Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
David Woodhouse | 5124 | 63.64% | 8 | 6.78% |
Boris Brezillon | 1243 | 15.44% | 26 | 22.03% |
Thomas Gleixner | 866 | 10.76% | 13 | 11.02% |
Linus Torvalds (pre-git) | 195 | 2.42% | 27 | 22.88% |
Linus Torvalds | 187 | 2.32% | 5 | 4.24% |
Dan Brown | 134 | 1.66% | 3 | 2.54% |
Miquel Raynal | 70 | 0.87% | 5 | 4.24% |
Brian Norris | 61 | 0.76% | 6 | 5.08% |
Alexander Shiyan | 37 | 0.46% | 1 | 0.85% |
Harvey Harrison | 30 | 0.37% | 1 | 0.85% |
Shreeya Patel | 24 | 0.30% | 1 | 0.85% |
Mark Ware | 14 | 0.17% | 1 | 0.85% |
Dinghao Liu | 12 | 0.15% | 1 | 0.85% |
Jia-Ju Bai | 8 | 0.10% | 1 | 0.85% |
Al Viro | 8 | 0.10% | 2 | 1.69% |
Mike Dunn | 7 | 0.09% | 1 | 0.85% |
Jörn Engel | 7 | 0.09% | 2 | 1.69% |
Arnd Bergmann | 5 | 0.06% | 1 | 0.85% |
Paul Gortmaker | 3 | 0.04% | 1 | 0.85% |
Jamie Iles | 2 | 0.02% | 1 | 0.85% |
Lucas De Marchi | 2 | 0.02% | 1 | 0.85% |
Artem B. Bityutskiy | 2 | 0.02% | 1 | 0.85% |
Lee Jones | 2 | 0.02% | 1 | 0.85% |
Sasha Levin | 1 | 0.01% | 1 | 0.85% |
Burman Yan | 1 | 0.01% | 1 | 0.85% |
Colin Ian King | 1 | 0.01% | 1 | 0.85% |
Sachin Kamat | 1 | 0.01% | 1 | 0.85% |
André Goddard Rosa | 1 | 0.01% | 1 | 0.85% |
Dan J Williams | 1 | 0.01% | 1 | 0.85% |
Robert P. J. Day | 1 | 0.01% | 1 | 0.85% |
Niels de Vos | 1 | 0.01% | 1 | 0.85% |
Total | 8051 | 118 |
// SPDX-License-Identifier: GPL-2.0-only /* * (C) 2003 Red Hat, Inc. * (C) 2004 Dan Brown <dan_brown@ieee.org> * (C) 2004 Kalev Lember <kalev@smartlink.ee> * * Author: David Woodhouse <dwmw2@infradead.org> * Additional Diskonchip 2000 and Millennium support by Dan Brown <dan_brown@ieee.org> * Diskonchip Millennium Plus support by Kalev Lember <kalev@smartlink.ee> * * Error correction code lifted from the old docecc code * Author: Fabrice Bellard (fabrice.bellard@netgem.com) * Copyright (C) 2000 Netgem S.A. * converted to the generic Reed-Solomon library by Thomas Gleixner <tglx@linutronix.de> * * Interface to generic NAND code for M-Systems DiskOnChip devices */ #include <linux/kernel.h> #include <linux/init.h> #include <linux/sched.h> #include <linux/delay.h> #include <linux/rslib.h> #include <linux/moduleparam.h> #include <linux/slab.h> #include <linux/io.h> #include <linux/mtd/mtd.h> #include <linux/mtd/rawnand.h> #include <linux/mtd/doc2000.h> #include <linux/mtd/partitions.h> #include <linux/mtd/inftl.h> #include <linux/module.h> /* Where to look for the devices? */ #ifndef CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS #define CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS 0 #endif static unsigned long doc_locations[] __initdata = { #if defined (__alpha__) || defined(__i386__) || defined(__x86_64__) #ifdef CONFIG_MTD_NAND_DISKONCHIP_PROBE_HIGH 0xfffc8000, 0xfffca000, 0xfffcc000, 0xfffce000, 0xfffd0000, 0xfffd2000, 0xfffd4000, 0xfffd6000, 0xfffd8000, 0xfffda000, 0xfffdc000, 0xfffde000, 0xfffe0000, 0xfffe2000, 0xfffe4000, 0xfffe6000, 0xfffe8000, 0xfffea000, 0xfffec000, 0xfffee000, #else 0xc8000, 0xca000, 0xcc000, 0xce000, 0xd0000, 0xd2000, 0xd4000, 0xd6000, 0xd8000, 0xda000, 0xdc000, 0xde000, 0xe0000, 0xe2000, 0xe4000, 0xe6000, 0xe8000, 0xea000, 0xec000, 0xee000, #endif #endif }; static struct mtd_info *doclist = NULL; struct doc_priv { struct nand_controller base; void __iomem *virtadr; unsigned long physadr; u_char ChipID; u_char CDSNControl; int chips_per_floor; /* The number of chips detected on each floor */ int curfloor; int curchip; int mh0_page; int mh1_page; struct rs_control *rs_decoder; struct mtd_info *nextdoc; bool supports_32b_reads; /* Handle the last stage of initialization (BBT scan, partitioning) */ int (*late_init)(struct mtd_info *mtd); }; /* This is the ecc value computed by the HW ecc generator upon writing an empty page, one with all 0xff for data. */ static u_char empty_write_ecc[6] = { 0x4b, 0x00, 0xe2, 0x0e, 0x93, 0xf7 }; #define INFTL_BBT_RESERVED_BLOCKS 4 #define DoC_is_MillenniumPlus(doc) ((doc)->ChipID == DOC_ChipID_DocMilPlus16 || (doc)->ChipID == DOC_ChipID_DocMilPlus32) #define DoC_is_Millennium(doc) ((doc)->ChipID == DOC_ChipID_DocMil) #define DoC_is_2000(doc) ((doc)->ChipID == DOC_ChipID_Doc2k) static int debug = 0; module_param(debug, int, 0); static int try_dword = 1; module_param(try_dword, int, 0); static int no_ecc_failures = 0; module_param(no_ecc_failures, int, 0); static int no_autopart = 0; module_param(no_autopart, int, 0); static int show_firmware_partition = 0; module_param(show_firmware_partition, int, 0); #ifdef CONFIG_MTD_NAND_DISKONCHIP_BBTWRITE static int inftl_bbt_write = 1; #else static int inftl_bbt_write = 0; #endif module_param(inftl_bbt_write, int, 0); static unsigned long doc_config_location = CONFIG_MTD_NAND_DISKONCHIP_PROBE_ADDRESS; module_param(doc_config_location, ulong, 0); MODULE_PARM_DESC(doc_config_location, "Physical memory address at which to probe for DiskOnChip"); /* Sector size for HW ECC */ #define SECTOR_SIZE 512 /* The sector bytes are packed into NB_DATA 10 bit words */ #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / 10) /* Number of roots */ #define NROOTS 4 /* First consective root */ #define FCR 510 /* Number of symbols */ #define NN 1023 /* * The HW decoder in the DoC ASIC's provides us a error syndrome, * which we must convert to a standard syndrome usable by the generic * Reed-Solomon library code. * * Fabrice Bellard figured this out in the old docecc code. I added * some comments, improved a minor bit and converted it to make use * of the generic Reed-Solomon library. tglx */ static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc) { int i, j, nerr, errpos[8]; uint8_t parity; uint16_t ds[4], s[5], tmp, errval[8], syn[4]; struct rs_codec *cd = rs->codec; memset(syn, 0, sizeof(syn)); /* Convert the ecc bytes into words */ ds[0] = ((ecc[4] & 0xff) >> 0) | ((ecc[5] & 0x03) << 8); ds[1] = ((ecc[5] & 0xfc) >> 2) | ((ecc[2] & 0x0f) << 6); ds[2] = ((ecc[2] & 0xf0) >> 4) | ((ecc[3] & 0x3f) << 4); ds[3] = ((ecc[3] & 0xc0) >> 6) | ((ecc[0] & 0xff) << 2); parity = ecc[1]; /* Initialize the syndrome buffer */ for (i = 0; i < NROOTS; i++) s[i] = ds[0]; /* * Evaluate * s[i] = ds[3]x^3 + ds[2]x^2 + ds[1]x^1 + ds[0] * where x = alpha^(FCR + i) */ for (j = 1; j < NROOTS; j++) { if (ds[j] == 0) continue; tmp = cd->index_of[ds[j]]; for (i = 0; i < NROOTS; i++) s[i] ^= cd->alpha_to[rs_modnn(cd, tmp + (FCR + i) * j)]; } /* Calc syn[i] = s[i] / alpha^(v + i) */ for (i = 0; i < NROOTS; i++) { if (s[i]) syn[i] = rs_modnn(cd, cd->index_of[s[i]] + (NN - FCR - i)); } /* Call the decoder library */ nerr = decode_rs16(rs, NULL, NULL, 1019, syn, 0, errpos, 0, errval); /* Incorrectable errors ? */ if (nerr < 0) return nerr; /* * Correct the errors. The bitpositions are a bit of magic, * but they are given by the design of the de/encoder circuit * in the DoC ASIC's. */ for (i = 0; i < nerr; i++) { int index, bitpos, pos = 1015 - errpos[i]; uint8_t val; if (pos >= NB_DATA && pos < 1019) continue; if (pos < NB_DATA) { /* extract bit position (MSB first) */ pos = 10 * (NB_DATA - 1 - pos) - 6; /* now correct the following 10 bits. At most two bytes can be modified since pos is even */ index = (pos >> 3) ^ 1; bitpos = pos & 7; if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { val = (uint8_t) (errval[i] >> (2 + bitpos)); parity ^= val; if (index < SECTOR_SIZE) data[index] ^= val; } index = ((pos >> 3) + 1) ^ 1; bitpos = (bitpos + 10) & 7; if (bitpos == 0) bitpos = 8; if ((index >= 0 && index < SECTOR_SIZE) || index == (SECTOR_SIZE + 1)) { val = (uint8_t) (errval[i] << (8 - bitpos)); parity ^= val; if (index < SECTOR_SIZE) data[index] ^= val; } } } /* If the parity is wrong, no rescue possible */ return parity ? -EBADMSG : nerr; } static void DoC_Delay(struct doc_priv *doc, unsigned short cycles) { volatile char __always_unused dummy; int i; for (i = 0; i < cycles; i++) { if (DoC_is_Millennium(doc)) dummy = ReadDOC(doc->virtadr, NOP); else if (DoC_is_MillenniumPlus(doc)) dummy = ReadDOC(doc->virtadr, Mplus_NOP); else dummy = ReadDOC(doc->virtadr, DOCStatus); } } #define CDSN_CTRL_FR_B_MASK (CDSN_CTRL_FR_B0 | CDSN_CTRL_FR_B1) /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */ static int _DoC_WaitReady(struct doc_priv *doc) { void __iomem *docptr = doc->virtadr; unsigned long timeo = jiffies + (HZ * 10); if (debug) printk("_DoC_WaitReady...\n"); /* Out-of-line routine to wait for chip response */ if (DoC_is_MillenniumPlus(doc)) { while ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) { if (time_after(jiffies, timeo)) { printk("_DoC_WaitReady timed out.\n"); return -EIO; } udelay(1); cond_resched(); } } else { while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) { if (time_after(jiffies, timeo)) { printk("_DoC_WaitReady timed out.\n"); return -EIO; } udelay(1); cond_resched(); } } return 0; } static inline int DoC_WaitReady(struct doc_priv *doc) { void __iomem *docptr = doc->virtadr; int ret = 0; if (DoC_is_MillenniumPlus(doc)) { DoC_Delay(doc, 4); if ((ReadDOC(docptr, Mplus_FlashControl) & CDSN_CTRL_FR_B_MASK) != CDSN_CTRL_FR_B_MASK) /* Call the out-of-line routine to wait */ ret = _DoC_WaitReady(doc); } else { DoC_Delay(doc, 4); if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) /* Call the out-of-line routine to wait */ ret = _DoC_WaitReady(doc); DoC_Delay(doc, 2); } if (debug) printk("DoC_WaitReady OK\n"); return ret; } static void doc2000_write_byte(struct nand_chip *this, u_char datum) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; if (debug) printk("write_byte %02x\n", datum); WriteDOC(datum, docptr, CDSNSlowIO); WriteDOC(datum, docptr, 2k_CDSN_IO); } static void doc2000_writebuf(struct nand_chip *this, const u_char *buf, int len) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; int i; if (debug) printk("writebuf of %d bytes: ", len); for (i = 0; i < len; i++) { WriteDOC_(buf[i], docptr, DoC_2k_CDSN_IO + i); if (debug && i < 16) printk("%02x ", buf[i]); } if (debug) printk("\n"); } static void doc2000_readbuf(struct nand_chip *this, u_char *buf, int len) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; u32 *buf32 = (u32 *)buf; int i; if (debug) printk("readbuf of %d bytes: ", len); if (!doc->supports_32b_reads || ((((unsigned long)buf) | len) & 3)) { for (i = 0; i < len; i++) buf[i] = ReadDOC(docptr, 2k_CDSN_IO + i); } else { for (i = 0; i < len / 4; i++) buf32[i] = readl(docptr + DoC_2k_CDSN_IO + i); } } /* * We need our own readid() here because it's called before the NAND chip * has been initialized, and calling nand_op_readid() would lead to a NULL * pointer exception when dereferencing the NAND timings. */ static void doc200x_readid(struct nand_chip *this, unsigned int cs, u8 *id) { u8 addr = 0; struct nand_op_instr instrs[] = { NAND_OP_CMD(NAND_CMD_READID, 0), NAND_OP_ADDR(1, &addr, 50), NAND_OP_8BIT_DATA_IN(2, id, 0), }; struct nand_operation op = NAND_OPERATION(cs, instrs); if (!id) op.ninstrs--; this->controller->ops->exec_op(this, &op, false); } static uint16_t __init doc200x_ident_chip(struct mtd_info *mtd, int nr) { struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); uint16_t ret; u8 id[2]; doc200x_readid(this, nr, id); ret = ((u16)id[0] << 8) | id[1]; if (doc->ChipID == DOC_ChipID_Doc2k && try_dword && !nr) { /* First chip probe. See if we get same results by 32-bit access */ union { uint32_t dword; uint8_t byte[4]; } ident; void __iomem *docptr = doc->virtadr; doc200x_readid(this, nr, NULL); ident.dword = readl(docptr + DoC_2k_CDSN_IO); if (((ident.byte[0] << 8) | ident.byte[1]) == ret) { pr_info("DiskOnChip 2000 responds to DWORD access\n"); doc->supports_32b_reads = true; } } return ret; } static void __init doc2000_count_chips(struct mtd_info *mtd) { struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); uint16_t mfrid; int i; /* Max 4 chips per floor on DiskOnChip 2000 */ doc->chips_per_floor = 4; /* Find out what the first chip is */ mfrid = doc200x_ident_chip(mtd, 0); /* Find how many chips in each floor. */ for (i = 1; i < 4; i++) { if (doc200x_ident_chip(mtd, i) != mfrid) break; } doc->chips_per_floor = i; pr_debug("Detected %d chips per floor.\n", i); } static void doc2001_write_byte(struct nand_chip *this, u_char datum) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; WriteDOC(datum, docptr, CDSNSlowIO); WriteDOC(datum, docptr, Mil_CDSN_IO); WriteDOC(datum, docptr, WritePipeTerm); } static void doc2001_writebuf(struct nand_chip *this, const u_char *buf, int len) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; int i; for (i = 0; i < len; i++) WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); /* Terminate write pipeline */ WriteDOC(0x00, docptr, WritePipeTerm); } static void doc2001_readbuf(struct nand_chip *this, u_char *buf, int len) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; int i; /* Start read pipeline */ ReadDOC(docptr, ReadPipeInit); for (i = 0; i < len - 1; i++) buf[i] = ReadDOC(docptr, Mil_CDSN_IO + (i & 0xff)); /* Terminate read pipeline */ buf[i] = ReadDOC(docptr, LastDataRead); } static void doc2001plus_writebuf(struct nand_chip *this, const u_char *buf, int len) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; int i; if (debug) printk("writebuf of %d bytes: ", len); for (i = 0; i < len; i++) { WriteDOC_(buf[i], docptr, DoC_Mil_CDSN_IO + i); if (debug && i < 16) printk("%02x ", buf[i]); } if (debug) printk("\n"); } static void doc2001plus_readbuf(struct nand_chip *this, u_char *buf, int len) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; int i; if (debug) printk("readbuf of %d bytes: ", len); /* Start read pipeline */ ReadDOC(docptr, Mplus_ReadPipeInit); ReadDOC(docptr, Mplus_ReadPipeInit); for (i = 0; i < len - 2; i++) { buf[i] = ReadDOC(docptr, Mil_CDSN_IO); if (debug && i < 16) printk("%02x ", buf[i]); } /* Terminate read pipeline */ if (len >= 2) { buf[len - 2] = ReadDOC(docptr, Mplus_LastDataRead); if (debug && i < 16) printk("%02x ", buf[len - 2]); } buf[len - 1] = ReadDOC(docptr, Mplus_LastDataRead); if (debug && i < 16) printk("%02x ", buf[len - 1]); if (debug) printk("\n"); } static void doc200x_write_control(struct doc_priv *doc, u8 value) { WriteDOC(value, doc->virtadr, CDSNControl); /* 11.4.3 -- 4 NOPs after CSDNControl write */ DoC_Delay(doc, 4); } static void doc200x_exec_instr(struct nand_chip *this, const struct nand_op_instr *instr) { struct doc_priv *doc = nand_get_controller_data(this); unsigned int i; switch (instr->type) { case NAND_OP_CMD_INSTR: doc200x_write_control(doc, CDSN_CTRL_CE | CDSN_CTRL_CLE); doc2000_write_byte(this, instr->ctx.cmd.opcode); break; case NAND_OP_ADDR_INSTR: doc200x_write_control(doc, CDSN_CTRL_CE | CDSN_CTRL_ALE); for (i = 0; i < instr->ctx.addr.naddrs; i++) { u8 addr = instr->ctx.addr.addrs[i]; if (DoC_is_2000(doc)) doc2000_write_byte(this, addr); else doc2001_write_byte(this, addr); } break; case NAND_OP_DATA_IN_INSTR: doc200x_write_control(doc, CDSN_CTRL_CE); if (DoC_is_2000(doc)) doc2000_readbuf(this, instr->ctx.data.buf.in, instr->ctx.data.len); else doc2001_readbuf(this, instr->ctx.data.buf.in, instr->ctx.data.len); break; case NAND_OP_DATA_OUT_INSTR: doc200x_write_control(doc, CDSN_CTRL_CE); if (DoC_is_2000(doc)) doc2000_writebuf(this, instr->ctx.data.buf.out, instr->ctx.data.len); else doc2001_writebuf(this, instr->ctx.data.buf.out, instr->ctx.data.len); break; case NAND_OP_WAITRDY_INSTR: DoC_WaitReady(doc); break; } if (instr->delay_ns) ndelay(instr->delay_ns); } static int doc200x_exec_op(struct nand_chip *this, const struct nand_operation *op, bool check_only) { struct doc_priv *doc = nand_get_controller_data(this); unsigned int i; if (check_only) return true; doc->curchip = op->cs % doc->chips_per_floor; doc->curfloor = op->cs / doc->chips_per_floor; WriteDOC(doc->curfloor, doc->virtadr, FloorSelect); WriteDOC(doc->curchip, doc->virtadr, CDSNDeviceSelect); /* Assert CE pin */ doc200x_write_control(doc, CDSN_CTRL_CE); for (i = 0; i < op->ninstrs; i++) doc200x_exec_instr(this, &op->instrs[i]); /* De-assert CE pin */ doc200x_write_control(doc, 0); return 0; } static void doc2001plus_write_pipe_term(struct doc_priv *doc) { WriteDOC(0x00, doc->virtadr, Mplus_WritePipeTerm); WriteDOC(0x00, doc->virtadr, Mplus_WritePipeTerm); } static void doc2001plus_exec_instr(struct nand_chip *this, const struct nand_op_instr *instr) { struct doc_priv *doc = nand_get_controller_data(this); unsigned int i; switch (instr->type) { case NAND_OP_CMD_INSTR: WriteDOC(instr->ctx.cmd.opcode, doc->virtadr, Mplus_FlashCmd); doc2001plus_write_pipe_term(doc); break; case NAND_OP_ADDR_INSTR: for (i = 0; i < instr->ctx.addr.naddrs; i++) { u8 addr = instr->ctx.addr.addrs[i]; WriteDOC(addr, doc->virtadr, Mplus_FlashAddress); } doc2001plus_write_pipe_term(doc); /* deassert ALE */ WriteDOC(0, doc->virtadr, Mplus_FlashControl); break; case NAND_OP_DATA_IN_INSTR: doc2001plus_readbuf(this, instr->ctx.data.buf.in, instr->ctx.data.len); break; case NAND_OP_DATA_OUT_INSTR: doc2001plus_writebuf(this, instr->ctx.data.buf.out, instr->ctx.data.len); doc2001plus_write_pipe_term(doc); break; case NAND_OP_WAITRDY_INSTR: DoC_WaitReady(doc); break; } if (instr->delay_ns) ndelay(instr->delay_ns); } static int doc2001plus_exec_op(struct nand_chip *this, const struct nand_operation *op, bool check_only) { struct doc_priv *doc = nand_get_controller_data(this); unsigned int i; if (check_only) return true; doc->curchip = op->cs % doc->chips_per_floor; doc->curfloor = op->cs / doc->chips_per_floor; /* Assert ChipEnable and deassert WriteProtect */ WriteDOC(DOC_FLASH_CE, doc->virtadr, Mplus_FlashSelect); for (i = 0; i < op->ninstrs; i++) doc2001plus_exec_instr(this, &op->instrs[i]); /* De-assert ChipEnable */ WriteDOC(0, doc->virtadr, Mplus_FlashSelect); return 0; } static void doc200x_enable_hwecc(struct nand_chip *this, int mode) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; /* Prime the ECC engine */ switch (mode) { case NAND_ECC_READ: WriteDOC(DOC_ECC_RESET, docptr, ECCConf); WriteDOC(DOC_ECC_EN, docptr, ECCConf); break; case NAND_ECC_WRITE: WriteDOC(DOC_ECC_RESET, docptr, ECCConf); WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf); break; } } static void doc2001plus_enable_hwecc(struct nand_chip *this, int mode) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; /* Prime the ECC engine */ switch (mode) { case NAND_ECC_READ: WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); WriteDOC(DOC_ECC_EN, docptr, Mplus_ECCConf); break; case NAND_ECC_WRITE: WriteDOC(DOC_ECC_RESET, docptr, Mplus_ECCConf); WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, Mplus_ECCConf); break; } } /* This code is only called on write */ static int doc200x_calculate_ecc(struct nand_chip *this, const u_char *dat, unsigned char *ecc_code) { struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; int i; int __always_unused emptymatch = 1; /* flush the pipeline */ if (DoC_is_2000(doc)) { WriteDOC(doc->CDSNControl & ~CDSN_CTRL_FLASH_IO, docptr, CDSNControl); WriteDOC(0, docptr, 2k_CDSN_IO); WriteDOC(0, docptr, 2k_CDSN_IO); WriteDOC(0, docptr, 2k_CDSN_IO); WriteDOC(doc->CDSNControl, docptr, CDSNControl); } else if (DoC_is_MillenniumPlus(doc)) { WriteDOC(0, docptr, Mplus_NOP); WriteDOC(0, docptr, Mplus_NOP); WriteDOC(0, docptr, Mplus_NOP); } else { WriteDOC(0, docptr, NOP); WriteDOC(0, docptr, NOP); WriteDOC(0, docptr, NOP); } for (i = 0; i < 6; i++) { if (DoC_is_MillenniumPlus(doc)) ecc_code[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); else ecc_code[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); if (ecc_code[i] != empty_write_ecc[i]) emptymatch = 0; } if (DoC_is_MillenniumPlus(doc)) WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); else WriteDOC(DOC_ECC_DIS, docptr, ECCConf); #if 0 /* If emptymatch=1, we might have an all-0xff data buffer. Check. */ if (emptymatch) { /* Note: this somewhat expensive test should not be triggered often. It could be optimized away by examining the data in the writebuf routine, and remembering the result. */ for (i = 0; i < 512; i++) { if (dat[i] == 0xff) continue; emptymatch = 0; break; } } /* If emptymatch still =1, we do have an all-0xff data buffer. Return all-0xff ecc value instead of the computed one, so it'll look just like a freshly-erased page. */ if (emptymatch) memset(ecc_code, 0xff, 6); #endif return 0; } static int doc200x_correct_data(struct nand_chip *this, u_char *dat, u_char *read_ecc, u_char *isnull) { int i, ret = 0; struct doc_priv *doc = nand_get_controller_data(this); void __iomem *docptr = doc->virtadr; uint8_t calc_ecc[6]; volatile u_char dummy; /* flush the pipeline */ if (DoC_is_2000(doc)) { dummy = ReadDOC(docptr, 2k_ECCStatus); dummy = ReadDOC(docptr, 2k_ECCStatus); dummy = ReadDOC(docptr, 2k_ECCStatus); } else if (DoC_is_MillenniumPlus(doc)) { dummy = ReadDOC(docptr, Mplus_ECCConf); dummy = ReadDOC(docptr, Mplus_ECCConf); dummy = ReadDOC(docptr, Mplus_ECCConf); } else { dummy = ReadDOC(docptr, ECCConf); dummy = ReadDOC(docptr, ECCConf); dummy = ReadDOC(docptr, ECCConf); } /* Error occurred ? */ if (dummy & 0x80) { for (i = 0; i < 6; i++) { if (DoC_is_MillenniumPlus(doc)) calc_ecc[i] = ReadDOC_(docptr, DoC_Mplus_ECCSyndrome0 + i); else calc_ecc[i] = ReadDOC_(docptr, DoC_ECCSyndrome0 + i); } ret = doc_ecc_decode(doc->rs_decoder, dat, calc_ecc); if (ret > 0) pr_err("doc200x_correct_data corrected %d errors\n", ret); } if (DoC_is_MillenniumPlus(doc)) WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf); else WriteDOC(DOC_ECC_DIS, docptr, ECCConf); if (no_ecc_failures && mtd_is_eccerr(ret)) { pr_err("suppressing ECC failure\n"); ret = 0; } return ret; } //u_char mydatabuf[528]; static int doc200x_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section) return -ERANGE; oobregion->offset = 0; oobregion->length = 6; return 0; } static int doc200x_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section > 1) return -ERANGE; /* * The strange out-of-order free bytes definition is a (possibly * unneeded) attempt to retain compatibility. It used to read: * .oobfree = { {8, 8} } * Since that leaves two bytes unusable, it was changed. But the * following scheme might affect existing jffs2 installs by moving the * cleanmarker: * .oobfree = { {6, 10} } * jffs2 seems to handle the above gracefully, but the current scheme * seems safer. The only problem with it is that any code retrieving * free bytes position must be able to handle out-of-order segments. */ if (!section) { oobregion->offset = 8; oobregion->length = 8; } else { oobregion->offset = 6; oobregion->length = 2; } return 0; } static const struct mtd_ooblayout_ops doc200x_ooblayout_ops = { .ecc = doc200x_ooblayout_ecc, .free = doc200x_ooblayout_free, }; /* Find the (I)NFTL Media Header, and optionally also the mirror media header. On successful return, buf will contain a copy of the media header for further processing. id is the string to scan for, and will presumably be either "ANAND" or "BNAND". If findmirror=1, also look for the mirror media header. The page #s of the found media headers are placed in mh0_page and mh1_page in the DOC private structure. */ static int __init find_media_headers(struct mtd_info *mtd, u_char *buf, const char *id, int findmirror) { struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); unsigned offs; int ret; size_t retlen; for (offs = 0; offs < mtd->size; offs += mtd->erasesize) { ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); if (retlen != mtd->writesize) continue; if (ret) { pr_warn("ECC error scanning DOC at 0x%x\n", offs); } if (memcmp(buf, id, 6)) continue; pr_info("Found DiskOnChip %s Media Header at 0x%x\n", id, offs); if (doc->mh0_page == -1) { doc->mh0_page = offs >> this->page_shift; if (!findmirror) return 1; continue; } doc->mh1_page = offs >> this->page_shift; return 2; } if (doc->mh0_page == -1) { pr_warn("DiskOnChip %s Media Header not found.\n", id); return 0; } /* Only one mediaheader was found. We want buf to contain a mediaheader on return, so we'll have to re-read the one we found. */ offs = doc->mh0_page << this->page_shift; ret = mtd_read(mtd, offs, mtd->writesize, &retlen, buf); if (retlen != mtd->writesize) { /* Insanity. Give up. */ pr_err("Read DiskOnChip Media Header once, but can't reread it???\n"); return 0; } return 1; } static inline int __init nftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) { struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); struct nand_memory_organization *memorg; int ret = 0; u_char *buf; struct NFTLMediaHeader *mh; const unsigned psize = 1 << this->page_shift; int numparts = 0; unsigned blocks, maxblocks; int offs, numheaders; memorg = nanddev_get_memorg(&this->base); buf = kmalloc(mtd->writesize, GFP_KERNEL); if (!buf) { return 0; } if (!(numheaders = find_media_headers(mtd, buf, "ANAND", 1))) goto out; mh = (struct NFTLMediaHeader *)buf; le16_to_cpus(&mh->NumEraseUnits); le16_to_cpus(&mh->FirstPhysicalEUN); le32_to_cpus(&mh->FormattedSize); pr_info(" DataOrgID = %s\n" " NumEraseUnits = %d\n" " FirstPhysicalEUN = %d\n" " FormattedSize = %d\n" " UnitSizeFactor = %d\n", mh->DataOrgID, mh->NumEraseUnits, mh->FirstPhysicalEUN, mh->FormattedSize, mh->UnitSizeFactor); blocks = mtd->size >> this->phys_erase_shift; maxblocks = min(32768U, mtd->erasesize - psize); if (mh->UnitSizeFactor == 0x00) { /* Auto-determine UnitSizeFactor. The constraints are: - There can be at most 32768 virtual blocks. - There can be at most (virtual block size - page size) virtual blocks (because MediaHeader+BBT must fit in 1). */ mh->UnitSizeFactor = 0xff; while (blocks > maxblocks) { blocks >>= 1; maxblocks = min(32768U, (maxblocks << 1) + psize); mh->UnitSizeFactor--; } pr_warn("UnitSizeFactor=0x00 detected. Correct value is assumed to be 0x%02x.\n", mh->UnitSizeFactor); } /* NOTE: The lines below modify internal variables of the NAND and MTD layers; variables with have already been configured by nand_scan. Unfortunately, we didn't know before this point what these values should be. Thus, this code is somewhat dependent on the exact implementation of the NAND layer. */ if (mh->UnitSizeFactor != 0xff) { this->bbt_erase_shift += (0xff - mh->UnitSizeFactor); memorg->pages_per_eraseblock <<= (0xff - mh->UnitSizeFactor); mtd->erasesize <<= (0xff - mh->UnitSizeFactor); pr_info("Setting virtual erase size to %d\n", mtd->erasesize); blocks = mtd->size >> this->bbt_erase_shift; maxblocks = min(32768U, mtd->erasesize - psize); } if (blocks > maxblocks) { pr_err("UnitSizeFactor of 0x%02x is inconsistent with device size. Aborting.\n", mh->UnitSizeFactor); goto out; } /* Skip past the media headers. */ offs = max(doc->mh0_page, doc->mh1_page); offs <<= this->page_shift; offs += mtd->erasesize; if (show_firmware_partition == 1) { parts[0].name = " DiskOnChip Firmware / Media Header partition"; parts[0].offset = 0; parts[0].size = offs; numparts = 1; } parts[numparts].name = " DiskOnChip BDTL partition"; parts[numparts].offset = offs; parts[numparts].size = (mh->NumEraseUnits - numheaders) << this->bbt_erase_shift; offs += parts[numparts].size; numparts++; if (offs < mtd->size) { parts[numparts].name = " DiskOnChip Remainder partition"; parts[numparts].offset = offs; parts[numparts].size = mtd->size - offs; numparts++; } ret = numparts; out: kfree(buf); return ret; } /* This is a stripped-down copy of the code in inftlmount.c */ static inline int __init inftl_partscan(struct mtd_info *mtd, struct mtd_partition *parts) { struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); int ret = 0; u_char *buf; struct INFTLMediaHeader *mh; struct INFTLPartition *ip; int numparts = 0; int blocks; int vshift, lastvunit = 0; int i; int end = mtd->size; if (inftl_bbt_write) end -= (INFTL_BBT_RESERVED_BLOCKS << this->phys_erase_shift); buf = kmalloc(mtd->writesize, GFP_KERNEL); if (!buf) { return 0; } if (!find_media_headers(mtd, buf, "BNAND", 0)) goto out; doc->mh1_page = doc->mh0_page + (4096 >> this->page_shift); mh = (struct INFTLMediaHeader *)buf; le32_to_cpus(&mh->NoOfBootImageBlocks); le32_to_cpus(&mh->NoOfBinaryPartitions); le32_to_cpus(&mh->NoOfBDTLPartitions); le32_to_cpus(&mh->BlockMultiplierBits); le32_to_cpus(&mh->FormatFlags); le32_to_cpus(&mh->PercentUsed); pr_info(" bootRecordID = %s\n" " NoOfBootImageBlocks = %d\n" " NoOfBinaryPartitions = %d\n" " NoOfBDTLPartitions = %d\n" " BlockMultiplierBits = %d\n" " FormatFlgs = %d\n" " OsakVersion = %d.%d.%d.%d\n" " PercentUsed = %d\n", mh->bootRecordID, mh->NoOfBootImageBlocks, mh->NoOfBinaryPartitions, mh->NoOfBDTLPartitions, mh->BlockMultiplierBits, mh->FormatFlags, ((unsigned char *) &mh->OsakVersion)[0] & 0xf, ((unsigned char *) &mh->OsakVersion)[1] & 0xf, ((unsigned char *) &mh->OsakVersion)[2] & 0xf, ((unsigned char *) &mh->OsakVersion)[3] & 0xf, mh->PercentUsed); vshift = this->phys_erase_shift + mh->BlockMultiplierBits; blocks = mtd->size >> vshift; if (blocks > 32768) { pr_err("BlockMultiplierBits=%d is inconsistent with device size. Aborting.\n", mh->BlockMultiplierBits); goto out; } blocks = doc->chips_per_floor << (this->chip_shift - this->phys_erase_shift); if (inftl_bbt_write && (blocks > mtd->erasesize)) { pr_err("Writeable BBTs spanning more than one erase block are not yet supported. FIX ME!\n"); goto out; } /* Scan the partitions */ for (i = 0; (i < 4); i++) { ip = &(mh->Partitions[i]); le32_to_cpus(&ip->virtualUnits); le32_to_cpus(&ip->firstUnit); le32_to_cpus(&ip->lastUnit); le32_to_cpus(&ip->flags); le32_to_cpus(&ip->spareUnits); le32_to_cpus(&ip->Reserved0); pr_info(" PARTITION[%d] ->\n" " virtualUnits = %d\n" " firstUnit = %d\n" " lastUnit = %d\n" " flags = 0x%x\n" " spareUnits = %d\n", i, ip->virtualUnits, ip->firstUnit, ip->lastUnit, ip->flags, ip->spareUnits); if ((show_firmware_partition == 1) && (i == 0) && (ip->firstUnit > 0)) { parts[0].name = " DiskOnChip IPL / Media Header partition"; parts[0].offset = 0; parts[0].size = mtd->erasesize * ip->firstUnit; numparts = 1; } if (ip->flags & INFTL_BINARY) parts[numparts].name = " DiskOnChip BDK partition"; else parts[numparts].name = " DiskOnChip BDTL partition"; parts[numparts].offset = ip->firstUnit << vshift; parts[numparts].size = (1 + ip->lastUnit - ip->firstUnit) << vshift; numparts++; if (ip->lastUnit > lastvunit) lastvunit = ip->lastUnit; if (ip->flags & INFTL_LAST) break; } lastvunit++; if ((lastvunit << vshift) < end) { parts[numparts].name = " DiskOnChip Remainder partition"; parts[numparts].offset = lastvunit << vshift; parts[numparts].size = end - parts[numparts].offset; numparts++; } ret = numparts; out: kfree(buf); return ret; } static int __init nftl_scan_bbt(struct mtd_info *mtd) { int ret, numparts; struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); struct mtd_partition parts[2]; memset((char *)parts, 0, sizeof(parts)); /* On NFTL, we have to find the media headers before we can read the BBTs, since they're stored in the media header eraseblocks. */ numparts = nftl_partscan(mtd, parts); if (!numparts) return -EIO; this->bbt_td->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | NAND_BBT_VERSION; this->bbt_td->veroffs = 7; this->bbt_td->pages[0] = doc->mh0_page + 1; if (doc->mh1_page != -1) { this->bbt_md->options = NAND_BBT_ABSPAGE | NAND_BBT_8BIT | NAND_BBT_SAVECONTENT | NAND_BBT_WRITE | NAND_BBT_VERSION; this->bbt_md->veroffs = 7; this->bbt_md->pages[0] = doc->mh1_page + 1; } else { this->bbt_md = NULL; } ret = nand_create_bbt(this); if (ret) return ret; return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); } static int __init inftl_scan_bbt(struct mtd_info *mtd) { int ret, numparts; struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); struct mtd_partition parts[5]; if (nanddev_ntargets(&this->base) > doc->chips_per_floor) { pr_err("Multi-floor INFTL devices not yet supported.\n"); return -EIO; } if (DoC_is_MillenniumPlus(doc)) { this->bbt_td->options = NAND_BBT_2BIT | NAND_BBT_ABSPAGE; if (inftl_bbt_write) this->bbt_td->options |= NAND_BBT_WRITE; this->bbt_td->pages[0] = 2; this->bbt_md = NULL; } else { this->bbt_td->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; if (inftl_bbt_write) this->bbt_td->options |= NAND_BBT_WRITE; this->bbt_td->offs = 8; this->bbt_td->len = 8; this->bbt_td->veroffs = 7; this->bbt_td->maxblocks = INFTL_BBT_RESERVED_BLOCKS; this->bbt_td->reserved_block_code = 0x01; this->bbt_td->pattern = "MSYS_BBT"; this->bbt_md->options = NAND_BBT_LASTBLOCK | NAND_BBT_8BIT | NAND_BBT_VERSION; if (inftl_bbt_write) this->bbt_md->options |= NAND_BBT_WRITE; this->bbt_md->offs = 8; this->bbt_md->len = 8; this->bbt_md->veroffs = 7; this->bbt_md->maxblocks = INFTL_BBT_RESERVED_BLOCKS; this->bbt_md->reserved_block_code = 0x01; this->bbt_md->pattern = "TBB_SYSM"; } ret = nand_create_bbt(this); if (ret) return ret; memset((char *)parts, 0, sizeof(parts)); numparts = inftl_partscan(mtd, parts); /* At least for now, require the INFTL Media Header. We could probably do without it for non-INFTL use, since all it gives us is autopartitioning, but I want to give it more thought. */ if (!numparts) return -EIO; return mtd_device_register(mtd, parts, no_autopart ? 0 : numparts); } static inline int __init doc2000_init(struct mtd_info *mtd) { struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); doc->late_init = nftl_scan_bbt; doc->CDSNControl = CDSN_CTRL_FLASH_IO | CDSN_CTRL_ECC_IO; doc2000_count_chips(mtd); mtd->name = "DiskOnChip 2000 (NFTL Model)"; return (4 * doc->chips_per_floor); } static inline int __init doc2001_init(struct mtd_info *mtd) { struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); ReadDOC(doc->virtadr, ChipID); ReadDOC(doc->virtadr, ChipID); ReadDOC(doc->virtadr, ChipID); if (ReadDOC(doc->virtadr, ChipID) != DOC_ChipID_DocMil) { /* It's not a Millennium; it's one of the newer DiskOnChip 2000 units with a similar ASIC. Treat it like a Millennium, except that it can have multiple chips. */ doc2000_count_chips(mtd); mtd->name = "DiskOnChip 2000 (INFTL Model)"; doc->late_init = inftl_scan_bbt; return (4 * doc->chips_per_floor); } else { /* Bog-standard Millennium */ doc->chips_per_floor = 1; mtd->name = "DiskOnChip Millennium"; doc->late_init = nftl_scan_bbt; return 1; } } static inline int __init doc2001plus_init(struct mtd_info *mtd) { struct nand_chip *this = mtd_to_nand(mtd); struct doc_priv *doc = nand_get_controller_data(this); doc->late_init = inftl_scan_bbt; this->ecc.hwctl = doc2001plus_enable_hwecc; doc->chips_per_floor = 1; mtd->name = "DiskOnChip Millennium Plus"; return 1; } static int doc200x_attach_chip(struct nand_chip *chip) { if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) return 0; chip->ecc.placement = NAND_ECC_PLACEMENT_INTERLEAVED; chip->ecc.size = 512; chip->ecc.bytes = 6; chip->ecc.strength = 2; chip->ecc.options = NAND_ECC_GENERIC_ERASED_CHECK; chip->ecc.hwctl = doc200x_enable_hwecc; chip->ecc.calculate = doc200x_calculate_ecc; chip->ecc.correct = doc200x_correct_data; return 0; } static const struct nand_controller_ops doc200x_ops = { .exec_op = doc200x_exec_op, .attach_chip = doc200x_attach_chip, }; static const struct nand_controller_ops doc2001plus_ops = { .exec_op = doc2001plus_exec_op, .attach_chip = doc200x_attach_chip, }; static int __init doc_probe(unsigned long physadr) { struct nand_chip *nand = NULL; struct doc_priv *doc = NULL; unsigned char ChipID; struct mtd_info *mtd; void __iomem *virtadr; unsigned char save_control; unsigned char tmp, tmpb, tmpc; int reg, len, numchips; int ret = 0; if (!request_mem_region(physadr, DOC_IOREMAP_LEN, "DiskOnChip")) return -EBUSY; virtadr = ioremap(physadr, DOC_IOREMAP_LEN); if (!virtadr) { pr_err("Diskonchip ioremap failed: 0x%x bytes at 0x%lx\n", DOC_IOREMAP_LEN, physadr); ret = -EIO; goto error_ioremap; } /* It's not possible to cleanly detect the DiskOnChip - the * bootup procedure will put the device into reset mode, and * it's not possible to talk to it without actually writing * to the DOCControl register. So we store the current contents * of the DOCControl register's location, in case we later decide * that it's not a DiskOnChip, and want to put it back how we * found it. */ save_control = ReadDOC(virtadr, DOCControl); /* Reset the DiskOnChip ASIC */ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_RESET, virtadr, DOCControl); /* Enable the DiskOnChip ASIC */ WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); WriteDOC(DOC_MODE_CLR_ERR | DOC_MODE_MDWREN | DOC_MODE_NORMAL, virtadr, DOCControl); ChipID = ReadDOC(virtadr, ChipID); switch (ChipID) { case DOC_ChipID_Doc2k: reg = DoC_2k_ECCStatus; break; case DOC_ChipID_DocMil: reg = DoC_ECCConf; break; case DOC_ChipID_DocMilPlus16: case DOC_ChipID_DocMilPlus32: case 0: /* Possible Millennium Plus, need to do more checks */ /* Possibly release from power down mode */ for (tmp = 0; (tmp < 4); tmp++) ReadDOC(virtadr, Mplus_Power); /* Reset the Millennium Plus ASIC */ tmp = DOC_MODE_RESET | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; WriteDOC(tmp, virtadr, Mplus_DOCControl); WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); usleep_range(1000, 2000); /* Enable the Millennium Plus ASIC */ tmp = DOC_MODE_NORMAL | DOC_MODE_MDWREN | DOC_MODE_RST_LAT | DOC_MODE_BDECT; WriteDOC(tmp, virtadr, Mplus_DOCControl); WriteDOC(~tmp, virtadr, Mplus_CtrlConfirm); usleep_range(1000, 2000); ChipID = ReadDOC(virtadr, ChipID); switch (ChipID) { case DOC_ChipID_DocMilPlus16: reg = DoC_Mplus_Toggle; break; case DOC_ChipID_DocMilPlus32: pr_err("DiskOnChip Millennium Plus 32MB is not supported, ignoring.\n"); fallthrough; default: ret = -ENODEV; goto notfound; } break; default: ret = -ENODEV; goto notfound; } /* Check the TOGGLE bit in the ECC register */ tmp = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; tmpb = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; tmpc = ReadDOC_(virtadr, reg) & DOC_TOGGLE_BIT; if ((tmp == tmpb) || (tmp != tmpc)) { pr_warn("Possible DiskOnChip at 0x%lx failed TOGGLE test, dropping.\n", physadr); ret = -ENODEV; goto notfound; } for (mtd = doclist; mtd; mtd = doc->nextdoc) { unsigned char oldval; unsigned char newval; nand = mtd_to_nand(mtd); doc = nand_get_controller_data(nand); /* Use the alias resolution register to determine if this is in fact the same DOC aliased to a new address. If writes to one chip's alias resolution register change the value on the other chip, they're the same chip. */ if (ChipID == DOC_ChipID_DocMilPlus16) { oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); newval = ReadDOC(virtadr, Mplus_AliasResolution); } else { oldval = ReadDOC(doc->virtadr, AliasResolution); newval = ReadDOC(virtadr, AliasResolution); } if (oldval != newval) continue; if (ChipID == DOC_ChipID_DocMilPlus16) { WriteDOC(~newval, virtadr, Mplus_AliasResolution); oldval = ReadDOC(doc->virtadr, Mplus_AliasResolution); WriteDOC(newval, virtadr, Mplus_AliasResolution); // restore it } else { WriteDOC(~newval, virtadr, AliasResolution); oldval = ReadDOC(doc->virtadr, AliasResolution); WriteDOC(newval, virtadr, AliasResolution); // restore it } newval = ~newval; if (oldval == newval) { pr_debug("Found alias of DOC at 0x%lx to 0x%lx\n", doc->physadr, physadr); goto notfound; } } pr_notice("DiskOnChip found at 0x%lx\n", physadr); len = sizeof(struct nand_chip) + sizeof(struct doc_priv) + (2 * sizeof(struct nand_bbt_descr)); nand = kzalloc(len, GFP_KERNEL); if (!nand) { ret = -ENOMEM; goto fail; } /* * Allocate a RS codec instance * * Symbolsize is 10 (bits) * Primitve polynomial is x^10+x^3+1 * First consecutive root is 510 * Primitve element to generate roots = 1 * Generator polinomial degree = 4 */ doc = (struct doc_priv *) (nand + 1); doc->rs_decoder = init_rs(10, 0x409, FCR, 1, NROOTS); if (!doc->rs_decoder) { pr_err("DiskOnChip: Could not create a RS codec\n"); ret = -ENOMEM; goto fail; } nand_controller_init(&doc->base); if (ChipID == DOC_ChipID_DocMilPlus16) doc->base.ops = &doc2001plus_ops; else doc->base.ops = &doc200x_ops; mtd = nand_to_mtd(nand); nand->bbt_td = (struct nand_bbt_descr *) (doc + 1); nand->bbt_md = nand->bbt_td + 1; mtd->owner = THIS_MODULE; mtd_set_ooblayout(mtd, &doc200x_ooblayout_ops); nand->controller = &doc->base; nand_set_controller_data(nand, doc); nand->bbt_options = NAND_BBT_USE_FLASH; /* Skip the automatic BBT scan so we can run it manually */ nand->options |= NAND_SKIP_BBTSCAN | NAND_NO_BBM_QUIRK; doc->physadr = physadr; doc->virtadr = virtadr; doc->ChipID = ChipID; doc->curfloor = -1; doc->curchip = -1; doc->mh0_page = -1; doc->mh1_page = -1; doc->nextdoc = doclist; if (ChipID == DOC_ChipID_Doc2k) numchips = doc2000_init(mtd); else if (ChipID == DOC_ChipID_DocMilPlus16) numchips = doc2001plus_init(mtd); else numchips = doc2001_init(mtd); ret = nand_scan(nand, numchips); if (ret) goto fail; ret = doc->late_init(mtd); if (ret) { nand_cleanup(nand); goto fail; } /* Success! */ doclist = mtd; return 0; notfound: /* Put back the contents of the DOCControl register, in case it's not actually a DiskOnChip. */ WriteDOC(save_control, virtadr, DOCControl); fail: if (doc) free_rs(doc->rs_decoder); kfree(nand); iounmap(virtadr); error_ioremap: release_mem_region(physadr, DOC_IOREMAP_LEN); return ret; } static void release_nanddoc(void) { struct mtd_info *mtd, *nextmtd; struct nand_chip *nand; struct doc_priv *doc; int ret; for (mtd = doclist; mtd; mtd = nextmtd) { nand = mtd_to_nand(mtd); doc = nand_get_controller_data(nand); nextmtd = doc->nextdoc; ret = mtd_device_unregister(mtd); WARN_ON(ret); nand_cleanup(nand); iounmap(doc->virtadr); release_mem_region(doc->physadr, DOC_IOREMAP_LEN); free_rs(doc->rs_decoder); kfree(nand); } } static int __init init_nanddoc(void) { int i, ret = 0; if (doc_config_location) { pr_info("Using configured DiskOnChip probe address 0x%lx\n", doc_config_location); ret = doc_probe(doc_config_location); if (ret < 0) return ret; } else { for (i = 0; i < ARRAY_SIZE(doc_locations); i++) { doc_probe(doc_locations[i]); } } /* No banner message any more. Print a message if no DiskOnChip found, so the user knows we at least tried. */ if (!doclist) { pr_info("No valid DiskOnChip devices found\n"); ret = -ENODEV; } return ret; } static void __exit cleanup_nanddoc(void) { /* Cleanup the nand/DoC resources */ release_nanddoc(); } module_init(init_nanddoc); module_exit(cleanup_nanddoc); MODULE_LICENSE("GPL"); MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>"); MODULE_DESCRIPTION("M-Systems DiskOnChip 2000, Millennium and Millennium Plus device driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1