Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Eric Biggers | 1012 | 95.65% | 4 | 66.67% |
Venkat Gopalakrishnan | 45 | 4.25% | 1 | 16.67% |
Thomas Gleixner | 1 | 0.09% | 1 | 16.67% |
Total | 1058 | 6 |
// SPDX-License-Identifier: GPL-2.0-only /* * CQHCI crypto engine (inline encryption) support * * Copyright 2020 Google LLC */ #include <linux/blk-crypto.h> #include <linux/blk-crypto-profile.h> #include <linux/mmc/host.h> #include "cqhci-crypto.h" /* Map from blk-crypto modes to CQHCI crypto algorithm IDs and key sizes */ static const struct cqhci_crypto_alg_entry { enum cqhci_crypto_alg alg; enum cqhci_crypto_key_size key_size; } cqhci_crypto_algs[BLK_ENCRYPTION_MODE_MAX] = { [BLK_ENCRYPTION_MODE_AES_256_XTS] = { .alg = CQHCI_CRYPTO_ALG_AES_XTS, .key_size = CQHCI_CRYPTO_KEY_SIZE_256, }, }; static inline struct cqhci_host * cqhci_host_from_crypto_profile(struct blk_crypto_profile *profile) { struct mmc_host *mmc = container_of(profile, struct mmc_host, crypto_profile); return mmc->cqe_private; } static int cqhci_crypto_program_key(struct cqhci_host *cq_host, const union cqhci_crypto_cfg_entry *cfg, int slot) { u32 slot_offset = cq_host->crypto_cfg_register + slot * sizeof(*cfg); int i; if (cq_host->ops->program_key) return cq_host->ops->program_key(cq_host, cfg, slot); /* Clear CFGE */ cqhci_writel(cq_host, 0, slot_offset + 16 * sizeof(cfg->reg_val[0])); /* Write the key */ for (i = 0; i < 16; i++) { cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[i]), slot_offset + i * sizeof(cfg->reg_val[0])); } /* Write dword 17 */ cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[17]), slot_offset + 17 * sizeof(cfg->reg_val[0])); /* Write dword 16, which includes the new value of CFGE */ cqhci_writel(cq_host, le32_to_cpu(cfg->reg_val[16]), slot_offset + 16 * sizeof(cfg->reg_val[0])); return 0; } static int cqhci_crypto_keyslot_program(struct blk_crypto_profile *profile, const struct blk_crypto_key *key, unsigned int slot) { struct cqhci_host *cq_host = cqhci_host_from_crypto_profile(profile); const union cqhci_crypto_cap_entry *ccap_array = cq_host->crypto_cap_array; const struct cqhci_crypto_alg_entry *alg = &cqhci_crypto_algs[key->crypto_cfg.crypto_mode]; u8 data_unit_mask = key->crypto_cfg.data_unit_size / 512; int i; int cap_idx = -1; union cqhci_crypto_cfg_entry cfg = {}; int err; BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0); for (i = 0; i < cq_host->crypto_capabilities.num_crypto_cap; i++) { if (ccap_array[i].algorithm_id == alg->alg && ccap_array[i].key_size == alg->key_size && (ccap_array[i].sdus_mask & data_unit_mask)) { cap_idx = i; break; } } if (WARN_ON(cap_idx < 0)) return -EOPNOTSUPP; cfg.data_unit_size = data_unit_mask; cfg.crypto_cap_idx = cap_idx; cfg.config_enable = CQHCI_CRYPTO_CONFIGURATION_ENABLE; if (ccap_array[cap_idx].algorithm_id == CQHCI_CRYPTO_ALG_AES_XTS) { /* In XTS mode, the blk_crypto_key's size is already doubled */ memcpy(cfg.crypto_key, key->raw, key->size/2); memcpy(cfg.crypto_key + CQHCI_CRYPTO_KEY_MAX_SIZE/2, key->raw + key->size/2, key->size/2); } else { memcpy(cfg.crypto_key, key->raw, key->size); } err = cqhci_crypto_program_key(cq_host, &cfg, slot); memzero_explicit(&cfg, sizeof(cfg)); return err; } static int cqhci_crypto_clear_keyslot(struct cqhci_host *cq_host, int slot) { /* * Clear the crypto cfg on the device. Clearing CFGE * might not be sufficient, so just clear the entire cfg. */ union cqhci_crypto_cfg_entry cfg = {}; return cqhci_crypto_program_key(cq_host, &cfg, slot); } static int cqhci_crypto_keyslot_evict(struct blk_crypto_profile *profile, const struct blk_crypto_key *key, unsigned int slot) { struct cqhci_host *cq_host = cqhci_host_from_crypto_profile(profile); return cqhci_crypto_clear_keyslot(cq_host, slot); } /* * The keyslot management operations for CQHCI crypto. * * Note that the block layer ensures that these are never called while the host * controller is runtime-suspended. However, the CQE won't necessarily be * "enabled" when these are called, i.e. CQHCI_ENABLE might not be set in the * CQHCI_CFG register. But the hardware allows that. */ static const struct blk_crypto_ll_ops cqhci_crypto_ops = { .keyslot_program = cqhci_crypto_keyslot_program, .keyslot_evict = cqhci_crypto_keyslot_evict, }; static enum blk_crypto_mode_num cqhci_find_blk_crypto_mode(union cqhci_crypto_cap_entry cap) { int i; for (i = 0; i < ARRAY_SIZE(cqhci_crypto_algs); i++) { BUILD_BUG_ON(CQHCI_CRYPTO_KEY_SIZE_INVALID != 0); if (cqhci_crypto_algs[i].alg == cap.algorithm_id && cqhci_crypto_algs[i].key_size == cap.key_size) return i; } return BLK_ENCRYPTION_MODE_INVALID; } /** * cqhci_crypto_init - initialize CQHCI crypto support * @cq_host: a cqhci host * * If the driver previously set MMC_CAP2_CRYPTO and the CQE declares * CQHCI_CAP_CS, initialize the crypto support. This involves reading the * crypto capability registers, initializing the blk_crypto_profile, clearing * all keyslots, and enabling 128-bit task descriptors. * * Return: 0 if crypto was initialized or isn't supported; whether * MMC_CAP2_CRYPTO remains set indicates which one of those cases it is. * Also can return a negative errno value on unexpected error. */ int cqhci_crypto_init(struct cqhci_host *cq_host) { struct mmc_host *mmc = cq_host->mmc; struct device *dev = mmc_dev(mmc); struct blk_crypto_profile *profile = &mmc->crypto_profile; unsigned int num_keyslots; unsigned int cap_idx; enum blk_crypto_mode_num blk_mode_num; unsigned int slot; int err = 0; if (!(mmc->caps2 & MMC_CAP2_CRYPTO) || !(cqhci_readl(cq_host, CQHCI_CAP) & CQHCI_CAP_CS)) goto out; cq_host->crypto_capabilities.reg_val = cpu_to_le32(cqhci_readl(cq_host, CQHCI_CCAP)); cq_host->crypto_cfg_register = (u32)cq_host->crypto_capabilities.config_array_ptr * 0x100; cq_host->crypto_cap_array = devm_kcalloc(dev, cq_host->crypto_capabilities.num_crypto_cap, sizeof(cq_host->crypto_cap_array[0]), GFP_KERNEL); if (!cq_host->crypto_cap_array) { err = -ENOMEM; goto out; } /* * CCAP.CFGC is off by one, so the actual number of crypto * configurations (a.k.a. keyslots) is CCAP.CFGC + 1. */ num_keyslots = cq_host->crypto_capabilities.config_count + 1; err = devm_blk_crypto_profile_init(dev, profile, num_keyslots); if (err) goto out; profile->ll_ops = cqhci_crypto_ops; profile->dev = dev; /* Unfortunately, CQHCI crypto only supports 32 DUN bits. */ profile->max_dun_bytes_supported = 4; /* * Cache all the crypto capabilities and advertise the supported crypto * modes and data unit sizes to the block layer. */ for (cap_idx = 0; cap_idx < cq_host->crypto_capabilities.num_crypto_cap; cap_idx++) { cq_host->crypto_cap_array[cap_idx].reg_val = cpu_to_le32(cqhci_readl(cq_host, CQHCI_CRYPTOCAP + cap_idx * sizeof(__le32))); blk_mode_num = cqhci_find_blk_crypto_mode( cq_host->crypto_cap_array[cap_idx]); if (blk_mode_num == BLK_ENCRYPTION_MODE_INVALID) continue; profile->modes_supported[blk_mode_num] |= cq_host->crypto_cap_array[cap_idx].sdus_mask * 512; } /* Clear all the keyslots so that we start in a known state. */ for (slot = 0; slot < num_keyslots; slot++) cqhci_crypto_clear_keyslot(cq_host, slot); /* CQHCI crypto requires the use of 128-bit task descriptors. */ cq_host->caps |= CQHCI_TASK_DESC_SZ_128; return 0; out: mmc->caps2 &= ~MMC_CAP2_CRYPTO; return err; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1