Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dmitry Osipenko | 6775 | 90.83% | 18 | 54.55% |
Thierry Reding | 446 | 5.98% | 4 | 12.12% |
Hiroshi Doyu | 155 | 2.08% | 4 | 12.12% |
Mikko Perttunen | 65 | 0.87% | 1 | 3.03% |
Johan Hovold | 10 | 0.13% | 1 | 3.03% |
Liu Shixin | 3 | 0.04% | 1 | 3.03% |
jing yangyang | 2 | 0.03% | 1 | 3.03% |
Sachin Kamat | 1 | 0.01% | 1 | 3.03% |
Krzysztof Kozlowski | 1 | 0.01% | 1 | 3.03% |
Rob Herring | 1 | 0.01% | 1 | 3.03% |
Total | 7459 | 33 |
// SPDX-License-Identifier: GPL-2.0+ /* * Tegra30 External Memory Controller driver * * Based on downstream driver from NVIDIA and tegra124-emc.c * Copyright (C) 2011-2014 NVIDIA Corporation * * Author: Dmitry Osipenko <digetx@gmail.com> * Copyright (C) 2019 GRATE-DRIVER project */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/clk/tegra.h> #include <linux/debugfs.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/interconnect-provider.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_opp.h> #include <linux/slab.h> #include <linux/sort.h> #include <linux/types.h> #include <soc/tegra/common.h> #include <soc/tegra/fuse.h> #include "../jedec_ddr.h" #include "../of_memory.h" #include "mc.h" #define EMC_INTSTATUS 0x000 #define EMC_INTMASK 0x004 #define EMC_DBG 0x008 #define EMC_ADR_CFG 0x010 #define EMC_CFG 0x00c #define EMC_REFCTRL 0x020 #define EMC_TIMING_CONTROL 0x028 #define EMC_RC 0x02c #define EMC_RFC 0x030 #define EMC_RAS 0x034 #define EMC_RP 0x038 #define EMC_R2W 0x03c #define EMC_W2R 0x040 #define EMC_R2P 0x044 #define EMC_W2P 0x048 #define EMC_RD_RCD 0x04c #define EMC_WR_RCD 0x050 #define EMC_RRD 0x054 #define EMC_REXT 0x058 #define EMC_WDV 0x05c #define EMC_QUSE 0x060 #define EMC_QRST 0x064 #define EMC_QSAFE 0x068 #define EMC_RDV 0x06c #define EMC_REFRESH 0x070 #define EMC_BURST_REFRESH_NUM 0x074 #define EMC_PDEX2WR 0x078 #define EMC_PDEX2RD 0x07c #define EMC_PCHG2PDEN 0x080 #define EMC_ACT2PDEN 0x084 #define EMC_AR2PDEN 0x088 #define EMC_RW2PDEN 0x08c #define EMC_TXSR 0x090 #define EMC_TCKE 0x094 #define EMC_TFAW 0x098 #define EMC_TRPAB 0x09c #define EMC_TCLKSTABLE 0x0a0 #define EMC_TCLKSTOP 0x0a4 #define EMC_TREFBW 0x0a8 #define EMC_QUSE_EXTRA 0x0ac #define EMC_ODT_WRITE 0x0b0 #define EMC_ODT_READ 0x0b4 #define EMC_WEXT 0x0b8 #define EMC_CTT 0x0bc #define EMC_MRS_WAIT_CNT 0x0c8 #define EMC_MRS 0x0cc #define EMC_EMRS 0x0d0 #define EMC_SELF_REF 0x0e0 #define EMC_MRW 0x0e8 #define EMC_MRR 0x0ec #define EMC_XM2DQSPADCTRL3 0x0f8 #define EMC_FBIO_SPARE 0x100 #define EMC_FBIO_CFG5 0x104 #define EMC_FBIO_CFG6 0x114 #define EMC_CFG_RSV 0x120 #define EMC_AUTO_CAL_CONFIG 0x2a4 #define EMC_AUTO_CAL_INTERVAL 0x2a8 #define EMC_AUTO_CAL_STATUS 0x2ac #define EMC_STATUS 0x2b4 #define EMC_CFG_2 0x2b8 #define EMC_CFG_DIG_DLL 0x2bc #define EMC_CFG_DIG_DLL_PERIOD 0x2c0 #define EMC_CTT_DURATION 0x2d8 #define EMC_CTT_TERM_CTRL 0x2dc #define EMC_ZCAL_INTERVAL 0x2e0 #define EMC_ZCAL_WAIT_CNT 0x2e4 #define EMC_ZQ_CAL 0x2ec #define EMC_XM2CMDPADCTRL 0x2f0 #define EMC_XM2DQSPADCTRL2 0x2fc #define EMC_XM2DQPADCTRL2 0x304 #define EMC_XM2CLKPADCTRL 0x308 #define EMC_XM2COMPPADCTRL 0x30c #define EMC_XM2VTTGENPADCTRL 0x310 #define EMC_XM2VTTGENPADCTRL2 0x314 #define EMC_XM2QUSEPADCTRL 0x318 #define EMC_DLL_XFORM_DQS0 0x328 #define EMC_DLL_XFORM_DQS1 0x32c #define EMC_DLL_XFORM_DQS2 0x330 #define EMC_DLL_XFORM_DQS3 0x334 #define EMC_DLL_XFORM_DQS4 0x338 #define EMC_DLL_XFORM_DQS5 0x33c #define EMC_DLL_XFORM_DQS6 0x340 #define EMC_DLL_XFORM_DQS7 0x344 #define EMC_DLL_XFORM_QUSE0 0x348 #define EMC_DLL_XFORM_QUSE1 0x34c #define EMC_DLL_XFORM_QUSE2 0x350 #define EMC_DLL_XFORM_QUSE3 0x354 #define EMC_DLL_XFORM_QUSE4 0x358 #define EMC_DLL_XFORM_QUSE5 0x35c #define EMC_DLL_XFORM_QUSE6 0x360 #define EMC_DLL_XFORM_QUSE7 0x364 #define EMC_DLL_XFORM_DQ0 0x368 #define EMC_DLL_XFORM_DQ1 0x36c #define EMC_DLL_XFORM_DQ2 0x370 #define EMC_DLL_XFORM_DQ3 0x374 #define EMC_DLI_TRIM_TXDQS0 0x3a8 #define EMC_DLI_TRIM_TXDQS1 0x3ac #define EMC_DLI_TRIM_TXDQS2 0x3b0 #define EMC_DLI_TRIM_TXDQS3 0x3b4 #define EMC_DLI_TRIM_TXDQS4 0x3b8 #define EMC_DLI_TRIM_TXDQS5 0x3bc #define EMC_DLI_TRIM_TXDQS6 0x3c0 #define EMC_DLI_TRIM_TXDQS7 0x3c4 #define EMC_STALL_THEN_EXE_BEFORE_CLKCHANGE 0x3c8 #define EMC_STALL_THEN_EXE_AFTER_CLKCHANGE 0x3cc #define EMC_UNSTALL_RW_AFTER_CLKCHANGE 0x3d0 #define EMC_SEL_DPD_CTRL 0x3d8 #define EMC_PRE_REFRESH_REQ_CNT 0x3dc #define EMC_DYN_SELF_REF_CONTROL 0x3e0 #define EMC_TXSRDLL 0x3e4 #define EMC_STATUS_TIMING_UPDATE_STALLED BIT(23) #define EMC_MODE_SET_DLL_RESET BIT(8) #define EMC_MODE_SET_LONG_CNT BIT(26) #define EMC_SELF_REF_CMD_ENABLED BIT(0) #define DRAM_DEV_SEL_ALL (0 << 30) #define DRAM_DEV_SEL_0 BIT(31) #define DRAM_DEV_SEL_1 BIT(30) #define DRAM_BROADCAST(num) \ ((num) > 1 ? DRAM_DEV_SEL_ALL : DRAM_DEV_SEL_0) #define EMC_ZQ_CAL_CMD BIT(0) #define EMC_ZQ_CAL_LONG BIT(4) #define EMC_ZQ_CAL_LONG_CMD_DEV0 \ (DRAM_DEV_SEL_0 | EMC_ZQ_CAL_LONG | EMC_ZQ_CAL_CMD) #define EMC_ZQ_CAL_LONG_CMD_DEV1 \ (DRAM_DEV_SEL_1 | EMC_ZQ_CAL_LONG | EMC_ZQ_CAL_CMD) #define EMC_DBG_READ_MUX_ASSEMBLY BIT(0) #define EMC_DBG_WRITE_MUX_ACTIVE BIT(1) #define EMC_DBG_FORCE_UPDATE BIT(2) #define EMC_DBG_CFG_PRIORITY BIT(24) #define EMC_CFG5_QUSE_MODE_SHIFT 13 #define EMC_CFG5_QUSE_MODE_MASK (7 << EMC_CFG5_QUSE_MODE_SHIFT) #define EMC_CFG5_QUSE_MODE_INTERNAL_LPBK 2 #define EMC_CFG5_QUSE_MODE_PULSE_INTERN 3 #define EMC_SEL_DPD_CTRL_QUSE_DPD_ENABLE BIT(9) #define EMC_XM2COMPPADCTRL_VREF_CAL_ENABLE BIT(10) #define EMC_XM2QUSEPADCTRL_IVREF_ENABLE BIT(4) #define EMC_XM2DQSPADCTRL2_VREF_ENABLE BIT(5) #define EMC_XM2DQSPADCTRL3_VREF_ENABLE BIT(5) #define EMC_AUTO_CAL_STATUS_ACTIVE BIT(31) #define EMC_FBIO_CFG5_DRAM_TYPE_MASK 0x3 #define EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK 0x3ff #define EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT 16 #define EMC_MRS_WAIT_CNT_LONG_WAIT_MASK \ (0x3ff << EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT) #define EMC_REFCTRL_DEV_SEL_MASK 0x3 #define EMC_REFCTRL_ENABLE BIT(31) #define EMC_REFCTRL_ENABLE_ALL(num) \ (((num) > 1 ? 0 : 2) | EMC_REFCTRL_ENABLE) #define EMC_REFCTRL_DISABLE_ALL(num) ((num) > 1 ? 0 : 2) #define EMC_CFG_PERIODIC_QRST BIT(21) #define EMC_CFG_DYN_SREF_ENABLE BIT(28) #define EMC_CLKCHANGE_REQ_ENABLE BIT(0) #define EMC_CLKCHANGE_PD_ENABLE BIT(1) #define EMC_CLKCHANGE_SR_ENABLE BIT(2) #define EMC_TIMING_UPDATE BIT(0) #define EMC_REFRESH_OVERFLOW_INT BIT(3) #define EMC_CLKCHANGE_COMPLETE_INT BIT(4) #define EMC_MRR_DIVLD_INT BIT(5) #define EMC_MRR_DEV_SELECTN GENMASK(31, 30) #define EMC_MRR_MRR_MA GENMASK(23, 16) #define EMC_MRR_MRR_DATA GENMASK(15, 0) #define EMC_ADR_CFG_EMEM_NUMDEV BIT(0) enum emc_dram_type { DRAM_TYPE_DDR3, DRAM_TYPE_DDR1, DRAM_TYPE_LPDDR2, DRAM_TYPE_DDR2, }; enum emc_dll_change { DLL_CHANGE_NONE, DLL_CHANGE_ON, DLL_CHANGE_OFF }; static const u16 emc_timing_registers[] = { [0] = EMC_RC, [1] = EMC_RFC, [2] = EMC_RAS, [3] = EMC_RP, [4] = EMC_R2W, [5] = EMC_W2R, [6] = EMC_R2P, [7] = EMC_W2P, [8] = EMC_RD_RCD, [9] = EMC_WR_RCD, [10] = EMC_RRD, [11] = EMC_REXT, [12] = EMC_WEXT, [13] = EMC_WDV, [14] = EMC_QUSE, [15] = EMC_QRST, [16] = EMC_QSAFE, [17] = EMC_RDV, [18] = EMC_REFRESH, [19] = EMC_BURST_REFRESH_NUM, [20] = EMC_PRE_REFRESH_REQ_CNT, [21] = EMC_PDEX2WR, [22] = EMC_PDEX2RD, [23] = EMC_PCHG2PDEN, [24] = EMC_ACT2PDEN, [25] = EMC_AR2PDEN, [26] = EMC_RW2PDEN, [27] = EMC_TXSR, [28] = EMC_TXSRDLL, [29] = EMC_TCKE, [30] = EMC_TFAW, [31] = EMC_TRPAB, [32] = EMC_TCLKSTABLE, [33] = EMC_TCLKSTOP, [34] = EMC_TREFBW, [35] = EMC_QUSE_EXTRA, [36] = EMC_FBIO_CFG6, [37] = EMC_ODT_WRITE, [38] = EMC_ODT_READ, [39] = EMC_FBIO_CFG5, [40] = EMC_CFG_DIG_DLL, [41] = EMC_CFG_DIG_DLL_PERIOD, [42] = EMC_DLL_XFORM_DQS0, [43] = EMC_DLL_XFORM_DQS1, [44] = EMC_DLL_XFORM_DQS2, [45] = EMC_DLL_XFORM_DQS3, [46] = EMC_DLL_XFORM_DQS4, [47] = EMC_DLL_XFORM_DQS5, [48] = EMC_DLL_XFORM_DQS6, [49] = EMC_DLL_XFORM_DQS7, [50] = EMC_DLL_XFORM_QUSE0, [51] = EMC_DLL_XFORM_QUSE1, [52] = EMC_DLL_XFORM_QUSE2, [53] = EMC_DLL_XFORM_QUSE3, [54] = EMC_DLL_XFORM_QUSE4, [55] = EMC_DLL_XFORM_QUSE5, [56] = EMC_DLL_XFORM_QUSE6, [57] = EMC_DLL_XFORM_QUSE7, [58] = EMC_DLI_TRIM_TXDQS0, [59] = EMC_DLI_TRIM_TXDQS1, [60] = EMC_DLI_TRIM_TXDQS2, [61] = EMC_DLI_TRIM_TXDQS3, [62] = EMC_DLI_TRIM_TXDQS4, [63] = EMC_DLI_TRIM_TXDQS5, [64] = EMC_DLI_TRIM_TXDQS6, [65] = EMC_DLI_TRIM_TXDQS7, [66] = EMC_DLL_XFORM_DQ0, [67] = EMC_DLL_XFORM_DQ1, [68] = EMC_DLL_XFORM_DQ2, [69] = EMC_DLL_XFORM_DQ3, [70] = EMC_XM2CMDPADCTRL, [71] = EMC_XM2DQSPADCTRL2, [72] = EMC_XM2DQPADCTRL2, [73] = EMC_XM2CLKPADCTRL, [74] = EMC_XM2COMPPADCTRL, [75] = EMC_XM2VTTGENPADCTRL, [76] = EMC_XM2VTTGENPADCTRL2, [77] = EMC_XM2QUSEPADCTRL, [78] = EMC_XM2DQSPADCTRL3, [79] = EMC_CTT_TERM_CTRL, [80] = EMC_ZCAL_INTERVAL, [81] = EMC_ZCAL_WAIT_CNT, [82] = EMC_MRS_WAIT_CNT, [83] = EMC_AUTO_CAL_CONFIG, [84] = EMC_CTT, [85] = EMC_CTT_DURATION, [86] = EMC_DYN_SELF_REF_CONTROL, [87] = EMC_FBIO_SPARE, [88] = EMC_CFG_RSV, }; struct emc_timing { unsigned long rate; u32 data[ARRAY_SIZE(emc_timing_registers)]; u32 emc_auto_cal_interval; u32 emc_mode_1; u32 emc_mode_2; u32 emc_mode_reset; u32 emc_zcal_cnt_long; bool emc_cfg_periodic_qrst; bool emc_cfg_dyn_self_ref; }; enum emc_rate_request_type { EMC_RATE_DEBUG, EMC_RATE_ICC, EMC_RATE_TYPE_MAX, }; struct emc_rate_request { unsigned long min_rate; unsigned long max_rate; }; struct tegra_emc { struct device *dev; struct tegra_mc *mc; struct icc_provider provider; struct notifier_block clk_nb; struct clk *clk; void __iomem *regs; unsigned int irq; bool bad_state; struct emc_timing *new_timing; struct emc_timing *timings; unsigned int num_timings; u32 mc_override; u32 emc_cfg; u32 emc_mode_1; u32 emc_mode_2; u32 emc_mode_reset; bool vref_cal_toggle : 1; bool zcal_long : 1; bool dll_on : 1; struct { struct dentry *root; unsigned long min_rate; unsigned long max_rate; } debugfs; /* * There are multiple sources in the EMC driver which could request * a min/max clock rate, these rates are contained in this array. */ struct emc_rate_request requested_rate[EMC_RATE_TYPE_MAX]; /* protect shared rate-change code path */ struct mutex rate_lock; bool mrr_error; }; static int emc_seq_update_timing(struct tegra_emc *emc) { u32 val; int err; writel_relaxed(EMC_TIMING_UPDATE, emc->regs + EMC_TIMING_CONTROL); err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_STATUS, val, !(val & EMC_STATUS_TIMING_UPDATE_STALLED), 1, 200); if (err) { dev_err(emc->dev, "failed to update timing: %d\n", err); return err; } return 0; } static irqreturn_t tegra_emc_isr(int irq, void *data) { struct tegra_emc *emc = data; u32 intmask = EMC_REFRESH_OVERFLOW_INT; u32 status; status = readl_relaxed(emc->regs + EMC_INTSTATUS) & intmask; if (!status) return IRQ_NONE; /* notify about HW problem */ if (status & EMC_REFRESH_OVERFLOW_INT) dev_err_ratelimited(emc->dev, "refresh request overflow timeout\n"); /* clear interrupts */ writel_relaxed(status, emc->regs + EMC_INTSTATUS); return IRQ_HANDLED; } static struct emc_timing *emc_find_timing(struct tegra_emc *emc, unsigned long rate) { struct emc_timing *timing = NULL; unsigned int i; for (i = 0; i < emc->num_timings; i++) { if (emc->timings[i].rate >= rate) { timing = &emc->timings[i]; break; } } if (!timing) { dev_err(emc->dev, "no timing for rate %lu\n", rate); return NULL; } return timing; } static bool emc_dqs_preset(struct tegra_emc *emc, struct emc_timing *timing, bool *schmitt_to_vref) { bool preset = false; u32 val; if (timing->data[71] & EMC_XM2DQSPADCTRL2_VREF_ENABLE) { val = readl_relaxed(emc->regs + EMC_XM2DQSPADCTRL2); if (!(val & EMC_XM2DQSPADCTRL2_VREF_ENABLE)) { val |= EMC_XM2DQSPADCTRL2_VREF_ENABLE; writel_relaxed(val, emc->regs + EMC_XM2DQSPADCTRL2); preset = true; } } if (timing->data[78] & EMC_XM2DQSPADCTRL3_VREF_ENABLE) { val = readl_relaxed(emc->regs + EMC_XM2DQSPADCTRL3); if (!(val & EMC_XM2DQSPADCTRL3_VREF_ENABLE)) { val |= EMC_XM2DQSPADCTRL3_VREF_ENABLE; writel_relaxed(val, emc->regs + EMC_XM2DQSPADCTRL3); preset = true; } } if (timing->data[77] & EMC_XM2QUSEPADCTRL_IVREF_ENABLE) { val = readl_relaxed(emc->regs + EMC_XM2QUSEPADCTRL); if (!(val & EMC_XM2QUSEPADCTRL_IVREF_ENABLE)) { val |= EMC_XM2QUSEPADCTRL_IVREF_ENABLE; writel_relaxed(val, emc->regs + EMC_XM2QUSEPADCTRL); *schmitt_to_vref = true; preset = true; } } return preset; } static int emc_prepare_mc_clk_cfg(struct tegra_emc *emc, unsigned long rate) { struct tegra_mc *mc = emc->mc; unsigned int misc0_index = 16; unsigned int i; bool same; for (i = 0; i < mc->num_timings; i++) { if (mc->timings[i].rate != rate) continue; if (mc->timings[i].emem_data[misc0_index] & BIT(27)) same = true; else same = false; return tegra20_clk_prepare_emc_mc_same_freq(emc->clk, same); } return -EINVAL; } static int emc_prepare_timing_change(struct tegra_emc *emc, unsigned long rate) { struct emc_timing *timing = emc_find_timing(emc, rate); enum emc_dll_change dll_change; enum emc_dram_type dram_type; bool schmitt_to_vref = false; unsigned int pre_wait = 0; bool qrst_used = false; unsigned int dram_num; unsigned int i; u32 fbio_cfg5; u32 emc_dbg; u32 val; int err; if (!timing || emc->bad_state) return -EINVAL; dev_dbg(emc->dev, "%s: using timing rate %lu for requested rate %lu\n", __func__, timing->rate, rate); emc->bad_state = true; err = emc_prepare_mc_clk_cfg(emc, rate); if (err) { dev_err(emc->dev, "mc clock preparation failed: %d\n", err); return err; } emc->vref_cal_toggle = false; emc->mc_override = mc_readl(emc->mc, MC_EMEM_ARB_OVERRIDE); emc->emc_cfg = readl_relaxed(emc->regs + EMC_CFG); emc_dbg = readl_relaxed(emc->regs + EMC_DBG); if (emc->dll_on == !!(timing->emc_mode_1 & 0x1)) dll_change = DLL_CHANGE_NONE; else if (timing->emc_mode_1 & 0x1) dll_change = DLL_CHANGE_ON; else dll_change = DLL_CHANGE_OFF; emc->dll_on = !!(timing->emc_mode_1 & 0x1); if (timing->data[80] && !readl_relaxed(emc->regs + EMC_ZCAL_INTERVAL)) emc->zcal_long = true; else emc->zcal_long = false; fbio_cfg5 = readl_relaxed(emc->regs + EMC_FBIO_CFG5); dram_type = fbio_cfg5 & EMC_FBIO_CFG5_DRAM_TYPE_MASK; dram_num = tegra_mc_get_emem_device_count(emc->mc); /* disable dynamic self-refresh */ if (emc->emc_cfg & EMC_CFG_DYN_SREF_ENABLE) { emc->emc_cfg &= ~EMC_CFG_DYN_SREF_ENABLE; writel_relaxed(emc->emc_cfg, emc->regs + EMC_CFG); pre_wait = 5; } /* update MC arbiter settings */ val = mc_readl(emc->mc, MC_EMEM_ARB_OUTSTANDING_REQ); if (!(val & MC_EMEM_ARB_OUTSTANDING_REQ_HOLDOFF_OVERRIDE) || ((val & MC_EMEM_ARB_OUTSTANDING_REQ_MAX_MASK) > 0x50)) { val = MC_EMEM_ARB_OUTSTANDING_REQ_LIMIT_ENABLE | MC_EMEM_ARB_OUTSTANDING_REQ_HOLDOFF_OVERRIDE | 0x50; mc_writel(emc->mc, val, MC_EMEM_ARB_OUTSTANDING_REQ); mc_writel(emc->mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL); } if (emc->mc_override & MC_EMEM_ARB_OVERRIDE_EACK_MASK) mc_writel(emc->mc, emc->mc_override & ~MC_EMEM_ARB_OVERRIDE_EACK_MASK, MC_EMEM_ARB_OVERRIDE); /* check DQ/DQS VREF delay */ if (emc_dqs_preset(emc, timing, &schmitt_to_vref)) { if (pre_wait < 3) pre_wait = 3; } if (pre_wait) { err = emc_seq_update_timing(emc); if (err) return err; udelay(pre_wait); } /* disable auto-calibration if VREF mode is switching */ if (timing->emc_auto_cal_interval) { val = readl_relaxed(emc->regs + EMC_XM2COMPPADCTRL); val ^= timing->data[74]; if (val & EMC_XM2COMPPADCTRL_VREF_CAL_ENABLE) { writel_relaxed(0, emc->regs + EMC_AUTO_CAL_INTERVAL); err = readl_relaxed_poll_timeout_atomic( emc->regs + EMC_AUTO_CAL_STATUS, val, !(val & EMC_AUTO_CAL_STATUS_ACTIVE), 1, 300); if (err) { dev_err(emc->dev, "auto-cal finish timeout: %d\n", err); return err; } emc->vref_cal_toggle = true; } } /* program shadow registers */ for (i = 0; i < ARRAY_SIZE(timing->data); i++) { /* EMC_XM2CLKPADCTRL should be programmed separately */ if (i != 73) writel_relaxed(timing->data[i], emc->regs + emc_timing_registers[i]); } err = tegra_mc_write_emem_configuration(emc->mc, timing->rate); if (err) return err; /* DDR3: predict MRS long wait count */ if (dram_type == DRAM_TYPE_DDR3 && dll_change == DLL_CHANGE_ON) { u32 cnt = 512; if (emc->zcal_long) cnt -= dram_num * 256; val = timing->data[82] & EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK; if (cnt < val) cnt = val; val = timing->data[82] & ~EMC_MRS_WAIT_CNT_LONG_WAIT_MASK; val |= (cnt << EMC_MRS_WAIT_CNT_LONG_WAIT_SHIFT) & EMC_MRS_WAIT_CNT_LONG_WAIT_MASK; writel_relaxed(val, emc->regs + EMC_MRS_WAIT_CNT); } /* this read also completes the writes */ val = readl_relaxed(emc->regs + EMC_SEL_DPD_CTRL); if (!(val & EMC_SEL_DPD_CTRL_QUSE_DPD_ENABLE) && schmitt_to_vref) { u32 cur_mode, new_mode; cur_mode = fbio_cfg5 & EMC_CFG5_QUSE_MODE_MASK; cur_mode >>= EMC_CFG5_QUSE_MODE_SHIFT; new_mode = timing->data[39] & EMC_CFG5_QUSE_MODE_MASK; new_mode >>= EMC_CFG5_QUSE_MODE_SHIFT; if ((cur_mode != EMC_CFG5_QUSE_MODE_PULSE_INTERN && cur_mode != EMC_CFG5_QUSE_MODE_INTERNAL_LPBK) || (new_mode != EMC_CFG5_QUSE_MODE_PULSE_INTERN && new_mode != EMC_CFG5_QUSE_MODE_INTERNAL_LPBK)) qrst_used = true; } /* flow control marker 1 */ writel_relaxed(0x1, emc->regs + EMC_STALL_THEN_EXE_BEFORE_CLKCHANGE); /* enable periodic reset */ if (qrst_used) { writel_relaxed(emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE, emc->regs + EMC_DBG); writel_relaxed(emc->emc_cfg | EMC_CFG_PERIODIC_QRST, emc->regs + EMC_CFG); writel_relaxed(emc_dbg, emc->regs + EMC_DBG); } /* disable auto-refresh to save time after clock change */ writel_relaxed(EMC_REFCTRL_DISABLE_ALL(dram_num), emc->regs + EMC_REFCTRL); /* turn off DLL and enter self-refresh on DDR3 */ if (dram_type == DRAM_TYPE_DDR3) { if (dll_change == DLL_CHANGE_OFF) writel_relaxed(timing->emc_mode_1, emc->regs + EMC_EMRS); writel_relaxed(DRAM_BROADCAST(dram_num) | EMC_SELF_REF_CMD_ENABLED, emc->regs + EMC_SELF_REF); } /* flow control marker 2 */ writel_relaxed(0x1, emc->regs + EMC_STALL_THEN_EXE_AFTER_CLKCHANGE); /* enable write-active MUX, update unshadowed pad control */ writel_relaxed(emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE, emc->regs + EMC_DBG); writel_relaxed(timing->data[73], emc->regs + EMC_XM2CLKPADCTRL); /* restore periodic QRST and disable write-active MUX */ val = !!(emc->emc_cfg & EMC_CFG_PERIODIC_QRST); if (qrst_used || timing->emc_cfg_periodic_qrst != val) { if (timing->emc_cfg_periodic_qrst) emc->emc_cfg |= EMC_CFG_PERIODIC_QRST; else emc->emc_cfg &= ~EMC_CFG_PERIODIC_QRST; writel_relaxed(emc->emc_cfg, emc->regs + EMC_CFG); } writel_relaxed(emc_dbg, emc->regs + EMC_DBG); /* exit self-refresh on DDR3 */ if (dram_type == DRAM_TYPE_DDR3) writel_relaxed(DRAM_BROADCAST(dram_num), emc->regs + EMC_SELF_REF); /* set DRAM-mode registers */ if (dram_type == DRAM_TYPE_DDR3) { if (timing->emc_mode_1 != emc->emc_mode_1) writel_relaxed(timing->emc_mode_1, emc->regs + EMC_EMRS); if (timing->emc_mode_2 != emc->emc_mode_2) writel_relaxed(timing->emc_mode_2, emc->regs + EMC_EMRS); if (timing->emc_mode_reset != emc->emc_mode_reset || dll_change == DLL_CHANGE_ON) { val = timing->emc_mode_reset; if (dll_change == DLL_CHANGE_ON) { val |= EMC_MODE_SET_DLL_RESET; val |= EMC_MODE_SET_LONG_CNT; } else { val &= ~EMC_MODE_SET_DLL_RESET; } writel_relaxed(val, emc->regs + EMC_MRS); } } else { if (timing->emc_mode_2 != emc->emc_mode_2) writel_relaxed(timing->emc_mode_2, emc->regs + EMC_MRW); if (timing->emc_mode_1 != emc->emc_mode_1) writel_relaxed(timing->emc_mode_1, emc->regs + EMC_MRW); } emc->emc_mode_1 = timing->emc_mode_1; emc->emc_mode_2 = timing->emc_mode_2; emc->emc_mode_reset = timing->emc_mode_reset; /* issue ZCAL command if turning ZCAL on */ if (emc->zcal_long) { writel_relaxed(EMC_ZQ_CAL_LONG_CMD_DEV0, emc->regs + EMC_ZQ_CAL); if (dram_num > 1) writel_relaxed(EMC_ZQ_CAL_LONG_CMD_DEV1, emc->regs + EMC_ZQ_CAL); } /* flow control marker 3 */ writel_relaxed(0x1, emc->regs + EMC_UNSTALL_RW_AFTER_CLKCHANGE); /* * Read and discard an arbitrary MC register (Note: EMC registers * can't be used) to ensure the register writes are completed. */ mc_readl(emc->mc, MC_EMEM_ARB_OVERRIDE); return 0; } static int emc_complete_timing_change(struct tegra_emc *emc, unsigned long rate) { struct emc_timing *timing = emc_find_timing(emc, rate); unsigned int dram_num; int err; u32 v; err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, v, v & EMC_CLKCHANGE_COMPLETE_INT, 1, 100); if (err) { dev_err(emc->dev, "emc-car handshake timeout: %d\n", err); return err; } /* re-enable auto-refresh */ dram_num = tegra_mc_get_emem_device_count(emc->mc); writel_relaxed(EMC_REFCTRL_ENABLE_ALL(dram_num), emc->regs + EMC_REFCTRL); /* restore auto-calibration */ if (emc->vref_cal_toggle) writel_relaxed(timing->emc_auto_cal_interval, emc->regs + EMC_AUTO_CAL_INTERVAL); /* restore dynamic self-refresh */ if (timing->emc_cfg_dyn_self_ref) { emc->emc_cfg |= EMC_CFG_DYN_SREF_ENABLE; writel_relaxed(emc->emc_cfg, emc->regs + EMC_CFG); } /* set number of clocks to wait after each ZQ command */ if (emc->zcal_long) writel_relaxed(timing->emc_zcal_cnt_long, emc->regs + EMC_ZCAL_WAIT_CNT); /* wait for writes to settle */ udelay(2); /* update restored timing */ err = emc_seq_update_timing(emc); if (!err) emc->bad_state = false; /* restore early ACK */ mc_writel(emc->mc, emc->mc_override, MC_EMEM_ARB_OVERRIDE); return err; } static int emc_unprepare_timing_change(struct tegra_emc *emc, unsigned long rate) { if (!emc->bad_state) { /* shouldn't ever happen in practice */ dev_err(emc->dev, "timing configuration can't be reverted\n"); emc->bad_state = true; } return 0; } static int emc_clk_change_notify(struct notifier_block *nb, unsigned long msg, void *data) { struct tegra_emc *emc = container_of(nb, struct tegra_emc, clk_nb); struct clk_notifier_data *cnd = data; int err; switch (msg) { case PRE_RATE_CHANGE: /* * Disable interrupt since read accesses are prohibited after * stalling. */ disable_irq(emc->irq); err = emc_prepare_timing_change(emc, cnd->new_rate); enable_irq(emc->irq); break; case ABORT_RATE_CHANGE: err = emc_unprepare_timing_change(emc, cnd->old_rate); break; case POST_RATE_CHANGE: err = emc_complete_timing_change(emc, cnd->new_rate); break; default: return NOTIFY_DONE; } return notifier_from_errno(err); } static int load_one_timing_from_dt(struct tegra_emc *emc, struct emc_timing *timing, struct device_node *node) { u32 value; int err; err = of_property_read_u32(node, "clock-frequency", &value); if (err) { dev_err(emc->dev, "timing %pOF: failed to read rate: %d\n", node, err); return err; } timing->rate = value; err = of_property_read_u32_array(node, "nvidia,emc-configuration", timing->data, ARRAY_SIZE(emc_timing_registers)); if (err) { dev_err(emc->dev, "timing %pOF: failed to read emc timing data: %d\n", node, err); return err; } #define EMC_READ_BOOL(prop, dtprop) \ timing->prop = of_property_read_bool(node, dtprop); #define EMC_READ_U32(prop, dtprop) \ err = of_property_read_u32(node, dtprop, &timing->prop); \ if (err) { \ dev_err(emc->dev, \ "timing %pOFn: failed to read " #prop ": %d\n", \ node, err); \ return err; \ } EMC_READ_U32(emc_auto_cal_interval, "nvidia,emc-auto-cal-interval") EMC_READ_U32(emc_mode_1, "nvidia,emc-mode-1") EMC_READ_U32(emc_mode_2, "nvidia,emc-mode-2") EMC_READ_U32(emc_mode_reset, "nvidia,emc-mode-reset") EMC_READ_U32(emc_zcal_cnt_long, "nvidia,emc-zcal-cnt-long") EMC_READ_BOOL(emc_cfg_dyn_self_ref, "nvidia,emc-cfg-dyn-self-ref") EMC_READ_BOOL(emc_cfg_periodic_qrst, "nvidia,emc-cfg-periodic-qrst") #undef EMC_READ_U32 #undef EMC_READ_BOOL dev_dbg(emc->dev, "%s: %pOF: rate %lu\n", __func__, node, timing->rate); return 0; } static int cmp_timings(const void *_a, const void *_b) { const struct emc_timing *a = _a; const struct emc_timing *b = _b; if (a->rate < b->rate) return -1; if (a->rate > b->rate) return 1; return 0; } static int emc_check_mc_timings(struct tegra_emc *emc) { struct tegra_mc *mc = emc->mc; unsigned int i; if (emc->num_timings != mc->num_timings) { dev_err(emc->dev, "emc/mc timings number mismatch: %u %u\n", emc->num_timings, mc->num_timings); return -EINVAL; } for (i = 0; i < mc->num_timings; i++) { if (emc->timings[i].rate != mc->timings[i].rate) { dev_err(emc->dev, "emc/mc timing rate mismatch: %lu %lu\n", emc->timings[i].rate, mc->timings[i].rate); return -EINVAL; } } return 0; } static int emc_load_timings_from_dt(struct tegra_emc *emc, struct device_node *node) { struct device_node *child; struct emc_timing *timing; int child_count; int err; child_count = of_get_child_count(node); if (!child_count) { dev_err(emc->dev, "no memory timings in: %pOF\n", node); return -EINVAL; } emc->timings = devm_kcalloc(emc->dev, child_count, sizeof(*timing), GFP_KERNEL); if (!emc->timings) return -ENOMEM; emc->num_timings = child_count; timing = emc->timings; for_each_child_of_node(node, child) { err = load_one_timing_from_dt(emc, timing++, child); if (err) { of_node_put(child); return err; } } sort(emc->timings, emc->num_timings, sizeof(*timing), cmp_timings, NULL); err = emc_check_mc_timings(emc); if (err) return err; dev_info_once(emc->dev, "got %u timings for RAM code %u (min %luMHz max %luMHz)\n", emc->num_timings, tegra_read_ram_code(), emc->timings[0].rate / 1000000, emc->timings[emc->num_timings - 1].rate / 1000000); return 0; } static struct device_node *emc_find_node_by_ram_code(struct tegra_emc *emc) { struct device *dev = emc->dev; struct device_node *np; u32 value, ram_code; int err; if (emc->mrr_error) { dev_warn(dev, "memory timings skipped due to MRR error\n"); return NULL; } if (of_get_child_count(dev->of_node) == 0) { dev_info_once(dev, "device-tree doesn't have memory timings\n"); return NULL; } ram_code = tegra_read_ram_code(); for_each_child_of_node(dev->of_node, np) { err = of_property_read_u32(np, "nvidia,ram-code", &value); if (err || value != ram_code) continue; return np; } dev_err(dev, "no memory timings for RAM code %u found in device-tree\n", ram_code); return NULL; } static int emc_read_lpddr_mode_register(struct tegra_emc *emc, unsigned int emem_dev, unsigned int register_addr, unsigned int *register_data) { u32 memory_dev = emem_dev ? 1 : 2; u32 val, mr_mask = 0xff; int err; /* clear data-valid interrupt status */ writel_relaxed(EMC_MRR_DIVLD_INT, emc->regs + EMC_INTSTATUS); /* issue mode register read request */ val = FIELD_PREP(EMC_MRR_DEV_SELECTN, memory_dev); val |= FIELD_PREP(EMC_MRR_MRR_MA, register_addr); writel_relaxed(val, emc->regs + EMC_MRR); /* wait for the LPDDR2 data-valid interrupt */ err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, val, val & EMC_MRR_DIVLD_INT, 1, 100); if (err) { dev_err(emc->dev, "mode register %u read failed: %d\n", register_addr, err); emc->mrr_error = true; return err; } /* read out mode register data */ val = readl_relaxed(emc->regs + EMC_MRR); *register_data = FIELD_GET(EMC_MRR_MRR_DATA, val) & mr_mask; return 0; } static void emc_read_lpddr_sdram_info(struct tegra_emc *emc, unsigned int emem_dev) { union lpddr2_basic_config4 basic_conf4; unsigned int manufacturer_id; unsigned int revision_id1; unsigned int revision_id2; /* these registers are standard for all LPDDR JEDEC memory chips */ emc_read_lpddr_mode_register(emc, emem_dev, 5, &manufacturer_id); emc_read_lpddr_mode_register(emc, emem_dev, 6, &revision_id1); emc_read_lpddr_mode_register(emc, emem_dev, 7, &revision_id2); emc_read_lpddr_mode_register(emc, emem_dev, 8, &basic_conf4.value); dev_info(emc->dev, "SDRAM[dev%u]: manufacturer: 0x%x (%s) rev1: 0x%x rev2: 0x%x prefetch: S%u density: %uMbit iowidth: %ubit\n", emem_dev, manufacturer_id, lpddr2_jedec_manufacturer(manufacturer_id), revision_id1, revision_id2, 4 >> basic_conf4.arch_type, 64 << basic_conf4.density, 32 >> basic_conf4.io_width); } static int emc_setup_hw(struct tegra_emc *emc) { u32 fbio_cfg5, emc_cfg, emc_dbg, emc_adr_cfg; u32 intmask = EMC_REFRESH_OVERFLOW_INT; static bool print_sdram_info_once; enum emc_dram_type dram_type; const char *dram_type_str; unsigned int emem_numdev; fbio_cfg5 = readl_relaxed(emc->regs + EMC_FBIO_CFG5); dram_type = fbio_cfg5 & EMC_FBIO_CFG5_DRAM_TYPE_MASK; emc_cfg = readl_relaxed(emc->regs + EMC_CFG_2); /* enable EMC and CAR to handshake on PLL divider/source changes */ emc_cfg |= EMC_CLKCHANGE_REQ_ENABLE; /* configure clock change mode accordingly to DRAM type */ switch (dram_type) { case DRAM_TYPE_LPDDR2: emc_cfg |= EMC_CLKCHANGE_PD_ENABLE; emc_cfg &= ~EMC_CLKCHANGE_SR_ENABLE; break; default: emc_cfg &= ~EMC_CLKCHANGE_SR_ENABLE; emc_cfg &= ~EMC_CLKCHANGE_PD_ENABLE; break; } writel_relaxed(emc_cfg, emc->regs + EMC_CFG_2); /* initialize interrupt */ writel_relaxed(intmask, emc->regs + EMC_INTMASK); writel_relaxed(0xffffffff, emc->regs + EMC_INTSTATUS); /* ensure that unwanted debug features are disabled */ emc_dbg = readl_relaxed(emc->regs + EMC_DBG); emc_dbg |= EMC_DBG_CFG_PRIORITY; emc_dbg &= ~EMC_DBG_READ_MUX_ASSEMBLY; emc_dbg &= ~EMC_DBG_WRITE_MUX_ACTIVE; emc_dbg &= ~EMC_DBG_FORCE_UPDATE; writel_relaxed(emc_dbg, emc->regs + EMC_DBG); switch (dram_type) { case DRAM_TYPE_DDR1: dram_type_str = "DDR1"; break; case DRAM_TYPE_LPDDR2: dram_type_str = "LPDDR2"; break; case DRAM_TYPE_DDR2: dram_type_str = "DDR2"; break; case DRAM_TYPE_DDR3: dram_type_str = "DDR3"; break; } emc_adr_cfg = readl_relaxed(emc->regs + EMC_ADR_CFG); emem_numdev = FIELD_GET(EMC_ADR_CFG_EMEM_NUMDEV, emc_adr_cfg) + 1; dev_info_once(emc->dev, "%u %s %s attached\n", emem_numdev, dram_type_str, emem_numdev == 2 ? "devices" : "device"); if (dram_type == DRAM_TYPE_LPDDR2 && !print_sdram_info_once) { while (emem_numdev--) emc_read_lpddr_sdram_info(emc, emem_numdev); print_sdram_info_once = true; } return 0; } static long emc_round_rate(unsigned long rate, unsigned long min_rate, unsigned long max_rate, void *arg) { struct emc_timing *timing = NULL; struct tegra_emc *emc = arg; unsigned int i; if (!emc->num_timings) return clk_get_rate(emc->clk); min_rate = min(min_rate, emc->timings[emc->num_timings - 1].rate); for (i = 0; i < emc->num_timings; i++) { if (emc->timings[i].rate < rate && i != emc->num_timings - 1) continue; if (emc->timings[i].rate > max_rate) { i = max(i, 1u) - 1; if (emc->timings[i].rate < min_rate) break; } if (emc->timings[i].rate < min_rate) continue; timing = &emc->timings[i]; break; } if (!timing) { dev_err(emc->dev, "no timing for rate %lu min %lu max %lu\n", rate, min_rate, max_rate); return -EINVAL; } return timing->rate; } static void tegra_emc_rate_requests_init(struct tegra_emc *emc) { unsigned int i; for (i = 0; i < EMC_RATE_TYPE_MAX; i++) { emc->requested_rate[i].min_rate = 0; emc->requested_rate[i].max_rate = ULONG_MAX; } } static int emc_request_rate(struct tegra_emc *emc, unsigned long new_min_rate, unsigned long new_max_rate, enum emc_rate_request_type type) { struct emc_rate_request *req = emc->requested_rate; unsigned long min_rate = 0, max_rate = ULONG_MAX; unsigned int i; int err; /* select minimum and maximum rates among the requested rates */ for (i = 0; i < EMC_RATE_TYPE_MAX; i++, req++) { if (i == type) { min_rate = max(new_min_rate, min_rate); max_rate = min(new_max_rate, max_rate); } else { min_rate = max(req->min_rate, min_rate); max_rate = min(req->max_rate, max_rate); } } if (min_rate > max_rate) { dev_err_ratelimited(emc->dev, "%s: type %u: out of range: %lu %lu\n", __func__, type, min_rate, max_rate); return -ERANGE; } /* * EMC rate-changes should go via OPP API because it manages voltage * changes. */ err = dev_pm_opp_set_rate(emc->dev, min_rate); if (err) return err; emc->requested_rate[type].min_rate = new_min_rate; emc->requested_rate[type].max_rate = new_max_rate; return 0; } static int emc_set_min_rate(struct tegra_emc *emc, unsigned long rate, enum emc_rate_request_type type) { struct emc_rate_request *req = &emc->requested_rate[type]; int ret; mutex_lock(&emc->rate_lock); ret = emc_request_rate(emc, rate, req->max_rate, type); mutex_unlock(&emc->rate_lock); return ret; } static int emc_set_max_rate(struct tegra_emc *emc, unsigned long rate, enum emc_rate_request_type type) { struct emc_rate_request *req = &emc->requested_rate[type]; int ret; mutex_lock(&emc->rate_lock); ret = emc_request_rate(emc, req->min_rate, rate, type); mutex_unlock(&emc->rate_lock); return ret; } /* * debugfs interface * * The memory controller driver exposes some files in debugfs that can be used * to control the EMC frequency. The top-level directory can be found here: * * /sys/kernel/debug/emc * * It contains the following files: * * - available_rates: This file contains a list of valid, space-separated * EMC frequencies. * * - min_rate: Writing a value to this file sets the given frequency as the * floor of the permitted range. If this is higher than the currently * configured EMC frequency, this will cause the frequency to be * increased so that it stays within the valid range. * * - max_rate: Similarily to the min_rate file, writing a value to this file * sets the given frequency as the ceiling of the permitted range. If * the value is lower than the currently configured EMC frequency, this * will cause the frequency to be decreased so that it stays within the * valid range. */ static bool tegra_emc_validate_rate(struct tegra_emc *emc, unsigned long rate) { unsigned int i; for (i = 0; i < emc->num_timings; i++) if (rate == emc->timings[i].rate) return true; return false; } static int tegra_emc_debug_available_rates_show(struct seq_file *s, void *data) { struct tegra_emc *emc = s->private; const char *prefix = ""; unsigned int i; for (i = 0; i < emc->num_timings; i++) { seq_printf(s, "%s%lu", prefix, emc->timings[i].rate); prefix = " "; } seq_puts(s, "\n"); return 0; } DEFINE_SHOW_ATTRIBUTE(tegra_emc_debug_available_rates); static int tegra_emc_debug_min_rate_get(void *data, u64 *rate) { struct tegra_emc *emc = data; *rate = emc->debugfs.min_rate; return 0; } static int tegra_emc_debug_min_rate_set(void *data, u64 rate) { struct tegra_emc *emc = data; int err; if (!tegra_emc_validate_rate(emc, rate)) return -EINVAL; err = emc_set_min_rate(emc, rate, EMC_RATE_DEBUG); if (err < 0) return err; emc->debugfs.min_rate = rate; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(tegra_emc_debug_min_rate_fops, tegra_emc_debug_min_rate_get, tegra_emc_debug_min_rate_set, "%llu\n"); static int tegra_emc_debug_max_rate_get(void *data, u64 *rate) { struct tegra_emc *emc = data; *rate = emc->debugfs.max_rate; return 0; } static int tegra_emc_debug_max_rate_set(void *data, u64 rate) { struct tegra_emc *emc = data; int err; if (!tegra_emc_validate_rate(emc, rate)) return -EINVAL; err = emc_set_max_rate(emc, rate, EMC_RATE_DEBUG); if (err < 0) return err; emc->debugfs.max_rate = rate; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(tegra_emc_debug_max_rate_fops, tegra_emc_debug_max_rate_get, tegra_emc_debug_max_rate_set, "%llu\n"); static void tegra_emc_debugfs_init(struct tegra_emc *emc) { struct device *dev = emc->dev; unsigned int i; int err; emc->debugfs.min_rate = ULONG_MAX; emc->debugfs.max_rate = 0; for (i = 0; i < emc->num_timings; i++) { if (emc->timings[i].rate < emc->debugfs.min_rate) emc->debugfs.min_rate = emc->timings[i].rate; if (emc->timings[i].rate > emc->debugfs.max_rate) emc->debugfs.max_rate = emc->timings[i].rate; } if (!emc->num_timings) { emc->debugfs.min_rate = clk_get_rate(emc->clk); emc->debugfs.max_rate = emc->debugfs.min_rate; } err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate, emc->debugfs.max_rate); if (err < 0) { dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n", emc->debugfs.min_rate, emc->debugfs.max_rate, emc->clk); } emc->debugfs.root = debugfs_create_dir("emc", NULL); debugfs_create_file("available_rates", 0444, emc->debugfs.root, emc, &tegra_emc_debug_available_rates_fops); debugfs_create_file("min_rate", 0644, emc->debugfs.root, emc, &tegra_emc_debug_min_rate_fops); debugfs_create_file("max_rate", 0644, emc->debugfs.root, emc, &tegra_emc_debug_max_rate_fops); } static inline struct tegra_emc * to_tegra_emc_provider(struct icc_provider *provider) { return container_of(provider, struct tegra_emc, provider); } static struct icc_node_data * emc_of_icc_xlate_extended(const struct of_phandle_args *spec, void *data) { struct icc_provider *provider = data; struct icc_node_data *ndata; struct icc_node *node; /* External Memory is the only possible ICC route */ list_for_each_entry(node, &provider->nodes, node_list) { if (node->id != TEGRA_ICC_EMEM) continue; ndata = kzalloc(sizeof(*ndata), GFP_KERNEL); if (!ndata) return ERR_PTR(-ENOMEM); /* * SRC and DST nodes should have matching TAG in order to have * it set by default for a requested path. */ ndata->tag = TEGRA_MC_ICC_TAG_ISO; ndata->node = node; return ndata; } return ERR_PTR(-EPROBE_DEFER); } static int emc_icc_set(struct icc_node *src, struct icc_node *dst) { struct tegra_emc *emc = to_tegra_emc_provider(dst->provider); unsigned long long peak_bw = icc_units_to_bps(dst->peak_bw); unsigned long long avg_bw = icc_units_to_bps(dst->avg_bw); unsigned long long rate = max(avg_bw, peak_bw); const unsigned int dram_data_bus_width_bytes = 4; const unsigned int ddr = 2; int err; /* * Tegra30 EMC runs on a clock rate of SDRAM bus. This means that * EMC clock rate is twice smaller than the peak data rate because * data is sampled on both EMC clock edges. */ do_div(rate, ddr * dram_data_bus_width_bytes); rate = min_t(u64, rate, U32_MAX); err = emc_set_min_rate(emc, rate, EMC_RATE_ICC); if (err) return err; return 0; } static int tegra_emc_interconnect_init(struct tegra_emc *emc) { const struct tegra_mc_soc *soc = emc->mc->soc; struct icc_node *node; int err; emc->provider.dev = emc->dev; emc->provider.set = emc_icc_set; emc->provider.data = &emc->provider; emc->provider.aggregate = soc->icc_ops->aggregate; emc->provider.xlate_extended = emc_of_icc_xlate_extended; icc_provider_init(&emc->provider); /* create External Memory Controller node */ node = icc_node_create(TEGRA_ICC_EMC); if (IS_ERR(node)) { err = PTR_ERR(node); goto err_msg; } node->name = "External Memory Controller"; icc_node_add(node, &emc->provider); /* link External Memory Controller to External Memory (DRAM) */ err = icc_link_create(node, TEGRA_ICC_EMEM); if (err) goto remove_nodes; /* create External Memory node */ node = icc_node_create(TEGRA_ICC_EMEM); if (IS_ERR(node)) { err = PTR_ERR(node); goto remove_nodes; } node->name = "External Memory (DRAM)"; icc_node_add(node, &emc->provider); err = icc_provider_register(&emc->provider); if (err) goto remove_nodes; return 0; remove_nodes: icc_nodes_remove(&emc->provider); err_msg: dev_err(emc->dev, "failed to initialize ICC: %d\n", err); return err; } static void devm_tegra_emc_unset_callback(void *data) { tegra20_clk_set_emc_round_callback(NULL, NULL); } static void devm_tegra_emc_unreg_clk_notifier(void *data) { struct tegra_emc *emc = data; clk_notifier_unregister(emc->clk, &emc->clk_nb); } static int tegra_emc_init_clk(struct tegra_emc *emc) { int err; tegra20_clk_set_emc_round_callback(emc_round_rate, emc); err = devm_add_action_or_reset(emc->dev, devm_tegra_emc_unset_callback, NULL); if (err) return err; emc->clk = devm_clk_get(emc->dev, NULL); if (IS_ERR(emc->clk)) { dev_err(emc->dev, "failed to get EMC clock: %pe\n", emc->clk); return PTR_ERR(emc->clk); } err = clk_notifier_register(emc->clk, &emc->clk_nb); if (err) { dev_err(emc->dev, "failed to register clk notifier: %d\n", err); return err; } err = devm_add_action_or_reset(emc->dev, devm_tegra_emc_unreg_clk_notifier, emc); if (err) return err; return 0; } static int tegra_emc_probe(struct platform_device *pdev) { struct tegra_core_opp_params opp_params = {}; struct device_node *np; struct tegra_emc *emc; int err; emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL); if (!emc) return -ENOMEM; emc->mc = devm_tegra_memory_controller_get(&pdev->dev); if (IS_ERR(emc->mc)) return PTR_ERR(emc->mc); mutex_init(&emc->rate_lock); emc->clk_nb.notifier_call = emc_clk_change_notify; emc->dev = &pdev->dev; emc->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(emc->regs)) return PTR_ERR(emc->regs); err = emc_setup_hw(emc); if (err) return err; np = emc_find_node_by_ram_code(emc); if (np) { err = emc_load_timings_from_dt(emc, np); of_node_put(np); if (err) return err; } err = platform_get_irq(pdev, 0); if (err < 0) return err; emc->irq = err; err = devm_request_irq(&pdev->dev, emc->irq, tegra_emc_isr, 0, dev_name(&pdev->dev), emc); if (err) { dev_err(&pdev->dev, "failed to request irq: %d\n", err); return err; } err = tegra_emc_init_clk(emc); if (err) return err; opp_params.init_state = true; err = devm_tegra_core_dev_init_opp_table(&pdev->dev, &opp_params); if (err) return err; platform_set_drvdata(pdev, emc); tegra_emc_rate_requests_init(emc); tegra_emc_debugfs_init(emc); tegra_emc_interconnect_init(emc); /* * Don't allow the kernel module to be unloaded. Unloading adds some * extra complexity which doesn't really worth the effort in a case of * this driver. */ try_module_get(THIS_MODULE); return 0; } static int tegra_emc_suspend(struct device *dev) { struct tegra_emc *emc = dev_get_drvdata(dev); int err; /* take exclusive control over the clock's rate */ err = clk_rate_exclusive_get(emc->clk); if (err) { dev_err(emc->dev, "failed to acquire clk: %d\n", err); return err; } /* suspending in a bad state will hang machine */ if (WARN(emc->bad_state, "hardware in a bad state\n")) return -EINVAL; emc->bad_state = true; return 0; } static int tegra_emc_resume(struct device *dev) { struct tegra_emc *emc = dev_get_drvdata(dev); emc_setup_hw(emc); emc->bad_state = false; clk_rate_exclusive_put(emc->clk); return 0; } static const struct dev_pm_ops tegra_emc_pm_ops = { .suspend = tegra_emc_suspend, .resume = tegra_emc_resume, }; static const struct of_device_id tegra_emc_of_match[] = { { .compatible = "nvidia,tegra30-emc", }, {}, }; MODULE_DEVICE_TABLE(of, tegra_emc_of_match); static struct platform_driver tegra_emc_driver = { .probe = tegra_emc_probe, .driver = { .name = "tegra30-emc", .of_match_table = tegra_emc_of_match, .pm = &tegra_emc_pm_ops, .suppress_bind_attrs = true, .sync_state = icc_sync_state, }, }; module_platform_driver(tegra_emc_driver); MODULE_AUTHOR("Dmitry Osipenko <digetx@gmail.com>"); MODULE_DESCRIPTION("NVIDIA Tegra30 EMC driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1