Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Joseph Lo | 7377 | 84.78% | 2 | 20.00% |
Thierry Reding | 1296 | 14.89% | 1 | 10.00% |
Dmitry Osipenko | 15 | 0.17% | 1 | 10.00% |
Rob Herring | 4 | 0.05% | 1 | 10.00% |
Liu Shixin | 3 | 0.03% | 1 | 10.00% |
Uwe Kleine-König | 2 | 0.02% | 1 | 10.00% |
jing yangyang | 2 | 0.02% | 1 | 10.00% |
Rikard Falkeborn | 1 | 0.01% | 1 | 10.00% |
Kai Song | 1 | 0.01% | 1 | 10.00% |
Total | 8701 | 10 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (c) 2015-2020, NVIDIA CORPORATION. All rights reserved. */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/clk/tegra.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/kernel.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/of_reserved_mem.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/thermal.h> #include <soc/tegra/fuse.h> #include <soc/tegra/mc.h> #include "tegra210-emc.h" #include "tegra210-mc.h" /* CLK_RST_CONTROLLER_CLK_SOURCE_EMC */ #define EMC_CLK_EMC_2X_CLK_SRC_SHIFT 29 #define EMC_CLK_EMC_2X_CLK_SRC_MASK \ (0x7 << EMC_CLK_EMC_2X_CLK_SRC_SHIFT) #define EMC_CLK_SOURCE_PLLM_LJ 0x4 #define EMC_CLK_SOURCE_PLLMB_LJ 0x5 #define EMC_CLK_FORCE_CC_TRIGGER BIT(27) #define EMC_CLK_MC_EMC_SAME_FREQ BIT(16) #define EMC_CLK_EMC_2X_CLK_DIVISOR_SHIFT 0 #define EMC_CLK_EMC_2X_CLK_DIVISOR_MASK \ (0xff << EMC_CLK_EMC_2X_CLK_DIVISOR_SHIFT) /* CLK_RST_CONTROLLER_CLK_SOURCE_EMC_DLL */ #define DLL_CLK_EMC_DLL_CLK_SRC_SHIFT 29 #define DLL_CLK_EMC_DLL_CLK_SRC_MASK \ (0x7 << DLL_CLK_EMC_DLL_CLK_SRC_SHIFT) #define DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT 10 #define DLL_CLK_EMC_DLL_DDLL_CLK_SEL_MASK \ (0x3 << DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT) #define PLLM_VCOA 0 #define PLLM_VCOB 1 #define EMC_DLL_SWITCH_OUT 2 #define DLL_CLK_EMC_DLL_CLK_DIVISOR_SHIFT 0 #define DLL_CLK_EMC_DLL_CLK_DIVISOR_MASK \ (0xff << DLL_CLK_EMC_DLL_CLK_DIVISOR_SHIFT) /* MC_EMEM_ARB_MISC0 */ #define MC_EMEM_ARB_MISC0_EMC_SAME_FREQ BIT(27) /* EMC_DATA_BRLSHFT_X */ #define EMC0_EMC_DATA_BRLSHFT_0_INDEX 2 #define EMC1_EMC_DATA_BRLSHFT_0_INDEX 3 #define EMC0_EMC_DATA_BRLSHFT_1_INDEX 4 #define EMC1_EMC_DATA_BRLSHFT_1_INDEX 5 #define TRIM_REG(chan, rank, reg, byte) \ (((EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ## \ _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte ## _MASK & \ next->trim_regs[EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## \ rank ## _ ## reg ## _INDEX]) >> \ EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ## \ _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte ## _SHIFT) \ + \ (((EMC_DATA_BRLSHFT_ ## rank ## _RANK ## rank ## _BYTE ## \ byte ## _DATA_BRLSHFT_MASK & \ next->trim_perch_regs[EMC ## chan ## \ _EMC_DATA_BRLSHFT_ ## rank ## _INDEX]) >> \ EMC_DATA_BRLSHFT_ ## rank ## _RANK ## rank ## _BYTE ## \ byte ## _DATA_BRLSHFT_SHIFT) * 64)) #define CALC_TEMP(rank, reg, byte1, byte2, n) \ (((new[n] << EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## \ reg ## _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte1 ## _SHIFT) & \ EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ## \ _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte1 ## _MASK) \ | \ ((new[n + 1] << EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ##\ reg ## _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte2 ## _SHIFT) & \ EMC_PMACRO_OB_DDLL_LONG_DQ_RANK ## rank ## _ ## reg ## \ _OB_DDLL_LONG_DQ_RANK ## rank ## _BYTE ## byte2 ## _MASK)) #define REFRESH_SPEEDUP(value, speedup) \ (((value) & 0xffff0000) | ((value) & 0xffff) * (speedup)) #define LPDDR2_MR4_SRR GENMASK(2, 0) static const struct tegra210_emc_sequence *tegra210_emc_sequences[] = { &tegra210_emc_r21021, }; static const struct tegra210_emc_table_register_offsets tegra210_emc_table_register_offsets = { .burst = { EMC_RC, EMC_RFC, EMC_RFCPB, EMC_REFCTRL2, EMC_RFC_SLR, EMC_RAS, EMC_RP, EMC_R2W, EMC_W2R, EMC_R2P, EMC_W2P, EMC_R2R, EMC_TPPD, EMC_CCDMW, EMC_RD_RCD, EMC_WR_RCD, EMC_RRD, EMC_REXT, EMC_WEXT, EMC_WDV_CHK, EMC_WDV, EMC_WSV, EMC_WEV, EMC_WDV_MASK, EMC_WS_DURATION, EMC_WE_DURATION, EMC_QUSE, EMC_QUSE_WIDTH, EMC_IBDLY, EMC_OBDLY, EMC_EINPUT, EMC_MRW6, EMC_EINPUT_DURATION, EMC_PUTERM_EXTRA, EMC_PUTERM_WIDTH, EMC_QRST, EMC_QSAFE, EMC_RDV, EMC_RDV_MASK, EMC_RDV_EARLY, EMC_RDV_EARLY_MASK, EMC_REFRESH, EMC_BURST_REFRESH_NUM, EMC_PRE_REFRESH_REQ_CNT, EMC_PDEX2WR, EMC_PDEX2RD, EMC_PCHG2PDEN, EMC_ACT2PDEN, EMC_AR2PDEN, EMC_RW2PDEN, EMC_CKE2PDEN, EMC_PDEX2CKE, EMC_PDEX2MRR, EMC_TXSR, EMC_TXSRDLL, EMC_TCKE, EMC_TCKESR, EMC_TPD, EMC_TFAW, EMC_TRPAB, EMC_TCLKSTABLE, EMC_TCLKSTOP, EMC_MRW7, EMC_TREFBW, EMC_ODT_WRITE, EMC_FBIO_CFG5, EMC_FBIO_CFG7, EMC_CFG_DIG_DLL, EMC_CFG_DIG_DLL_PERIOD, EMC_PMACRO_IB_RXRT, EMC_CFG_PIPE_1, EMC_CFG_PIPE_2, EMC_PMACRO_QUSE_DDLL_RANK0_4, EMC_PMACRO_QUSE_DDLL_RANK0_5, EMC_PMACRO_QUSE_DDLL_RANK1_4, EMC_PMACRO_QUSE_DDLL_RANK1_5, EMC_MRW8, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_4, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_5, EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_0, EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_1, EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_2, EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_3, EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_4, EMC_PMACRO_OB_DDLL_LONG_DQS_RANK0_5, EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_0, EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_1, EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_2, EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_3, EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_4, EMC_PMACRO_OB_DDLL_LONG_DQS_RANK1_5, EMC_PMACRO_DDLL_LONG_CMD_0, EMC_PMACRO_DDLL_LONG_CMD_1, EMC_PMACRO_DDLL_LONG_CMD_2, EMC_PMACRO_DDLL_LONG_CMD_3, EMC_PMACRO_DDLL_LONG_CMD_4, EMC_PMACRO_DDLL_SHORT_CMD_0, EMC_PMACRO_DDLL_SHORT_CMD_1, EMC_PMACRO_DDLL_SHORT_CMD_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD0_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD1_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD2_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_CMD3_3, EMC_TXDSRVTTGEN, EMC_FDPD_CTRL_DQ, EMC_FDPD_CTRL_CMD, EMC_FBIO_SPARE, EMC_ZCAL_INTERVAL, EMC_ZCAL_WAIT_CNT, EMC_MRS_WAIT_CNT, EMC_MRS_WAIT_CNT2, EMC_AUTO_CAL_CHANNEL, EMC_DLL_CFG_0, EMC_DLL_CFG_1, EMC_PMACRO_AUTOCAL_CFG_COMMON, EMC_PMACRO_ZCTRL, EMC_CFG, EMC_CFG_PIPE, EMC_DYN_SELF_REF_CONTROL, EMC_QPOP, EMC_DQS_BRLSHFT_0, EMC_DQS_BRLSHFT_1, EMC_CMD_BRLSHFT_2, EMC_CMD_BRLSHFT_3, EMC_PMACRO_PAD_CFG_CTRL, EMC_PMACRO_DATA_PAD_RX_CTRL, EMC_PMACRO_CMD_PAD_RX_CTRL, EMC_PMACRO_DATA_RX_TERM_MODE, EMC_PMACRO_CMD_RX_TERM_MODE, EMC_PMACRO_CMD_PAD_TX_CTRL, EMC_PMACRO_DATA_PAD_TX_CTRL, EMC_PMACRO_COMMON_PAD_TX_CTRL, EMC_PMACRO_VTTGEN_CTRL_0, EMC_PMACRO_VTTGEN_CTRL_1, EMC_PMACRO_VTTGEN_CTRL_2, EMC_PMACRO_BRICK_CTRL_RFU1, EMC_PMACRO_CMD_BRICK_CTRL_FDPD, EMC_PMACRO_BRICK_CTRL_RFU2, EMC_PMACRO_DATA_BRICK_CTRL_FDPD, EMC_PMACRO_BG_BIAS_CTRL_0, EMC_CFG_3, EMC_PMACRO_TX_PWRD_0, EMC_PMACRO_TX_PWRD_1, EMC_PMACRO_TX_PWRD_2, EMC_PMACRO_TX_PWRD_3, EMC_PMACRO_TX_PWRD_4, EMC_PMACRO_TX_PWRD_5, EMC_CONFIG_SAMPLE_DELAY, EMC_PMACRO_TX_SEL_CLK_SRC_0, EMC_PMACRO_TX_SEL_CLK_SRC_1, EMC_PMACRO_TX_SEL_CLK_SRC_2, EMC_PMACRO_TX_SEL_CLK_SRC_3, EMC_PMACRO_TX_SEL_CLK_SRC_4, EMC_PMACRO_TX_SEL_CLK_SRC_5, EMC_PMACRO_DDLL_BYPASS, EMC_PMACRO_DDLL_PWRD_0, EMC_PMACRO_DDLL_PWRD_1, EMC_PMACRO_DDLL_PWRD_2, EMC_PMACRO_CMD_CTRL_0, EMC_PMACRO_CMD_CTRL_1, EMC_PMACRO_CMD_CTRL_2, EMC_TR_TIMING_0, EMC_TR_DVFS, EMC_TR_CTRL_1, EMC_TR_RDV, EMC_TR_QPOP, EMC_TR_RDV_MASK, EMC_MRW14, EMC_TR_QSAFE, EMC_TR_QRST, EMC_TRAINING_CTRL, EMC_TRAINING_SETTLE, EMC_TRAINING_VREF_SETTLE, EMC_TRAINING_CA_FINE_CTRL, EMC_TRAINING_CA_CTRL_MISC, EMC_TRAINING_CA_CTRL_MISC1, EMC_TRAINING_CA_VREF_CTRL, EMC_TRAINING_QUSE_CORS_CTRL, EMC_TRAINING_QUSE_FINE_CTRL, EMC_TRAINING_QUSE_CTRL_MISC, EMC_TRAINING_QUSE_VREF_CTRL, EMC_TRAINING_READ_FINE_CTRL, EMC_TRAINING_READ_CTRL_MISC, EMC_TRAINING_READ_VREF_CTRL, EMC_TRAINING_WRITE_FINE_CTRL, EMC_TRAINING_WRITE_CTRL_MISC, EMC_TRAINING_WRITE_VREF_CTRL, EMC_TRAINING_MPC, EMC_MRW15, }, .trim = { EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_0, EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_1, EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_2, EMC_PMACRO_IB_DDLL_LONG_DQS_RANK0_3, EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_0, EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_1, EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_2, EMC_PMACRO_IB_DDLL_LONG_DQS_RANK1_3, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_0, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_1, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE0_2, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_0, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_1, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE1_2, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_0, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_1, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE2_2, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_0, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_1, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE3_2, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_0, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_1, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE4_2, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_0, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_1, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE5_2, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_0, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_1, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE6_2, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_0, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_1, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK0_BYTE7_2, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_0, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_1, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE0_2, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_0, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_1, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE1_2, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_0, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_1, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE2_2, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_0, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_1, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE3_2, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_0, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_1, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE4_2, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_0, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_1, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE5_2, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_0, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_1, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE6_2, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_0, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_1, EMC_PMACRO_IB_DDLL_SHORT_DQ_RANK1_BYTE7_2, EMC_PMACRO_IB_VREF_DQS_0, EMC_PMACRO_IB_VREF_DQS_1, EMC_PMACRO_IB_VREF_DQ_0, EMC_PMACRO_IB_VREF_DQ_1, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_4, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_5, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2, EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE0_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE1_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE2_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE3_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE4_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE5_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE6_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_BYTE7_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD0_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD1_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD2_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK0_CMD3_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE0_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE1_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE2_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE3_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE4_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE5_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE6_2, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_0, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_1, EMC_PMACRO_OB_DDLL_SHORT_DQ_RANK1_BYTE7_2, EMC_PMACRO_QUSE_DDLL_RANK0_0, EMC_PMACRO_QUSE_DDLL_RANK0_1, EMC_PMACRO_QUSE_DDLL_RANK0_2, EMC_PMACRO_QUSE_DDLL_RANK0_3, EMC_PMACRO_QUSE_DDLL_RANK1_0, EMC_PMACRO_QUSE_DDLL_RANK1_1, EMC_PMACRO_QUSE_DDLL_RANK1_2, EMC_PMACRO_QUSE_DDLL_RANK1_3 }, .burst_mc = { MC_EMEM_ARB_CFG, MC_EMEM_ARB_OUTSTANDING_REQ, MC_EMEM_ARB_REFPB_HP_CTRL, MC_EMEM_ARB_REFPB_BANK_CTRL, MC_EMEM_ARB_TIMING_RCD, MC_EMEM_ARB_TIMING_RP, MC_EMEM_ARB_TIMING_RC, MC_EMEM_ARB_TIMING_RAS, MC_EMEM_ARB_TIMING_FAW, MC_EMEM_ARB_TIMING_RRD, MC_EMEM_ARB_TIMING_RAP2PRE, MC_EMEM_ARB_TIMING_WAP2PRE, MC_EMEM_ARB_TIMING_R2R, MC_EMEM_ARB_TIMING_W2W, MC_EMEM_ARB_TIMING_R2W, MC_EMEM_ARB_TIMING_CCDMW, MC_EMEM_ARB_TIMING_W2R, MC_EMEM_ARB_TIMING_RFCPB, MC_EMEM_ARB_DA_TURNS, MC_EMEM_ARB_DA_COVERS, MC_EMEM_ARB_MISC0, MC_EMEM_ARB_MISC1, MC_EMEM_ARB_MISC2, MC_EMEM_ARB_RING1_THROTTLE, MC_EMEM_ARB_DHYST_CTRL, MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_0, MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_1, MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_2, MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_3, MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_4, MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_5, MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_6, MC_EMEM_ARB_DHYST_TIMEOUT_UTIL_7, }, .la_scale = { MC_MLL_MPCORER_PTSA_RATE, MC_FTOP_PTSA_RATE, MC_PTSA_GRANT_DECREMENT, MC_LATENCY_ALLOWANCE_XUSB_0, MC_LATENCY_ALLOWANCE_XUSB_1, MC_LATENCY_ALLOWANCE_TSEC_0, MC_LATENCY_ALLOWANCE_SDMMCA_0, MC_LATENCY_ALLOWANCE_SDMMCAA_0, MC_LATENCY_ALLOWANCE_SDMMC_0, MC_LATENCY_ALLOWANCE_SDMMCAB_0, MC_LATENCY_ALLOWANCE_PPCS_0, MC_LATENCY_ALLOWANCE_PPCS_1, MC_LATENCY_ALLOWANCE_MPCORE_0, MC_LATENCY_ALLOWANCE_HC_0, MC_LATENCY_ALLOWANCE_HC_1, MC_LATENCY_ALLOWANCE_AVPC_0, MC_LATENCY_ALLOWANCE_GPU_0, MC_LATENCY_ALLOWANCE_GPU2_0, MC_LATENCY_ALLOWANCE_NVENC_0, MC_LATENCY_ALLOWANCE_NVDEC_0, MC_LATENCY_ALLOWANCE_VIC_0, MC_LATENCY_ALLOWANCE_VI2_0, MC_LATENCY_ALLOWANCE_ISP2_0, MC_LATENCY_ALLOWANCE_ISP2_1, }, .burst_per_channel = { { .bank = 0, .offset = EMC_MRW10, }, { .bank = 1, .offset = EMC_MRW10, }, { .bank = 0, .offset = EMC_MRW11, }, { .bank = 1, .offset = EMC_MRW11, }, { .bank = 0, .offset = EMC_MRW12, }, { .bank = 1, .offset = EMC_MRW12, }, { .bank = 0, .offset = EMC_MRW13, }, { .bank = 1, .offset = EMC_MRW13, }, }, .trim_per_channel = { { .bank = 0, .offset = EMC_CMD_BRLSHFT_0, }, { .bank = 1, .offset = EMC_CMD_BRLSHFT_1, }, { .bank = 0, .offset = EMC_DATA_BRLSHFT_0, }, { .bank = 1, .offset = EMC_DATA_BRLSHFT_0, }, { .bank = 0, .offset = EMC_DATA_BRLSHFT_1, }, { .bank = 1, .offset = EMC_DATA_BRLSHFT_1, }, { .bank = 0, .offset = EMC_QUSE_BRLSHFT_0, }, { .bank = 1, .offset = EMC_QUSE_BRLSHFT_1, }, { .bank = 0, .offset = EMC_QUSE_BRLSHFT_2, }, { .bank = 1, .offset = EMC_QUSE_BRLSHFT_3, }, }, .vref_per_channel = { { .bank = 0, .offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK0, }, { .bank = 1, .offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK0, }, { .bank = 0, .offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK1, }, { .bank = 1, .offset = EMC_TRAINING_OPT_DQS_IB_VREF_RANK1, }, }, }; static void tegra210_emc_train(struct timer_list *timer) { struct tegra210_emc *emc = from_timer(emc, timer, training); unsigned long flags; if (!emc->last) return; spin_lock_irqsave(&emc->lock, flags); if (emc->sequence->periodic_compensation) emc->sequence->periodic_compensation(emc); spin_unlock_irqrestore(&emc->lock, flags); mod_timer(&emc->training, jiffies + msecs_to_jiffies(emc->training_interval)); } static void tegra210_emc_training_start(struct tegra210_emc *emc) { mod_timer(&emc->training, jiffies + msecs_to_jiffies(emc->training_interval)); } static void tegra210_emc_training_stop(struct tegra210_emc *emc) { del_timer(&emc->training); } static unsigned int tegra210_emc_get_temperature(struct tegra210_emc *emc) { unsigned long flags; u32 value, max = 0; unsigned int i; spin_lock_irqsave(&emc->lock, flags); for (i = 0; i < emc->num_devices; i++) { value = tegra210_emc_mrr_read(emc, i, 4); if (value & BIT(7)) dev_dbg(emc->dev, "sensor reading changed for device %u: %08x\n", i, value); value = FIELD_GET(LPDDR2_MR4_SRR, value); if (value > max) max = value; } spin_unlock_irqrestore(&emc->lock, flags); return max; } static void tegra210_emc_poll_refresh(struct timer_list *timer) { struct tegra210_emc *emc = from_timer(emc, timer, refresh_timer); unsigned int temperature; if (!emc->debugfs.temperature) temperature = tegra210_emc_get_temperature(emc); else temperature = emc->debugfs.temperature; if (temperature == emc->temperature) goto reset; switch (temperature) { case 0 ... 3: /* temperature is fine, using regular refresh */ dev_dbg(emc->dev, "switching to nominal refresh...\n"); tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_NOMINAL); break; case 4: dev_dbg(emc->dev, "switching to 2x refresh...\n"); tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_2X); break; case 5: dev_dbg(emc->dev, "switching to 4x refresh...\n"); tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_4X); break; case 6 ... 7: dev_dbg(emc->dev, "switching to throttle refresh...\n"); tegra210_emc_set_refresh(emc, TEGRA210_EMC_REFRESH_THROTTLE); break; default: WARN(1, "invalid DRAM temperature state %u\n", temperature); return; } emc->temperature = temperature; reset: if (atomic_read(&emc->refresh_poll) > 0) { unsigned int interval = emc->refresh_poll_interval; unsigned int timeout = msecs_to_jiffies(interval); mod_timer(&emc->refresh_timer, jiffies + timeout); } } static void tegra210_emc_poll_refresh_stop(struct tegra210_emc *emc) { atomic_set(&emc->refresh_poll, 0); del_timer_sync(&emc->refresh_timer); } static void tegra210_emc_poll_refresh_start(struct tegra210_emc *emc) { atomic_set(&emc->refresh_poll, 1); mod_timer(&emc->refresh_timer, jiffies + msecs_to_jiffies(emc->refresh_poll_interval)); } static int tegra210_emc_cd_max_state(struct thermal_cooling_device *cd, unsigned long *state) { *state = 1; return 0; } static int tegra210_emc_cd_get_state(struct thermal_cooling_device *cd, unsigned long *state) { struct tegra210_emc *emc = cd->devdata; *state = atomic_read(&emc->refresh_poll); return 0; } static int tegra210_emc_cd_set_state(struct thermal_cooling_device *cd, unsigned long state) { struct tegra210_emc *emc = cd->devdata; if (state == atomic_read(&emc->refresh_poll)) return 0; if (state) tegra210_emc_poll_refresh_start(emc); else tegra210_emc_poll_refresh_stop(emc); return 0; } static const struct thermal_cooling_device_ops tegra210_emc_cd_ops = { .get_max_state = tegra210_emc_cd_max_state, .get_cur_state = tegra210_emc_cd_get_state, .set_cur_state = tegra210_emc_cd_set_state, }; static void tegra210_emc_set_clock(struct tegra210_emc *emc, u32 clksrc) { emc->sequence->set_clock(emc, clksrc); if (emc->next->periodic_training) tegra210_emc_training_start(emc); else tegra210_emc_training_stop(emc); } static void tegra210_change_dll_src(struct tegra210_emc *emc, u32 clksrc) { u32 dll_setting = emc->next->dll_clk_src; u32 emc_clk_src; u32 emc_clk_div; emc_clk_src = (clksrc & EMC_CLK_EMC_2X_CLK_SRC_MASK) >> EMC_CLK_EMC_2X_CLK_SRC_SHIFT; emc_clk_div = (clksrc & EMC_CLK_EMC_2X_CLK_DIVISOR_MASK) >> EMC_CLK_EMC_2X_CLK_DIVISOR_SHIFT; dll_setting &= ~(DLL_CLK_EMC_DLL_CLK_SRC_MASK | DLL_CLK_EMC_DLL_CLK_DIVISOR_MASK); dll_setting |= emc_clk_src << DLL_CLK_EMC_DLL_CLK_SRC_SHIFT; dll_setting |= emc_clk_div << DLL_CLK_EMC_DLL_CLK_DIVISOR_SHIFT; dll_setting &= ~DLL_CLK_EMC_DLL_DDLL_CLK_SEL_MASK; if (emc_clk_src == EMC_CLK_SOURCE_PLLMB_LJ) dll_setting |= (PLLM_VCOB << DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT); else if (emc_clk_src == EMC_CLK_SOURCE_PLLM_LJ) dll_setting |= (PLLM_VCOA << DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT); else dll_setting |= (EMC_DLL_SWITCH_OUT << DLL_CLK_EMC_DLL_DDLL_CLK_SEL_SHIFT); tegra210_clk_emc_dll_update_setting(dll_setting); if (emc->next->clk_out_enb_x_0_clk_enb_emc_dll) tegra210_clk_emc_dll_enable(true); else tegra210_clk_emc_dll_enable(false); } int tegra210_emc_set_refresh(struct tegra210_emc *emc, enum tegra210_emc_refresh refresh) { struct tegra210_emc_timing *timings; unsigned long flags; if ((emc->dram_type != DRAM_TYPE_LPDDR2 && emc->dram_type != DRAM_TYPE_LPDDR4) || !emc->last) return -ENODEV; if (refresh > TEGRA210_EMC_REFRESH_THROTTLE) return -EINVAL; if (refresh == emc->refresh) return 0; spin_lock_irqsave(&emc->lock, flags); if (refresh == TEGRA210_EMC_REFRESH_THROTTLE && emc->derated) timings = emc->derated; else timings = emc->nominal; if (timings != emc->timings) { unsigned int index = emc->last - emc->timings; u32 clksrc; clksrc = emc->provider.configs[index].value | EMC_CLK_FORCE_CC_TRIGGER; emc->next = &timings[index]; emc->timings = timings; tegra210_emc_set_clock(emc, clksrc); } else { tegra210_emc_adjust_timing(emc, emc->last); tegra210_emc_timing_update(emc); if (refresh != TEGRA210_EMC_REFRESH_NOMINAL) emc_writel(emc, EMC_REF_REF_CMD, EMC_REF); } spin_unlock_irqrestore(&emc->lock, flags); return 0; } u32 tegra210_emc_mrr_read(struct tegra210_emc *emc, unsigned int chip, unsigned int address) { u32 value, ret = 0; unsigned int i; value = (chip & EMC_MRR_DEV_SEL_MASK) << EMC_MRR_DEV_SEL_SHIFT | (address & EMC_MRR_MA_MASK) << EMC_MRR_MA_SHIFT; emc_writel(emc, value, EMC_MRR); for (i = 0; i < emc->num_channels; i++) WARN(tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, EMC_EMC_STATUS_MRR_DIVLD, 1), "Timed out waiting for MRR %u (ch=%u)\n", address, i); for (i = 0; i < emc->num_channels; i++) { value = emc_channel_readl(emc, i, EMC_MRR); value &= EMC_MRR_DATA_MASK; ret = (ret << 16) | value; } return ret; } void tegra210_emc_do_clock_change(struct tegra210_emc *emc, u32 clksrc) { int err; mc_readl(emc->mc, MC_EMEM_ADR_CFG); emc_readl(emc, EMC_INTSTATUS); tegra210_clk_emc_update_setting(clksrc); err = tegra210_emc_wait_for_update(emc, 0, EMC_INTSTATUS, EMC_INTSTATUS_CLKCHANGE_COMPLETE, true); if (err) dev_warn(emc->dev, "clock change completion error: %d\n", err); } struct tegra210_emc_timing *tegra210_emc_find_timing(struct tegra210_emc *emc, unsigned long rate) { unsigned int i; for (i = 0; i < emc->num_timings; i++) if (emc->timings[i].rate * 1000UL == rate) return &emc->timings[i]; return NULL; } int tegra210_emc_wait_for_update(struct tegra210_emc *emc, unsigned int channel, unsigned int offset, u32 bit_mask, bool state) { unsigned int i; u32 value; for (i = 0; i < EMC_STATUS_UPDATE_TIMEOUT; i++) { value = emc_channel_readl(emc, channel, offset); if (!!(value & bit_mask) == state) return 0; udelay(1); } return -ETIMEDOUT; } void tegra210_emc_set_shadow_bypass(struct tegra210_emc *emc, int set) { u32 emc_dbg = emc_readl(emc, EMC_DBG); if (set) emc_writel(emc, emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE, EMC_DBG); else emc_writel(emc, emc_dbg & ~EMC_DBG_WRITE_MUX_ACTIVE, EMC_DBG); } u32 tegra210_emc_get_dll_state(struct tegra210_emc_timing *next) { if (next->emc_emrs & 0x1) return 0; return 1; } void tegra210_emc_timing_update(struct tegra210_emc *emc) { unsigned int i; int err = 0; emc_writel(emc, 0x1, EMC_TIMING_CONTROL); for (i = 0; i < emc->num_channels; i++) { err |= tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, EMC_EMC_STATUS_TIMING_UPDATE_STALLED, false); } if (err) dev_warn(emc->dev, "timing update error: %d\n", err); } unsigned long tegra210_emc_actual_osc_clocks(u32 in) { if (in < 0x40) return in * 16; else if (in < 0x80) return 2048; else if (in < 0xc0) return 4096; else return 8192; } void tegra210_emc_start_periodic_compensation(struct tegra210_emc *emc) { u32 mpc_req = 0x4b; emc_writel(emc, mpc_req, EMC_MPC); mpc_req = emc_readl(emc, EMC_MPC); } u32 tegra210_emc_compensate(struct tegra210_emc_timing *next, u32 offset) { u32 temp = 0, rate = next->rate / 1000; s32 delta[4], delta_taps[4]; s32 new[] = { TRIM_REG(0, 0, 0, 0), TRIM_REG(0, 0, 0, 1), TRIM_REG(0, 0, 1, 2), TRIM_REG(0, 0, 1, 3), TRIM_REG(1, 0, 2, 4), TRIM_REG(1, 0, 2, 5), TRIM_REG(1, 0, 3, 6), TRIM_REG(1, 0, 3, 7), TRIM_REG(0, 1, 0, 0), TRIM_REG(0, 1, 0, 1), TRIM_REG(0, 1, 1, 2), TRIM_REG(0, 1, 1, 3), TRIM_REG(1, 1, 2, 4), TRIM_REG(1, 1, 2, 5), TRIM_REG(1, 1, 3, 6), TRIM_REG(1, 1, 3, 7) }; unsigned i; switch (offset) { case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0: case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1: case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2: case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3: case EMC_DATA_BRLSHFT_0: delta[0] = 128 * (next->current_dram_clktree[C0D0U0] - next->trained_dram_clktree[C0D0U0]); delta[1] = 128 * (next->current_dram_clktree[C0D0U1] - next->trained_dram_clktree[C0D0U1]); delta[2] = 128 * (next->current_dram_clktree[C1D0U0] - next->trained_dram_clktree[C1D0U0]); delta[3] = 128 * (next->current_dram_clktree[C1D0U1] - next->trained_dram_clktree[C1D0U1]); delta_taps[0] = (delta[0] * (s32)rate) / 1000000; delta_taps[1] = (delta[1] * (s32)rate) / 1000000; delta_taps[2] = (delta[2] * (s32)rate) / 1000000; delta_taps[3] = (delta[3] * (s32)rate) / 1000000; for (i = 0; i < 4; i++) { if ((delta_taps[i] > next->tree_margin) || (delta_taps[i] < (-1 * next->tree_margin))) { new[i * 2] = new[i * 2] + delta_taps[i]; new[i * 2 + 1] = new[i * 2 + 1] + delta_taps[i]; } } if (offset == EMC_DATA_BRLSHFT_0) { for (i = 0; i < 8; i++) new[i] = new[i] / 64; } else { for (i = 0; i < 8; i++) new[i] = new[i] % 64; } break; case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0: case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1: case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2: case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3: case EMC_DATA_BRLSHFT_1: delta[0] = 128 * (next->current_dram_clktree[C0D1U0] - next->trained_dram_clktree[C0D1U0]); delta[1] = 128 * (next->current_dram_clktree[C0D1U1] - next->trained_dram_clktree[C0D1U1]); delta[2] = 128 * (next->current_dram_clktree[C1D1U0] - next->trained_dram_clktree[C1D1U0]); delta[3] = 128 * (next->current_dram_clktree[C1D1U1] - next->trained_dram_clktree[C1D1U1]); delta_taps[0] = (delta[0] * (s32)rate) / 1000000; delta_taps[1] = (delta[1] * (s32)rate) / 1000000; delta_taps[2] = (delta[2] * (s32)rate) / 1000000; delta_taps[3] = (delta[3] * (s32)rate) / 1000000; for (i = 0; i < 4; i++) { if ((delta_taps[i] > next->tree_margin) || (delta_taps[i] < (-1 * next->tree_margin))) { new[8 + i * 2] = new[8 + i * 2] + delta_taps[i]; new[8 + i * 2 + 1] = new[8 + i * 2 + 1] + delta_taps[i]; } } if (offset == EMC_DATA_BRLSHFT_1) { for (i = 0; i < 8; i++) new[i + 8] = new[i + 8] / 64; } else { for (i = 0; i < 8; i++) new[i + 8] = new[i + 8] % 64; } break; } switch (offset) { case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0: temp = CALC_TEMP(0, 0, 0, 1, 0); break; case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1: temp = CALC_TEMP(0, 1, 2, 3, 2); break; case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2: temp = CALC_TEMP(0, 2, 4, 5, 4); break; case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3: temp = CALC_TEMP(0, 3, 6, 7, 6); break; case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0: temp = CALC_TEMP(1, 0, 0, 1, 8); break; case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1: temp = CALC_TEMP(1, 1, 2, 3, 10); break; case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2: temp = CALC_TEMP(1, 2, 4, 5, 12); break; case EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3: temp = CALC_TEMP(1, 3, 6, 7, 14); break; case EMC_DATA_BRLSHFT_0: temp = ((new[0] << EMC_DATA_BRLSHFT_0_RANK0_BYTE0_DATA_BRLSHFT_SHIFT) & EMC_DATA_BRLSHFT_0_RANK0_BYTE0_DATA_BRLSHFT_MASK) | ((new[1] << EMC_DATA_BRLSHFT_0_RANK0_BYTE1_DATA_BRLSHFT_SHIFT) & EMC_DATA_BRLSHFT_0_RANK0_BYTE1_DATA_BRLSHFT_MASK) | ((new[2] << EMC_DATA_BRLSHFT_0_RANK0_BYTE2_DATA_BRLSHFT_SHIFT) & EMC_DATA_BRLSHFT_0_RANK0_BYTE2_DATA_BRLSHFT_MASK) | ((new[3] << EMC_DATA_BRLSHFT_0_RANK0_BYTE3_DATA_BRLSHFT_SHIFT) & EMC_DATA_BRLSHFT_0_RANK0_BYTE3_DATA_BRLSHFT_MASK) | ((new[4] << EMC_DATA_BRLSHFT_0_RANK0_BYTE4_DATA_BRLSHFT_SHIFT) & EMC_DATA_BRLSHFT_0_RANK0_BYTE4_DATA_BRLSHFT_MASK) | ((new[5] << EMC_DATA_BRLSHFT_0_RANK0_BYTE5_DATA_BRLSHFT_SHIFT) & EMC_DATA_BRLSHFT_0_RANK0_BYTE5_DATA_BRLSHFT_MASK) | ((new[6] << EMC_DATA_BRLSHFT_0_RANK0_BYTE6_DATA_BRLSHFT_SHIFT) & EMC_DATA_BRLSHFT_0_RANK0_BYTE6_DATA_BRLSHFT_MASK) | ((new[7] << EMC_DATA_BRLSHFT_0_RANK0_BYTE7_DATA_BRLSHFT_SHIFT) & EMC_DATA_BRLSHFT_0_RANK0_BYTE7_DATA_BRLSHFT_MASK); break; case EMC_DATA_BRLSHFT_1: temp = ((new[8] << EMC_DATA_BRLSHFT_1_RANK1_BYTE0_DATA_BRLSHFT_SHIFT) & EMC_DATA_BRLSHFT_1_RANK1_BYTE0_DATA_BRLSHFT_MASK) | ((new[9] << EMC_DATA_BRLSHFT_1_RANK1_BYTE1_DATA_BRLSHFT_SHIFT) & EMC_DATA_BRLSHFT_1_RANK1_BYTE1_DATA_BRLSHFT_MASK) | ((new[10] << EMC_DATA_BRLSHFT_1_RANK1_BYTE2_DATA_BRLSHFT_SHIFT) & EMC_DATA_BRLSHFT_1_RANK1_BYTE2_DATA_BRLSHFT_MASK) | ((new[11] << EMC_DATA_BRLSHFT_1_RANK1_BYTE3_DATA_BRLSHFT_SHIFT) & EMC_DATA_BRLSHFT_1_RANK1_BYTE3_DATA_BRLSHFT_MASK) | ((new[12] << EMC_DATA_BRLSHFT_1_RANK1_BYTE4_DATA_BRLSHFT_SHIFT) & EMC_DATA_BRLSHFT_1_RANK1_BYTE4_DATA_BRLSHFT_MASK) | ((new[13] << EMC_DATA_BRLSHFT_1_RANK1_BYTE5_DATA_BRLSHFT_SHIFT) & EMC_DATA_BRLSHFT_1_RANK1_BYTE5_DATA_BRLSHFT_MASK) | ((new[14] << EMC_DATA_BRLSHFT_1_RANK1_BYTE6_DATA_BRLSHFT_SHIFT) & EMC_DATA_BRLSHFT_1_RANK1_BYTE6_DATA_BRLSHFT_MASK) | ((new[15] << EMC_DATA_BRLSHFT_1_RANK1_BYTE7_DATA_BRLSHFT_SHIFT) & EMC_DATA_BRLSHFT_1_RANK1_BYTE7_DATA_BRLSHFT_MASK); break; default: break; } return temp; } u32 tegra210_emc_dll_prelock(struct tegra210_emc *emc, u32 clksrc) { unsigned int i; u32 value; value = emc_readl(emc, EMC_CFG_DIG_DLL); value &= ~EMC_CFG_DIG_DLL_CFG_DLL_LOCK_LIMIT_MASK; value |= (3 << EMC_CFG_DIG_DLL_CFG_DLL_LOCK_LIMIT_SHIFT); value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN; value &= ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK; value |= (3 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT); value |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC; value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK; value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK; emc_writel(emc, value, EMC_CFG_DIG_DLL); emc_writel(emc, 1, EMC_TIMING_CONTROL); for (i = 0; i < emc->num_channels; i++) tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, EMC_EMC_STATUS_TIMING_UPDATE_STALLED, 0); for (i = 0; i < emc->num_channels; i++) { while (true) { value = emc_channel_readl(emc, i, EMC_CFG_DIG_DLL); if ((value & EMC_CFG_DIG_DLL_CFG_DLL_EN) == 0) break; } } value = emc->next->burst_regs[EMC_DLL_CFG_0_INDEX]; emc_writel(emc, value, EMC_DLL_CFG_0); value = emc_readl(emc, EMC_DLL_CFG_1); value &= EMC_DLL_CFG_1_DDLLCAL_CTRL_START_TRIM_MASK; if (emc->next->rate >= 400000 && emc->next->rate < 600000) value |= 150; else if (emc->next->rate >= 600000 && emc->next->rate < 800000) value |= 100; else if (emc->next->rate >= 800000 && emc->next->rate < 1000000) value |= 70; else if (emc->next->rate >= 1000000 && emc->next->rate < 1200000) value |= 30; else value |= 20; emc_writel(emc, value, EMC_DLL_CFG_1); tegra210_change_dll_src(emc, clksrc); value = emc_readl(emc, EMC_CFG_DIG_DLL); value |= EMC_CFG_DIG_DLL_CFG_DLL_EN; emc_writel(emc, value, EMC_CFG_DIG_DLL); tegra210_emc_timing_update(emc); for (i = 0; i < emc->num_channels; i++) { while (true) { value = emc_channel_readl(emc, 0, EMC_CFG_DIG_DLL); if (value & EMC_CFG_DIG_DLL_CFG_DLL_EN) break; } } while (true) { value = emc_readl(emc, EMC_DIG_DLL_STATUS); if ((value & EMC_DIG_DLL_STATUS_DLL_PRIV_UPDATED) == 0) continue; if ((value & EMC_DIG_DLL_STATUS_DLL_LOCK) == 0) continue; break; } value = emc_readl(emc, EMC_DIG_DLL_STATUS); return value & EMC_DIG_DLL_STATUS_DLL_OUT_MASK; } u32 tegra210_emc_dvfs_power_ramp_up(struct tegra210_emc *emc, u32 clk, bool flip_backward) { u32 cmd_pad, dq_pad, rfu1, cfg5, common_tx, ramp_up_wait = 0; const struct tegra210_emc_timing *timing; if (flip_backward) timing = emc->last; else timing = emc->next; cmd_pad = timing->burst_regs[EMC_PMACRO_CMD_PAD_TX_CTRL_INDEX]; dq_pad = timing->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX]; rfu1 = timing->burst_regs[EMC_PMACRO_BRICK_CTRL_RFU1_INDEX]; cfg5 = timing->burst_regs[EMC_FBIO_CFG5_INDEX]; common_tx = timing->burst_regs[EMC_PMACRO_COMMON_PAD_TX_CTRL_INDEX]; cmd_pad |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON; if (clk < 1000000 / DVFS_FGCG_MID_SPEED_THRESHOLD) { ccfifo_writel(emc, common_tx & 0xa, EMC_PMACRO_COMMON_PAD_TX_CTRL, 0); ccfifo_writel(emc, common_tx & 0xf, EMC_PMACRO_COMMON_PAD_TX_CTRL, (100000 / clk) + 1); ramp_up_wait += 100000; } else { ccfifo_writel(emc, common_tx | 0x8, EMC_PMACRO_COMMON_PAD_TX_CTRL, 0); } if (clk < 1000000 / DVFS_FGCG_HIGH_SPEED_THRESHOLD) { if (clk < 1000000 / IOBRICK_DCC_THRESHOLD) { cmd_pad |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC | EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC; cmd_pad &= ~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC | EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC); ccfifo_writel(emc, cmd_pad, EMC_PMACRO_CMD_PAD_TX_CTRL, (100000 / clk) + 1); ramp_up_wait += 100000; dq_pad |= EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC; dq_pad &= ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC); ccfifo_writel(emc, dq_pad, EMC_PMACRO_DATA_PAD_TX_CTRL, 0); ccfifo_writel(emc, rfu1 & 0xfe40fe40, EMC_PMACRO_BRICK_CTRL_RFU1, 0); } else { ccfifo_writel(emc, rfu1 & 0xfe40fe40, EMC_PMACRO_BRICK_CTRL_RFU1, (100000 / clk) + 1); ramp_up_wait += 100000; } ccfifo_writel(emc, rfu1 & 0xfeedfeed, EMC_PMACRO_BRICK_CTRL_RFU1, (100000 / clk) + 1); ramp_up_wait += 100000; if (clk < 1000000 / IOBRICK_DCC_THRESHOLD) { cmd_pad |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC | EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC | EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC | EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC; ccfifo_writel(emc, cmd_pad, EMC_PMACRO_CMD_PAD_TX_CTRL, (100000 / clk) + 1); ramp_up_wait += 100000; dq_pad |= EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC; ccfifo_writel(emc, dq_pad, EMC_PMACRO_DATA_PAD_TX_CTRL, 0); ccfifo_writel(emc, rfu1, EMC_PMACRO_BRICK_CTRL_RFU1, 0); } else { ccfifo_writel(emc, rfu1, EMC_PMACRO_BRICK_CTRL_RFU1, (100000 / clk) + 1); ramp_up_wait += 100000; } ccfifo_writel(emc, cfg5 & ~EMC_FBIO_CFG5_CMD_TX_DIS, EMC_FBIO_CFG5, (100000 / clk) + 10); ramp_up_wait += 100000 + (10 * clk); } else if (clk < 1000000 / DVFS_FGCG_MID_SPEED_THRESHOLD) { ccfifo_writel(emc, rfu1 | 0x06000600, EMC_PMACRO_BRICK_CTRL_RFU1, (100000 / clk) + 1); ccfifo_writel(emc, cfg5 & ~EMC_FBIO_CFG5_CMD_TX_DIS, EMC_FBIO_CFG5, (100000 / clk) + 10); ramp_up_wait += 100000 + 10 * clk; } else { ccfifo_writel(emc, rfu1 | 0x00000600, EMC_PMACRO_BRICK_CTRL_RFU1, 0); ccfifo_writel(emc, cfg5 & ~EMC_FBIO_CFG5_CMD_TX_DIS, EMC_FBIO_CFG5, 12); ramp_up_wait += 12 * clk; } cmd_pad &= ~EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON; ccfifo_writel(emc, cmd_pad, EMC_PMACRO_CMD_PAD_TX_CTRL, 5); return ramp_up_wait; } u32 tegra210_emc_dvfs_power_ramp_down(struct tegra210_emc *emc, u32 clk, bool flip_backward) { u32 ramp_down_wait = 0, cmd_pad, dq_pad, rfu1, cfg5, common_tx; const struct tegra210_emc_timing *entry; u32 seq_wait; if (flip_backward) entry = emc->next; else entry = emc->last; cmd_pad = entry->burst_regs[EMC_PMACRO_CMD_PAD_TX_CTRL_INDEX]; dq_pad = entry->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX]; rfu1 = entry->burst_regs[EMC_PMACRO_BRICK_CTRL_RFU1_INDEX]; cfg5 = entry->burst_regs[EMC_FBIO_CFG5_INDEX]; common_tx = entry->burst_regs[EMC_PMACRO_COMMON_PAD_TX_CTRL_INDEX]; cmd_pad |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON; ccfifo_writel(emc, cmd_pad, EMC_PMACRO_CMD_PAD_TX_CTRL, 0); ccfifo_writel(emc, cfg5 | EMC_FBIO_CFG5_CMD_TX_DIS, EMC_FBIO_CFG5, 12); ramp_down_wait = 12 * clk; seq_wait = (100000 / clk) + 1; if (clk < (1000000 / DVFS_FGCG_HIGH_SPEED_THRESHOLD)) { if (clk < (1000000 / IOBRICK_DCC_THRESHOLD)) { cmd_pad &= ~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC | EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC); cmd_pad |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC | EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC; ccfifo_writel(emc, cmd_pad, EMC_PMACRO_CMD_PAD_TX_CTRL, seq_wait); ramp_down_wait += 100000; dq_pad &= ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC); dq_pad |= EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC; ccfifo_writel(emc, dq_pad, EMC_PMACRO_DATA_PAD_TX_CTRL, 0); ccfifo_writel(emc, rfu1 & ~0x01120112, EMC_PMACRO_BRICK_CTRL_RFU1, 0); } else { ccfifo_writel(emc, rfu1 & ~0x01120112, EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait); ramp_down_wait += 100000; } ccfifo_writel(emc, rfu1 & ~0x01bf01bf, EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait); ramp_down_wait += 100000; if (clk < (1000000 / IOBRICK_DCC_THRESHOLD)) { cmd_pad &= ~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC | EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC | EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC | EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC); ccfifo_writel(emc, cmd_pad, EMC_PMACRO_CMD_PAD_TX_CTRL, seq_wait); ramp_down_wait += 100000; dq_pad &= ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC | EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC); ccfifo_writel(emc, dq_pad, EMC_PMACRO_DATA_PAD_TX_CTRL, 0); ccfifo_writel(emc, rfu1 & ~0x07ff07ff, EMC_PMACRO_BRICK_CTRL_RFU1, 0); } else { ccfifo_writel(emc, rfu1 & ~0x07ff07ff, EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait); ramp_down_wait += 100000; } } else { ccfifo_writel(emc, rfu1 & ~0xffff07ff, EMC_PMACRO_BRICK_CTRL_RFU1, seq_wait + 19); ramp_down_wait += 100000 + (20 * clk); } if (clk < (1000000 / DVFS_FGCG_MID_SPEED_THRESHOLD)) { ramp_down_wait += 100000; ccfifo_writel(emc, common_tx & ~0x5, EMC_PMACRO_COMMON_PAD_TX_CTRL, seq_wait); ramp_down_wait += 100000; ccfifo_writel(emc, common_tx & ~0xf, EMC_PMACRO_COMMON_PAD_TX_CTRL, seq_wait); ramp_down_wait += 100000; ccfifo_writel(emc, 0, 0, seq_wait); ramp_down_wait += 100000; } else { ccfifo_writel(emc, common_tx & ~0xf, EMC_PMACRO_COMMON_PAD_TX_CTRL, seq_wait); } return ramp_down_wait; } void tegra210_emc_reset_dram_clktree_values(struct tegra210_emc_timing *timing) { timing->current_dram_clktree[C0D0U0] = timing->trained_dram_clktree[C0D0U0]; timing->current_dram_clktree[C0D0U1] = timing->trained_dram_clktree[C0D0U1]; timing->current_dram_clktree[C1D0U0] = timing->trained_dram_clktree[C1D0U0]; timing->current_dram_clktree[C1D0U1] = timing->trained_dram_clktree[C1D0U1]; timing->current_dram_clktree[C1D1U0] = timing->trained_dram_clktree[C1D1U0]; timing->current_dram_clktree[C1D1U1] = timing->trained_dram_clktree[C1D1U1]; } static void update_dll_control(struct tegra210_emc *emc, u32 value, bool state) { unsigned int i; emc_writel(emc, value, EMC_CFG_DIG_DLL); tegra210_emc_timing_update(emc); for (i = 0; i < emc->num_channels; i++) tegra210_emc_wait_for_update(emc, i, EMC_CFG_DIG_DLL, EMC_CFG_DIG_DLL_CFG_DLL_EN, state); } void tegra210_emc_dll_disable(struct tegra210_emc *emc) { u32 value; value = emc_readl(emc, EMC_CFG_DIG_DLL); value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN; update_dll_control(emc, value, false); } void tegra210_emc_dll_enable(struct tegra210_emc *emc) { u32 value; value = emc_readl(emc, EMC_CFG_DIG_DLL); value |= EMC_CFG_DIG_DLL_CFG_DLL_EN; update_dll_control(emc, value, true); } void tegra210_emc_adjust_timing(struct tegra210_emc *emc, struct tegra210_emc_timing *timing) { u32 dsr_cntrl = timing->burst_regs[EMC_DYN_SELF_REF_CONTROL_INDEX]; u32 pre_ref = timing->burst_regs[EMC_PRE_REFRESH_REQ_CNT_INDEX]; u32 ref = timing->burst_regs[EMC_REFRESH_INDEX]; switch (emc->refresh) { case TEGRA210_EMC_REFRESH_NOMINAL: case TEGRA210_EMC_REFRESH_THROTTLE: break; case TEGRA210_EMC_REFRESH_2X: ref = REFRESH_SPEEDUP(ref, 2); pre_ref = REFRESH_SPEEDUP(pre_ref, 2); dsr_cntrl = REFRESH_SPEEDUP(dsr_cntrl, 2); break; case TEGRA210_EMC_REFRESH_4X: ref = REFRESH_SPEEDUP(ref, 4); pre_ref = REFRESH_SPEEDUP(pre_ref, 4); dsr_cntrl = REFRESH_SPEEDUP(dsr_cntrl, 4); break; default: dev_warn(emc->dev, "failed to set refresh: %d\n", emc->refresh); return; } emc_writel(emc, ref, emc->offsets->burst[EMC_REFRESH_INDEX]); emc_writel(emc, pre_ref, emc->offsets->burst[EMC_PRE_REFRESH_REQ_CNT_INDEX]); emc_writel(emc, dsr_cntrl, emc->offsets->burst[EMC_DYN_SELF_REF_CONTROL_INDEX]); } static int tegra210_emc_set_rate(struct device *dev, const struct tegra210_clk_emc_config *config) { struct tegra210_emc *emc = dev_get_drvdata(dev); struct tegra210_emc_timing *timing = NULL; unsigned long rate = config->rate; s64 last_change_delay; unsigned long flags; unsigned int i; if (rate == emc->last->rate * 1000UL) return 0; for (i = 0; i < emc->num_timings; i++) { if (emc->timings[i].rate * 1000UL == rate) { timing = &emc->timings[i]; break; } } if (!timing) return -EINVAL; if (rate > 204000000 && !timing->trained) return -EINVAL; emc->next = timing; last_change_delay = ktime_us_delta(ktime_get(), emc->clkchange_time); /* XXX use non-busy-looping sleep? */ if ((last_change_delay >= 0) && (last_change_delay < emc->clkchange_delay)) udelay(emc->clkchange_delay - (int)last_change_delay); spin_lock_irqsave(&emc->lock, flags); tegra210_emc_set_clock(emc, config->value); emc->clkchange_time = ktime_get(); emc->last = timing; spin_unlock_irqrestore(&emc->lock, flags); return 0; } /* * debugfs interface * * The memory controller driver exposes some files in debugfs that can be used * to control the EMC frequency. The top-level directory can be found here: * * /sys/kernel/debug/emc * * It contains the following files: * * - available_rates: This file contains a list of valid, space-separated * EMC frequencies. * * - min_rate: Writing a value to this file sets the given frequency as the * floor of the permitted range. If this is higher than the currently * configured EMC frequency, this will cause the frequency to be * increased so that it stays within the valid range. * * - max_rate: Similarily to the min_rate file, writing a value to this file * sets the given frequency as the ceiling of the permitted range. If * the value is lower than the currently configured EMC frequency, this * will cause the frequency to be decreased so that it stays within the * valid range. */ static bool tegra210_emc_validate_rate(struct tegra210_emc *emc, unsigned long rate) { unsigned int i; for (i = 0; i < emc->num_timings; i++) if (rate == emc->timings[i].rate * 1000UL) return true; return false; } static int tegra210_emc_debug_available_rates_show(struct seq_file *s, void *data) { struct tegra210_emc *emc = s->private; const char *prefix = ""; unsigned int i; for (i = 0; i < emc->num_timings; i++) { seq_printf(s, "%s%u", prefix, emc->timings[i].rate * 1000); prefix = " "; } seq_puts(s, "\n"); return 0; } DEFINE_SHOW_ATTRIBUTE(tegra210_emc_debug_available_rates); static int tegra210_emc_debug_min_rate_get(void *data, u64 *rate) { struct tegra210_emc *emc = data; *rate = emc->debugfs.min_rate; return 0; } static int tegra210_emc_debug_min_rate_set(void *data, u64 rate) { struct tegra210_emc *emc = data; int err; if (!tegra210_emc_validate_rate(emc, rate)) return -EINVAL; err = clk_set_min_rate(emc->clk, rate); if (err < 0) return err; emc->debugfs.min_rate = rate; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(tegra210_emc_debug_min_rate_fops, tegra210_emc_debug_min_rate_get, tegra210_emc_debug_min_rate_set, "%llu\n"); static int tegra210_emc_debug_max_rate_get(void *data, u64 *rate) { struct tegra210_emc *emc = data; *rate = emc->debugfs.max_rate; return 0; } static int tegra210_emc_debug_max_rate_set(void *data, u64 rate) { struct tegra210_emc *emc = data; int err; if (!tegra210_emc_validate_rate(emc, rate)) return -EINVAL; err = clk_set_max_rate(emc->clk, rate); if (err < 0) return err; emc->debugfs.max_rate = rate; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(tegra210_emc_debug_max_rate_fops, tegra210_emc_debug_max_rate_get, tegra210_emc_debug_max_rate_set, "%llu\n"); static int tegra210_emc_debug_temperature_get(void *data, u64 *temperature) { struct tegra210_emc *emc = data; unsigned int value; if (!emc->debugfs.temperature) value = tegra210_emc_get_temperature(emc); else value = emc->debugfs.temperature; *temperature = value; return 0; } static int tegra210_emc_debug_temperature_set(void *data, u64 temperature) { struct tegra210_emc *emc = data; if (temperature > 7) return -EINVAL; emc->debugfs.temperature = temperature; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(tegra210_emc_debug_temperature_fops, tegra210_emc_debug_temperature_get, tegra210_emc_debug_temperature_set, "%llu\n"); static void tegra210_emc_debugfs_init(struct tegra210_emc *emc) { struct device *dev = emc->dev; unsigned int i; int err; emc->debugfs.min_rate = ULONG_MAX; emc->debugfs.max_rate = 0; for (i = 0; i < emc->num_timings; i++) { if (emc->timings[i].rate * 1000UL < emc->debugfs.min_rate) emc->debugfs.min_rate = emc->timings[i].rate * 1000UL; if (emc->timings[i].rate * 1000UL > emc->debugfs.max_rate) emc->debugfs.max_rate = emc->timings[i].rate * 1000UL; } if (!emc->num_timings) { emc->debugfs.min_rate = clk_get_rate(emc->clk); emc->debugfs.max_rate = emc->debugfs.min_rate; } err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate, emc->debugfs.max_rate); if (err < 0) { dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n", emc->debugfs.min_rate, emc->debugfs.max_rate, emc->clk); return; } emc->debugfs.root = debugfs_create_dir("emc", NULL); debugfs_create_file("available_rates", 0444, emc->debugfs.root, emc, &tegra210_emc_debug_available_rates_fops); debugfs_create_file("min_rate", 0644, emc->debugfs.root, emc, &tegra210_emc_debug_min_rate_fops); debugfs_create_file("max_rate", 0644, emc->debugfs.root, emc, &tegra210_emc_debug_max_rate_fops); debugfs_create_file("temperature", 0644, emc->debugfs.root, emc, &tegra210_emc_debug_temperature_fops); } static void tegra210_emc_detect(struct tegra210_emc *emc) { u32 value; /* probe the number of connected DRAM devices */ value = mc_readl(emc->mc, MC_EMEM_ADR_CFG); if (value & MC_EMEM_ADR_CFG_EMEM_NUMDEV) emc->num_devices = 2; else emc->num_devices = 1; /* probe the type of DRAM */ value = emc_readl(emc, EMC_FBIO_CFG5); emc->dram_type = value & 0x3; /* probe the number of channels */ value = emc_readl(emc, EMC_FBIO_CFG7); if ((value & EMC_FBIO_CFG7_CH1_ENABLE) && (value & EMC_FBIO_CFG7_CH0_ENABLE)) emc->num_channels = 2; else emc->num_channels = 1; } static int tegra210_emc_validate_timings(struct tegra210_emc *emc, struct tegra210_emc_timing *timings, unsigned int num_timings) { unsigned int i; for (i = 0; i < num_timings; i++) { u32 min_volt = timings[i].min_volt; u32 rate = timings[i].rate; if (!rate) return -EINVAL; if ((i > 0) && ((rate <= timings[i - 1].rate) || (min_volt < timings[i - 1].min_volt))) return -EINVAL; if (timings[i].revision != timings[0].revision) continue; } return 0; } static int tegra210_emc_probe(struct platform_device *pdev) { struct thermal_cooling_device *cd; unsigned long current_rate; struct tegra210_emc *emc; struct device_node *np; unsigned int i; int err; emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL); if (!emc) return -ENOMEM; emc->clk = devm_clk_get(&pdev->dev, "emc"); if (IS_ERR(emc->clk)) return PTR_ERR(emc->clk); platform_set_drvdata(pdev, emc); spin_lock_init(&emc->lock); emc->dev = &pdev->dev; emc->mc = devm_tegra_memory_controller_get(&pdev->dev); if (IS_ERR(emc->mc)) return PTR_ERR(emc->mc); emc->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(emc->regs)) return PTR_ERR(emc->regs); for (i = 0; i < 2; i++) { emc->channel[i] = devm_platform_ioremap_resource(pdev, 1 + i); if (IS_ERR(emc->channel[i])) return PTR_ERR(emc->channel[i]); } tegra210_emc_detect(emc); np = pdev->dev.of_node; /* attach to the nominal and (optional) derated tables */ err = of_reserved_mem_device_init_by_name(emc->dev, np, "nominal"); if (err < 0) { dev_err(emc->dev, "failed to get nominal EMC table: %d\n", err); return err; } err = of_reserved_mem_device_init_by_name(emc->dev, np, "derated"); if (err < 0 && err != -ENODEV) { dev_err(emc->dev, "failed to get derated EMC table: %d\n", err); goto release; } /* validate the tables */ if (emc->nominal) { err = tegra210_emc_validate_timings(emc, emc->nominal, emc->num_timings); if (err < 0) goto release; } if (emc->derated) { err = tegra210_emc_validate_timings(emc, emc->derated, emc->num_timings); if (err < 0) goto release; } /* default to the nominal table */ emc->timings = emc->nominal; /* pick the current timing based on the current EMC clock rate */ current_rate = clk_get_rate(emc->clk) / 1000; for (i = 0; i < emc->num_timings; i++) { if (emc->timings[i].rate == current_rate) { emc->last = &emc->timings[i]; break; } } if (i == emc->num_timings) { dev_err(emc->dev, "no EMC table entry found for %lu kHz\n", current_rate); err = -ENOENT; goto release; } /* pick a compatible clock change sequence for the EMC table */ for (i = 0; i < ARRAY_SIZE(tegra210_emc_sequences); i++) { const struct tegra210_emc_sequence *sequence = tegra210_emc_sequences[i]; if (emc->timings[0].revision == sequence->revision) { emc->sequence = sequence; break; } } if (!emc->sequence) { dev_err(&pdev->dev, "sequence %u not supported\n", emc->timings[0].revision); err = -ENOTSUPP; goto release; } emc->offsets = &tegra210_emc_table_register_offsets; emc->refresh = TEGRA210_EMC_REFRESH_NOMINAL; emc->provider.owner = THIS_MODULE; emc->provider.dev = &pdev->dev; emc->provider.set_rate = tegra210_emc_set_rate; emc->provider.configs = devm_kcalloc(&pdev->dev, emc->num_timings, sizeof(*emc->provider.configs), GFP_KERNEL); if (!emc->provider.configs) { err = -ENOMEM; goto release; } emc->provider.num_configs = emc->num_timings; for (i = 0; i < emc->provider.num_configs; i++) { struct tegra210_emc_timing *timing = &emc->timings[i]; struct tegra210_clk_emc_config *config = &emc->provider.configs[i]; u32 value; config->rate = timing->rate * 1000UL; config->value = timing->clk_src_emc; value = timing->burst_mc_regs[MC_EMEM_ARB_MISC0_INDEX]; if ((value & MC_EMEM_ARB_MISC0_EMC_SAME_FREQ) == 0) config->same_freq = false; else config->same_freq = true; } err = tegra210_clk_emc_attach(emc->clk, &emc->provider); if (err < 0) { dev_err(&pdev->dev, "failed to attach to EMC clock: %d\n", err); goto release; } emc->clkchange_delay = 100; emc->training_interval = 100; dev_set_drvdata(emc->dev, emc); timer_setup(&emc->refresh_timer, tegra210_emc_poll_refresh, TIMER_DEFERRABLE); atomic_set(&emc->refresh_poll, 0); emc->refresh_poll_interval = 1000; timer_setup(&emc->training, tegra210_emc_train, 0); tegra210_emc_debugfs_init(emc); cd = devm_thermal_of_cooling_device_register(emc->dev, np, "emc", emc, &tegra210_emc_cd_ops); if (IS_ERR(cd)) { err = PTR_ERR(cd); dev_err(emc->dev, "failed to register cooling device: %d\n", err); goto detach; } return 0; detach: debugfs_remove_recursive(emc->debugfs.root); tegra210_clk_emc_detach(emc->clk); release: of_reserved_mem_device_release(emc->dev); return err; } static void tegra210_emc_remove(struct platform_device *pdev) { struct tegra210_emc *emc = platform_get_drvdata(pdev); debugfs_remove_recursive(emc->debugfs.root); tegra210_clk_emc_detach(emc->clk); of_reserved_mem_device_release(emc->dev); } static int __maybe_unused tegra210_emc_suspend(struct device *dev) { struct tegra210_emc *emc = dev_get_drvdata(dev); int err; err = clk_rate_exclusive_get(emc->clk); if (err < 0) { dev_err(emc->dev, "failed to acquire clock: %d\n", err); return err; } emc->resume_rate = clk_get_rate(emc->clk); clk_set_rate(emc->clk, 204000000); tegra210_clk_emc_detach(emc->clk); dev_dbg(dev, "suspending at %lu Hz\n", clk_get_rate(emc->clk)); return 0; } static int __maybe_unused tegra210_emc_resume(struct device *dev) { struct tegra210_emc *emc = dev_get_drvdata(dev); int err; err = tegra210_clk_emc_attach(emc->clk, &emc->provider); if (err < 0) { dev_err(dev, "failed to attach to EMC clock: %d\n", err); return err; } clk_set_rate(emc->clk, emc->resume_rate); clk_rate_exclusive_put(emc->clk); dev_dbg(dev, "resuming at %lu Hz\n", clk_get_rate(emc->clk)); return 0; } static const struct dev_pm_ops tegra210_emc_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(tegra210_emc_suspend, tegra210_emc_resume) }; static const struct of_device_id tegra210_emc_of_match[] = { { .compatible = "nvidia,tegra210-emc", }, { }, }; MODULE_DEVICE_TABLE(of, tegra210_emc_of_match); static struct platform_driver tegra210_emc_driver = { .driver = { .name = "tegra210-emc", .of_match_table = tegra210_emc_of_match, .pm = &tegra210_emc_pm_ops, }, .probe = tegra210_emc_probe, .remove_new = tegra210_emc_remove, }; module_platform_driver(tegra210_emc_driver); MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>"); MODULE_AUTHOR("Joseph Lo <josephl@nvidia.com>"); MODULE_DESCRIPTION("NVIDIA Tegra210 EMC driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1