Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sascha Hauer | 4810 | 57.16% | 38 | 29.46% |
Boris Brezillon | 1454 | 17.28% | 24 | 18.60% |
Uwe Kleine-König | 1062 | 12.62% | 18 | 13.95% |
Baruch Siach | 310 | 3.68% | 6 | 4.65% |
Miquel Raynal | 229 | 2.72% | 6 | 4.65% |
Ivo Clarysse | 147 | 1.75% | 2 | 1.55% |
Shawn Guo | 82 | 0.97% | 1 | 0.78% |
Huang Shijie | 72 | 0.86% | 1 | 0.78% |
Mike Dunn | 46 | 0.55% | 1 | 0.78% |
Fabio Estevam | 38 | 0.45% | 10 | 7.75% |
Vladimir Barinov | 37 | 0.44% | 2 | 1.55% |
Thierry Reding | 18 | 0.21% | 1 | 0.78% |
Brian Norris | 14 | 0.17% | 1 | 0.78% |
Vinod Koul | 14 | 0.17% | 1 | 0.78% |
Martin Kaiser | 13 | 0.15% | 1 | 0.78% |
Lothar Waßmann | 13 | 0.15% | 2 | 1.55% |
David Brownell | 9 | 0.11% | 1 | 0.78% |
Yangtao Li | 9 | 0.11% | 1 | 0.78% |
Luis de Bethencourt | 7 | 0.08% | 1 | 0.78% |
Eric Bénard | 6 | 0.07% | 2 | 1.55% |
Masahiro Yamada | 6 | 0.07% | 1 | 0.78% |
Wei Yongjun | 6 | 0.07% | 1 | 0.78% |
John Ogness | 5 | 0.06% | 1 | 0.78% |
Sachin Kamat | 3 | 0.04% | 1 | 0.78% |
Michael Opdenacker | 1 | 0.01% | 1 | 0.78% |
Zheng Yongjun | 1 | 0.01% | 1 | 0.78% |
Jingoo Han | 1 | 0.01% | 1 | 0.78% |
Dmitry Eremin-Solenikov | 1 | 0.01% | 1 | 0.78% |
Kieran Bingham | 1 | 0.01% | 1 | 0.78% |
Total | 8415 | 129 |
// SPDX-License-Identifier: GPL-2.0+ /* * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved. * Copyright 2008 Sascha Hauer, kernel@pengutronix.de */ #include <linux/delay.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/module.h> #include <linux/mtd/mtd.h> #include <linux/mtd/rawnand.h> #include <linux/mtd/partitions.h> #include <linux/interrupt.h> #include <linux/device.h> #include <linux/platform_device.h> #include <linux/clk.h> #include <linux/err.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/completion.h> #include <linux/of.h> #define DRIVER_NAME "mxc_nand" /* Addresses for NFC registers */ #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00) #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04) #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06) #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08) #define NFC_V1_V2_CONFIG (host->regs + 0x0a) #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c) #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e) #define NFC_V21_RSLTSPARE_AREA (host->regs + 0x10) #define NFC_V1_V2_WRPROT (host->regs + 0x12) #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14) #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16) #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20) #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24) #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28) #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c) #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22) #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26) #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a) #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e) #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18) #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a) #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c) #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0) #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2) #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3) #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4) #define NFC_V1_V2_CONFIG1_BIG (1 << 5) #define NFC_V1_V2_CONFIG1_RST (1 << 6) #define NFC_V1_V2_CONFIG1_CE (1 << 7) #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8) #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9) #define NFC_V2_CONFIG1_FP_INT (1 << 11) #define NFC_V1_V2_CONFIG2_INT (1 << 15) /* * Operation modes for the NFC. Valid for v1, v2 and v3 * type controllers. */ #define NFC_CMD (1 << 0) #define NFC_ADDR (1 << 1) #define NFC_INPUT (1 << 2) #define NFC_OUTPUT (1 << 3) #define NFC_ID (1 << 4) #define NFC_STATUS (1 << 5) #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00) #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04) #define NFC_V3_CONFIG1 (host->regs_axi + 0x34) #define NFC_V3_CONFIG1_SP_EN (1 << 0) #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4) #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38) #define NFC_V3_LAUNCH (host->regs_axi + 0x40) #define NFC_V3_WRPROT (host->regs_ip + 0x0) #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0) #define NFC_V3_WRPROT_LOCK (1 << 1) #define NFC_V3_WRPROT_UNLOCK (1 << 2) #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6) #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04) #define NFC_V3_CONFIG2 (host->regs_ip + 0x24) #define NFC_V3_CONFIG2_PS_512 (0 << 0) #define NFC_V3_CONFIG2_PS_2048 (1 << 0) #define NFC_V3_CONFIG2_PS_4096 (2 << 0) #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2) #define NFC_V3_CONFIG2_ECC_EN (1 << 3) #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4) #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5) #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6) #define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift) #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12) #define NFC_V3_CONFIG2_INT_MSK (1 << 15) #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24) #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16) #define NFC_V3_CONFIG3 (host->regs_ip + 0x28) #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0) #define NFC_V3_CONFIG3_FW8 (1 << 3) #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8) #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12) #define NFC_V3_CONFIG3_RBB_MODE (1 << 15) #define NFC_V3_CONFIG3_NO_SDMA (1 << 20) #define NFC_V3_IPC (host->regs_ip + 0x2C) #define NFC_V3_IPC_CREQ (1 << 0) #define NFC_V3_IPC_INT (1 << 31) #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34) struct mxc_nand_host; struct mxc_nand_devtype_data { void (*preset)(struct mtd_info *); int (*read_page)(struct nand_chip *chip, void *buf, void *oob, bool ecc, int page); void (*send_cmd)(struct mxc_nand_host *, uint16_t, int); void (*send_addr)(struct mxc_nand_host *, uint16_t, int); void (*send_page)(struct mtd_info *, unsigned int); void (*send_read_id)(struct mxc_nand_host *); uint16_t (*get_dev_status)(struct mxc_nand_host *); int (*check_int)(struct mxc_nand_host *); void (*irq_control)(struct mxc_nand_host *, int); u32 (*get_ecc_status)(struct mxc_nand_host *); const struct mtd_ooblayout_ops *ooblayout; void (*select_chip)(struct nand_chip *chip, int cs); int (*setup_interface)(struct nand_chip *chip, int csline, const struct nand_interface_config *conf); void (*enable_hwecc)(struct nand_chip *chip, bool enable); /* * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked * (CONFIG1:INT_MSK is set). To handle this the driver uses * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK */ int irqpending_quirk; int needs_ip; size_t regs_offset; size_t spare0_offset; size_t axi_offset; int spare_len; int eccbytes; int eccsize; int ppb_shift; }; struct mxc_nand_host { struct nand_chip nand; struct device *dev; void __iomem *spare0; void __iomem *main_area0; void __iomem *base; void __iomem *regs; void __iomem *regs_axi; void __iomem *regs_ip; int status_request; struct clk *clk; int clk_act; int irq; int eccsize; int used_oobsize; int active_cs; struct completion op_completion; uint8_t *data_buf; unsigned int buf_start; const struct mxc_nand_devtype_data *devtype_data; }; static const char * const part_probes[] = { "cmdlinepart", "RedBoot", "ofpart", NULL }; static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size) { int i; u32 *t = trg; const __iomem u32 *s = src; for (i = 0; i < (size >> 2); i++) *t++ = __raw_readl(s++); } static void memcpy16_fromio(void *trg, const void __iomem *src, size_t size) { int i; u16 *t = trg; const __iomem u16 *s = src; /* We assume that src (IO) is always 32bit aligned */ if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) { memcpy32_fromio(trg, src, size); return; } for (i = 0; i < (size >> 1); i++) *t++ = __raw_readw(s++); } static inline void memcpy32_toio(void __iomem *trg, const void *src, int size) { /* __iowrite32_copy use 32bit size values so divide by 4 */ __iowrite32_copy(trg, src, size / 4); } static void memcpy16_toio(void __iomem *trg, const void *src, int size) { int i; __iomem u16 *t = trg; const u16 *s = src; /* We assume that trg (IO) is always 32bit aligned */ if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) { memcpy32_toio(trg, src, size); return; } for (i = 0; i < (size >> 1); i++) __raw_writew(*s++, t++); } /* * The controller splits a page into data chunks of 512 bytes + partial oob. * There are writesize / 512 such chunks, the size of the partial oob parts is * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then * contains additionally the byte lost by rounding (if any). * This function handles the needed shuffling between host->data_buf (which * holds a page in natural order, i.e. writesize bytes data + oobsize bytes * spare) and the NFC buffer. */ static void copy_spare(struct mtd_info *mtd, bool bfrom, void *buf) { struct nand_chip *this = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(this); u16 i, oob_chunk_size; u16 num_chunks = mtd->writesize / 512; u8 *d = buf; u8 __iomem *s = host->spare0; u16 sparebuf_size = host->devtype_data->spare_len; /* size of oob chunk for all but possibly the last one */ oob_chunk_size = (host->used_oobsize / num_chunks) & ~1; if (bfrom) { for (i = 0; i < num_chunks - 1; i++) memcpy16_fromio(d + i * oob_chunk_size, s + i * sparebuf_size, oob_chunk_size); /* the last chunk */ memcpy16_fromio(d + i * oob_chunk_size, s + i * sparebuf_size, host->used_oobsize - i * oob_chunk_size); } else { for (i = 0; i < num_chunks - 1; i++) memcpy16_toio(&s[i * sparebuf_size], &d[i * oob_chunk_size], oob_chunk_size); /* the last chunk */ memcpy16_toio(&s[i * sparebuf_size], &d[i * oob_chunk_size], host->used_oobsize - i * oob_chunk_size); } } /* * MXC NANDFC can only perform full page+spare or spare-only read/write. When * the upper layers perform a read/write buf operation, the saved column address * is used to index into the full page. So usually this function is called with * column == 0 (unless no column cycle is needed indicated by column == -1) */ static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr) { struct nand_chip *nand_chip = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); /* Write out column address, if necessary */ if (column != -1) { host->devtype_data->send_addr(host, column & 0xff, page_addr == -1); if (mtd->writesize > 512) /* another col addr cycle for 2k page */ host->devtype_data->send_addr(host, (column >> 8) & 0xff, false); } /* Write out page address, if necessary */ if (page_addr != -1) { /* paddr_0 - p_addr_7 */ host->devtype_data->send_addr(host, (page_addr & 0xff), false); if (mtd->writesize > 512) { if (mtd->size >= 0x10000000) { /* paddr_8 - paddr_15 */ host->devtype_data->send_addr(host, (page_addr >> 8) & 0xff, false); host->devtype_data->send_addr(host, (page_addr >> 16) & 0xff, true); } else /* paddr_8 - paddr_15 */ host->devtype_data->send_addr(host, (page_addr >> 8) & 0xff, true); } else { if (nand_chip->options & NAND_ROW_ADDR_3) { /* paddr_8 - paddr_15 */ host->devtype_data->send_addr(host, (page_addr >> 8) & 0xff, false); host->devtype_data->send_addr(host, (page_addr >> 16) & 0xff, true); } else /* paddr_8 - paddr_15 */ host->devtype_data->send_addr(host, (page_addr >> 8) & 0xff, true); } } } static int check_int_v3(struct mxc_nand_host *host) { uint32_t tmp; tmp = readl(NFC_V3_IPC); if (!(tmp & NFC_V3_IPC_INT)) return 0; tmp &= ~NFC_V3_IPC_INT; writel(tmp, NFC_V3_IPC); return 1; } static int check_int_v1_v2(struct mxc_nand_host *host) { uint32_t tmp; tmp = readw(NFC_V1_V2_CONFIG2); if (!(tmp & NFC_V1_V2_CONFIG2_INT)) return 0; if (!host->devtype_data->irqpending_quirk) writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2); return 1; } static void irq_control_v1_v2(struct mxc_nand_host *host, int activate) { uint16_t tmp; tmp = readw(NFC_V1_V2_CONFIG1); if (activate) tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK; else tmp |= NFC_V1_V2_CONFIG1_INT_MSK; writew(tmp, NFC_V1_V2_CONFIG1); } static void irq_control_v3(struct mxc_nand_host *host, int activate) { uint32_t tmp; tmp = readl(NFC_V3_CONFIG2); if (activate) tmp &= ~NFC_V3_CONFIG2_INT_MSK; else tmp |= NFC_V3_CONFIG2_INT_MSK; writel(tmp, NFC_V3_CONFIG2); } static void irq_control(struct mxc_nand_host *host, int activate) { if (host->devtype_data->irqpending_quirk) { if (activate) enable_irq(host->irq); else disable_irq_nosync(host->irq); } else { host->devtype_data->irq_control(host, activate); } } static u32 get_ecc_status_v1(struct mxc_nand_host *host) { return readw(NFC_V1_V2_ECC_STATUS_RESULT); } static u32 get_ecc_status_v2(struct mxc_nand_host *host) { return readl(NFC_V1_V2_ECC_STATUS_RESULT); } static u32 get_ecc_status_v3(struct mxc_nand_host *host) { return readl(NFC_V3_ECC_STATUS_RESULT); } static irqreturn_t mxc_nfc_irq(int irq, void *dev_id) { struct mxc_nand_host *host = dev_id; if (!host->devtype_data->check_int(host)) return IRQ_NONE; irq_control(host, 0); complete(&host->op_completion); return IRQ_HANDLED; } /* This function polls the NANDFC to wait for the basic operation to * complete by checking the INT bit of config2 register. */ static int wait_op_done(struct mxc_nand_host *host, int useirq) { int ret = 0; /* * If operation is already complete, don't bother to setup an irq or a * loop. */ if (host->devtype_data->check_int(host)) return 0; if (useirq) { unsigned long timeout; reinit_completion(&host->op_completion); irq_control(host, 1); timeout = wait_for_completion_timeout(&host->op_completion, HZ); if (!timeout && !host->devtype_data->check_int(host)) { dev_dbg(host->dev, "timeout waiting for irq\n"); ret = -ETIMEDOUT; } } else { int max_retries = 8000; int done; do { udelay(1); done = host->devtype_data->check_int(host); if (done) break; } while (--max_retries); if (!done) { dev_dbg(host->dev, "timeout polling for completion\n"); ret = -ETIMEDOUT; } } WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq); return ret; } static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq) { /* fill command */ writel(cmd, NFC_V3_FLASH_CMD); /* send out command */ writel(NFC_CMD, NFC_V3_LAUNCH); /* Wait for operation to complete */ wait_op_done(host, useirq); } /* This function issues the specified command to the NAND device and * waits for completion. */ static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq) { dev_dbg(host->dev, "send_cmd(host, 0x%x, %d)\n", cmd, useirq); writew(cmd, NFC_V1_V2_FLASH_CMD); writew(NFC_CMD, NFC_V1_V2_CONFIG2); if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) { int max_retries = 100; /* Reset completion is indicated by NFC_CONFIG2 */ /* being set to 0 */ while (max_retries-- > 0) { if (readw(NFC_V1_V2_CONFIG2) == 0) { break; } udelay(1); } if (max_retries < 0) dev_dbg(host->dev, "%s: RESET failed\n", __func__); } else { /* Wait for operation to complete */ wait_op_done(host, useirq); } } static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast) { /* fill address */ writel(addr, NFC_V3_FLASH_ADDR0); /* send out address */ writel(NFC_ADDR, NFC_V3_LAUNCH); wait_op_done(host, 0); } /* This function sends an address (or partial address) to the * NAND device. The address is used to select the source/destination for * a NAND command. */ static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast) { dev_dbg(host->dev, "send_addr(host, 0x%x %d)\n", addr, islast); writew(addr, NFC_V1_V2_FLASH_ADDR); writew(NFC_ADDR, NFC_V1_V2_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, islast); } static void send_page_v3(struct mtd_info *mtd, unsigned int ops) { struct nand_chip *nand_chip = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); uint32_t tmp; tmp = readl(NFC_V3_CONFIG1); tmp &= ~(7 << 4); writel(tmp, NFC_V3_CONFIG1); /* transfer data from NFC ram to nand */ writel(ops, NFC_V3_LAUNCH); wait_op_done(host, false); } static void send_page_v2(struct mtd_info *mtd, unsigned int ops) { struct nand_chip *nand_chip = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); /* NANDFC buffer 0 is used for page read/write */ writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); writew(ops, NFC_V1_V2_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, true); } static void send_page_v1(struct mtd_info *mtd, unsigned int ops) { struct nand_chip *nand_chip = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); int bufs, i; if (mtd->writesize > 512) bufs = 4; else bufs = 1; for (i = 0; i < bufs; i++) { /* NANDFC buffer 0 is used for page read/write */ writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR); writew(ops, NFC_V1_V2_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, true); } } static void send_read_id_v3(struct mxc_nand_host *host) { /* Read ID into main buffer */ writel(NFC_ID, NFC_V3_LAUNCH); wait_op_done(host, true); memcpy32_fromio(host->data_buf, host->main_area0, 16); } /* Request the NANDFC to perform a read of the NAND device ID. */ static void send_read_id_v1_v2(struct mxc_nand_host *host) { /* NANDFC buffer 0 is used for device ID output */ writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); writew(NFC_ID, NFC_V1_V2_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, true); memcpy32_fromio(host->data_buf, host->main_area0, 16); } static uint16_t get_dev_status_v3(struct mxc_nand_host *host) { writew(NFC_STATUS, NFC_V3_LAUNCH); wait_op_done(host, true); return readl(NFC_V3_CONFIG1) >> 16; } /* This function requests the NANDFC to perform a read of the * NAND device status and returns the current status. */ static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host) { void __iomem *main_buf = host->main_area0; uint32_t store; uint16_t ret; writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); /* * The device status is stored in main_area0. To * prevent corruption of the buffer save the value * and restore it afterwards. */ store = readl(main_buf); writew(NFC_STATUS, NFC_V1_V2_CONFIG2); wait_op_done(host, true); ret = readw(main_buf); writel(store, main_buf); return ret; } static void mxc_nand_enable_hwecc_v1_v2(struct nand_chip *chip, bool enable) { struct mxc_nand_host *host = nand_get_controller_data(chip); uint16_t config1; if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) return; config1 = readw(NFC_V1_V2_CONFIG1); if (enable) config1 |= NFC_V1_V2_CONFIG1_ECC_EN; else config1 &= ~NFC_V1_V2_CONFIG1_ECC_EN; writew(config1, NFC_V1_V2_CONFIG1); } static void mxc_nand_enable_hwecc_v3(struct nand_chip *chip, bool enable) { struct mxc_nand_host *host = nand_get_controller_data(chip); uint32_t config2; if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) return; config2 = readl(NFC_V3_CONFIG2); if (enable) config2 |= NFC_V3_CONFIG2_ECC_EN; else config2 &= ~NFC_V3_CONFIG2_ECC_EN; writel(config2, NFC_V3_CONFIG2); } /* This functions is used by upper layer to checks if device is ready */ static int mxc_nand_dev_ready(struct nand_chip *chip) { /* * NFC handles R/B internally. Therefore, this function * always returns status as ready. */ return 1; } static int mxc_nand_read_page_v1(struct nand_chip *chip, void *buf, void *oob, bool ecc, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct mxc_nand_host *host = nand_get_controller_data(chip); unsigned int bitflips_corrected = 0; int no_subpages; int i; host->devtype_data->enable_hwecc(chip, ecc); host->devtype_data->send_cmd(host, NAND_CMD_READ0, false); mxc_do_addr_cycle(mtd, 0, page); if (mtd->writesize > 512) host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true); no_subpages = mtd->writesize >> 9; for (i = 0; i < no_subpages; i++) { uint16_t ecc_stats; /* NANDFC buffer 0 is used for page read/write */ writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR); writew(NFC_OUTPUT, NFC_V1_V2_CONFIG2); /* Wait for operation to complete */ wait_op_done(host, true); ecc_stats = get_ecc_status_v1(host); ecc_stats >>= 2; if (buf && ecc) { switch (ecc_stats & 0x3) { case 0: default: break; case 1: mtd->ecc_stats.corrected++; bitflips_corrected = 1; break; case 2: mtd->ecc_stats.failed++; break; } } } if (buf) memcpy32_fromio(buf, host->main_area0, mtd->writesize); if (oob) copy_spare(mtd, true, oob); return bitflips_corrected; } static int mxc_nand_read_page_v2_v3(struct nand_chip *chip, void *buf, void *oob, bool ecc, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct mxc_nand_host *host = nand_get_controller_data(chip); unsigned int max_bitflips = 0; u32 ecc_stat, err; int no_subpages; u8 ecc_bit_mask, err_limit; host->devtype_data->enable_hwecc(chip, ecc); host->devtype_data->send_cmd(host, NAND_CMD_READ0, false); mxc_do_addr_cycle(mtd, 0, page); if (mtd->writesize > 512) host->devtype_data->send_cmd(host, NAND_CMD_READSTART, true); host->devtype_data->send_page(mtd, NFC_OUTPUT); if (buf) memcpy32_fromio(buf, host->main_area0, mtd->writesize); if (oob) copy_spare(mtd, true, oob); ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf; err_limit = (host->eccsize == 4) ? 0x4 : 0x8; no_subpages = mtd->writesize >> 9; ecc_stat = host->devtype_data->get_ecc_status(host); do { err = ecc_stat & ecc_bit_mask; if (err > err_limit) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += err; max_bitflips = max_t(unsigned int, max_bitflips, err); } ecc_stat >>= 4; } while (--no_subpages); return max_bitflips; } static int mxc_nand_read_page(struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct mxc_nand_host *host = nand_get_controller_data(chip); void *oob_buf; if (oob_required) oob_buf = chip->oob_poi; else oob_buf = NULL; return host->devtype_data->read_page(chip, buf, oob_buf, 1, page); } static int mxc_nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct mxc_nand_host *host = nand_get_controller_data(chip); void *oob_buf; if (oob_required) oob_buf = chip->oob_poi; else oob_buf = NULL; return host->devtype_data->read_page(chip, buf, oob_buf, 0, page); } static int mxc_nand_read_oob(struct nand_chip *chip, int page) { struct mxc_nand_host *host = nand_get_controller_data(chip); return host->devtype_data->read_page(chip, NULL, chip->oob_poi, 0, page); } static int mxc_nand_write_page(struct nand_chip *chip, const uint8_t *buf, bool ecc, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct mxc_nand_host *host = nand_get_controller_data(chip); host->devtype_data->enable_hwecc(chip, ecc); host->devtype_data->send_cmd(host, NAND_CMD_SEQIN, false); mxc_do_addr_cycle(mtd, 0, page); memcpy32_toio(host->main_area0, buf, mtd->writesize); copy_spare(mtd, false, chip->oob_poi); host->devtype_data->send_page(mtd, NFC_INPUT); host->devtype_data->send_cmd(host, NAND_CMD_PAGEPROG, true); mxc_do_addr_cycle(mtd, 0, page); return 0; } static int mxc_nand_write_page_ecc(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { return mxc_nand_write_page(chip, buf, true, page); } static int mxc_nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { return mxc_nand_write_page(chip, buf, false, page); } static int mxc_nand_write_oob(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct mxc_nand_host *host = nand_get_controller_data(chip); memset(host->data_buf, 0xff, mtd->writesize); return mxc_nand_write_page(chip, host->data_buf, false, page); } static u_char mxc_nand_read_byte(struct nand_chip *nand_chip) { struct mxc_nand_host *host = nand_get_controller_data(nand_chip); uint8_t ret; /* Check for status request */ if (host->status_request) return host->devtype_data->get_dev_status(host) & 0xFF; if (nand_chip->options & NAND_BUSWIDTH_16) { /* only take the lower byte of each word */ ret = *(uint16_t *)(host->data_buf + host->buf_start); host->buf_start += 2; } else { ret = *(uint8_t *)(host->data_buf + host->buf_start); host->buf_start++; } dev_dbg(host->dev, "%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start); return ret; } /* Write data of length len to buffer buf. The data to be * written on NAND Flash is first copied to RAMbuffer. After the Data Input * Operation by the NFC, the data is written to NAND Flash */ static void mxc_nand_write_buf(struct nand_chip *nand_chip, const u_char *buf, int len) { struct mtd_info *mtd = nand_to_mtd(nand_chip); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); u16 col = host->buf_start; int n = mtd->oobsize + mtd->writesize - col; n = min(n, len); memcpy(host->data_buf + col, buf, n); host->buf_start += n; } /* Read the data buffer from the NAND Flash. To read the data from NAND * Flash first the data output cycle is initiated by the NFC, which copies * the data to RAMbuffer. This data of length len is then copied to buffer buf. */ static void mxc_nand_read_buf(struct nand_chip *nand_chip, u_char *buf, int len) { struct mtd_info *mtd = nand_to_mtd(nand_chip); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); u16 col = host->buf_start; int n = mtd->oobsize + mtd->writesize - col; n = min(n, len); memcpy(buf, host->data_buf + col, n); host->buf_start += n; } /* This function is used by upper layer for select and * deselect of the NAND chip */ static void mxc_nand_select_chip_v1_v3(struct nand_chip *nand_chip, int chip) { struct mxc_nand_host *host = nand_get_controller_data(nand_chip); if (chip == -1) { /* Disable the NFC clock */ if (host->clk_act) { clk_disable_unprepare(host->clk); host->clk_act = 0; } return; } if (!host->clk_act) { /* Enable the NFC clock */ clk_prepare_enable(host->clk); host->clk_act = 1; } } static void mxc_nand_select_chip_v2(struct nand_chip *nand_chip, int chip) { struct mxc_nand_host *host = nand_get_controller_data(nand_chip); if (chip == -1) { /* Disable the NFC clock */ if (host->clk_act) { clk_disable_unprepare(host->clk); host->clk_act = 0; } return; } if (!host->clk_act) { /* Enable the NFC clock */ clk_prepare_enable(host->clk); host->clk_act = 1; } host->active_cs = chip; writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR); } #define MXC_V1_ECCBYTES 5 static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *nand_chip = mtd_to_nand(mtd); if (section >= nand_chip->ecc.steps) return -ERANGE; oobregion->offset = (section * 16) + 6; oobregion->length = MXC_V1_ECCBYTES; return 0; } static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *nand_chip = mtd_to_nand(mtd); if (section > nand_chip->ecc.steps) return -ERANGE; if (!section) { if (mtd->writesize <= 512) { oobregion->offset = 0; oobregion->length = 5; } else { oobregion->offset = 2; oobregion->length = 4; } } else { oobregion->offset = ((section - 1) * 16) + MXC_V1_ECCBYTES + 6; if (section < nand_chip->ecc.steps) oobregion->length = (section * 16) + 6 - oobregion->offset; else oobregion->length = mtd->oobsize - oobregion->offset; } return 0; } static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = { .ecc = mxc_v1_ooblayout_ecc, .free = mxc_v1_ooblayout_free, }; static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *nand_chip = mtd_to_nand(mtd); int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26; if (section >= nand_chip->ecc.steps) return -ERANGE; oobregion->offset = (section * stepsize) + 7; oobregion->length = nand_chip->ecc.bytes; return 0; } static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *nand_chip = mtd_to_nand(mtd); int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26; if (section >= nand_chip->ecc.steps) return -ERANGE; if (!section) { if (mtd->writesize <= 512) { oobregion->offset = 0; oobregion->length = 5; } else { oobregion->offset = 2; oobregion->length = 4; } } else { oobregion->offset = section * stepsize; oobregion->length = 7; } return 0; } static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = { .ecc = mxc_v2_ooblayout_ecc, .free = mxc_v2_ooblayout_free, }; /* * v2 and v3 type controllers can do 4bit or 8bit ecc depending * on how much oob the nand chip has. For 8bit ecc we need at least * 26 bytes of oob data per 512 byte block. */ static int get_eccsize(struct mtd_info *mtd) { int oobbytes_per_512 = 0; oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize; if (oobbytes_per_512 < 26) return 4; else return 8; } static void preset_v1(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); uint16_t config1 = 0; if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST && mtd->writesize) config1 |= NFC_V1_V2_CONFIG1_ECC_EN; if (!host->devtype_data->irqpending_quirk) config1 |= NFC_V1_V2_CONFIG1_INT_MSK; host->eccsize = 1; writew(config1, NFC_V1_V2_CONFIG1); /* preset operation */ /* Unlock the internal RAM Buffer */ writew(0x2, NFC_V1_V2_CONFIG); /* Blocks to be unlocked */ writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR); writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR); /* Unlock Block Command for given address range */ writew(0x4, NFC_V1_V2_WRPROT); } static int mxc_nand_v2_setup_interface(struct nand_chip *chip, int csline, const struct nand_interface_config *conf) { struct mxc_nand_host *host = nand_get_controller_data(chip); int tRC_min_ns, tRC_ps, ret; unsigned long rate, rate_round; const struct nand_sdr_timings *timings; u16 config1; timings = nand_get_sdr_timings(conf); if (IS_ERR(timings)) return -ENOTSUPP; config1 = readw(NFC_V1_V2_CONFIG1); tRC_min_ns = timings->tRC_min / 1000; rate = 1000000000 / tRC_min_ns; /* * For tRC < 30ns we have to use EDO mode. In this case the controller * does one access per clock cycle. Otherwise the controller does one * access in two clock cycles, thus we have to double the rate to the * controller. */ if (tRC_min_ns < 30) { rate_round = clk_round_rate(host->clk, rate); config1 |= NFC_V2_CONFIG1_ONE_CYCLE; tRC_ps = 1000000000 / (rate_round / 1000); } else { rate *= 2; rate_round = clk_round_rate(host->clk, rate); config1 &= ~NFC_V2_CONFIG1_ONE_CYCLE; tRC_ps = 1000000000 / (rate_round / 1000 / 2); } /* * The timing values compared against are from the i.MX25 Automotive * datasheet, Table 50. NFC Timing Parameters */ if (timings->tCLS_min > tRC_ps - 1000 || timings->tCLH_min > tRC_ps - 2000 || timings->tCS_min > tRC_ps - 1000 || timings->tCH_min > tRC_ps - 2000 || timings->tWP_min > tRC_ps - 1500 || timings->tALS_min > tRC_ps || timings->tALH_min > tRC_ps - 3000 || timings->tDS_min > tRC_ps || timings->tDH_min > tRC_ps - 5000 || timings->tWC_min > 2 * tRC_ps || timings->tWH_min > tRC_ps - 2500 || timings->tRR_min > 6 * tRC_ps || timings->tRP_min > 3 * tRC_ps / 2 || timings->tRC_min > 2 * tRC_ps || timings->tREH_min > (tRC_ps / 2) - 2500) { dev_dbg(host->dev, "Timing out of bounds\n"); return -EINVAL; } if (csline == NAND_DATA_IFACE_CHECK_ONLY) return 0; ret = clk_set_rate(host->clk, rate); if (ret) return ret; writew(config1, NFC_V1_V2_CONFIG1); dev_dbg(host->dev, "Setting rate to %ldHz, %s mode\n", rate_round, config1 & NFC_V2_CONFIG1_ONE_CYCLE ? "One cycle (EDO)" : "normal"); return 0; } static void preset_v2(struct mtd_info *mtd) { struct nand_chip *nand_chip = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); uint16_t config1 = 0; config1 |= NFC_V2_CONFIG1_FP_INT; if (!host->devtype_data->irqpending_quirk) config1 |= NFC_V1_V2_CONFIG1_INT_MSK; if (mtd->writesize) { uint16_t pages_per_block = mtd->erasesize / mtd->writesize; if (nand_chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) config1 |= NFC_V1_V2_CONFIG1_ECC_EN; host->eccsize = get_eccsize(mtd); if (host->eccsize == 4) config1 |= NFC_V2_CONFIG1_ECC_MODE_4; config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6); } else { host->eccsize = 1; } writew(config1, NFC_V1_V2_CONFIG1); /* preset operation */ /* spare area size in 16-bit half-words */ writew(mtd->oobsize / 2, NFC_V21_RSLTSPARE_AREA); /* Unlock the internal RAM Buffer */ writew(0x2, NFC_V1_V2_CONFIG); /* Blocks to be unlocked */ writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0); writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1); writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2); writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3); writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0); writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1); writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2); writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3); /* Unlock Block Command for given address range */ writew(0x4, NFC_V1_V2_WRPROT); } static void preset_v3(struct mtd_info *mtd) { struct nand_chip *chip = mtd_to_nand(mtd); struct mxc_nand_host *host = nand_get_controller_data(chip); uint32_t config2, config3; int i, addr_phases; writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1); writel(NFC_V3_IPC_CREQ, NFC_V3_IPC); /* Unlock the internal RAM Buffer */ writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK, NFC_V3_WRPROT); /* Blocks to be unlocked */ for (i = 0; i < NAND_MAX_CHIPS; i++) writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2)); writel(0, NFC_V3_IPC); config2 = NFC_V3_CONFIG2_ONE_CYCLE | NFC_V3_CONFIG2_2CMD_PHASES | NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) | NFC_V3_CONFIG2_ST_CMD(0x70) | NFC_V3_CONFIG2_INT_MSK | NFC_V3_CONFIG2_NUM_ADDR_PHASE0; addr_phases = fls(chip->pagemask) >> 3; if (mtd->writesize == 2048) { config2 |= NFC_V3_CONFIG2_PS_2048; config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); } else if (mtd->writesize == 4096) { config2 |= NFC_V3_CONFIG2_PS_4096; config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases); } else { config2 |= NFC_V3_CONFIG2_PS_512; config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1); } if (mtd->writesize) { if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) config2 |= NFC_V3_CONFIG2_ECC_EN; config2 |= NFC_V3_CONFIG2_PPB( ffs(mtd->erasesize / mtd->writesize) - 6, host->devtype_data->ppb_shift); host->eccsize = get_eccsize(mtd); if (host->eccsize == 8) config2 |= NFC_V3_CONFIG2_ECC_MODE_8; } writel(config2, NFC_V3_CONFIG2); config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) | NFC_V3_CONFIG3_NO_SDMA | NFC_V3_CONFIG3_RBB_MODE | NFC_V3_CONFIG3_SBB(6) | /* Reset default */ NFC_V3_CONFIG3_ADD_OP(0); if (!(chip->options & NAND_BUSWIDTH_16)) config3 |= NFC_V3_CONFIG3_FW8; writel(config3, NFC_V3_CONFIG3); writel(0, NFC_V3_DELAY_LINE); } /* Used by the upper layer to write command to NAND Flash for * different operations to be carried out on NAND Flash */ static void mxc_nand_command(struct nand_chip *nand_chip, unsigned command, int column, int page_addr) { struct mtd_info *mtd = nand_to_mtd(nand_chip); struct mxc_nand_host *host = nand_get_controller_data(nand_chip); dev_dbg(host->dev, "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n", command, column, page_addr); /* Reset command state information */ host->status_request = false; /* Command pre-processing step */ switch (command) { case NAND_CMD_RESET: host->devtype_data->preset(mtd); host->devtype_data->send_cmd(host, command, false); break; case NAND_CMD_STATUS: host->buf_start = 0; host->status_request = true; host->devtype_data->send_cmd(host, command, true); WARN_ONCE(column != -1 || page_addr != -1, "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n", command, column, page_addr); mxc_do_addr_cycle(mtd, column, page_addr); break; case NAND_CMD_READID: host->devtype_data->send_cmd(host, command, true); mxc_do_addr_cycle(mtd, column, page_addr); host->devtype_data->send_read_id(host); host->buf_start = 0; break; case NAND_CMD_ERASE1: case NAND_CMD_ERASE2: host->devtype_data->send_cmd(host, command, false); WARN_ONCE(column != -1, "Unexpected column value (cmd=%u, col=%d)\n", command, column); mxc_do_addr_cycle(mtd, column, page_addr); break; case NAND_CMD_PARAM: host->devtype_data->send_cmd(host, command, false); mxc_do_addr_cycle(mtd, column, page_addr); host->devtype_data->send_page(mtd, NFC_OUTPUT); memcpy32_fromio(host->data_buf, host->main_area0, 512); host->buf_start = 0; break; default: WARN_ONCE(1, "Unimplemented command (cmd=%u)\n", command); break; } } static int mxc_nand_set_features(struct nand_chip *chip, int addr, u8 *subfeature_param) { struct mtd_info *mtd = nand_to_mtd(chip); struct mxc_nand_host *host = nand_get_controller_data(chip); int i; host->buf_start = 0; for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) chip->legacy.write_byte(chip, subfeature_param[i]); memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize); host->devtype_data->send_cmd(host, NAND_CMD_SET_FEATURES, false); mxc_do_addr_cycle(mtd, addr, -1); host->devtype_data->send_page(mtd, NFC_INPUT); return 0; } static int mxc_nand_get_features(struct nand_chip *chip, int addr, u8 *subfeature_param) { struct mtd_info *mtd = nand_to_mtd(chip); struct mxc_nand_host *host = nand_get_controller_data(chip); int i; host->devtype_data->send_cmd(host, NAND_CMD_GET_FEATURES, false); mxc_do_addr_cycle(mtd, addr, -1); host->devtype_data->send_page(mtd, NFC_OUTPUT); memcpy32_fromio(host->data_buf, host->main_area0, 512); host->buf_start = 0; for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) *subfeature_param++ = chip->legacy.read_byte(chip); return 0; } /* * The generic flash bbt descriptors overlap with our ecc * hardware, so define some i.MX specific ones. */ static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' }; static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' }; static struct nand_bbt_descr bbt_main_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 0, .len = 4, .veroffs = 4, .maxblocks = 4, .pattern = bbt_pattern, }; static struct nand_bbt_descr bbt_mirror_descr = { .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, .offs = 0, .len = 4, .veroffs = 4, .maxblocks = 4, .pattern = mirror_pattern, }; /* v1 + irqpending_quirk: i.MX21 */ static const struct mxc_nand_devtype_data imx21_nand_devtype_data = { .preset = preset_v1, .read_page = mxc_nand_read_page_v1, .send_cmd = send_cmd_v1_v2, .send_addr = send_addr_v1_v2, .send_page = send_page_v1, .send_read_id = send_read_id_v1_v2, .get_dev_status = get_dev_status_v1_v2, .check_int = check_int_v1_v2, .irq_control = irq_control_v1_v2, .get_ecc_status = get_ecc_status_v1, .ooblayout = &mxc_v1_ooblayout_ops, .select_chip = mxc_nand_select_chip_v1_v3, .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, .irqpending_quirk = 1, .needs_ip = 0, .regs_offset = 0xe00, .spare0_offset = 0x800, .spare_len = 16, .eccbytes = 3, .eccsize = 1, }; /* v1 + !irqpending_quirk: i.MX27, i.MX31 */ static const struct mxc_nand_devtype_data imx27_nand_devtype_data = { .preset = preset_v1, .read_page = mxc_nand_read_page_v1, .send_cmd = send_cmd_v1_v2, .send_addr = send_addr_v1_v2, .send_page = send_page_v1, .send_read_id = send_read_id_v1_v2, .get_dev_status = get_dev_status_v1_v2, .check_int = check_int_v1_v2, .irq_control = irq_control_v1_v2, .get_ecc_status = get_ecc_status_v1, .ooblayout = &mxc_v1_ooblayout_ops, .select_chip = mxc_nand_select_chip_v1_v3, .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, .irqpending_quirk = 0, .needs_ip = 0, .regs_offset = 0xe00, .spare0_offset = 0x800, .axi_offset = 0, .spare_len = 16, .eccbytes = 3, .eccsize = 1, }; /* v21: i.MX25, i.MX35 */ static const struct mxc_nand_devtype_data imx25_nand_devtype_data = { .preset = preset_v2, .read_page = mxc_nand_read_page_v2_v3, .send_cmd = send_cmd_v1_v2, .send_addr = send_addr_v1_v2, .send_page = send_page_v2, .send_read_id = send_read_id_v1_v2, .get_dev_status = get_dev_status_v1_v2, .check_int = check_int_v1_v2, .irq_control = irq_control_v1_v2, .get_ecc_status = get_ecc_status_v2, .ooblayout = &mxc_v2_ooblayout_ops, .select_chip = mxc_nand_select_chip_v2, .setup_interface = mxc_nand_v2_setup_interface, .enable_hwecc = mxc_nand_enable_hwecc_v1_v2, .irqpending_quirk = 0, .needs_ip = 0, .regs_offset = 0x1e00, .spare0_offset = 0x1000, .axi_offset = 0, .spare_len = 64, .eccbytes = 9, .eccsize = 0, }; /* v3.2a: i.MX51 */ static const struct mxc_nand_devtype_data imx51_nand_devtype_data = { .preset = preset_v3, .read_page = mxc_nand_read_page_v2_v3, .send_cmd = send_cmd_v3, .send_addr = send_addr_v3, .send_page = send_page_v3, .send_read_id = send_read_id_v3, .get_dev_status = get_dev_status_v3, .check_int = check_int_v3, .irq_control = irq_control_v3, .get_ecc_status = get_ecc_status_v3, .ooblayout = &mxc_v2_ooblayout_ops, .select_chip = mxc_nand_select_chip_v1_v3, .enable_hwecc = mxc_nand_enable_hwecc_v3, .irqpending_quirk = 0, .needs_ip = 1, .regs_offset = 0, .spare0_offset = 0x1000, .axi_offset = 0x1e00, .spare_len = 64, .eccbytes = 0, .eccsize = 0, .ppb_shift = 7, }; /* v3.2b: i.MX53 */ static const struct mxc_nand_devtype_data imx53_nand_devtype_data = { .preset = preset_v3, .read_page = mxc_nand_read_page_v2_v3, .send_cmd = send_cmd_v3, .send_addr = send_addr_v3, .send_page = send_page_v3, .send_read_id = send_read_id_v3, .get_dev_status = get_dev_status_v3, .check_int = check_int_v3, .irq_control = irq_control_v3, .get_ecc_status = get_ecc_status_v3, .ooblayout = &mxc_v2_ooblayout_ops, .select_chip = mxc_nand_select_chip_v1_v3, .enable_hwecc = mxc_nand_enable_hwecc_v3, .irqpending_quirk = 0, .needs_ip = 1, .regs_offset = 0, .spare0_offset = 0x1000, .axi_offset = 0x1e00, .spare_len = 64, .eccbytes = 0, .eccsize = 0, .ppb_shift = 8, }; static inline int is_imx21_nfc(struct mxc_nand_host *host) { return host->devtype_data == &imx21_nand_devtype_data; } static inline int is_imx27_nfc(struct mxc_nand_host *host) { return host->devtype_data == &imx27_nand_devtype_data; } static inline int is_imx25_nfc(struct mxc_nand_host *host) { return host->devtype_data == &imx25_nand_devtype_data; } static const struct of_device_id mxcnd_dt_ids[] = { { .compatible = "fsl,imx21-nand", .data = &imx21_nand_devtype_data, }, { .compatible = "fsl,imx27-nand", .data = &imx27_nand_devtype_data, }, { .compatible = "fsl,imx25-nand", .data = &imx25_nand_devtype_data, }, { .compatible = "fsl,imx51-nand", .data = &imx51_nand_devtype_data, }, { .compatible = "fsl,imx53-nand", .data = &imx53_nand_devtype_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, mxcnd_dt_ids); static int mxcnd_attach_chip(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct mxc_nand_host *host = nand_get_controller_data(chip); struct device *dev = mtd->dev.parent; chip->ecc.bytes = host->devtype_data->eccbytes; host->eccsize = host->devtype_data->eccsize; chip->ecc.size = 512; mtd_set_ooblayout(mtd, host->devtype_data->ooblayout); switch (chip->ecc.engine_type) { case NAND_ECC_ENGINE_TYPE_ON_HOST: chip->ecc.read_page = mxc_nand_read_page; chip->ecc.read_page_raw = mxc_nand_read_page_raw; chip->ecc.read_oob = mxc_nand_read_oob; chip->ecc.write_page = mxc_nand_write_page_ecc; chip->ecc.write_page_raw = mxc_nand_write_page_raw; chip->ecc.write_oob = mxc_nand_write_oob; break; case NAND_ECC_ENGINE_TYPE_SOFT: break; default: return -EINVAL; } if (chip->bbt_options & NAND_BBT_USE_FLASH) { chip->bbt_td = &bbt_main_descr; chip->bbt_md = &bbt_mirror_descr; } /* Allocate the right size buffer now */ devm_kfree(dev, (void *)host->data_buf); host->data_buf = devm_kzalloc(dev, mtd->writesize + mtd->oobsize, GFP_KERNEL); if (!host->data_buf) return -ENOMEM; /* Call preset again, with correct writesize chip time */ host->devtype_data->preset(mtd); if (!chip->ecc.bytes) { if (host->eccsize == 8) chip->ecc.bytes = 18; else if (host->eccsize == 4) chip->ecc.bytes = 9; } /* * Experimentation shows that i.MX NFC can only handle up to 218 oob * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare() * into copying invalid data to/from the spare IO buffer, as this * might cause ECC data corruption when doing sub-page write to a * partially written page. */ host->used_oobsize = min(mtd->oobsize, 218U); if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_HOST) { if (is_imx21_nfc(host) || is_imx27_nfc(host)) chip->ecc.strength = 1; else chip->ecc.strength = (host->eccsize == 4) ? 4 : 8; } return 0; } static int mxcnd_setup_interface(struct nand_chip *chip, int chipnr, const struct nand_interface_config *conf) { struct mxc_nand_host *host = nand_get_controller_data(chip); return host->devtype_data->setup_interface(chip, chipnr, conf); } static const struct nand_controller_ops mxcnd_controller_ops = { .attach_chip = mxcnd_attach_chip, .setup_interface = mxcnd_setup_interface, }; static int mxcnd_probe(struct platform_device *pdev) { struct nand_chip *this; struct mtd_info *mtd; struct mxc_nand_host *host; int err = 0; /* Allocate memory for MTD device structure and private data */ host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host), GFP_KERNEL); if (!host) return -ENOMEM; /* allocate a temporary buffer for the nand_scan_ident() */ host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL); if (!host->data_buf) return -ENOMEM; host->dev = &pdev->dev; /* structures must be linked */ this = &host->nand; mtd = nand_to_mtd(this); mtd->dev.parent = &pdev->dev; mtd->name = DRIVER_NAME; /* 50 us command delay time */ this->legacy.chip_delay = 5; nand_set_controller_data(this, host); nand_set_flash_node(this, pdev->dev.of_node); this->legacy.dev_ready = mxc_nand_dev_ready; this->legacy.cmdfunc = mxc_nand_command; this->legacy.read_byte = mxc_nand_read_byte; this->legacy.write_buf = mxc_nand_write_buf; this->legacy.read_buf = mxc_nand_read_buf; this->legacy.set_features = mxc_nand_set_features; this->legacy.get_features = mxc_nand_get_features; host->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(host->clk)) return PTR_ERR(host->clk); host->devtype_data = device_get_match_data(&pdev->dev); if (!host->devtype_data->setup_interface) this->options |= NAND_KEEP_TIMINGS; if (host->devtype_data->needs_ip) { host->regs_ip = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(host->regs_ip)) return PTR_ERR(host->regs_ip); host->base = devm_platform_ioremap_resource(pdev, 1); } else { host->base = devm_platform_ioremap_resource(pdev, 0); } if (IS_ERR(host->base)) return PTR_ERR(host->base); host->main_area0 = host->base; if (host->devtype_data->regs_offset) host->regs = host->base + host->devtype_data->regs_offset; host->spare0 = host->base + host->devtype_data->spare0_offset; if (host->devtype_data->axi_offset) host->regs_axi = host->base + host->devtype_data->axi_offset; this->legacy.select_chip = host->devtype_data->select_chip; init_completion(&host->op_completion); host->irq = platform_get_irq(pdev, 0); if (host->irq < 0) return host->irq; /* * Use host->devtype_data->irq_control() here instead of irq_control() * because we must not disable_irq_nosync without having requested the * irq. */ host->devtype_data->irq_control(host, 0); err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq, 0, DRIVER_NAME, host); if (err) return err; err = clk_prepare_enable(host->clk); if (err) return err; host->clk_act = 1; /* * Now that we "own" the interrupt make sure the interrupt mask bit is * cleared on i.MX21. Otherwise we can't read the interrupt status bit * on this machine. */ if (host->devtype_data->irqpending_quirk) { disable_irq_nosync(host->irq); host->devtype_data->irq_control(host, 1); } /* Scan the NAND device */ this->legacy.dummy_controller.ops = &mxcnd_controller_ops; err = nand_scan(this, is_imx25_nfc(host) ? 4 : 1); if (err) goto escan; /* Register the partitions */ err = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0); if (err) goto cleanup_nand; platform_set_drvdata(pdev, host); return 0; cleanup_nand: nand_cleanup(this); escan: if (host->clk_act) clk_disable_unprepare(host->clk); return err; } static void mxcnd_remove(struct platform_device *pdev) { struct mxc_nand_host *host = platform_get_drvdata(pdev); struct nand_chip *chip = &host->nand; int ret; ret = mtd_device_unregister(nand_to_mtd(chip)); WARN_ON(ret); nand_cleanup(chip); if (host->clk_act) clk_disable_unprepare(host->clk); } static struct platform_driver mxcnd_driver = { .driver = { .name = DRIVER_NAME, .of_match_table = mxcnd_dt_ids, }, .probe = mxcnd_probe, .remove_new = mxcnd_remove, }; module_platform_driver(mxcnd_driver); MODULE_AUTHOR("Freescale Semiconductor, Inc."); MODULE_DESCRIPTION("MXC NAND MTD driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1