | 7 | 0.12% | 1 | 3.70% |
Rob Herring | 3 | 0.05% | 1 | 3.70% |
Michael Turquette | 3 | 0.05% | 1 | 3.70% |
Peter 'p2' De Schrijver | 3 | 0.05% | 1 | 3.70% |
Li Yang | 2 | 0.03% | 1 | 3.70% |
Thomas Gleixner | 2 | 0.03% | 1 | 3.70% |
Christophe Jaillet | 1 | 0.02% | 1 | 3.70% |
Qinglang Miao | 1 | 0.02% | 1 | 3.70% |
Krzysztof Kozlowski | 1 | 0.02% | 1 | 3.70% |
Total | 6061 | 27 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved. * * Author: * Mikko Perttunen <mperttunen@nvidia.com> */ #include <linux/clk-provider.h> #include <linux/clk.h> #include <linux/clkdev.h> #include <linux/clk/tegra.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/interconnect-provider.h> #include <linux/io.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of_address.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/pm_opp.h> #include <linux/sort.h> #include <linux/string.h> #include <soc/tegra/fuse.h> #include <soc/tegra/mc.h> #include "mc.h" #define EMC_FBIO_CFG5 0x104 #define EMC_FBIO_CFG5_DRAM_TYPE_MASK 0x3 #define EMC_FBIO_CFG5_DRAM_TYPE_SHIFT 0 #define EMC_FBIO_CFG5_DRAM_WIDTH_X64 BIT(4) #define EMC_INTSTATUS 0x0 #define EMC_INTSTATUS_CLKCHANGE_COMPLETE BIT(4) #define EMC_CFG 0xc #define EMC_CFG_DRAM_CLKSTOP_PD BIT(31) #define EMC_CFG_DRAM_CLKSTOP_SR BIT(30) #define EMC_CFG_DRAM_ACPD BIT(29) #define EMC_CFG_DYN_SREF BIT(28) #define EMC_CFG_PWR_MASK ((0xF << 28) | BIT(18)) #define EMC_CFG_DSR_VTTGEN_DRV_EN BIT(18) #define EMC_REFCTRL 0x20 #define EMC_REFCTRL_DEV_SEL_SHIFT 0 #define EMC_REFCTRL_ENABLE BIT(31) #define EMC_TIMING_CONTROL 0x28 #define EMC_RC 0x2c #define EMC_RFC 0x30 #define EMC_RAS 0x34 #define EMC_RP 0x38 #define EMC_R2W 0x3c #define EMC_W2R 0x40 #define EMC_R2P 0x44 #define EMC_W2P 0x48 #define EMC_RD_RCD 0x4c #define EMC_WR_RCD 0x50 #define EMC_RRD 0x54 #define EMC_REXT 0x58 #define EMC_WDV 0x5c #define EMC_QUSE 0x60 #define EMC_QRST 0x64 #define EMC_QSAFE 0x68 #define EMC_RDV 0x6c #define EMC_REFRESH 0x70 #define EMC_BURST_REFRESH_NUM 0x74 #define EMC_PDEX2WR 0x78 #define EMC_PDEX2RD 0x7c #define EMC_PCHG2PDEN 0x80 #define EMC_ACT2PDEN 0x84 #define EMC_AR2PDEN 0x88 #define EMC_RW2PDEN 0x8c #define EMC_TXSR 0x90 #define EMC_TCKE 0x94 #define EMC_TFAW 0x98 #define EMC_TRPAB 0x9c #define EMC_TCLKSTABLE 0xa0 #define EMC_TCLKSTOP 0xa4 #define EMC_TREFBW 0xa8 #define EMC_ODT_WRITE 0xb0 #define EMC_ODT_READ 0xb4 #define EMC_WEXT 0xb8 #define EMC_CTT 0xbc #define EMC_RFC_SLR 0xc0 #define EMC_MRS_WAIT_CNT2 0xc4 #define EMC_MRS_WAIT_CNT 0xc8 #define EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT 0 #define EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK \ (0x3FF << EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT) #define EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT 16 #define EMC_MRS_WAIT_CNT_LONG_WAIT_MASK \ (0x3FF << EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT) #define EMC_MRS 0xcc #define EMC_MODE_SET_DLL_RESET BIT(8) #define EMC_MODE_SET_LONG_CNT BIT(26) #define EMC_EMRS 0xd0 #define EMC_REF 0xd4 #define EMC_PRE 0xd8 #define EMC_SELF_REF 0xe0 #define EMC_SELF_REF_CMD_ENABLED BIT(0) #define EMC_SELF_REF_DEV_SEL_SHIFT 30 #define EMC_MRW 0xe8 #define EMC_MRR 0xec #define EMC_MRR_MA_SHIFT 16 #define LPDDR2_MR4_TEMP_SHIFT 0 #define EMC_XM2DQSPADCTRL3 0xf8 #define EMC_FBIO_SPARE 0x100 #define EMC_FBIO_CFG6 0x114 #define EMC_EMRS2 0x12c #define EMC_MRW2 0x134 #define EMC_MRW4 0x13c #define EMC_EINPUT 0x14c #define EMC_EINPUT_DURATION 0x150 #define EMC_PUTERM_EXTRA 0x154 #define EMC_TCKESR 0x158 #define EMC_TPD 0x15c #define EMC_AUTO_CAL_CONFIG 0x2a4 #define EMC_AUTO_CAL_CONFIG_AUTO_CAL_START BIT(31) #define EMC_AUTO_CAL_INTERVAL 0x2a8 #define EMC_AUTO_CAL_STATUS 0x2ac #define EMC_AUTO_CAL_STATUS_ACTIVE BIT(31) #define EMC_STATUS 0x2b4 #define EMC_STATUS_TIMING_UPDATE_STALLED BIT(23) #define EMC_CFG_2 0x2b8 #define EMC_CFG_2_MODE_SHIFT 0 #define EMC_CFG_2_DIS_STP_OB_CLK_DURING_NON_WR BIT(6) #define EMC_CFG_DIG_DLL 0x2bc #define EMC_CFG_DIG_DLL_PERIOD 0x2c0 #define EMC_RDV_MASK 0x2cc #define EMC_WDV_MASK 0x2d0 #define EMC_CTT_DURATION 0x2d8 #define EMC_CTT_TERM_CTRL 0x2dc #define EMC_ZCAL_INTERVAL 0x2e0 #define EMC_ZCAL_WAIT_CNT 0x2e4 #define EMC_ZQ_CAL 0x2ec #define EMC_ZQ_CAL_CMD BIT(0) #define EMC_ZQ_CAL_LONG BIT(4) #define EMC_ZQ_CAL_LONG_CMD_DEV0 \ (DRAM_DEV_SEL_0 | EMC_ZQ_CAL_LONG | EMC_ZQ_CAL_CMD) #define EMC_ZQ_CAL_LONG_CMD_DEV1 \ (DRAM_DEV_SEL_1 | EMC_ZQ_CAL_LONG | EMC_ZQ_CAL_CMD) #define EMC_XM2CMDPADCTRL 0x2f0 #define EMC_XM2DQSPADCTRL 0x2f8 #define EMC_XM2DQSPADCTRL2 0x2fc #define EMC_XM2DQSPADCTRL2_RX_FT_REC_ENABLE BIT(0) #define EMC_XM2DQSPADCTRL2_VREF_ENABLE BIT(5) #define EMC_XM2DQPADCTRL 0x300 #define EMC_XM2DQPADCTRL2 0x304 #define EMC_XM2CLKPADCTRL 0x308 #define EMC_XM2COMPPADCTRL 0x30c #define EMC_XM2VTTGENPADCTRL 0x310 #define EMC_XM2VTTGENPADCTRL2 0x314 #define EMC_XM2VTTGENPADCTRL3 0x318 #define EMC_XM2DQSPADCTRL4 0x320 #define EMC_DLL_XFORM_DQS0 0x328 #define EMC_DLL_XFORM_DQS1 0x32c #define EMC_DLL_XFORM_DQS2 0x330 #define EMC_DLL_XFORM_DQS3 0x334 #define EMC_DLL_XFORM_DQS4 0x338 #define EMC_DLL_XFORM_DQS5 0x33c #define EMC_DLL_XFORM_DQS6 0x340 #define EMC_DLL_XFORM_DQS7 0x344 #define EMC_DLL_XFORM_QUSE0 0x348 #define EMC_DLL_XFORM_QUSE1 0x34c #define EMC_DLL_XFORM_QUSE2 0x350 #define EMC_DLL_XFORM_QUSE3 0x354 #define EMC_DLL_XFORM_QUSE4 0x358 #define EMC_DLL_XFORM_QUSE5 0x35c #define EMC_DLL_XFORM_QUSE6 0x360 #define EMC_DLL_XFORM_QUSE7 0x364 #define EMC_DLL_XFORM_DQ0 0x368 #define EMC_DLL_XFORM_DQ1 0x36c #define EMC_DLL_XFORM_DQ2 0x370 #define EMC_DLL_XFORM_DQ3 0x374 #define EMC_DLI_TRIM_TXDQS0 0x3a8 #define EMC_DLI_TRIM_TXDQS1 0x3ac #define EMC_DLI_TRIM_TXDQS2 0x3b0 #define EMC_DLI_TRIM_TXDQS3 0x3b4 #define EMC_DLI_TRIM_TXDQS4 0x3b8 #define EMC_DLI_TRIM_TXDQS5 0x3bc #define EMC_DLI_TRIM_TXDQS6 0x3c0 #define EMC_DLI_TRIM_TXDQS7 0x3c4 #define EMC_STALL_THEN_EXE_AFTER_CLKCHANGE 0x3cc #define EMC_SEL_DPD_CTRL 0x3d8 #define EMC_SEL_DPD_CTRL_DATA_SEL_DPD BIT(8) #define EMC_SEL_DPD_CTRL_ODT_SEL_DPD BIT(5) #define EMC_SEL_DPD_CTRL_RESET_SEL_DPD BIT(4) #define EMC_SEL_DPD_CTRL_CA_SEL_DPD BIT(3) #define EMC_SEL_DPD_CTRL_CLK_SEL_DPD BIT(2) #define EMC_SEL_DPD_CTRL_DDR3_MASK \ ((0xf << 2) | BIT(8)) #define EMC_SEL_DPD_CTRL_MASK \ ((0x3 << 2) | BIT(5) | BIT(8)) #define EMC_PRE_REFRESH_REQ_CNT 0x3dc #define EMC_DYN_SELF_REF_CONTROL 0x3e0 #define EMC_TXSRDLL 0x3e4 #define EMC_CCFIFO_ADDR 0x3e8 #define EMC_CCFIFO_DATA 0x3ec #define EMC_CCFIFO_STATUS 0x3f0 #define EMC_CDB_CNTL_1 0x3f4 #define EMC_CDB_CNTL_2 0x3f8 #define EMC_XM2CLKPADCTRL2 0x3fc #define EMC_AUTO_CAL_CONFIG2 0x458 #define EMC_AUTO_CAL_CONFIG3 0x45c #define EMC_IBDLY 0x468 #define EMC_DLL_XFORM_ADDR0 0x46c #define EMC_DLL_XFORM_ADDR1 0x470 #define EMC_DLL_XFORM_ADDR2 0x474 #define EMC_DSR_VTTGEN_DRV 0x47c #define EMC_TXDSRVTTGEN 0x480 #define EMC_XM2CMDPADCTRL4 0x484 #define EMC_XM2CMDPADCTRL5 0x488 #define EMC_DLL_XFORM_DQS8 0x4a0 #define EMC_DLL_XFORM_DQS9 0x4a4 #define EMC_DLL_XFORM_DQS10 0x4a8 #define EMC_DLL_XFORM_DQS11 0x4ac #define EMC_DLL_XFORM_DQS12 0x4b0 #define EMC_DLL_XFORM_DQS13 0x4b4 #define EMC_DLL_XFORM_DQS14 0x4b8 #define EMC_DLL_XFORM_DQS15 0x4bc #define EMC_DLL_XFORM_QUSE8 0x4c0 #define EMC_DLL_XFORM_QUSE9 0x4c4 #define EMC_DLL_XFORM_QUSE10 0x4c8 #define EMC_DLL_XFORM_QUSE11 0x4cc #define EMC_DLL_XFORM_QUSE12 0x4d0 #define EMC_DLL_XFORM_QUSE13 0x4d4 #define EMC_DLL_XFORM_QUSE14 0x4d8 #define EMC_DLL_XFORM_QUSE15 0x4dc #define EMC_DLL_XFORM_DQ4 0x4e0 #define EMC_DLL_XFORM_DQ5 0x4e4 #define EMC_DLL_XFORM_DQ6 0x4e8 #define EMC_DLL_XFORM_DQ7 0x4ec #define EMC_DLI_TRIM_TXDQS8 0x520 #define EMC_DLI_TRIM_TXDQS9 0x524 #define EMC_DLI_TRIM_TXDQS10 0x528 #define EMC_DLI_TRIM_TXDQS11 0x52c #define EMC_DLI_TRIM_TXDQS12 0x530 #define EMC_DLI_TRIM_TXDQS13 0x534 #define EMC_DLI_TRIM_TXDQS14 0x538 #define EMC_DLI_TRIM_TXDQS15 0x53c #define EMC_CDB_CNTL_3 0x540 #define EMC_XM2DQSPADCTRL5 0x544 #define EMC_XM2DQSPADCTRL6 0x548 #define EMC_XM2DQPADCTRL3 0x54c #define EMC_DLL_XFORM_ADDR3 0x550 #define EMC_DLL_XFORM_ADDR4 0x554 #define EMC_DLL_XFORM_ADDR5 0x558 #define EMC_CFG_PIPE 0x560 #define EMC_QPOP 0x564 #define EMC_QUSE_WIDTH 0x568 #define EMC_PUTERM_WIDTH 0x56c #define EMC_BGBIAS_CTL0 0x570 #define EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_RX BIT(3) #define EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_VTTGEN BIT(2) #define EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD BIT(1) #define EMC_PUTERM_ADJ 0x574 #define DRAM_DEV_SEL_ALL 0 #define DRAM_DEV_SEL_0 BIT(31) #define DRAM_DEV_SEL_1 BIT(30) #define EMC_CFG_POWER_FEATURES_MASK \ (EMC_CFG_DYN_SREF | EMC_CFG_DRAM_ACPD | EMC_CFG_DRAM_CLKSTOP_SR | \ EMC_CFG_DRAM_CLKSTOP_PD | EMC_CFG_DSR_VTTGEN_DRV_EN) #define EMC_REFCTRL_DEV_SEL(n) (((n > 1) ? 0 : 2) << EMC_REFCTRL_DEV_SEL_SHIFT) #define EMC_DRAM_DEV_SEL(n) ((n > 1) ? DRAM_DEV_SEL_ALL : DRAM_DEV_SEL_0) /* Maximum amount of time in us. to wait for changes to become effective */ #define EMC_STATUS_UPDATE_TIMEOUT 1000 enum emc_dram_type { DRAM_TYPE_DDR3 = 0, DRAM_TYPE_DDR1 = 1, DRAM_TYPE_LPDDR3 = 2, DRAM_TYPE_DDR2 = 3 }; enum emc_dll_change { DLL_CHANGE_NONE, DLL_CHANGE_ON, DLL_CHANGE_OFF }; static const unsigned long emc_burst_regs[] = { EMC_RC, EMC_RFC, EMC_RFC_SLR, EMC_RAS, EMC_RP, EMC_R2W, EMC_W2R, EMC_R2P, EMC_W2P, EMC_RD_RCD, EMC_WR_RCD, EMC_RRD, EMC_REXT, EMC_WEXT, EMC_WDV, EMC_WDV_MASK, EMC_QUSE, EMC_QUSE_WIDTH, EMC_IBDLY, EMC_EINPUT, EMC_EINPUT_DURATION, EMC_PUTERM_EXTRA, EMC_PUTERM_WIDTH, EMC_PUTERM_ADJ, EMC_CDB_CNTL_1, EMC_CDB_CNTL_2, EMC_CDB_CNTL_3, EMC_QRST, EMC_QSAFE, EMC_RDV, EMC_RDV_MASK, EMC_REFRESH, EMC_BURST_REFRESH_NUM, EMC_PRE_REFRESH_REQ_CNT, EMC_PDEX2WR, EMC_PDEX2RD, EMC_PCHG2PDEN, EMC_ACT2PDEN, EMC_AR2PDEN, EMC_RW2PDEN, EMC_TXSR, EMC_TXSRDLL, EMC_TCKE, EMC_TCKESR, EMC_TPD, EMC_TFAW, EMC_TRPAB, EMC_TCLKSTABLE, EMC_TCLKSTOP, EMC_TREFBW, EMC_FBIO_CFG6, EMC_ODT_WRITE, EMC_ODT_READ, EMC_FBIO_CFG5, EMC_CFG_DIG_DLL, EMC_CFG_DIG_DLL_PERIOD, EMC_DLL_XFORM_DQS0, EMC_DLL_XFORM_DQS1, EMC_DLL_XFORM_DQS2, EMC_DLL_XFORM_DQS3, EMC_DLL_XFORM_DQS4, EMC_DLL_XFORM_DQS5, EMC_DLL_XFORM_DQS6, EMC_DLL_XFORM_DQS7, EMC_DLL_XFORM_DQS8, EMC_DLL_XFORM_DQS9, EMC_DLL_XFORM_DQS10, EMC_DLL_XFORM_DQS11, EMC_DLL_XFORM_DQS12, EMC_DLL_XFORM_DQS13, EMC_DLL_XFORM_DQS14, EMC_DLL_XFORM_DQS15, EMC_DLL_XFORM_QUSE0, EMC_DLL_XFORM_QUSE1, EMC_DLL_XFORM_QUSE2, EMC_DLL_XFORM_QUSE3, EMC_DLL_XFORM_QUSE4, EMC_DLL_XFORM_QUSE5, EMC_DLL_XFORM_QUSE6, EMC_DLL_XFORM_QUSE7, EMC_DLL_XFORM_ADDR0, EMC_DLL_XFORM_ADDR1, EMC_DLL_XFORM_ADDR2, EMC_DLL_XFORM_ADDR3, EMC_DLL_XFORM_ADDR4, EMC_DLL_XFORM_ADDR5, EMC_DLL_XFORM_QUSE8, EMC_DLL_XFORM_QUSE9, EMC_DLL_XFORM_QUSE10, EMC_DLL_XFORM_QUSE11, EMC_DLL_XFORM_QUSE12, EMC_DLL_XFORM_QUSE13, EMC_DLL_XFORM_QUSE14, EMC_DLL_XFORM_QUSE15, EMC_DLI_TRIM_TXDQS0, EMC_DLI_TRIM_TXDQS1, EMC_DLI_TRIM_TXDQS2, EMC_DLI_TRIM_TXDQS3, EMC_DLI_TRIM_TXDQS4, EMC_DLI_TRIM_TXDQS5, EMC_DLI_TRIM_TXDQS6, EMC_DLI_TRIM_TXDQS7, EMC_DLI_TRIM_TXDQS8, EMC_DLI_TRIM_TXDQS9, EMC_DLI_TRIM_TXDQS10, EMC_DLI_TRIM_TXDQS11, EMC_DLI_TRIM_TXDQS12, EMC_DLI_TRIM_TXDQS13, EMC_DLI_TRIM_TXDQS14, EMC_DLI_TRIM_TXDQS15, EMC_DLL_XFORM_DQ0, EMC_DLL_XFORM_DQ1, EMC_DLL_XFORM_DQ2, EMC_DLL_XFORM_DQ3, EMC_DLL_XFORM_DQ4, EMC_DLL_XFORM_DQ5, EMC_DLL_XFORM_DQ6, EMC_DLL_XFORM_DQ7, EMC_XM2CMDPADCTRL, EMC_XM2CMDPADCTRL4, EMC_XM2CMDPADCTRL5, EMC_XM2DQPADCTRL2, EMC_XM2DQPADCTRL3, EMC_XM2CLKPADCTRL, EMC_XM2CLKPADCTRL2, EMC_XM2COMPPADCTRL, EMC_XM2VTTGENPADCTRL, EMC_XM2VTTGENPADCTRL2, EMC_XM2VTTGENPADCTRL3, EMC_XM2DQSPADCTRL3, EMC_XM2DQSPADCTRL4, EMC_XM2DQSPADCTRL5, EMC_XM2DQSPADCTRL6, EMC_DSR_VTTGEN_DRV, EMC_TXDSRVTTGEN, EMC_FBIO_SPARE, EMC_ZCAL_WAIT_CNT, EMC_MRS_WAIT_CNT2, EMC_CTT, EMC_CTT_DURATION, EMC_CFG_PIPE, EMC_DYN_SELF_REF_CONTROL, EMC_QPOP }; struct emc_timing { unsigned long rate; u32 emc_burst_data[ARRAY_SIZE(emc_burst_regs)]; u32 emc_auto_cal_config; u32 emc_auto_cal_config2; u32 emc_auto_cal_config3; u32 emc_auto_cal_interval; u32 emc_bgbias_ctl0; u32 emc_cfg; u32 emc_cfg_2; u32 emc_ctt_term_ctrl; u32 emc_mode_1; u32 emc_mode_2; u32 emc_mode_4; u32 emc_mode_reset; u32 emc_mrs_wait_cnt; u32 emc_sel_dpd_ctrl; u32 emc_xm2dqspadctrl2; u32 emc_zcal_cnt_long; u32 emc_zcal_interval; }; enum emc_rate_request_type { EMC_RATE_DEBUG, EMC_RATE_ICC, EMC_RATE_TYPE_MAX, }; struct emc_rate_request { unsigned long min_rate; unsigned long max_rate; }; struct tegra_emc { struct device *dev; struct tegra_mc *mc; void __iomem *regs; struct clk *clk; enum emc_dram_type dram_type; unsigned int dram_bus_width; unsigned int dram_num; struct emc_timing last_timing; struct emc_timing *timings; unsigned int num_timings; struct { struct dentry *root; unsigned long min_rate; unsigned long max_rate; } debugfs; struct icc_provider provider; /* * There are multiple sources in the EMC driver which could request * a min/max clock rate, these rates are contained in this array. */ struct emc_rate_request requested_rate[EMC_RATE_TYPE_MAX]; /* protect shared rate-change code path */ struct mutex rate_lock; }; /* Timing change sequence functions */ static void emc_ccfifo_writel(struct tegra_emc *emc, u32 value, unsigned long offset) { writel(value, emc->regs + EMC_CCFIFO_DATA); writel(offset, emc->regs + EMC_CCFIFO_ADDR); } static void emc_seq_update_timing(struct tegra_emc *emc) { unsigned int i; u32 value; writel(1, emc->regs + EMC_TIMING_CONTROL); for (i = 0; i < EMC_STATUS_UPDATE_TIMEOUT; ++i) { value = readl(emc->regs + EMC_STATUS); if ((value & EMC_STATUS_TIMING_UPDATE_STALLED) == 0) return; udelay(1); } dev_err(emc->dev, "timing update timed out\n"); } static void emc_seq_disable_auto_cal(struct tegra_emc *emc) { unsigned int i; u32 value; writel(0, emc->regs + EMC_AUTO_CAL_INTERVAL); for (i = 0; i < EMC_STATUS_UPDATE_TIMEOUT; ++i) { value = readl(emc->regs + EMC_AUTO_CAL_STATUS); if ((value & EMC_AUTO_CAL_STATUS_ACTIVE) == 0) return; udelay(1); } dev_err(emc->dev, "auto cal disable timed out\n"); } static void emc_seq_wait_clkchange(struct tegra_emc *emc) { unsigned int i; u32 value; for (i = 0; i < EMC_STATUS_UPDATE_TIMEOUT; ++i) { value = readl(emc->regs + EMC_INTSTATUS); if (value & EMC_INTSTATUS_CLKCHANGE_COMPLETE) return; udelay(1); } dev_err(emc->dev, "clock change timed out\n"); } static struct emc_timing *tegra_emc_find_timing(struct tegra_emc *emc, unsigned long rate) { struct emc_timing *timing = NULL; unsigned int i; for (i = 0; i < emc->num_timings; i++) { if (emc->timings[i].rate == rate) { timing = &emc->timings[i]; break; } } if (!timing) { dev_err(emc->dev, "no timing for rate %lu\n", rate); return NULL; } return timing; } static int tegra_emc_prepare_timing_change(struct tegra_emc *emc, unsigned long rate) { struct emc_timing *timing = tegra_emc_find_timing(emc, rate); struct emc_timing *last = &emc->last_timing; enum emc_dll_change dll_change; unsigned int pre_wait = 0; u32 val, val2, mask; bool update = false; unsigned int i; if (!timing) return -ENOENT; if ((last->emc_mode_1 & 0x1) == (timing->emc_mode_1 & 0x1)) dll_change = DLL_CHANGE_NONE; else if (timing->emc_mode_1 & 0x1) dll_change = DLL_CHANGE_ON; else dll_change = DLL_CHANGE_OFF; /* Clear CLKCHANGE_COMPLETE interrupts */ writel(EMC_INTSTATUS_CLKCHANGE_COMPLETE, emc->regs + EMC_INTSTATUS); /* Disable dynamic self-refresh */ val = readl(emc->regs + EMC_CFG); if (val & EMC_CFG_PWR_MASK) { val &= ~EMC_CFG_POWER_FEATURES_MASK; writel(val, emc->regs + EMC_CFG); pre_wait = 5; } /* Disable SEL_DPD_CTRL for clock change */ if (emc->dram_type == DRAM_TYPE_DDR3) mask = EMC_SEL_DPD_CTRL_DDR3_MASK; else mask = EMC_SEL_DPD_CTRL_MASK; val = readl(emc->regs + EMC_SEL_DPD_CTRL); if (val & mask) { val &= ~mask; writel(val, emc->regs + EMC_SEL_DPD_CTRL); } /* Prepare DQ/DQS for clock change */ val = readl(emc->regs + EMC_BGBIAS_CTL0); val2 = last->emc_bgbias_ctl0; if (!(timing->emc_bgbias_ctl0 & EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_RX) && (val & EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_RX)) { val2 &= ~EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_RX; update = true; } if ((val & EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD) || (val & EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_VTTGEN)) { update = true; } if (update) { writel(val2, emc->regs + EMC_BGBIAS_CTL0); if (pre_wait < 5) pre_wait = 5; } update = false; val = readl(emc->regs + EMC_XM2DQSPADCTRL2); if (timing->emc_xm2dqspadctrl2 & EMC_XM2DQSPADCTRL2_VREF_ENABLE && !(val & EMC_XM2DQSPADCTRL2_VREF_ENABLE)) { val |= EMC_XM2DQSPADCTRL2_VREF_ENABLE; update = true; } if (timing->emc_xm2dqspadctrl2 & EMC_XM2DQSPADCTRL2_RX_FT_REC_ENABLE && !(val & EMC_XM2DQSPADCTRL2_RX_FT_REC_ENABLE)) { val |= EMC_XM2DQSPADCTRL2_RX_FT_REC_ENABLE; update = true; } if (update) { writel(val, emc->regs + EMC_XM2DQSPADCTRL2); if (pre_wait < 30) pre_wait = 30; } /* Wait to settle */ if (pre_wait) { emc_seq_update_timing(emc); udelay(pre_wait); } /* Program CTT_TERM control */ if (last->emc_ctt_term_ctrl != timing->emc_ctt_term_ctrl) { emc_seq_disable_auto_cal(emc); writel(timing->emc_ctt_term_ctrl, emc->regs + EMC_CTT_TERM_CTRL); emc_seq_update_timing(emc); } /* Program burst shadow registers */ for (i = 0; i < ARRAY_SIZE(timing->emc_burst_data); ++i) writel(timing->emc_burst_data[i], emc->regs + emc_burst_regs[i]); writel(timing->emc_xm2dqspadctrl2, emc->regs + EMC_XM2DQSPADCTRL2); writel(timing->emc_zcal_interval, emc->regs + EMC_ZCAL_INTERVAL); tegra_mc_write_emem_configuration(emc->mc, timing->rate); val = timing->emc_cfg & ~EMC_CFG_POWER_FEATURES_MASK; emc_ccfifo_writel(emc, val, EMC_CFG); /* Program AUTO_CAL_CONFIG */ if (timing->emc_auto_cal_config2 != last->emc_auto_cal_config2) emc_ccfifo_writel(emc, timing->emc_auto_cal_config2, EMC_AUTO_CAL_CONFIG2); if (timing->emc_auto_cal_config3 != last->emc_auto_cal_config3) emc_ccfifo_writel(emc, timing->emc_auto_cal_config3, EMC_AUTO_CAL_CONFIG3); if (timing->emc_auto_cal_config != last->emc_auto_cal_config) { val = timing->emc_auto_cal_config; val &= EMC_AUTO_CAL_CONFIG_AUTO_CAL_START; emc_ccfifo_writel(emc, val, EMC_AUTO_CAL_CONFIG); } /* DDR3: predict MRS long wait count */ if (emc->dram_type == DRAM_TYPE_DDR3 && dll_change == DLL_CHANGE_ON) { u32 cnt = 512; if (timing->emc_zcal_interval != 0 && last->emc_zcal_interval == 0) cnt -= emc->dram_num * 256; val = (timing->emc_mrs_wait_cnt & EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK) >> EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT; if (cnt < val) cnt = val; val = timing->emc_mrs_wait_cnt & ~EMC_MRS_WAIT_CNT_LONG_WAIT_MASK; val |= (cnt << EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT) & EMC_MRS_WAIT_CNT_LONG_WAIT_MASK; writel(val, emc->regs + EMC_MRS_WAIT_CNT); } val = timing->emc_cfg_2; val &= ~EMC_CFG_2_DIS_STP_OB_CLK_DURING_NON_WR; emc_ccfifo_writel(emc, val, EMC_CFG_2); /* DDR3: Turn off DLL and enter self-refresh */ if (emc->dram_type == DRAM_TYPE_DDR3 && dll_change == DLL_CHANGE_OFF) emc_ccfifo_writel(emc, timing->emc_mode_1, EMC_EMRS); /* Disable refresh controller */ emc_ccfifo_writel(emc, EMC_REFCTRL_DEV_SEL(emc->dram_num), EMC_REFCTRL); if (emc->dram_type == DRAM_TYPE_DDR3) emc_ccfifo_writel(emc, EMC_DRAM_DEV_SEL(emc->dram_num) | EMC_SELF_REF_CMD_ENABLED, EMC_SELF_REF); /* Flow control marker */ emc_ccfifo_writel(emc, 1, EMC_STALL_THEN_EXE_AFTER_CLKCHANGE); /* DDR3: Exit self-refresh */ if (emc->dram_type == DRAM_TYPE_DDR3) emc_ccfifo_writel(emc, EMC_DRAM_DEV_SEL(emc->dram_num), EMC_SELF_REF); emc_ccfifo_writel(emc, EMC_REFCTRL_DEV_SEL(emc->dram_num) | EMC_REFCTRL_ENABLE, EMC_REFCTRL); /* Set DRAM mode registers */ if (emc->dram_type == DRAM_TYPE_DDR3) { if (timing->emc_mode_1 != last->emc_mode_1) emc_ccfifo_writel(emc, timing->emc_mode_1, EMC_EMRS); if (timing->emc_mode_2 != last->emc_mode_2) emc_ccfifo_writel(emc, timing->emc_mode_2, EMC_EMRS2); if ((timing->emc_mode_reset != last->emc_mode_reset) || dll_change == DLL_CHANGE_ON) { val = timing->emc_mode_reset; if (dll_change == DLL_CHANGE_ON) { val |= EMC_MODE_SET_DLL_RESET; val |= EMC_MODE_SET_LONG_CNT; } else { val &= ~EMC_MODE_SET_DLL_RESET; } emc_ccfifo_writel(emc, val, EMC_MRS); } } else { if (timing->emc_mode_2 != last->emc_mode_2) emc_ccfifo_writel(emc, timing->emc_mode_2, EMC_MRW2); if (timing->emc_mode_1 != last->emc_mode_1) emc_ccfifo_writel(emc, timing->emc_mode_1, EMC_MRW); if (timing->emc_mode_4 != last->emc_mode_4) emc_ccfifo_writel(emc, timing->emc_mode_4, EMC_MRW4); } /* Issue ZCAL command if turning ZCAL on */ if (timing->emc_zcal_interval != 0 && last->emc_zcal_interval == 0) { emc_ccfifo_writel(emc, EMC_ZQ_CAL_LONG_CMD_DEV0, EMC_ZQ_CAL); if (emc->dram_num > 1) emc_ccfifo_writel(emc, EMC_ZQ_CAL_LONG_CMD_DEV1, EMC_ZQ_CAL); } /* Write to RO register to remove stall after change */ emc_ccfifo_writel(emc, 0, EMC_CCFIFO_STATUS); if (timing->emc_cfg_2 & EMC_CFG_2_DIS_STP_OB_CLK_DURING_NON_WR) emc_ccfifo_writel(emc, timing->emc_cfg_2, EMC_CFG_2); /* Disable AUTO_CAL for clock change */ emc_seq_disable_auto_cal(emc); /* Read register to wait until programming has settled */ readl(emc->regs + EMC_INTSTATUS); return 0; } static void tegra_emc_complete_timing_change(struct tegra_emc *emc, unsigned long rate) { struct emc_timing *timing = tegra_emc_find_timing(emc, rate); struct emc_timing *last = &emc->last_timing; u32 val; if (!timing) return; /* Wait until the state machine has settled */ emc_seq_wait_clkchange(emc); /* Restore AUTO_CAL */ if (timing->emc_ctt_term_ctrl != last->emc_ctt_term_ctrl) writel(timing->emc_auto_cal_interval, emc->regs + EMC_AUTO_CAL_INTERVAL); /* Restore dynamic self-refresh */ if (timing->emc_cfg & EMC_CFG_PWR_MASK) writel(timing->emc_cfg, emc->regs + EMC_CFG); /* Set ZCAL wait count */ writel(timing->emc_zcal_cnt_long, emc->regs + EMC_ZCAL_WAIT_CNT); /* LPDDR3: Turn off BGBIAS if low frequency */ if (emc->dram_type == DRAM_TYPE_LPDDR3 && timing->emc_bgbias_ctl0 & EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_RX) { val = timing->emc_bgbias_ctl0; val |= EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD_IBIAS_VTTGEN; val |= EMC_BGBIAS_CTL0_BIAS0_DSC_E_PWRD; writel(val, emc->regs + EMC_BGBIAS_CTL0); } else { if (emc->dram_type == DRAM_TYPE_DDR3 && readl(emc->regs + EMC_BGBIAS_CTL0) != timing->emc_bgbias_ctl0) { writel(timing->emc_bgbias_ctl0, emc->regs + EMC_BGBIAS_CTL0); } writel(timing->emc_auto_cal_interval, emc->regs + EMC_AUTO_CAL_INTERVAL); } /* Wait for timing to settle */ udelay(2); /* Reprogram SEL_DPD_CTRL */ writel(timing->emc_sel_dpd_ctrl, emc->regs + EMC_SEL_DPD_CTRL); emc_seq_update_timing(emc); emc->last_timing = *timing; } /* Initialization and deinitialization */ static void emc_read_current_timing(struct tegra_emc *emc, struct emc_timing *timing) { unsigned int i; for (i = 0; i < ARRAY_SIZE(emc_burst_regs); ++i) timing->emc_burst_data[i] = readl(emc->regs + emc_burst_regs[i]); timing->emc_cfg = readl(emc->regs + EMC_CFG); timing->emc_auto_cal_interval = 0; timing->emc_zcal_cnt_long = 0; timing->emc_mode_1 = 0; timing->emc_mode_2 = 0; timing->emc_mode_4 = 0; timing->emc_mode_reset = 0; } static int emc_init(struct tegra_emc *emc) { emc->dram_type = readl(emc->regs + EMC_FBIO_CFG5); if (emc->dram_type & EMC_FBIO_CFG5_DRAM_WIDTH_X64) emc->dram_bus_width = 64; else emc->dram_bus_width = 32; dev_info_once(emc->dev, "%ubit DRAM bus\n", emc->dram_bus_width); emc->dram_type &= EMC_FBIO_CFG5_DRAM_TYPE_MASK; emc->dram_type >>= EMC_FBIO_CFG5_DRAM_TYPE_SHIFT; emc->dram_num = tegra_mc_get_emem_device_count(emc->mc); emc_read_current_timing(emc, &emc->last_timing); return 0; } static int load_one_timing_from_dt(struct tegra_emc *emc, struct emc_timing *timing, struct device_node *node) { u32 value; int err; err = of_property_read_u32(node, "clock-frequency", &value); if (err) { dev_err(emc->dev, "timing %pOFn: failed to read rate: %d\n", node, err); return err; } timing->rate = value; err = of_property_read_u32_array(node, "nvidia,emc-configuration", timing->emc_burst_data, ARRAY_SIZE(timing->emc_burst_data)); if (err) { dev_err(emc->dev, "timing %pOFn: failed to read emc burst data: %d\n", node, err); return err; } #define EMC_READ_PROP(prop, dtprop) { \ err = of_property_read_u32(node, dtprop, &timing->prop); \ if (err) { \ dev_err(emc->dev, "timing %pOFn: failed to read " #prop ": %d\n", \ node, err); \ return err; \ } \ } EMC_READ_PROP(emc_auto_cal_config, "nvidia,emc-auto-cal-config") EMC_READ_PROP(emc_auto_cal_config2, "nvidia,emc-auto-cal-config2") EMC_READ_PROP(emc_auto_cal_config3, "nvidia,emc-auto-cal-config3") EMC_READ_PROP(emc_auto_cal_interval, "nvidia,emc-auto-cal-interval") EMC_READ_PROP(emc_bgbias_ctl0, "nvidia,emc-bgbias-ctl0") EMC_READ_PROP(emc_cfg, "nvidia,emc-cfg") EMC_READ_PROP(emc_cfg_2, "nvidia,emc-cfg-2") EMC_READ_PROP(emc_ctt_term_ctrl, "nvidia,emc-ctt-term-ctrl") EMC_READ_PROP(emc_mode_1, "nvidia,emc-mode-1") EMC_READ_PROP(emc_mode_2, "nvidia,emc-mode-2") EMC_READ_PROP(emc_mode_4, "nvidia,emc-mode-4") EMC_READ_PROP(emc_mode_reset, "nvidia,emc-mode-reset") EMC_READ_PROP(emc_mrs_wait_cnt, "nvidia,emc-mrs-wait-cnt") EMC_READ_PROP(emc_sel_dpd_ctrl, "nvidia,emc-sel-dpd-ctrl") EMC_READ_PROP(emc_xm2dqspadctrl2, "nvidia,emc-xm2dqspadctrl2") EMC_READ_PROP(emc_zcal_cnt_long, "nvidia,emc-zcal-cnt-long") EMC_READ_PROP(emc_zcal_interval, "nvidia,emc-zcal-interval") #undef EMC_READ_PROP return 0; } static int cmp_timings(const void *_a, const void *_b) { const struct emc_timing *a = _a; const struct emc_timing *b = _b; if (a->rate < b->rate) return -1; else if (a->rate == b->rate) return 0; else return 1; } static int tegra_emc_load_timings_from_dt(struct tegra_emc *emc, struct device_node *node) { int child_count = of_get_child_count(node); struct device_node *child; struct emc_timing *timing; unsigned int i = 0; int err; emc->timings = devm_kcalloc(emc->dev, child_count, sizeof(*timing), GFP_KERNEL); if (!emc->timings) return -ENOMEM; emc->num_timings = child_count; for_each_child_of_node(node, child) { timing = &emc->timings[i++]; err = load_one_timing_from_dt(emc, timing, child); if (err) { of_node_put(child); return err; } } sort(emc->timings, emc->num_timings, sizeof(*timing), cmp_timings, NULL); return 0; } static const struct of_device_id tegra_emc_of_match[] = { { .compatible = "nvidia,tegra124-emc" }, { .compatible = "nvidia,tegra132-emc" }, {} }; MODULE_DEVICE_TABLE(of, tegra_emc_of_match); static struct device_node * tegra_emc_find_node_by_ram_code(struct device_node *node, u32 ram_code) { struct device_node *np; int err; for_each_child_of_node(node, np) { u32 value; err = of_property_read_u32(np, "nvidia,ram-code", &value); if (err || (value != ram_code)) continue; return np; } return NULL; } static void tegra_emc_rate_requests_init(struct tegra_emc *emc) { unsigned int i; for (i = 0; i < EMC_RATE_TYPE_MAX; i++) { emc->requested_rate[i].min_rate = 0; emc->requested_rate[i].max_rate = ULONG_MAX; } } static int emc_request_rate(struct tegra_emc *emc, unsigned long new_min_rate, unsigned long new_max_rate, enum emc_rate_request_type type) { struct emc_rate_request *req = emc->requested_rate; unsigned long min_rate = 0, max_rate = ULONG_MAX; unsigned int i; int err; /* select minimum and maximum rates among the requested rates */ for (i = 0; i < EMC_RATE_TYPE_MAX; i++, req++) { if (i == type) { min_rate = max(new_min_rate, min_rate); max_rate = min(new_max_rate, max_rate); } else { min_rate = max(req->min_rate, min_rate); max_rate = min(req->max_rate, max_rate); } } if (min_rate > max_rate) { dev_err_ratelimited(emc->dev, "%s: type %u: out of range: %lu %lu\n", __func__, type, min_rate, max_rate); return -ERANGE; } /* * EMC rate-changes should go via OPP API because it manages voltage * changes. */ err = dev_pm_opp_set_rate(emc->dev, min_rate); if (err) return err; emc->requested_rate[type].min_rate = new_min_rate; emc->requested_rate[type].max_rate = new_max_rate; return 0; } static int emc_set_min_rate(struct tegra_emc *emc, unsigned long rate, enum emc_rate_request_type type) { struct emc_rate_request *req = &emc->requested_rate[type]; int ret; mutex_lock(&emc->rate_lock); ret = emc_request_rate(emc, rate, req->max_rate, type); mutex_unlock(&emc->rate_lock); return ret; } static int emc_set_max_rate(struct tegra_emc *emc, unsigned long rate, enum emc_rate_request_type type) { struct emc_rate_request *req = &emc->requested_rate[type]; int ret; mutex_lock(&emc->rate_lock); ret = emc_request_rate(emc, req->min_rate, rate, type); mutex_unlock(&emc->rate_lock); return ret; } /* * debugfs interface * * The memory controller driver exposes some files in debugfs that can be used * to control the EMC frequency. The top-level directory can be found here: * * /sys/kernel/debug/emc * * It contains the following files: * * - available_rates: This file contains a list of valid, space-separated * EMC frequencies. * * - min_rate: Writing a value to this file sets the given frequency as the * floor of the permitted range. If this is higher than the currently * configured EMC frequency, this will cause the frequency to be * increased so that it stays within the valid range. * * - max_rate: Similarily to the min_rate file, writing a value to this file * sets the given frequency as the ceiling of the permitted range. If * the value is lower than the currently configured EMC frequency, this * will cause the frequency to be decreased so that it stays within the * valid range. */ static bool tegra_emc_validate_rate(struct tegra_emc *emc, unsigned long rate) { unsigned int i; for (i = 0; i < emc->num_timings; i++) if (rate == emc->timings[i].rate) return true; return false; } static int tegra_emc_debug_available_rates_show(struct seq_file *s, void *data) { struct tegra_emc *emc = s->private; const char *prefix = ""; unsigned int i; for (i = 0; i < emc->num_timings; i++) { seq_printf(s, "%s%lu", prefix, emc->timings[i].rate); prefix = " "; } seq_puts(s, "\n"); return 0; } DEFINE_SHOW_ATTRIBUTE(tegra_emc_debug_available_rates); static int tegra_emc_debug_min_rate_get(void *data, u64 *rate) { struct tegra_emc *emc = data; *rate = emc->debugfs.min_rate; return 0; } static int tegra_emc_debug_min_rate_set(void *data, u64 rate) { struct tegra_emc *emc = data; int err; if (!tegra_emc_validate_rate(emc, rate)) return -EINVAL; err = emc_set_min_rate(emc, rate, EMC_RATE_DEBUG); if (err < 0) return err; emc->debugfs.min_rate = rate; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(tegra_emc_debug_min_rate_fops, tegra_emc_debug_min_rate_get, tegra_emc_debug_min_rate_set, "%llu\n"); static int tegra_emc_debug_max_rate_get(void *data, u64 *rate) { struct tegra_emc *emc = data; *rate = emc->debugfs.max_rate; return 0; } static int tegra_emc_debug_max_rate_set(void *data, u64 rate) { struct tegra_emc *emc = data; int err; if (!tegra_emc_validate_rate(emc, rate)) return -EINVAL; err = emc_set_max_rate(emc, rate, EMC_RATE_DEBUG); if (err < 0) return err; emc->debugfs.max_rate = rate; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(tegra_emc_debug_max_rate_fops, tegra_emc_debug_max_rate_get, tegra_emc_debug_max_rate_set, "%llu\n"); static void emc_debugfs_init(struct device *dev, struct tegra_emc *emc) { unsigned int i; int err; emc->debugfs.min_rate = ULONG_MAX; emc->debugfs.max_rate = 0; for (i = 0; i < emc->num_timings; i++) { if (emc->timings[i].rate < emc->debugfs.min_rate) emc->debugfs.min_rate = emc->timings[i].rate; if (emc->timings[i].rate > emc->debugfs.max_rate) emc->debugfs.max_rate = emc->timings[i].rate; } if (!emc->num_timings) { emc->debugfs.min_rate = clk_get_rate(emc->clk); emc->debugfs.max_rate = emc->debugfs.min_rate; } err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate, emc->debugfs.max_rate); if (err < 0) { dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n", emc->debugfs.min_rate, emc->debugfs.max_rate, emc->clk); return; } emc->debugfs.root = debugfs_create_dir("emc", NULL); debugfs_create_file("available_rates", 0444, emc->debugfs.root, emc, &tegra_emc_debug_available_rates_fops); debugfs_create_file("min_rate", 0644, emc->debugfs.root, emc, &tegra_emc_debug_min_rate_fops); debugfs_create_file("max_rate", 0644, emc->debugfs.root, emc, &tegra_emc_debug_max_rate_fops); } static inline struct tegra_emc * to_tegra_emc_provider(struct icc_provider *provider) { return container_of(provider, struct tegra_emc, provider); } static struct icc_node_data * emc_of_icc_xlate_extended(const struct of_phandle_args *spec, void *data) { struct icc_provider *provider = data; struct icc_node_data *ndata; struct icc_node *node; /* External Memory is the only possible ICC route */ list_for_each_entry(node, &provider->nodes, node_list) { if (node->id != TEGRA_ICC_EMEM) continue; ndata = kzalloc(sizeof(*ndata), GFP_KERNEL); if (!ndata) return ERR_PTR(-ENOMEM); /* * SRC and DST nodes should have matching TAG in order to have * it set by default for a requested path. */ ndata->tag = TEGRA_MC_ICC_TAG_ISO; ndata->node = node; return ndata; } return ERR_PTR(-EPROBE_DEFER); } static int emc_icc_set(struct icc_node *src, struct icc_node *dst) { struct tegra_emc *emc = to_tegra_emc_provider(dst->provider); unsigned long long peak_bw = icc_units_to_bps(dst->peak_bw); unsigned long long avg_bw = icc_units_to_bps(dst->avg_bw); unsigned long long rate = max(avg_bw, peak_bw); unsigned int dram_data_bus_width_bytes; const unsigned int ddr = 2; int err; /* * Tegra124 EMC runs on a clock rate of SDRAM bus. This means that * EMC clock rate is twice smaller than the peak data rate because * data is sampled on both EMC clock edges. */ dram_data_bus_width_bytes = emc->dram_bus_width / 8; do_div(rate, ddr * dram_data_bus_width_bytes); rate = min_t(u64, rate, U32_MAX); err = emc_set_min_rate(emc, rate, EMC_RATE_ICC); if (err) return err; return 0; } static int tegra_emc_interconnect_init(struct tegra_emc *emc) { const struct tegra_mc_soc *soc = emc->mc->soc; struct icc_node *node; int err; emc->provider.dev = emc->dev; emc->provider.set = emc_icc_set; emc->provider.data = &emc->provider; emc->provider.aggregate = soc->icc_ops->aggregate; emc->provider.xlate_extended = emc_of_icc_xlate_extended; icc_provider_init(&emc->provider); /* create External Memory Controller node */ node = icc_node_create(TEGRA_ICC_EMC); if (IS_ERR(node)) { err = PTR_ERR(node); goto err_msg; } node->name = "External Memory Controller"; icc_node_add(node, &emc->provider); /* link External Memory Controller to External Memory (DRAM) */ err = icc_link_create(node, TEGRA_ICC_EMEM); if (err) goto remove_nodes; /* create External Memory node */ node = icc_node_create(TEGRA_ICC_EMEM); if (IS_ERR(node)) { err = PTR_ERR(node); goto remove_nodes; } node->name = "External Memory (DRAM)"; icc_node_add(node, &emc->provider); err = icc_provider_register(&emc->provider); if (err) goto remove_nodes; return 0; remove_nodes: icc_nodes_remove(&emc->provider); err_msg: dev_err(emc->dev, "failed to initialize ICC: %d\n", err); return err; } static int tegra_emc_opp_table_init(struct tegra_emc *emc) { u32 hw_version = BIT(tegra_sku_info.soc_speedo_id); int opp_token, err; err = dev_pm_opp_set_supported_hw(emc->dev, &hw_version, 1); if (err < 0) { dev_err(emc->dev, "failed to set OPP supported HW: %d\n", err); return err; } opp_token = err; err = dev_pm_opp_of_add_table(emc->dev); if (err) { if (err == -ENODEV) dev_err(emc->dev, "OPP table not found, please update your device tree\n"); else dev_err(emc->dev, "failed to add OPP table: %d\n", err); goto put_hw_table; } dev_info_once(emc->dev, "OPP HW ver. 0x%x, current clock rate %lu MHz\n", hw_version, clk_get_rate(emc->clk) / 1000000); /* first dummy rate-set initializes voltage state */ err = dev_pm_opp_set_rate(emc->dev, clk_get_rate(emc->clk)); if (err) { dev_err(emc->dev, "failed to initialize OPP clock: %d\n", err); goto remove_table; } return 0; remove_table: dev_pm_opp_of_remove_table(emc->dev); put_hw_table: dev_pm_opp_put_supported_hw(opp_token); return err; } static void devm_tegra_emc_unset_callback(void *data) { tegra124_clk_set_emc_callbacks(NULL, NULL); } static int tegra_emc_probe(struct platform_device *pdev) { struct device_node *np; struct tegra_emc *emc; u32 ram_code; int err; emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL); if (!emc) return -ENOMEM; mutex_init(&emc->rate_lock); emc->dev = &pdev->dev; emc->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(emc->regs)) return PTR_ERR(emc->regs); emc->mc = devm_tegra_memory_controller_get(&pdev->dev); if (IS_ERR(emc->mc)) return PTR_ERR(emc->mc); ram_code = tegra_read_ram_code(); np = tegra_emc_find_node_by_ram_code(pdev->dev.of_node, ram_code); if (np) { err = tegra_emc_load_timings_from_dt(emc, np); of_node_put(np); if (err) return err; } else { dev_info_once(&pdev->dev, "no memory timings for RAM code %u found in DT\n", ram_code); } err = emc_init(emc); if (err) { dev_err(&pdev->dev, "EMC initialization failed: %d\n", err); return err; } platform_set_drvdata(pdev, emc); tegra124_clk_set_emc_callbacks(tegra_emc_prepare_timing_change, tegra_emc_complete_timing_change); err = devm_add_action_or_reset(&pdev->dev, devm_tegra_emc_unset_callback, NULL); if (err) return err; emc->clk = devm_clk_get(&pdev->dev, "emc"); if (IS_ERR(emc->clk)) { err = PTR_ERR(emc->clk); dev_err(&pdev->dev, "failed to get EMC clock: %d\n", err); return err; } err = tegra_emc_opp_table_init(emc); if (err) return err; tegra_emc_rate_requests_init(emc); if (IS_ENABLED(CONFIG_DEBUG_FS)) emc_debugfs_init(&pdev->dev, emc); tegra_emc_interconnect_init(emc); /* * Don't allow the kernel module to be unloaded. Unloading adds some * extra complexity which doesn't really worth the effort in a case of * this driver. */ try_module_get(THIS_MODULE); return 0; }; static struct platform_driver tegra_emc_driver = { .probe = tegra_emc_probe, .driver = { .name = "tegra-emc", .of_match_table = tegra_emc_of_match, .suppress_bind_attrs = true, .sync_state = icc_sync_state, }, }; module_platform_driver(tegra_emc_driver); MODULE_AUTHOR("Mikko Perttunen <mperttunen@nvidia.com>"); MODULE_DESCRIPTION("NVIDIA Tegra124 EMC driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1