Contributors: 98
Author Tokens Token Proportion Commits Commit Proportion
Miquel Raynal 7461 27.81% 95 19.31%
Boris Brezillon 6262 23.34% 107 21.75%
Thomas Gleixner 2568 9.57% 28 5.69%
David Woodhouse 1833 6.83% 13 2.64%
Brian Norris 1078 4.02% 42 8.54%
Masahiro Yamada 852 3.18% 14 2.85%
Tudor-Dan Ambarus 765 2.85% 3 0.61%
JaimeLiao 505 1.88% 1 0.20%
Alexey Korolev 408 1.52% 2 0.41%
Manivannan Sadhasivam 389 1.45% 2 0.41%
David Brownell 385 1.43% 1 0.20%
Huang Shijie 332 1.24% 18 3.66%
Ian Molton 289 1.08% 1 0.20%
Gupta Pekon 273 1.02% 1 0.20%
Paul Cercueil 259 0.97% 2 0.41%
Florian Fainelli 245 0.91% 4 0.81%
Sascha Hauer 211 0.79% 6 1.22%
Stefan Agner 183 0.68% 2 0.41%
Rafał Miłecki 163 0.61% 7 1.42%
Frieder Schrempf 152 0.57% 3 0.61%
Mike Dunn 122 0.45% 4 0.81%
Linus Torvalds (pre-git) 118 0.44% 16 3.25%
Thomas Petazzoni 114 0.42% 3 0.61%
Jean-Christophe Plagniol-Villard 112 0.42% 1 0.20%
Mason Yang 112 0.42% 2 0.41%
Abhishek Sahu 108 0.40% 2 0.41%
Vimal Singh 103 0.38% 2 0.41%
Ezequiel García 100 0.37% 5 1.02%
Kamal Dasu 94 0.35% 1 0.20%
Maxim Levitsky 88 0.33% 5 1.02%
Vitaly Wool 85 0.32% 3 0.61%
Uwe Kleine-König 81 0.30% 1 0.20%
Ivan Djelic 80 0.30% 1 0.20%
Linus Torvalds 69 0.26% 5 1.02%
Richard Weinberger 55 0.20% 1 0.20%
Michał Kępień 50 0.19% 1 0.20%
Sean Nyekjaer 44 0.16% 1 0.20%
Shmulik Ladkani 44 0.16% 3 0.61%
Adrian Hunter 38 0.14% 2 0.41%
Artem B. Bityutskiy 36 0.13% 5 1.02%
Piotr Sroka 34 0.13% 1 0.20%
Matthieu CASTET 33 0.12% 3 0.61%
Archit Taneja 33 0.12% 2 0.41%
Sneha Narnakaje 27 0.10% 2 0.41%
Marc Gonzalez 26 0.10% 2 0.41%
Ron Lee 25 0.09% 2 0.41%
Josh Wu 24 0.09% 1 0.20%
Andrey Smirnov 21 0.08% 1 0.20%
Scott Branden 20 0.07% 1 0.20%
Simon Kågström 20 0.07% 1 0.20%
Pavel Machek 18 0.07% 1 0.20%
Jeff Westfahl 18 0.07% 1 0.20%
Adam Thomson 17 0.06% 1 0.20%
Jean-Louis Thekekara 15 0.06% 1 0.20%
Ben Dooks 14 0.05% 2 0.41%
Frans Meulenbroeks 13 0.05% 1 0.20%
Atsushi Nemoto 11 0.04% 1 0.20%
Zach Brown 10 0.04% 1 0.20%
Adam Borowski 10 0.04% 1 0.20%
Rouven Czerwinski 10 0.04% 1 0.20%
Janusz Krzysztofik 10 0.04% 1 0.20%
Kevin Cernekee 9 0.03% 2 0.41%
Dan Carpenter 9 0.03% 3 0.61%
Savin Zlobec (should it be thomas gleixner?) 9 0.03% 1 0.20%
David A. Marlin 8 0.03% 3 0.61%
Lothar Waßmann 7 0.03% 1 0.20%
Roland Stigge 7 0.03% 1 0.20%
Herve Codina 7 0.03% 2 0.41%
Eric Miao 7 0.03% 1 0.20%
david regan 6 0.02% 1 0.20%
Alexander Shiyan 6 0.02% 1 0.20%
Alexander Couzens 5 0.02% 1 0.20%
Andrew Morton 5 0.02% 2 0.41%
Krasnov Arseniy Vladimirovich 5 0.02% 1 0.20%
Baruch Siach 5 0.02% 2 0.41%
Cai Zhiyong 5 0.02% 2 0.41%
Scott Wood 4 0.01% 2 0.41%
Thomas Knobloch 4 0.01% 1 0.20%
Aaron Sierra 4 0.01% 1 0.20%
Jörn Engel 4 0.01% 1 0.20%
Matt Reimer 4 0.01% 1 0.20%
Roger Quadros 4 0.01% 1 0.20%
Alexander Belyakov 4 0.01% 1 0.20%
Martin Devera 3 0.01% 1 0.20%
Li Yang 3 0.01% 1 0.20%
Lennert Buytenhek 3 0.01% 1 0.20%
Andy Shevchenko 3 0.01% 1 0.20%
Randy Dunlap 2 0.01% 2 0.41%
Jon Povey 2 0.01% 1 0.20%
Anatolij Gustschin 2 0.01% 1 0.20%
Brent Taylor 2 0.01% 1 0.20%
Karl Beldan 2 0.01% 1 0.20%
David Mosberger-Tang 2 0.01% 1 0.20%
Gu Zheng 1 0.00% 1 0.20%
ChenXiaoSong 1 0.00% 1 0.20%
Tilman Sauerbeck 1 0.00% 1 0.20%
Jesper Juhl 1 0.00% 1 0.20%
Wolfram Sang 1 0.00% 1 0.20%
Total 26832 492


// SPDX-License-Identifier: GPL-2.0-only
/*
 *  Overview:
 *   This is the generic MTD driver for NAND flash devices. It should be
 *   capable of working with almost all NAND chips currently available.
 *
 *	Additional technical information is available on
 *	http://www.linux-mtd.infradead.org/doc/nand.html
 *
 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
 *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
 *
 *  Credits:
 *	David Woodhouse for adding multichip support
 *
 *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
 *	rework for 2K page size chips
 *
 *  TODO:
 *	Enable cached programming for 2k page size chips
 *	Check, if mtd->ecctype should be set to MTD_ECC_HW
 *	if we have HW ECC support.
 *	BBT table is not serialized, has to be fixed
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/module.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <linux/types.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/nand-ecc-sw-hamming.h>
#include <linux/mtd/nand-ecc-sw-bch.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/io.h>
#include <linux/mtd/partitions.h>
#include <linux/of.h>
#include <linux/gpio/consumer.h>

#include "internals.h"

static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
				       struct mtd_pairing_info *info)
{
	int lastpage = (mtd->erasesize / mtd->writesize) - 1;
	int dist = 3;

	if (page == lastpage)
		dist = 2;

	if (!page || (page & 1)) {
		info->group = 0;
		info->pair = (page + 1) / 2;
	} else {
		info->group = 1;
		info->pair = (page + 1 - dist) / 2;
	}

	return 0;
}

static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
					const struct mtd_pairing_info *info)
{
	int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
	int page = info->pair * 2;
	int dist = 3;

	if (!info->group && !info->pair)
		return 0;

	if (info->pair == lastpair && info->group)
		dist = 2;

	if (!info->group)
		page--;
	else if (info->pair)
		page += dist - 1;

	if (page >= mtd->erasesize / mtd->writesize)
		return -EINVAL;

	return page;
}

const struct mtd_pairing_scheme dist3_pairing_scheme = {
	.ngroups = 2,
	.get_info = nand_pairing_dist3_get_info,
	.get_wunit = nand_pairing_dist3_get_wunit,
};

static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
{
	int ret = 0;

	/* Start address must align on block boundary */
	if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
		pr_debug("%s: unaligned address\n", __func__);
		ret = -EINVAL;
	}

	/* Length must align on block boundary */
	if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
		pr_debug("%s: length not block aligned\n", __func__);
		ret = -EINVAL;
	}

	return ret;
}

/**
 * nand_extract_bits - Copy unaligned bits from one buffer to another one
 * @dst: destination buffer
 * @dst_off: bit offset at which the writing starts
 * @src: source buffer
 * @src_off: bit offset at which the reading starts
 * @nbits: number of bits to copy from @src to @dst
 *
 * Copy bits from one memory region to another (overlap authorized).
 */
void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
		       unsigned int src_off, unsigned int nbits)
{
	unsigned int tmp, n;

	dst += dst_off / 8;
	dst_off %= 8;
	src += src_off / 8;
	src_off %= 8;

	while (nbits) {
		n = min3(8 - dst_off, 8 - src_off, nbits);

		tmp = (*src >> src_off) & GENMASK(n - 1, 0);
		*dst &= ~GENMASK(n - 1 + dst_off, dst_off);
		*dst |= tmp << dst_off;

		dst_off += n;
		if (dst_off >= 8) {
			dst++;
			dst_off -= 8;
		}

		src_off += n;
		if (src_off >= 8) {
			src++;
			src_off -= 8;
		}

		nbits -= n;
	}
}
EXPORT_SYMBOL_GPL(nand_extract_bits);

/**
 * nand_select_target() - Select a NAND target (A.K.A. die)
 * @chip: NAND chip object
 * @cs: the CS line to select. Note that this CS id is always from the chip
 *	PoV, not the controller one
 *
 * Select a NAND target so that further operations executed on @chip go to the
 * selected NAND target.
 */
void nand_select_target(struct nand_chip *chip, unsigned int cs)
{
	/*
	 * cs should always lie between 0 and nanddev_ntargets(), when that's
	 * not the case it's a bug and the caller should be fixed.
	 */
	if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
		return;

	chip->cur_cs = cs;

	if (chip->legacy.select_chip)
		chip->legacy.select_chip(chip, cs);
}
EXPORT_SYMBOL_GPL(nand_select_target);

/**
 * nand_deselect_target() - Deselect the currently selected target
 * @chip: NAND chip object
 *
 * Deselect the currently selected NAND target. The result of operations
 * executed on @chip after the target has been deselected is undefined.
 */
void nand_deselect_target(struct nand_chip *chip)
{
	if (chip->legacy.select_chip)
		chip->legacy.select_chip(chip, -1);

	chip->cur_cs = -1;
}
EXPORT_SYMBOL_GPL(nand_deselect_target);

/**
 * nand_release_device - [GENERIC] release chip
 * @chip: NAND chip object
 *
 * Release chip lock and wake up anyone waiting on the device.
 */
static void nand_release_device(struct nand_chip *chip)
{
	/* Release the controller and the chip */
	mutex_unlock(&chip->controller->lock);
	mutex_unlock(&chip->lock);
}

/**
 * nand_bbm_get_next_page - Get the next page for bad block markers
 * @chip: NAND chip object
 * @page: First page to start checking for bad block marker usage
 *
 * Returns an integer that corresponds to the page offset within a block, for
 * a page that is used to store bad block markers. If no more pages are
 * available, -EINVAL is returned.
 */
int nand_bbm_get_next_page(struct nand_chip *chip, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int last_page = ((mtd->erasesize - mtd->writesize) >>
			 chip->page_shift) & chip->pagemask;
	unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
		| NAND_BBM_LASTPAGE;

	if (page == 0 && !(chip->options & bbm_flags))
		return 0;
	if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
		return 0;
	if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
		return 1;
	if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
		return last_page;

	return -EINVAL;
}

/**
 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
 * @chip: NAND chip object
 * @ofs: offset from device start
 *
 * Check, if the block is bad.
 */
static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
{
	int first_page, page_offset;
	int res;
	u8 bad;

	first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
	page_offset = nand_bbm_get_next_page(chip, 0);

	while (page_offset >= 0) {
		res = chip->ecc.read_oob(chip, first_page + page_offset);
		if (res < 0)
			return res;

		bad = chip->oob_poi[chip->badblockpos];

		if (likely(chip->badblockbits == 8))
			res = bad != 0xFF;
		else
			res = hweight8(bad) < chip->badblockbits;
		if (res)
			return res;

		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
	}

	return 0;
}

/**
 * nand_region_is_secured() - Check if the region is secured
 * @chip: NAND chip object
 * @offset: Offset of the region to check
 * @size: Size of the region to check
 *
 * Checks if the region is secured by comparing the offset and size with the
 * list of secure regions obtained from DT. Returns true if the region is
 * secured else false.
 */
static bool nand_region_is_secured(struct nand_chip *chip, loff_t offset, u64 size)
{
	int i;

	/* Skip touching the secure regions if present */
	for (i = 0; i < chip->nr_secure_regions; i++) {
		const struct nand_secure_region *region = &chip->secure_regions[i];

		if (offset + size <= region->offset ||
		    offset >= region->offset + region->size)
			continue;

		pr_debug("%s: Region 0x%llx - 0x%llx is secured!",
			 __func__, offset, offset + size);

		return true;
	}

	return false;
}

static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
{
	struct mtd_info *mtd = nand_to_mtd(chip);

	if (chip->options & NAND_NO_BBM_QUIRK)
		return 0;

	/* Check if the region is secured */
	if (nand_region_is_secured(chip, ofs, mtd->erasesize))
		return -EIO;

	if (mtd_check_expert_analysis_mode())
		return 0;

	if (chip->legacy.block_bad)
		return chip->legacy.block_bad(chip, ofs);

	return nand_block_bad(chip, ofs);
}

/**
 * nand_get_device - [GENERIC] Get chip for selected access
 * @chip: NAND chip structure
 *
 * Lock the device and its controller for exclusive access
 */
static void nand_get_device(struct nand_chip *chip)
{
	/* Wait until the device is resumed. */
	while (1) {
		mutex_lock(&chip->lock);
		if (!chip->suspended) {
			mutex_lock(&chip->controller->lock);
			return;
		}
		mutex_unlock(&chip->lock);

		wait_event(chip->resume_wq, !chip->suspended);
	}
}

/**
 * nand_check_wp - [GENERIC] check if the chip is write protected
 * @chip: NAND chip object
 *
 * Check, if the device is write protected. The function expects, that the
 * device is already selected.
 */
static int nand_check_wp(struct nand_chip *chip)
{
	u8 status;
	int ret;

	/* Broken xD cards report WP despite being writable */
	if (chip->options & NAND_BROKEN_XD)
		return 0;

	/* controller responsible for NAND write protect */
	if (chip->controller->controller_wp)
		return 0;

	/* Check the WP bit */
	ret = nand_status_op(chip, &status);
	if (ret)
		return ret;

	return status & NAND_STATUS_WP ? 0 : 1;
}

/**
 * nand_fill_oob - [INTERN] Transfer client buffer to oob
 * @chip: NAND chip object
 * @oob: oob data buffer
 * @len: oob data write length
 * @ops: oob ops structure
 */
static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
			      struct mtd_oob_ops *ops)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret;

	/*
	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
	 * data from a previous OOB read.
	 */
	memset(chip->oob_poi, 0xff, mtd->oobsize);

	switch (ops->mode) {

	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_RAW:
		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
		return oob + len;

	case MTD_OPS_AUTO_OOB:
		ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
						  ops->ooboffs, len);
		BUG_ON(ret);
		return oob + len;

	default:
		BUG();
	}
	return NULL;
}

/**
 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
 * @chip: NAND chip object
 * @to: offset to write to
 * @ops: oob operation description structure
 *
 * NAND write out-of-band.
 */
static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
			     struct mtd_oob_ops *ops)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int chipnr, page, status, len, ret;

	pr_debug("%s: to = 0x%08x, len = %i\n",
			 __func__, (unsigned int)to, (int)ops->ooblen);

	len = mtd_oobavail(mtd, ops);

	/* Do not allow write past end of page */
	if ((ops->ooboffs + ops->ooblen) > len) {
		pr_debug("%s: attempt to write past end of page\n",
				__func__);
		return -EINVAL;
	}

	/* Check if the region is secured */
	if (nand_region_is_secured(chip, to, ops->ooblen))
		return -EIO;

	chipnr = (int)(to >> chip->chip_shift);

	/*
	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
	 * of my DiskOnChip 2000 test units) will clear the whole data page too
	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
	 * it in the doc2000 driver in August 1999.  dwmw2.
	 */
	ret = nand_reset(chip, chipnr);
	if (ret)
		return ret;

	nand_select_target(chip, chipnr);

	/* Shift to get page */
	page = (int)(to >> chip->page_shift);

	/* Check, if it is write protected */
	if (nand_check_wp(chip)) {
		nand_deselect_target(chip);
		return -EROFS;
	}

	/* Invalidate the page cache, if we write to the cached page */
	if (page == chip->pagecache.page)
		chip->pagecache.page = -1;

	nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);

	if (ops->mode == MTD_OPS_RAW)
		status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
	else
		status = chip->ecc.write_oob(chip, page & chip->pagemask);

	nand_deselect_target(chip);

	if (status)
		return status;

	ops->oobretlen = ops->ooblen;

	return 0;
}

/**
 * nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
 * @chip: NAND chip object
 * @ofs: offset from device start
 *
 * This is the default implementation, which can be overridden by a hardware
 * specific driver. It provides the details for writing a bad block marker to a
 * block.
 */
static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct mtd_oob_ops ops;
	uint8_t buf[2] = { 0, 0 };
	int ret = 0, res, page_offset;

	memset(&ops, 0, sizeof(ops));
	ops.oobbuf = buf;
	ops.ooboffs = chip->badblockpos;
	if (chip->options & NAND_BUSWIDTH_16) {
		ops.ooboffs &= ~0x01;
		ops.len = ops.ooblen = 2;
	} else {
		ops.len = ops.ooblen = 1;
	}
	ops.mode = MTD_OPS_PLACE_OOB;

	page_offset = nand_bbm_get_next_page(chip, 0);

	while (page_offset >= 0) {
		res = nand_do_write_oob(chip,
					ofs + (page_offset * mtd->writesize),
					&ops);

		if (!ret)
			ret = res;

		page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
	}

	return ret;
}

/**
 * nand_markbad_bbm - mark a block by updating the BBM
 * @chip: NAND chip object
 * @ofs: offset of the block to mark bad
 */
int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
{
	if (chip->legacy.block_markbad)
		return chip->legacy.block_markbad(chip, ofs);

	return nand_default_block_markbad(chip, ofs);
}

/**
 * nand_block_markbad_lowlevel - mark a block bad
 * @chip: NAND chip object
 * @ofs: offset from device start
 *
 * This function performs the generic NAND bad block marking steps (i.e., bad
 * block table(s) and/or marker(s)). We only allow the hardware driver to
 * specify how to write bad block markers to OOB (chip->legacy.block_markbad).
 *
 * We try operations in the following order:
 *
 *  (1) erase the affected block, to allow OOB marker to be written cleanly
 *  (2) write bad block marker to OOB area of affected block (unless flag
 *      NAND_BBT_NO_OOB_BBM is present)
 *  (3) update the BBT
 *
 * Note that we retain the first error encountered in (2) or (3), finish the
 * procedures, and dump the error in the end.
*/
static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int res, ret = 0;

	if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
		struct erase_info einfo;

		/* Attempt erase before marking OOB */
		memset(&einfo, 0, sizeof(einfo));
		einfo.addr = ofs;
		einfo.len = 1ULL << chip->phys_erase_shift;
		nand_erase_nand(chip, &einfo, 0);

		/* Write bad block marker to OOB */
		nand_get_device(chip);

		ret = nand_markbad_bbm(chip, ofs);
		nand_release_device(chip);
	}

	/* Mark block bad in BBT */
	if (chip->bbt) {
		res = nand_markbad_bbt(chip, ofs);
		if (!ret)
			ret = res;
	}

	if (!ret)
		mtd->ecc_stats.badblocks++;

	return ret;
}

/**
 * nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
 * @mtd: MTD device structure
 * @ofs: offset from device start
 *
 * Check if the block is marked as reserved.
 */
static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (!chip->bbt)
		return 0;
	/* Return info from the table */
	return nand_isreserved_bbt(chip, ofs);
}

/**
 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
 * @chip: NAND chip object
 * @ofs: offset from device start
 * @allowbbt: 1, if its allowed to access the bbt area
 *
 * Check, if the block is bad. Either by reading the bad block table or
 * calling of the scan function.
 */
static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
{
	/* Return info from the table */
	if (chip->bbt)
		return nand_isbad_bbt(chip, ofs, allowbbt);

	return nand_isbad_bbm(chip, ofs);
}

/**
 * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
 * @chip: NAND chip structure
 * @timeout_ms: Timeout in ms
 *
 * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
 * If that does not happen whitin the specified timeout, -ETIMEDOUT is
 * returned.
 *
 * This helper is intended to be used when the controller does not have access
 * to the NAND R/B pin.
 *
 * Be aware that calling this helper from an ->exec_op() implementation means
 * ->exec_op() must be re-entrant.
 *
 * Return 0 if the NAND chip is ready, a negative error otherwise.
 */
int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
{
	const struct nand_interface_config *conf;
	u8 status = 0;
	int ret;

	if (!nand_has_exec_op(chip))
		return -ENOTSUPP;

	/* Wait tWB before polling the STATUS reg. */
	conf = nand_get_interface_config(chip);
	ndelay(NAND_COMMON_TIMING_NS(conf, tWB_max));

	ret = nand_status_op(chip, NULL);
	if (ret)
		return ret;

	/*
	 * +1 below is necessary because if we are now in the last fraction
	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
	 * small jiffy fraction - possibly leading to false timeout
	 */
	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
	do {
		ret = nand_read_data_op(chip, &status, sizeof(status), true,
					false);
		if (ret)
			break;

		if (status & NAND_STATUS_READY)
			break;

		/*
		 * Typical lowest execution time for a tR on most NANDs is 10us,
		 * use this as polling delay before doing something smarter (ie.
		 * deriving a delay from the timeout value, timeout_ms/ratio).
		 */
		udelay(10);
	} while	(time_before(jiffies, timeout_ms));

	/*
	 * We have to exit READ_STATUS mode in order to read real data on the
	 * bus in case the WAITRDY instruction is preceding a DATA_IN
	 * instruction.
	 */
	nand_exit_status_op(chip);

	if (ret)
		return ret;

	return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
};
EXPORT_SYMBOL_GPL(nand_soft_waitrdy);

/**
 * nand_gpio_waitrdy - Poll R/B GPIO pin until ready
 * @chip: NAND chip structure
 * @gpiod: GPIO descriptor of R/B pin
 * @timeout_ms: Timeout in ms
 *
 * Poll the R/B GPIO pin until it becomes ready. If that does not happen
 * whitin the specified timeout, -ETIMEDOUT is returned.
 *
 * This helper is intended to be used when the controller has access to the
 * NAND R/B pin over GPIO.
 *
 * Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
 */
int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
		      unsigned long timeout_ms)
{

	/*
	 * Wait until R/B pin indicates chip is ready or timeout occurs.
	 * +1 below is necessary because if we are now in the last fraction
	 * of jiffy and msecs_to_jiffies is 1 then we will wait only that
	 * small jiffy fraction - possibly leading to false timeout.
	 */
	timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
	do {
		if (gpiod_get_value_cansleep(gpiod))
			return 0;

		cond_resched();
	} while	(time_before(jiffies, timeout_ms));

	return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
};
EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);

/**
 * panic_nand_wait - [GENERIC] wait until the command is done
 * @chip: NAND chip structure
 * @timeo: timeout
 *
 * Wait for command done. This is a helper function for nand_wait used when
 * we are in interrupt context. May happen when in panic and trying to write
 * an oops through mtdoops.
 */
void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
{
	int i;
	for (i = 0; i < timeo; i++) {
		if (chip->legacy.dev_ready) {
			if (chip->legacy.dev_ready(chip))
				break;
		} else {
			int ret;
			u8 status;

			ret = nand_read_data_op(chip, &status, sizeof(status),
						true, false);
			if (ret)
				return;

			if (status & NAND_STATUS_READY)
				break;
		}
		mdelay(1);
	}
}

static bool nand_supports_get_features(struct nand_chip *chip, int addr)
{
	return (chip->parameters.supports_set_get_features &&
		test_bit(addr, chip->parameters.get_feature_list));
}

static bool nand_supports_set_features(struct nand_chip *chip, int addr)
{
	return (chip->parameters.supports_set_get_features &&
		test_bit(addr, chip->parameters.set_feature_list));
}

/**
 * nand_reset_interface - Reset data interface and timings
 * @chip: The NAND chip
 * @chipnr: Internal die id
 *
 * Reset the Data interface and timings to ONFI mode 0.
 *
 * Returns 0 for success or negative error code otherwise.
 */
static int nand_reset_interface(struct nand_chip *chip, int chipnr)
{
	const struct nand_controller_ops *ops = chip->controller->ops;
	int ret;

	if (!nand_controller_can_setup_interface(chip))
		return 0;

	/*
	 * The ONFI specification says:
	 * "
	 * To transition from NV-DDR or NV-DDR2 to the SDR data
	 * interface, the host shall use the Reset (FFh) command
	 * using SDR timing mode 0. A device in any timing mode is
	 * required to recognize Reset (FFh) command issued in SDR
	 * timing mode 0.
	 * "
	 *
	 * Configure the data interface in SDR mode and set the
	 * timings to timing mode 0.
	 */

	chip->current_interface_config = nand_get_reset_interface_config();
	ret = ops->setup_interface(chip, chipnr,
				   chip->current_interface_config);
	if (ret)
		pr_err("Failed to configure data interface to SDR timing mode 0\n");

	return ret;
}

/**
 * nand_setup_interface - Setup the best data interface and timings
 * @chip: The NAND chip
 * @chipnr: Internal die id
 *
 * Configure what has been reported to be the best data interface and NAND
 * timings supported by the chip and the driver.
 *
 * Returns 0 for success or negative error code otherwise.
 */
static int nand_setup_interface(struct nand_chip *chip, int chipnr)
{
	const struct nand_controller_ops *ops = chip->controller->ops;
	u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { }, request;
	int ret;

	if (!nand_controller_can_setup_interface(chip))
		return 0;

	/*
	 * A nand_reset_interface() put both the NAND chip and the NAND
	 * controller in timings mode 0. If the default mode for this chip is
	 * also 0, no need to proceed to the change again. Plus, at probe time,
	 * nand_setup_interface() uses ->set/get_features() which would
	 * fail anyway as the parameter page is not available yet.
	 */
	if (!chip->best_interface_config)
		return 0;

	request = chip->best_interface_config->timings.mode;
	if (nand_interface_is_sdr(chip->best_interface_config))
		request |= ONFI_DATA_INTERFACE_SDR;
	else
		request |= ONFI_DATA_INTERFACE_NVDDR;
	tmode_param[0] = request;

	/* Change the mode on the chip side (if supported by the NAND chip) */
	if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
		nand_select_target(chip, chipnr);
		ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
					tmode_param);
		nand_deselect_target(chip);
		if (ret)
			return ret;
	}

	/* Change the mode on the controller side */
	ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
	if (ret)
		return ret;

	/* Check the mode has been accepted by the chip, if supported */
	if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
		goto update_interface_config;

	memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
	nand_select_target(chip, chipnr);
	ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
				tmode_param);
	nand_deselect_target(chip);
	if (ret)
		goto err_reset_chip;

	if (request != tmode_param[0]) {
		pr_warn("%s timing mode %d not acknowledged by the NAND chip\n",
			nand_interface_is_nvddr(chip->best_interface_config) ? "NV-DDR" : "SDR",
			chip->best_interface_config->timings.mode);
		pr_debug("NAND chip would work in %s timing mode %d\n",
			 tmode_param[0] & ONFI_DATA_INTERFACE_NVDDR ? "NV-DDR" : "SDR",
			 (unsigned int)ONFI_TIMING_MODE_PARAM(tmode_param[0]));
		goto err_reset_chip;
	}

update_interface_config:
	chip->current_interface_config = chip->best_interface_config;

	return 0;

err_reset_chip:
	/*
	 * Fallback to mode 0 if the chip explicitly did not ack the chosen
	 * timing mode.
	 */
	nand_reset_interface(chip, chipnr);
	nand_select_target(chip, chipnr);
	nand_reset_op(chip);
	nand_deselect_target(chip);

	return ret;
}

/**
 * nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
 *                                NAND controller and the NAND chip support
 * @chip: the NAND chip
 * @iface: the interface configuration (can eventually be updated)
 * @spec_timings: specific timings, when not fitting the ONFI specification
 *
 * If specific timings are provided, use them. Otherwise, retrieve supported
 * timing modes from ONFI information.
 */
int nand_choose_best_sdr_timings(struct nand_chip *chip,
				 struct nand_interface_config *iface,
				 struct nand_sdr_timings *spec_timings)
{
	const struct nand_controller_ops *ops = chip->controller->ops;
	int best_mode = 0, mode, ret = -EOPNOTSUPP;

	iface->type = NAND_SDR_IFACE;

	if (spec_timings) {
		iface->timings.sdr = *spec_timings;
		iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);

		/* Verify the controller supports the requested interface */
		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
					   iface);
		if (!ret) {
			chip->best_interface_config = iface;
			return ret;
		}

		/* Fallback to slower modes */
		best_mode = iface->timings.mode;
	} else if (chip->parameters.onfi) {
		best_mode = fls(chip->parameters.onfi->sdr_timing_modes) - 1;
	}

	for (mode = best_mode; mode >= 0; mode--) {
		onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);

		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
					   iface);
		if (!ret) {
			chip->best_interface_config = iface;
			break;
		}
	}

	return ret;
}

/**
 * nand_choose_best_nvddr_timings - Pick up the best NVDDR timings that both the
 *                                  NAND controller and the NAND chip support
 * @chip: the NAND chip
 * @iface: the interface configuration (can eventually be updated)
 * @spec_timings: specific timings, when not fitting the ONFI specification
 *
 * If specific timings are provided, use them. Otherwise, retrieve supported
 * timing modes from ONFI information.
 */
int nand_choose_best_nvddr_timings(struct nand_chip *chip,
				   struct nand_interface_config *iface,
				   struct nand_nvddr_timings *spec_timings)
{
	const struct nand_controller_ops *ops = chip->controller->ops;
	int best_mode = 0, mode, ret = -EOPNOTSUPP;

	iface->type = NAND_NVDDR_IFACE;

	if (spec_timings) {
		iface->timings.nvddr = *spec_timings;
		iface->timings.mode = onfi_find_closest_nvddr_mode(spec_timings);

		/* Verify the controller supports the requested interface */
		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
					   iface);
		if (!ret) {
			chip->best_interface_config = iface;
			return ret;
		}

		/* Fallback to slower modes */
		best_mode = iface->timings.mode;
	} else if (chip->parameters.onfi) {
		best_mode = fls(chip->parameters.onfi->nvddr_timing_modes) - 1;
	}

	for (mode = best_mode; mode >= 0; mode--) {
		onfi_fill_interface_config(chip, iface, NAND_NVDDR_IFACE, mode);

		ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
					   iface);
		if (!ret) {
			chip->best_interface_config = iface;
			break;
		}
	}

	return ret;
}

/**
 * nand_choose_best_timings - Pick up the best NVDDR or SDR timings that both
 *                            NAND controller and the NAND chip support
 * @chip: the NAND chip
 * @iface: the interface configuration (can eventually be updated)
 *
 * If specific timings are provided, use them. Otherwise, retrieve supported
 * timing modes from ONFI information.
 */
static int nand_choose_best_timings(struct nand_chip *chip,
				    struct nand_interface_config *iface)
{
	int ret;

	/* Try the fastest timings: NV-DDR */
	ret = nand_choose_best_nvddr_timings(chip, iface, NULL);
	if (!ret)
		return 0;

	/* Fallback to SDR timings otherwise */
	return nand_choose_best_sdr_timings(chip, iface, NULL);
}

/**
 * nand_choose_interface_config - find the best data interface and timings
 * @chip: The NAND chip
 *
 * Find the best data interface and NAND timings supported by the chip
 * and the driver. Eventually let the NAND manufacturer driver propose his own
 * set of timings.
 *
 * After this function nand_chip->interface_config is initialized with the best
 * timing mode available.
 *
 * Returns 0 for success or negative error code otherwise.
 */
static int nand_choose_interface_config(struct nand_chip *chip)
{
	struct nand_interface_config *iface;
	int ret;

	if (!nand_controller_can_setup_interface(chip))
		return 0;

	iface = kzalloc(sizeof(*iface), GFP_KERNEL);
	if (!iface)
		return -ENOMEM;

	if (chip->ops.choose_interface_config)
		ret = chip->ops.choose_interface_config(chip, iface);
	else
		ret = nand_choose_best_timings(chip, iface);

	if (ret)
		kfree(iface);

	return ret;
}

/**
 * nand_fill_column_cycles - fill the column cycles of an address
 * @chip: The NAND chip
 * @addrs: Array of address cycles to fill
 * @offset_in_page: The offset in the page
 *
 * Fills the first or the first two bytes of the @addrs field depending
 * on the NAND bus width and the page size.
 *
 * Returns the number of cycles needed to encode the column, or a negative
 * error code in case one of the arguments is invalid.
 */
static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
				   unsigned int offset_in_page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	bool ident_stage = !mtd->writesize;

	/* Bypass all checks during NAND identification */
	if (likely(!ident_stage)) {
		/* Make sure the offset is less than the actual page size. */
		if (offset_in_page > mtd->writesize + mtd->oobsize)
			return -EINVAL;

		/*
		 * On small page NANDs, there's a dedicated command to access the OOB
		 * area, and the column address is relative to the start of the OOB
		 * area, not the start of the page. Asjust the address accordingly.
		 */
		if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
			offset_in_page -= mtd->writesize;

		/*
		 * The offset in page is expressed in bytes, if the NAND bus is 16-bit
		 * wide, then it must be divided by 2.
		 */
		if (chip->options & NAND_BUSWIDTH_16) {
			if (WARN_ON(offset_in_page % 2))
				return -EINVAL;

			offset_in_page /= 2;
		}
	}

	addrs[0] = offset_in_page;

	/*
	 * Small page NANDs use 1 cycle for the columns, while large page NANDs
	 * need 2
	 */
	if (!ident_stage && mtd->writesize <= 512)
		return 1;

	addrs[1] = offset_in_page >> 8;

	return 2;
}

static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
				     unsigned int offset_in_page, void *buf,
				     unsigned int len)
{
	const struct nand_interface_config *conf =
		nand_get_interface_config(chip);
	struct mtd_info *mtd = nand_to_mtd(chip);
	u8 addrs[4];
	struct nand_op_instr instrs[] = {
		NAND_OP_CMD(NAND_CMD_READ0, 0),
		NAND_OP_ADDR(3, addrs, NAND_COMMON_TIMING_NS(conf, tWB_max)),
		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
		NAND_OP_DATA_IN(len, buf, 0),
	};
	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
	int ret;

	/* Drop the DATA_IN instruction if len is set to 0. */
	if (!len)
		op.ninstrs--;

	if (offset_in_page >= mtd->writesize)
		instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
	else if (offset_in_page >= 256 &&
		 !(chip->options & NAND_BUSWIDTH_16))
		instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;

	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
	if (ret < 0)
		return ret;

	addrs[1] = page;
	addrs[2] = page >> 8;

	if (chip->options & NAND_ROW_ADDR_3) {
		addrs[3] = page >> 16;
		instrs[1].ctx.addr.naddrs++;
	}

	return nand_exec_op(chip, &op);
}

static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
				     unsigned int offset_in_page, void *buf,
				     unsigned int len)
{
	const struct nand_interface_config *conf =
		nand_get_interface_config(chip);
	u8 addrs[5];
	struct nand_op_instr instrs[] = {
		NAND_OP_CMD(NAND_CMD_READ0, 0),
		NAND_OP_ADDR(4, addrs, 0),
		NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
		NAND_OP_DATA_IN(len, buf, 0),
	};
	struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
	int ret;

	/* Drop the DATA_IN instruction if len is set to 0. */
	if (!len)
		op.ninstrs--;

	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
	if (ret < 0)
		return ret;

	addrs[2] = page;
	addrs[3] = page >> 8;

	if (chip->options & NAND_ROW_ADDR_3) {
		addrs[4] = page >> 16;
		instrs[1].ctx.addr.naddrs++;
	}

	return nand_exec_op(chip, &op);
}

static unsigned int rawnand_last_page_of_lun(unsigned int pages_per_lun, unsigned int lun)
{
	/* lun is expected to be very small */
	return (lun * pages_per_lun) + pages_per_lun - 1;
}

static void rawnand_cap_cont_reads(struct nand_chip *chip)
{
	struct nand_memory_organization *memorg;
	unsigned int ppl, first_lun, last_lun;

	memorg = nanddev_get_memorg(&chip->base);
	ppl = memorg->pages_per_eraseblock * memorg->eraseblocks_per_lun;
	first_lun = chip->cont_read.first_page / ppl;
	last_lun = chip->cont_read.last_page / ppl;

	/* Prevent sequential cache reads across LUN boundaries */
	if (first_lun != last_lun)
		chip->cont_read.pause_page = rawnand_last_page_of_lun(ppl, first_lun);
	else
		chip->cont_read.pause_page = chip->cont_read.last_page;

	if (chip->cont_read.first_page == chip->cont_read.pause_page) {
		chip->cont_read.first_page++;
		chip->cont_read.pause_page = min(chip->cont_read.last_page,
						 rawnand_last_page_of_lun(ppl, first_lun + 1));
	}

	if (chip->cont_read.first_page >= chip->cont_read.last_page)
		chip->cont_read.ongoing = false;
}

static int nand_lp_exec_cont_read_page_op(struct nand_chip *chip, unsigned int page,
					  unsigned int offset_in_page, void *buf,
					  unsigned int len, bool check_only)
{
	const struct nand_interface_config *conf =
		nand_get_interface_config(chip);
	u8 addrs[5];
	struct nand_op_instr start_instrs[] = {
		NAND_OP_CMD(NAND_CMD_READ0, 0),
		NAND_OP_ADDR(4, addrs, 0),
		NAND_OP_CMD(NAND_CMD_READSTART, NAND_COMMON_TIMING_NS(conf, tWB_max)),
		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max), 0),
		NAND_OP_CMD(NAND_CMD_READCACHESEQ, NAND_COMMON_TIMING_NS(conf, tWB_max)),
		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
		NAND_OP_DATA_IN(len, buf, 0),
	};
	struct nand_op_instr cont_instrs[] = {
		NAND_OP_CMD(page == chip->cont_read.pause_page ?
			    NAND_CMD_READCACHEEND : NAND_CMD_READCACHESEQ,
			    NAND_COMMON_TIMING_NS(conf, tWB_max)),
		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
				 NAND_COMMON_TIMING_NS(conf, tRR_min)),
		NAND_OP_DATA_IN(len, buf, 0),
	};
	struct nand_operation start_op = NAND_OPERATION(chip->cur_cs, start_instrs);
	struct nand_operation cont_op = NAND_OPERATION(chip->cur_cs, cont_instrs);
	int ret;

	if (!len) {
		start_op.ninstrs--;
		cont_op.ninstrs--;
	}

	ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
	if (ret < 0)
		return ret;

	addrs[2] = page;
	addrs[3] = page >> 8;

	if (chip->options & NAND_ROW_ADDR_3) {
		addrs[4] = page >> 16;
		start_instrs[1].ctx.addr.naddrs++;
	}

	/* Check if cache reads are supported */
	if (check_only) {
		if (nand_check_op(chip, &start_op) || nand_check_op(chip, &cont_op))
			return -EOPNOTSUPP;

		return 0;
	}

	if (page == chip->cont_read.first_page)
		ret = nand_exec_op(chip, &start_op);
	else
		ret = nand_exec_op(chip, &cont_op);
	if (ret)
		return ret;

	if (!chip->cont_read.ongoing)
		return 0;

	if (page == chip->cont_read.last_page) {
		chip->cont_read.ongoing = false;
	} else if (page == chip->cont_read.pause_page) {
		chip->cont_read.first_page++;
		rawnand_cap_cont_reads(chip);
	}

	return 0;
}

static bool rawnand_cont_read_ongoing(struct nand_chip *chip, unsigned int page)
{
	return chip->cont_read.ongoing && page >= chip->cont_read.first_page;
}

/**
 * nand_read_page_op - Do a READ PAGE operation
 * @chip: The NAND chip
 * @page: page to read
 * @offset_in_page: offset within the page
 * @buf: buffer used to store the data
 * @len: length of the buffer
 *
 * This function issues a READ PAGE operation.
 * This function does not select/unselect the CS line.
 *
 * Returns 0 on success, a negative error code otherwise.
 */
int nand_read_page_op(struct nand_chip *chip, unsigned int page,
		      unsigned int offset_in_page, void *buf, unsigned int len)
{
	struct mtd_info *mtd = nand_to_mtd(chip);

	if (len && !buf)
		return -EINVAL;

	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
		return -EINVAL;

	if (nand_has_exec_op(chip)) {
		if (mtd->writesize > 512) {
			if (rawnand_cont_read_ongoing(chip, page))
				return nand_lp_exec_cont_read_page_op(chip, page,
								      offset_in_page,
								      buf, len, false);
			else
				return nand_lp_exec_read_page_op(chip, page,
								 offset_in_page, buf,
								 len);
		}

		return nand_sp_exec_read_page_op(chip, page, offset_in_page,
						 buf, len);
	}

	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
	if (len)
		chip->legacy.read_buf(chip, buf, len);

	return 0;
}
EXPORT_SYMBOL_GPL(nand_read_page_op);

/**
 * nand_read_param_page_op - Do a READ PARAMETER PAGE operation
 * @chip: The NAND chip
 * @page: parameter page to read
 * @buf: buffer used to store the data
 * @len: length of the buffer
 *
 * This function issues a READ PARAMETER PAGE operation.
 * This function does not select/unselect the CS line.
 *
 * Returns 0 on success, a negative error code otherwise.
 */
int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
			    unsigned int len)
{
	unsigned int i;
	u8 *p = buf;

	if (len && !buf)
		return -EINVAL;

	if (nand_has_exec_op(chip)) {
		const struct nand_interface_config *conf =
			nand_get_interface_config(chip);
		struct nand_op_instr instrs[] = {
			NAND_OP_CMD(NAND_CMD_PARAM, 0),
			NAND_OP_ADDR(1, &page,
				     NAND_COMMON_TIMING_NS(conf, tWB_max)),
			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tR_max),
					 NAND_COMMON_TIMING_NS(conf, tRR_min)),
			NAND_OP_8BIT_DATA_IN(len, buf, 0),
		};
		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);

		/* Drop the DATA_IN instruction if len is set to 0. */
		if (!len)
			op.ninstrs--;

		return nand_exec_op(chip, &op);
	}

	chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
	for (i = 0; i < len; i++)
		p[i] = chip->legacy.read_byte(chip);

	return 0;
}

/**
 * nand_change_read_column_op - Do a CHANGE READ COLUMN operation
 * @chip: The NAND chip
 * @offset_in_page: offset within the page
 * @buf: buffer used to store the data
 * @len: length of the buffer
 * @force_8bit: force 8-bit bus access
 *
 * This function issues a CHANGE READ COLUMN operation.
 * This function does not select/unselect the CS line.
 *
 * Returns 0 on success, a negative error code otherwise.
 */
int nand_change_read_column_op(struct nand_chip *chip,
			       unsigned int offset_in_page, void *buf,
			       unsigned int len, bool force_8bit)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	bool ident_stage = !mtd->writesize;

	if (len && !buf)
		return -EINVAL;

	if (!ident_stage) {
		if (offset_in_page + len > mtd->writesize + mtd->oobsize)
			return -EINVAL;

		/* Small page NANDs do not support column change. */
		if (mtd->writesize <= 512)
			return -ENOTSUPP;
	}

	if (nand_has_exec_op(chip)) {
		const struct nand_interface_config *conf =
			nand_get_interface_config(chip);
		u8 addrs[2] = {};
		struct nand_op_instr instrs[] = {
			NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
			NAND_OP_ADDR(2, addrs, 0),
			NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
				    NAND_COMMON_TIMING_NS(conf, tCCS_min)),
			NAND_OP_DATA_IN(len, buf, 0),
		};
		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
		int ret;

		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
		if (ret < 0)
			return ret;

		/* Drop the DATA_IN instruction if len is set to 0. */
		if (!len)
			op.ninstrs--;

		instrs[3].ctx.data.force_8bit = force_8bit;

		return nand_exec_op(chip, &op);
	}

	chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
	if (len)
		chip->legacy.read_buf(chip, buf, len);

	return 0;
}
EXPORT_SYMBOL_GPL(nand_change_read_column_op);

/**
 * nand_read_oob_op - Do a READ OOB operation
 * @chip: The NAND chip
 * @page: page to read
 * @offset_in_oob: offset within the OOB area
 * @buf: buffer used to store the data
 * @len: length of the buffer
 *
 * This function issues a READ OOB operation.
 * This function does not select/unselect the CS line.
 *
 * Returns 0 on success, a negative error code otherwise.
 */
int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
		     unsigned int offset_in_oob, void *buf, unsigned int len)
{
	struct mtd_info *mtd = nand_to_mtd(chip);

	if (len && !buf)
		return -EINVAL;

	if (offset_in_oob + len > mtd->oobsize)
		return -EINVAL;

	if (nand_has_exec_op(chip))
		return nand_read_page_op(chip, page,
					 mtd->writesize + offset_in_oob,
					 buf, len);

	chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
	if (len)
		chip->legacy.read_buf(chip, buf, len);

	return 0;
}
EXPORT_SYMBOL_GPL(nand_read_oob_op);

static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
				  unsigned int offset_in_page, const void *buf,
				  unsigned int len, bool prog)
{
	const struct nand_interface_config *conf =
		nand_get_interface_config(chip);
	struct mtd_info *mtd = nand_to_mtd(chip);
	u8 addrs[5] = {};
	struct nand_op_instr instrs[] = {
		/*
		 * The first instruction will be dropped if we're dealing
		 * with a large page NAND and adjusted if we're dealing
		 * with a small page NAND and the page offset is > 255.
		 */
		NAND_OP_CMD(NAND_CMD_READ0, 0),
		NAND_OP_CMD(NAND_CMD_SEQIN, 0),
		NAND_OP_ADDR(0, addrs, NAND_COMMON_TIMING_NS(conf, tADL_min)),
		NAND_OP_DATA_OUT(len, buf, 0),
		NAND_OP_CMD(NAND_CMD_PAGEPROG,
			    NAND_COMMON_TIMING_NS(conf, tWB_max)),
		NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max), 0),
	};
	struct nand_operation op = NAND_DESTRUCTIVE_OPERATION(chip->cur_cs,
							      instrs);
	int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);

	if (naddrs < 0)
		return naddrs;

	addrs[naddrs++] = page;
	addrs[naddrs++] = page >> 8;
	if (chip->options & NAND_ROW_ADDR_3)
		addrs[naddrs++] = page >> 16;

	instrs[2].ctx.addr.naddrs = naddrs;

	/* Drop the last two instructions if we're not programming the page. */
	if (!prog) {
		op.ninstrs -= 2;
		/* Also drop the DATA_OUT instruction if empty. */
		if (!len)
			op.ninstrs--;
	}

	if (mtd->writesize <= 512) {
		/*
		 * Small pages need some more tweaking: we have to adjust the
		 * first instruction depending on the page offset we're trying
		 * to access.
		 */
		if (offset_in_page >= mtd->writesize)
			instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
		else if (offset_in_page >= 256 &&
			 !(chip->options & NAND_BUSWIDTH_16))
			instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
	} else {
		/*
		 * Drop the first command if we're dealing with a large page
		 * NAND.
		 */
		op.instrs++;
		op.ninstrs--;
	}

	return nand_exec_op(chip, &op);
}

/**
 * nand_prog_page_begin_op - starts a PROG PAGE operation
 * @chip: The NAND chip
 * @page: page to write
 * @offset_in_page: offset within the page
 * @buf: buffer containing the data to write to the page
 * @len: length of the buffer
 *
 * This function issues the first half of a PROG PAGE operation.
 * This function does not select/unselect the CS line.
 *
 * Returns 0 on success, a negative error code otherwise.
 */
int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
			    unsigned int offset_in_page, const void *buf,
			    unsigned int len)
{
	struct mtd_info *mtd = nand_to_mtd(chip);

	if (len && !buf)
		return -EINVAL;

	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
		return -EINVAL;

	if (nand_has_exec_op(chip))
		return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
					      len, false);

	chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);

	if (buf)
		chip->legacy.write_buf(chip, buf, len);

	return 0;
}
EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);

/**
 * nand_prog_page_end_op - ends a PROG PAGE operation
 * @chip: The NAND chip
 *
 * This function issues the second half of a PROG PAGE operation.
 * This function does not select/unselect the CS line.
 *
 * Returns 0 on success, a negative error code otherwise.
 */
int nand_prog_page_end_op(struct nand_chip *chip)
{
	int ret;
	u8 status;

	if (nand_has_exec_op(chip)) {
		const struct nand_interface_config *conf =
			nand_get_interface_config(chip);
		struct nand_op_instr instrs[] = {
			NAND_OP_CMD(NAND_CMD_PAGEPROG,
				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tPROG_max),
					 0),
		};
		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);

		ret = nand_exec_op(chip, &op);
		if (ret)
			return ret;

		ret = nand_status_op(chip, &status);
		if (ret)
			return ret;
	} else {
		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
		ret = chip->legacy.waitfunc(chip);
		if (ret < 0)
			return ret;

		status = ret;
	}

	if (status & NAND_STATUS_FAIL)
		return -EIO;

	return 0;
}
EXPORT_SYMBOL_GPL(nand_prog_page_end_op);

/**
 * nand_prog_page_op - Do a full PROG PAGE operation
 * @chip: The NAND chip
 * @page: page to write
 * @offset_in_page: offset within the page
 * @buf: buffer containing the data to write to the page
 * @len: length of the buffer
 *
 * This function issues a full PROG PAGE operation.
 * This function does not select/unselect the CS line.
 *
 * Returns 0 on success, a negative error code otherwise.
 */
int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
		      unsigned int offset_in_page, const void *buf,
		      unsigned int len)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	u8 status;
	int ret;

	if (!len || !buf)
		return -EINVAL;

	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
		return -EINVAL;

	if (nand_has_exec_op(chip)) {
		ret = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
						len, true);
		if (ret)
			return ret;

		ret = nand_status_op(chip, &status);
		if (ret)
			return ret;
	} else {
		chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
				     page);
		chip->legacy.write_buf(chip, buf, len);
		chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
		ret = chip->legacy.waitfunc(chip);
		if (ret < 0)
			return ret;

		status = ret;
	}

	if (status & NAND_STATUS_FAIL)
		return -EIO;

	return 0;
}
EXPORT_SYMBOL_GPL(nand_prog_page_op);

/**
 * nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
 * @chip: The NAND chip
 * @offset_in_page: offset within the page
 * @buf: buffer containing the data to send to the NAND
 * @len: length of the buffer
 * @force_8bit: force 8-bit bus access
 *
 * This function issues a CHANGE WRITE COLUMN operation.
 * This function does not select/unselect the CS line.
 *
 * Returns 0 on success, a negative error code otherwise.
 */
int nand_change_write_column_op(struct nand_chip *chip,
				unsigned int offset_in_page,
				const void *buf, unsigned int len,
				bool force_8bit)
{
	struct mtd_info *mtd = nand_to_mtd(chip);

	if (len && !buf)
		return -EINVAL;

	if (offset_in_page + len > mtd->writesize + mtd->oobsize)
		return -EINVAL;

	/* Small page NANDs do not support column change. */
	if (mtd->writesize <= 512)
		return -ENOTSUPP;

	if (nand_has_exec_op(chip)) {
		const struct nand_interface_config *conf =
			nand_get_interface_config(chip);
		u8 addrs[2];
		struct nand_op_instr instrs[] = {
			NAND_OP_CMD(NAND_CMD_RNDIN, 0),
			NAND_OP_ADDR(2, addrs, NAND_COMMON_TIMING_NS(conf, tCCS_min)),
			NAND_OP_DATA_OUT(len, buf, 0),
		};
		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
		int ret;

		ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
		if (ret < 0)
			return ret;

		instrs[2].ctx.data.force_8bit = force_8bit;

		/* Drop the DATA_OUT instruction if len is set to 0. */
		if (!len)
			op.ninstrs--;

		return nand_exec_op(chip, &op);
	}

	chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
	if (len)
		chip->legacy.write_buf(chip, buf, len);

	return 0;
}
EXPORT_SYMBOL_GPL(nand_change_write_column_op);

/**
 * nand_readid_op - Do a READID operation
 * @chip: The NAND chip
 * @addr: address cycle to pass after the READID command
 * @buf: buffer used to store the ID
 * @len: length of the buffer
 *
 * This function sends a READID command and reads back the ID returned by the
 * NAND.
 * This function does not select/unselect the CS line.
 *
 * Returns 0 on success, a negative error code otherwise.
 */
int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
		   unsigned int len)
{
	unsigned int i;
	u8 *id = buf, *ddrbuf = NULL;

	if (len && !buf)
		return -EINVAL;

	if (nand_has_exec_op(chip)) {
		const struct nand_interface_config *conf =
			nand_get_interface_config(chip);
		struct nand_op_instr instrs[] = {
			NAND_OP_CMD(NAND_CMD_READID, 0),
			NAND_OP_ADDR(1, &addr,
				     NAND_COMMON_TIMING_NS(conf, tADL_min)),
			NAND_OP_8BIT_DATA_IN(len, buf, 0),
		};
		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
		int ret;

		/* READ_ID data bytes are received twice in NV-DDR mode */
		if (len && nand_interface_is_nvddr(conf)) {
			ddrbuf = kzalloc(len * 2, GFP_KERNEL);
			if (!ddrbuf)
				return -ENOMEM;

			instrs[2].ctx.data.len *= 2;
			instrs[2].ctx.data.buf.in = ddrbuf;
		}

		/* Drop the DATA_IN instruction if len is set to 0. */
		if (!len)
			op.ninstrs--;

		ret = nand_exec_op(chip, &op);
		if (!ret && len && nand_interface_is_nvddr(conf)) {
			for (i = 0; i < len; i++)
				id[i] = ddrbuf[i * 2];
		}

		kfree(ddrbuf);

		return ret;
	}

	chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);

	for (i = 0; i < len; i++)
		id[i] = chip->legacy.read_byte(chip);

	return 0;
}
EXPORT_SYMBOL_GPL(nand_readid_op);

/**
 * nand_status_op - Do a STATUS operation
 * @chip: The NAND chip
 * @status: out variable to store the NAND status
 *
 * This function sends a STATUS command and reads back the status returned by
 * the NAND.
 * This function does not select/unselect the CS line.
 *
 * Returns 0 on success, a negative error code otherwise.
 */
int nand_status_op(struct nand_chip *chip, u8 *status)
{
	if (nand_has_exec_op(chip)) {
		const struct nand_interface_config *conf =
			nand_get_interface_config(chip);
		u8 ddrstatus[2];
		struct nand_op_instr instrs[] = {
			NAND_OP_CMD(NAND_CMD_STATUS,
				    NAND_COMMON_TIMING_NS(conf, tADL_min)),
			NAND_OP_8BIT_DATA_IN(1, status, 0),
		};
		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
		int ret;

		/* The status data byte will be received twice in NV-DDR mode */
		if (status && nand_interface_is_nvddr(conf)) {
			instrs[1].ctx.data.len *= 2;
			instrs[1].ctx.data.buf.in = ddrstatus;
		}

		if (!status)
			op.ninstrs--;

		ret = nand_exec_op(chip, &op);
		if (!ret && status && nand_interface_is_nvddr(conf))
			*status = ddrstatus[0];

		return ret;
	}

	chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
	if (status)
		*status = chip->legacy.read_byte(chip);

	return 0;
}
EXPORT_SYMBOL_GPL(nand_status_op);

/**
 * nand_exit_status_op - Exit a STATUS operation
 * @chip: The NAND chip
 *
 * This function sends a READ0 command to cancel the effect of the STATUS
 * command to avoid reading only the status until a new read command is sent.
 *
 * This function does not select/unselect the CS line.
 *
 * Returns 0 on success, a negative error code otherwise.
 */
int nand_exit_status_op(struct nand_chip *chip)
{
	if (nand_has_exec_op(chip)) {
		struct nand_op_instr instrs[] = {
			NAND_OP_CMD(NAND_CMD_READ0, 0),
		};
		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);

		return nand_exec_op(chip, &op);
	}

	chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);

	return 0;
}
EXPORT_SYMBOL_GPL(nand_exit_status_op);

/**
 * nand_erase_op - Do an erase operation
 * @chip: The NAND chip
 * @eraseblock: block to erase
 *
 * This function sends an ERASE command and waits for the NAND to be ready
 * before returning.
 * This function does not select/unselect the CS line.
 *
 * Returns 0 on success, a negative error code otherwise.
 */
int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
{
	unsigned int page = eraseblock <<
			    (chip->phys_erase_shift - chip->page_shift);
	int ret;
	u8 status;

	if (nand_has_exec_op(chip)) {
		const struct nand_interface_config *conf =
			nand_get_interface_config(chip);
		u8 addrs[3] = {	page, page >> 8, page >> 16 };
		struct nand_op_instr instrs[] = {
			NAND_OP_CMD(NAND_CMD_ERASE1, 0),
			NAND_OP_ADDR(2, addrs, 0),
			NAND_OP_CMD(NAND_CMD_ERASE2,
				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tBERS_max),
					 0),
		};
		struct nand_operation op = NAND_DESTRUCTIVE_OPERATION(chip->cur_cs,
								      instrs);

		if (chip->options & NAND_ROW_ADDR_3)
			instrs[1].ctx.addr.naddrs++;

		ret = nand_exec_op(chip, &op);
		if (ret)
			return ret;

		ret = nand_status_op(chip, &status);
		if (ret)
			return ret;
	} else {
		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
		chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);

		ret = chip->legacy.waitfunc(chip);
		if (ret < 0)
			return ret;

		status = ret;
	}

	if (status & NAND_STATUS_FAIL)
		return -EIO;

	return 0;
}
EXPORT_SYMBOL_GPL(nand_erase_op);

/**
 * nand_set_features_op - Do a SET FEATURES operation
 * @chip: The NAND chip
 * @feature: feature id
 * @data: 4 bytes of data
 *
 * This function sends a SET FEATURES command and waits for the NAND to be
 * ready before returning.
 * This function does not select/unselect the CS line.
 *
 * Returns 0 on success, a negative error code otherwise.
 */
static int nand_set_features_op(struct nand_chip *chip, u8 feature,
				const void *data)
{
	const u8 *params = data;
	int i, ret;

	if (nand_has_exec_op(chip)) {
		const struct nand_interface_config *conf =
			nand_get_interface_config(chip);
		struct nand_op_instr instrs[] = {
			NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
			NAND_OP_ADDR(1, &feature, NAND_COMMON_TIMING_NS(conf,
									tADL_min)),
			NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
					      NAND_COMMON_TIMING_NS(conf,
								    tWB_max)),
			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
					 0),
		};
		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);

		return nand_exec_op(chip, &op);
	}

	chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
		chip->legacy.write_byte(chip, params[i]);

	ret = chip->legacy.waitfunc(chip);
	if (ret < 0)
		return ret;

	if (ret & NAND_STATUS_FAIL)
		return -EIO;

	return 0;
}

/**
 * nand_get_features_op - Do a GET FEATURES operation
 * @chip: The NAND chip
 * @feature: feature id
 * @data: 4 bytes of data
 *
 * This function sends a GET FEATURES command and waits for the NAND to be
 * ready before returning.
 * This function does not select/unselect the CS line.
 *
 * Returns 0 on success, a negative error code otherwise.
 */
static int nand_get_features_op(struct nand_chip *chip, u8 feature,
				void *data)
{
	u8 *params = data, ddrbuf[ONFI_SUBFEATURE_PARAM_LEN * 2];
	int i;

	if (nand_has_exec_op(chip)) {
		const struct nand_interface_config *conf =
			nand_get_interface_config(chip);
		struct nand_op_instr instrs[] = {
			NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
			NAND_OP_ADDR(1, &feature,
				     NAND_COMMON_TIMING_NS(conf, tWB_max)),
			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tFEAT_max),
					 NAND_COMMON_TIMING_NS(conf, tRR_min)),
			NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
					     data, 0),
		};
		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
		int ret;

		/* GET_FEATURE data bytes are received twice in NV-DDR mode */
		if (nand_interface_is_nvddr(conf)) {
			instrs[3].ctx.data.len *= 2;
			instrs[3].ctx.data.buf.in = ddrbuf;
		}

		ret = nand_exec_op(chip, &op);
		if (nand_interface_is_nvddr(conf)) {
			for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; i++)
				params[i] = ddrbuf[i * 2];
		}

		return ret;
	}

	chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
	for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
		params[i] = chip->legacy.read_byte(chip);

	return 0;
}

static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
			    unsigned int delay_ns)
{
	if (nand_has_exec_op(chip)) {
		struct nand_op_instr instrs[] = {
			NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
					 PSEC_TO_NSEC(delay_ns)),
		};
		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);

		return nand_exec_op(chip, &op);
	}

	/* Apply delay or wait for ready/busy pin */
	if (!chip->legacy.dev_ready)
		udelay(chip->legacy.chip_delay);
	else
		nand_wait_ready(chip);

	return 0;
}

/**
 * nand_reset_op - Do a reset operation
 * @chip: The NAND chip
 *
 * This function sends a RESET command and waits for the NAND to be ready
 * before returning.
 * This function does not select/unselect the CS line.
 *
 * Returns 0 on success, a negative error code otherwise.
 */
int nand_reset_op(struct nand_chip *chip)
{
	if (nand_has_exec_op(chip)) {
		const struct nand_interface_config *conf =
			nand_get_interface_config(chip);
		struct nand_op_instr instrs[] = {
			NAND_OP_CMD(NAND_CMD_RESET,
				    NAND_COMMON_TIMING_NS(conf, tWB_max)),
			NAND_OP_WAIT_RDY(NAND_COMMON_TIMING_MS(conf, tRST_max),
					 0),
		};
		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);

		return nand_exec_op(chip, &op);
	}

	chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);

	return 0;
}
EXPORT_SYMBOL_GPL(nand_reset_op);

/**
 * nand_read_data_op - Read data from the NAND
 * @chip: The NAND chip
 * @buf: buffer used to store the data
 * @len: length of the buffer
 * @force_8bit: force 8-bit bus access
 * @check_only: do not actually run the command, only checks if the
 *              controller driver supports it
 *
 * This function does a raw data read on the bus. Usually used after launching
 * another NAND operation like nand_read_page_op().
 * This function does not select/unselect the CS line.
 *
 * Returns 0 on success, a negative error code otherwise.
 */
int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
		      bool force_8bit, bool check_only)
{
	if (!len || (!check_only && !buf))
		return -EINVAL;

	if (nand_has_exec_op(chip)) {
		const struct nand_interface_config *conf =
			nand_get_interface_config(chip);
		struct nand_op_instr instrs[] = {
			NAND_OP_DATA_IN(len, buf, 0),
		};
		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
		u8 *ddrbuf = NULL;
		int ret, i;

		instrs[0].ctx.data.force_8bit = force_8bit;

		/*
		 * Parameter payloads (ID, status, features, etc) do not go
		 * through the same pipeline as regular data, hence the
		 * force_8bit flag must be set and this also indicates that in
		 * case NV-DDR timings are being used the data will be received
		 * twice.
		 */
		if (force_8bit && nand_interface_is_nvddr(conf)) {
			ddrbuf = kzalloc(len * 2, GFP_KERNEL);
			if (!ddrbuf)
				return -ENOMEM;

			instrs[0].ctx.data.len *= 2;
			instrs[0].ctx.data.buf.in = ddrbuf;
		}

		if (check_only) {
			ret = nand_check_op(chip, &op);
			kfree(ddrbuf);
			return ret;
		}

		ret = nand_exec_op(chip, &op);
		if (!ret && force_8bit && nand_interface_is_nvddr(conf)) {
			u8 *dst = buf;

			for (i = 0; i < len; i++)
				dst[i] = ddrbuf[i * 2];
		}

		kfree(ddrbuf);

		return ret;
	}

	if (check_only)
		return 0;

	if (force_8bit) {
		u8 *p = buf;
		unsigned int i;

		for (i = 0; i < len; i++)
			p[i] = chip->legacy.read_byte(chip);
	} else {
		chip->legacy.read_buf(chip, buf, len);
	}

	return 0;
}
EXPORT_SYMBOL_GPL(nand_read_data_op);

/**
 * nand_write_data_op - Write data from the NAND
 * @chip: The NAND chip
 * @buf: buffer containing the data to send on the bus
 * @len: length of the buffer
 * @force_8bit: force 8-bit bus access
 *
 * This function does a raw data write on the bus. Usually used after launching
 * another NAND operation like nand_write_page_begin_op().
 * This function does not select/unselect the CS line.
 *
 * Returns 0 on success, a negative error code otherwise.
 */
int nand_write_data_op(struct nand_chip *chip, const void *buf,
		       unsigned int len, bool force_8bit)
{
	if (!len || !buf)
		return -EINVAL;

	if (nand_has_exec_op(chip)) {
		struct nand_op_instr instrs[] = {
			NAND_OP_DATA_OUT(len, buf, 0),
		};
		struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);

		instrs[0].ctx.data.force_8bit = force_8bit;

		return nand_exec_op(chip, &op);
	}

	if (force_8bit) {
		const u8 *p = buf;
		unsigned int i;

		for (i = 0; i < len; i++)
			chip->legacy.write_byte(chip, p[i]);
	} else {
		chip->legacy.write_buf(chip, buf, len);
	}

	return 0;
}
EXPORT_SYMBOL_GPL(nand_write_data_op);

/**
 * struct nand_op_parser_ctx - Context used by the parser
 * @instrs: array of all the instructions that must be addressed
 * @ninstrs: length of the @instrs array
 * @subop: Sub-operation to be passed to the NAND controller
 *
 * This structure is used by the core to split NAND operations into
 * sub-operations that can be handled by the NAND controller.
 */
struct nand_op_parser_ctx {
	const struct nand_op_instr *instrs;
	unsigned int ninstrs;
	struct nand_subop subop;
};

/**
 * nand_op_parser_must_split_instr - Checks if an instruction must be split
 * @pat: the parser pattern element that matches @instr
 * @instr: pointer to the instruction to check
 * @start_offset: this is an in/out parameter. If @instr has already been
 *		  split, then @start_offset is the offset from which to start
 *		  (either an address cycle or an offset in the data buffer).
 *		  Conversely, if the function returns true (ie. instr must be
 *		  split), this parameter is updated to point to the first
 *		  data/address cycle that has not been taken care of.
 *
 * Some NAND controllers are limited and cannot send X address cycles with a
 * unique operation, or cannot read/write more than Y bytes at the same time.
 * In this case, split the instruction that does not fit in a single
 * controller-operation into two or more chunks.
 *
 * Returns true if the instruction must be split, false otherwise.
 * The @start_offset parameter is also updated to the offset at which the next
 * bundle of instruction must start (if an address or a data instruction).
 */
static bool
nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
				const struct nand_op_instr *instr,
				unsigned int *start_offset)
{
	switch (pat->type) {
	case NAND_OP_ADDR_INSTR:
		if (!pat->ctx.addr.maxcycles)
			break;

		if (instr->ctx.addr.naddrs - *start_offset >
		    pat->ctx.addr.maxcycles) {
			*start_offset += pat->ctx.addr.maxcycles;
			return true;
		}
		break;

	case NAND_OP_DATA_IN_INSTR:
	case NAND_OP_DATA_OUT_INSTR:
		if (!pat->ctx.data.maxlen)
			break;

		if (instr->ctx.data.len - *start_offset >
		    pat->ctx.data.maxlen) {
			*start_offset += pat->ctx.data.maxlen;
			return true;
		}
		break;

	default:
		break;
	}

	return false;
}

/**
 * nand_op_parser_match_pat - Checks if a pattern matches the instructions
 *			      remaining in the parser context
 * @pat: the pattern to test
 * @ctx: the parser context structure to match with the pattern @pat
 *
 * Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
 * Returns true if this is the case, false ortherwise. When true is returned,
 * @ctx->subop is updated with the set of instructions to be passed to the
 * controller driver.
 */
static bool
nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
			 struct nand_op_parser_ctx *ctx)
{
	unsigned int instr_offset = ctx->subop.first_instr_start_off;
	const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
	const struct nand_op_instr *instr = ctx->subop.instrs;
	unsigned int i, ninstrs;

	for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
		/*
		 * The pattern instruction does not match the operation
		 * instruction. If the instruction is marked optional in the
		 * pattern definition, we skip the pattern element and continue
		 * to the next one. If the element is mandatory, there's no
		 * match and we can return false directly.
		 */
		if (instr->type != pat->elems[i].type) {
			if (!pat->elems[i].optional)
				return false;

			continue;
		}

		/*
		 * Now check the pattern element constraints. If the pattern is
		 * not able to handle the whole instruction in a single step,
		 * we have to split it.
		 * The last_instr_end_off value comes back updated to point to
		 * the position where we have to split the instruction (the
		 * start of the next subop chunk).
		 */
		if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
						    &instr_offset)) {
			ninstrs++;
			i++;
			break;
		}

		instr++;
		ninstrs++;
		instr_offset = 0;
	}

	/*
	 * This can happen if all instructions of a pattern are optional.
	 * Still, if there's not at least one instruction handled by this
	 * pattern, this is not a match, and we should try the next one (if
	 * any).
	 */
	if (!ninstrs)
		return false;

	/*
	 * We had a match on the pattern head, but the pattern may be longer
	 * than the instructions we're asked to execute. We need to make sure
	 * there's no mandatory elements in the pattern tail.
	 */
	for (; i < pat->nelems; i++) {
		if (!pat->elems[i].optional)
			return false;
	}

	/*
	 * We have a match: update the subop structure accordingly and return
	 * true.
	 */
	ctx->subop.ninstrs = ninstrs;
	ctx->subop.last_instr_end_off = instr_offset;

	return true;
}

#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
{
	const struct nand_op_instr *instr;
	char *prefix = "      ";
	unsigned int i;

	pr_debug("executing subop (CS%d):\n", ctx->subop.cs);

	for (i = 0; i < ctx->ninstrs; i++) {
		instr = &ctx->instrs[i];

		if (instr == &ctx->subop.instrs[0])
			prefix = "    ->";

		nand_op_trace(prefix, instr);

		if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
			prefix = "      ";
	}
}
#else
static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
{
	/* NOP */
}
#endif

static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
				  const struct nand_op_parser_ctx *b)
{
	if (a->subop.ninstrs < b->subop.ninstrs)
		return -1;
	else if (a->subop.ninstrs > b->subop.ninstrs)
		return 1;

	if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
		return -1;
	else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
		return 1;

	return 0;
}

/**
 * nand_op_parser_exec_op - exec_op parser
 * @chip: the NAND chip
 * @parser: patterns description provided by the controller driver
 * @op: the NAND operation to address
 * @check_only: when true, the function only checks if @op can be handled but
 *		does not execute the operation
 *
 * Helper function designed to ease integration of NAND controller drivers that
 * only support a limited set of instruction sequences. The supported sequences
 * are described in @parser, and the framework takes care of splitting @op into
 * multiple sub-operations (if required) and pass them back to the ->exec()
 * callback of the matching pattern if @check_only is set to false.
 *
 * NAND controller drivers should call this function from their own ->exec_op()
 * implementation.
 *
 * Returns 0 on success, a negative error code otherwise. A failure can be
 * caused by an unsupported operation (none of the supported patterns is able
 * to handle the requested operation), or an error returned by one of the
 * matching pattern->exec() hook.
 */
int nand_op_parser_exec_op(struct nand_chip *chip,
			   const struct nand_op_parser *parser,
			   const struct nand_operation *op, bool check_only)
{
	struct nand_op_parser_ctx ctx = {
		.subop.cs = op->cs,
		.subop.instrs = op->instrs,
		.instrs = op->instrs,
		.ninstrs = op->ninstrs,
	};
	unsigned int i;

	while (ctx.subop.instrs < op->instrs + op->ninstrs) {
		const struct nand_op_parser_pattern *pattern;
		struct nand_op_parser_ctx best_ctx;
		int ret, best_pattern = -1;

		for (i = 0; i < parser->npatterns; i++) {
			struct nand_op_parser_ctx test_ctx = ctx;

			pattern = &parser->patterns[i];
			if (!nand_op_parser_match_pat(pattern, &test_ctx))
				continue;

			if (best_pattern >= 0 &&
			    nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
				continue;

			best_pattern = i;
			best_ctx = test_ctx;
		}

		if (best_pattern < 0) {
			pr_debug("->exec_op() parser: pattern not found!\n");
			return -ENOTSUPP;
		}

		ctx = best_ctx;
		nand_op_parser_trace(&ctx);

		if (!check_only) {
			pattern = &parser->patterns[best_pattern];
			ret = pattern->exec(chip, &ctx.subop);
			if (ret)
				return ret;
		}

		/*
		 * Update the context structure by pointing to the start of the
		 * next subop.
		 */
		ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
		if (ctx.subop.last_instr_end_off)
			ctx.subop.instrs -= 1;

		ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);

static bool nand_instr_is_data(const struct nand_op_instr *instr)
{
	return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
			 instr->type == NAND_OP_DATA_OUT_INSTR);
}

static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
				      unsigned int instr_idx)
{
	return subop && instr_idx < subop->ninstrs;
}

static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
					     unsigned int instr_idx)
{
	if (instr_idx)
		return 0;

	return subop->first_instr_start_off;
}

/**
 * nand_subop_get_addr_start_off - Get the start offset in an address array
 * @subop: The entire sub-operation
 * @instr_idx: Index of the instruction inside the sub-operation
 *
 * During driver development, one could be tempted to directly use the
 * ->addr.addrs field of address instructions. This is wrong as address
 * instructions might be split.
 *
 * Given an address instruction, returns the offset of the first cycle to issue.
 */
unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
					   unsigned int instr_idx)
{
	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
		return 0;

	return nand_subop_get_start_off(subop, instr_idx);
}
EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);

/**
 * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
 * @subop: The entire sub-operation
 * @instr_idx: Index of the instruction inside the sub-operation
 *
 * During driver development, one could be tempted to directly use the
 * ->addr->naddrs field of a data instruction. This is wrong as instructions
 * might be split.
 *
 * Given an address instruction, returns the number of address cycle to issue.
 */
unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
					 unsigned int instr_idx)
{
	int start_off, end_off;

	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
		    subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
		return 0;

	start_off = nand_subop_get_addr_start_off(subop, instr_idx);

	if (instr_idx == subop->ninstrs - 1 &&
	    subop->last_instr_end_off)
		end_off = subop->last_instr_end_off;
	else
		end_off = subop->instrs[instr_idx].ctx.addr.naddrs;

	return end_off - start_off;
}
EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);

/**
 * nand_subop_get_data_start_off - Get the start offset in a data array
 * @subop: The entire sub-operation
 * @instr_idx: Index of the instruction inside the sub-operation
 *
 * During driver development, one could be tempted to directly use the
 * ->data->buf.{in,out} field of data instructions. This is wrong as data
 * instructions might be split.
 *
 * Given a data instruction, returns the offset to start from.
 */
unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
					   unsigned int instr_idx)
{
	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
		    !nand_instr_is_data(&subop->instrs[instr_idx])))
		return 0;

	return nand_subop_get_start_off(subop, instr_idx);
}
EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);

/**
 * nand_subop_get_data_len - Get the number of bytes to retrieve
 * @subop: The entire sub-operation
 * @instr_idx: Index of the instruction inside the sub-operation
 *
 * During driver development, one could be tempted to directly use the
 * ->data->len field of a data instruction. This is wrong as data instructions
 * might be split.
 *
 * Returns the length of the chunk of data to send/receive.
 */
unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
				     unsigned int instr_idx)
{
	int start_off = 0, end_off;

	if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
		    !nand_instr_is_data(&subop->instrs[instr_idx])))
		return 0;

	start_off = nand_subop_get_data_start_off(subop, instr_idx);

	if (instr_idx == subop->ninstrs - 1 &&
	    subop->last_instr_end_off)
		end_off = subop->last_instr_end_off;
	else
		end_off = subop->instrs[instr_idx].ctx.data.len;

	return end_off - start_off;
}
EXPORT_SYMBOL_GPL(nand_subop_get_data_len);

/**
 * nand_reset - Reset and initialize a NAND device
 * @chip: The NAND chip
 * @chipnr: Internal die id
 *
 * Save the timings data structure, then apply SDR timings mode 0 (see
 * nand_reset_interface for details), do the reset operation, and apply
 * back the previous timings.
 *
 * Returns 0 on success, a negative error code otherwise.
 */
int nand_reset(struct nand_chip *chip, int chipnr)
{
	int ret;

	ret = nand_reset_interface(chip, chipnr);
	if (ret)
		return ret;

	/*
	 * The CS line has to be released before we can apply the new NAND
	 * interface settings, hence this weird nand_select_target()
	 * nand_deselect_target() dance.
	 */
	nand_select_target(chip, chipnr);
	ret = nand_reset_op(chip);
	nand_deselect_target(chip);
	if (ret)
		return ret;

	ret = nand_setup_interface(chip, chipnr);
	if (ret)
		return ret;

	return 0;
}
EXPORT_SYMBOL_GPL(nand_reset);

/**
 * nand_get_features - wrapper to perform a GET_FEATURE
 * @chip: NAND chip info structure
 * @addr: feature address
 * @subfeature_param: the subfeature parameters, a four bytes array
 *
 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
 * operation cannot be handled.
 */
int nand_get_features(struct nand_chip *chip, int addr,
		      u8 *subfeature_param)
{
	if (!nand_supports_get_features(chip, addr))
		return -ENOTSUPP;

	if (chip->legacy.get_features)
		return chip->legacy.get_features(chip, addr, subfeature_param);

	return nand_get_features_op(chip, addr, subfeature_param);
}

/**
 * nand_set_features - wrapper to perform a SET_FEATURE
 * @chip: NAND chip info structure
 * @addr: feature address
 * @subfeature_param: the subfeature parameters, a four bytes array
 *
 * Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
 * operation cannot be handled.
 */
int nand_set_features(struct nand_chip *chip, int addr,
		      u8 *subfeature_param)
{
	if (!nand_supports_set_features(chip, addr))
		return -ENOTSUPP;

	if (chip->legacy.set_features)
		return chip->legacy.set_features(chip, addr, subfeature_param);

	return nand_set_features_op(chip, addr, subfeature_param);
}

/**
 * nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
 * @buf: buffer to test
 * @len: buffer length
 * @bitflips_threshold: maximum number of bitflips
 *
 * Check if a buffer contains only 0xff, which means the underlying region
 * has been erased and is ready to be programmed.
 * The bitflips_threshold specify the maximum number of bitflips before
 * considering the region is not erased.
 * Note: The logic of this function has been extracted from the memweight
 * implementation, except that nand_check_erased_buf function exit before
 * testing the whole buffer if the number of bitflips exceed the
 * bitflips_threshold value.
 *
 * Returns a positive number of bitflips less than or equal to
 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
 * threshold.
 */
static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
{
	const unsigned char *bitmap = buf;
	int bitflips = 0;
	int weight;

	for (; len && ((uintptr_t)bitmap) % sizeof(long);
	     len--, bitmap++) {
		weight = hweight8(*bitmap);
		bitflips += BITS_PER_BYTE - weight;
		if (unlikely(bitflips > bitflips_threshold))
			return -EBADMSG;
	}

	for (; len >= sizeof(long);
	     len -= sizeof(long), bitmap += sizeof(long)) {
		unsigned long d = *((unsigned long *)bitmap);
		if (d == ~0UL)
			continue;
		weight = hweight_long(d);
		bitflips += BITS_PER_LONG - weight;
		if (unlikely(bitflips > bitflips_threshold))
			return -EBADMSG;
	}

	for (; len > 0; len--, bitmap++) {
		weight = hweight8(*bitmap);
		bitflips += BITS_PER_BYTE - weight;
		if (unlikely(bitflips > bitflips_threshold))
			return -EBADMSG;
	}

	return bitflips;
}

/**
 * nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
 *				 0xff data
 * @data: data buffer to test
 * @datalen: data length
 * @ecc: ECC buffer
 * @ecclen: ECC length
 * @extraoob: extra OOB buffer
 * @extraooblen: extra OOB length
 * @bitflips_threshold: maximum number of bitflips
 *
 * Check if a data buffer and its associated ECC and OOB data contains only
 * 0xff pattern, which means the underlying region has been erased and is
 * ready to be programmed.
 * The bitflips_threshold specify the maximum number of bitflips before
 * considering the region as not erased.
 *
 * Note:
 * 1/ ECC algorithms are working on pre-defined block sizes which are usually
 *    different from the NAND page size. When fixing bitflips, ECC engines will
 *    report the number of errors per chunk, and the NAND core infrastructure
 *    expect you to return the maximum number of bitflips for the whole page.
 *    This is why you should always use this function on a single chunk and
 *    not on the whole page. After checking each chunk you should update your
 *    max_bitflips value accordingly.
 * 2/ When checking for bitflips in erased pages you should not only check
 *    the payload data but also their associated ECC data, because a user might
 *    have programmed almost all bits to 1 but a few. In this case, we
 *    shouldn't consider the chunk as erased, and checking ECC bytes prevent
 *    this case.
 * 3/ The extraoob argument is optional, and should be used if some of your OOB
 *    data are protected by the ECC engine.
 *    It could also be used if you support subpages and want to attach some
 *    extra OOB data to an ECC chunk.
 *
 * Returns a positive number of bitflips less than or equal to
 * bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
 * threshold. In case of success, the passed buffers are filled with 0xff.
 */
int nand_check_erased_ecc_chunk(void *data, int datalen,
				void *ecc, int ecclen,
				void *extraoob, int extraooblen,
				int bitflips_threshold)
{
	int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;

	data_bitflips = nand_check_erased_buf(data, datalen,
					      bitflips_threshold);
	if (data_bitflips < 0)
		return data_bitflips;

	bitflips_threshold -= data_bitflips;

	ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
	if (ecc_bitflips < 0)
		return ecc_bitflips;

	bitflips_threshold -= ecc_bitflips;

	extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
						  bitflips_threshold);
	if (extraoob_bitflips < 0)
		return extraoob_bitflips;

	if (data_bitflips)
		memset(data, 0xff, datalen);

	if (ecc_bitflips)
		memset(ecc, 0xff, ecclen);

	if (extraoob_bitflips)
		memset(extraoob, 0xff, extraooblen);

	return data_bitflips + ecc_bitflips + extraoob_bitflips;
}
EXPORT_SYMBOL(nand_check_erased_ecc_chunk);

/**
 * nand_read_page_raw_notsupp - dummy read raw page function
 * @chip: nand chip info structure
 * @buf: buffer to store read data
 * @oob_required: caller requires OOB data read to chip->oob_poi
 * @page: page number to read
 *
 * Returns -ENOTSUPP unconditionally.
 */
int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
			       int oob_required, int page)
{
	return -ENOTSUPP;
}

/**
 * nand_read_page_raw - [INTERN] read raw page data without ecc
 * @chip: nand chip info structure
 * @buf: buffer to store read data
 * @oob_required: caller requires OOB data read to chip->oob_poi
 * @page: page number to read
 *
 * Not for syndrome calculating ECC controllers, which use a special oob layout.
 */
int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
		       int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret;

	ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
	if (ret)
		return ret;

	if (oob_required) {
		ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
					false, false);
		if (ret)
			return ret;
	}

	return 0;
}
EXPORT_SYMBOL(nand_read_page_raw);

/**
 * nand_monolithic_read_page_raw - Monolithic page read in raw mode
 * @chip: NAND chip info structure
 * @buf: buffer to store read data
 * @oob_required: caller requires OOB data read to chip->oob_poi
 * @page: page number to read
 *
 * This is a raw page read, ie. without any error detection/correction.
 * Monolithic means we are requesting all the relevant data (main plus
 * eventually OOB) to be loaded in the NAND cache and sent over the
 * bus (from the NAND chip to the NAND controller) in a single
 * operation. This is an alternative to nand_read_page_raw(), which
 * first reads the main data, and if the OOB data is requested too,
 * then reads more data on the bus.
 */
int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
				  int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	unsigned int size = mtd->writesize;
	u8 *read_buf = buf;
	int ret;

	if (oob_required) {
		size += mtd->oobsize;

		if (buf != chip->data_buf)
			read_buf = nand_get_data_buf(chip);
	}

	ret = nand_read_page_op(chip, page, 0, read_buf, size);
	if (ret)
		return ret;

	if (buf != chip->data_buf)
		memcpy(buf, read_buf, mtd->writesize);

	return 0;
}
EXPORT_SYMBOL(nand_monolithic_read_page_raw);

/**
 * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
 * @chip: nand chip info structure
 * @buf: buffer to store read data
 * @oob_required: caller requires OOB data read to chip->oob_poi
 * @page: page number to read
 *
 * We need a special oob layout and handling even when OOB isn't used.
 */
static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
				       int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	uint8_t *oob = chip->oob_poi;
	int steps, size, ret;

	ret = nand_read_page_op(chip, page, 0, NULL, 0);
	if (ret)
		return ret;

	for (steps = chip->ecc.steps; steps > 0; steps--) {
		ret = nand_read_data_op(chip, buf, eccsize, false, false);
		if (ret)
			return ret;

		buf += eccsize;

		if (chip->ecc.prepad) {
			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
						false, false);
			if (ret)
				return ret;

			oob += chip->ecc.prepad;
		}

		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
		if (ret)
			return ret;

		oob += eccbytes;

		if (chip->ecc.postpad) {
			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
						false, false);
			if (ret)
				return ret;

			oob += chip->ecc.postpad;
		}
	}

	size = mtd->oobsize - (oob - chip->oob_poi);
	if (size) {
		ret = nand_read_data_op(chip, oob, size, false, false);
		if (ret)
			return ret;
	}

	return 0;
}

/**
 * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
 * @chip: nand chip info structure
 * @buf: buffer to store read data
 * @oob_required: caller requires OOB data read to chip->oob_poi
 * @page: page number to read
 */
static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
				int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int i, eccsize = chip->ecc.size, ret;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
	uint8_t *ecc_calc = chip->ecc.calc_buf;
	uint8_t *ecc_code = chip->ecc.code_buf;
	unsigned int max_bitflips = 0;

	chip->ecc.read_page_raw(chip, buf, 1, page);

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
		chip->ecc.calculate(chip, p, &ecc_calc[i]);

	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;

	eccsteps = chip->ecc.steps;
	p = buf;

	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
	}
	return max_bitflips;
}

/**
 * nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
 * @chip: nand chip info structure
 * @data_offs: offset of requested data within the page
 * @readlen: data length
 * @bufpoi: buffer to store read data
 * @page: page number to read
 */
static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
			     uint32_t readlen, uint8_t *bufpoi, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int start_step, end_step, num_steps, ret;
	uint8_t *p;
	int data_col_addr, i, gaps = 0;
	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
	int index, section = 0;
	unsigned int max_bitflips = 0;
	struct mtd_oob_region oobregion = { };

	/* Column address within the page aligned to ECC size (256bytes) */
	start_step = data_offs / chip->ecc.size;
	end_step = (data_offs + readlen - 1) / chip->ecc.size;
	num_steps = end_step - start_step + 1;
	index = start_step * chip->ecc.bytes;

	/* Data size aligned to ECC ecc.size */
	datafrag_len = num_steps * chip->ecc.size;
	eccfrag_len = num_steps * chip->ecc.bytes;

	data_col_addr = start_step * chip->ecc.size;
	/* If we read not a page aligned data */
	p = bufpoi + data_col_addr;
	ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
	if (ret)
		return ret;

	/* Calculate ECC */
	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
		chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);

	/*
	 * The performance is faster if we position offsets according to
	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
	 */
	ret = mtd_ooblayout_find_eccregion(mtd, index, &section, &oobregion);
	if (ret)
		return ret;

	if (oobregion.length < eccfrag_len)
		gaps = 1;

	if (gaps) {
		ret = nand_change_read_column_op(chip, mtd->writesize,
						 chip->oob_poi, mtd->oobsize,
						 false);
		if (ret)
			return ret;
	} else {
		/*
		 * Send the command to read the particular ECC bytes take care
		 * about buswidth alignment in read_buf.
		 */
		aligned_pos = oobregion.offset & ~(busw - 1);
		aligned_len = eccfrag_len;
		if (oobregion.offset & (busw - 1))
			aligned_len++;
		if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
		    (busw - 1))
			aligned_len++;

		ret = nand_change_read_column_op(chip,
						 mtd->writesize + aligned_pos,
						 &chip->oob_poi[aligned_pos],
						 aligned_len, false);
		if (ret)
			return ret;
	}

	ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
					 chip->oob_poi, index, eccfrag_len);
	if (ret)
		return ret;

	p = bufpoi + data_col_addr;
	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
		int stat;

		stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
					 &chip->ecc.calc_buf[i]);
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
						&chip->ecc.code_buf[i],
						chip->ecc.bytes,
						NULL, 0,
						chip->ecc.strength);
		}

		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
	}
	return max_bitflips;
}

/**
 * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
 * @chip: nand chip info structure
 * @buf: buffer to store read data
 * @oob_required: caller requires OOB data read to chip->oob_poi
 * @page: page number to read
 *
 * Not for syndrome calculating ECC controllers which need a special oob layout.
 */
static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
				int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int i, eccsize = chip->ecc.size, ret;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
	uint8_t *ecc_calc = chip->ecc.calc_buf;
	uint8_t *ecc_code = chip->ecc.code_buf;
	unsigned int max_bitflips = 0;

	ret = nand_read_page_op(chip, page, 0, NULL, 0);
	if (ret)
		return ret;

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		chip->ecc.hwctl(chip, NAND_ECC_READ);

		ret = nand_read_data_op(chip, p, eccsize, false, false);
		if (ret)
			return ret;

		chip->ecc.calculate(chip, p, &ecc_calc[i]);
	}

	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
				false);
	if (ret)
		return ret;

	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;

	eccsteps = chip->ecc.steps;
	p = buf;

	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, eccsize,
						&ecc_code[i], eccbytes,
						NULL, 0,
						chip->ecc.strength);
		}

		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
	}
	return max_bitflips;
}

/**
 * nand_read_page_hwecc_oob_first - Hardware ECC page read with ECC
 *                                  data read from OOB area
 * @chip: nand chip info structure
 * @buf: buffer to store read data
 * @oob_required: caller requires OOB data read to chip->oob_poi
 * @page: page number to read
 *
 * Hardware ECC for large page chips, which requires the ECC data to be
 * extracted from the OOB before the actual data is read.
 */
int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf,
				   int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int i, eccsize = chip->ecc.size, ret;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *p = buf;
	uint8_t *ecc_code = chip->ecc.code_buf;
	unsigned int max_bitflips = 0;

	/* Read the OOB area first */
	ret = nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
	if (ret)
		return ret;

	/* Move read cursor to start of page */
	ret = nand_change_read_column_op(chip, 0, NULL, 0, false);
	if (ret)
		return ret;

	ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		chip->ecc.hwctl(chip, NAND_ECC_READ);

		ret = nand_read_data_op(chip, p, eccsize, false, false);
		if (ret)
			return ret;

		stat = chip->ecc.correct(chip, p, &ecc_code[i], NULL);
		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, eccsize,
							   &ecc_code[i],
							   eccbytes, NULL, 0,
							   chip->ecc.strength);
		}

		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
	}
	return max_bitflips;
}
EXPORT_SYMBOL_GPL(nand_read_page_hwecc_oob_first);

/**
 * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
 * @chip: nand chip info structure
 * @buf: buffer to store read data
 * @oob_required: caller requires OOB data read to chip->oob_poi
 * @page: page number to read
 *
 * The hw generator calculates the error syndrome automatically. Therefore we
 * need a special oob layout and handling.
 */
static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
				   int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret, i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
	uint8_t *p = buf;
	uint8_t *oob = chip->oob_poi;
	unsigned int max_bitflips = 0;

	ret = nand_read_page_op(chip, page, 0, NULL, 0);
	if (ret)
		return ret;

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		int stat;

		chip->ecc.hwctl(chip, NAND_ECC_READ);

		ret = nand_read_data_op(chip, p, eccsize, false, false);
		if (ret)
			return ret;

		if (chip->ecc.prepad) {
			ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
						false, false);
			if (ret)
				return ret;

			oob += chip->ecc.prepad;
		}

		chip->ecc.hwctl(chip, NAND_ECC_READSYN);

		ret = nand_read_data_op(chip, oob, eccbytes, false, false);
		if (ret)
			return ret;

		stat = chip->ecc.correct(chip, p, oob, NULL);

		oob += eccbytes;

		if (chip->ecc.postpad) {
			ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
						false, false);
			if (ret)
				return ret;

			oob += chip->ecc.postpad;
		}

		if (stat == -EBADMSG &&
		    (chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
			/* check for empty pages with bitflips */
			stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
							   oob - eccpadbytes,
							   eccpadbytes,
							   NULL, 0,
							   chip->ecc.strength);
		}

		if (stat < 0) {
			mtd->ecc_stats.failed++;
		} else {
			mtd->ecc_stats.corrected += stat;
			max_bitflips = max_t(unsigned int, max_bitflips, stat);
		}
	}

	/* Calculate remaining oob bytes */
	i = mtd->oobsize - (oob - chip->oob_poi);
	if (i) {
		ret = nand_read_data_op(chip, oob, i, false, false);
		if (ret)
			return ret;
	}

	return max_bitflips;
}

/**
 * nand_transfer_oob - [INTERN] Transfer oob to client buffer
 * @chip: NAND chip object
 * @oob: oob destination address
 * @ops: oob ops structure
 * @len: size of oob to transfer
 */
static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
				  struct mtd_oob_ops *ops, size_t len)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret;

	switch (ops->mode) {

	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_RAW:
		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
		return oob + len;

	case MTD_OPS_AUTO_OOB:
		ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
						  ops->ooboffs, len);
		BUG_ON(ret);
		return oob + len;

	default:
		BUG();
	}
	return NULL;
}

static void rawnand_enable_cont_reads(struct nand_chip *chip, unsigned int page,
				      u32 readlen, int col)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	unsigned int first_page, last_page;

	chip->cont_read.ongoing = false;

	if (!chip->controller->supported_op.cont_read)
		return;

	/*
	 * Don't bother making any calculations if the length is too small.
	 * Side effect: avoids possible integer underflows below.
	 */
	if (readlen < (2 * mtd->writesize))
		return;

	/* Derive the page where continuous read should start (the first full page read) */
	first_page = page;
	if (col)
		first_page++;

	/* Derive the page where continuous read should stop (the last full page read) */
	last_page = page + ((col + readlen) / mtd->writesize) - 1;

	/* Configure and enable continuous read when suitable */
	if (first_page < last_page) {
		chip->cont_read.first_page = first_page;
		chip->cont_read.last_page = last_page;
		chip->cont_read.ongoing = true;
		/* May reset the ongoing flag */
		rawnand_cap_cont_reads(chip);
	}
}

static void rawnand_cont_read_skip_first_page(struct nand_chip *chip, unsigned int page)
{
	if (!chip->cont_read.ongoing || page != chip->cont_read.first_page)
		return;

	chip->cont_read.first_page++;
	rawnand_cap_cont_reads(chip);
}

/**
 * nand_setup_read_retry - [INTERN] Set the READ RETRY mode
 * @chip: NAND chip object
 * @retry_mode: the retry mode to use
 *
 * Some vendors supply a special command to shift the Vt threshold, to be used
 * when there are too many bitflips in a page (i.e., ECC error). After setting
 * a new threshold, the host should retry reading the page.
 */
static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
{
	pr_debug("setting READ RETRY mode %d\n", retry_mode);

	if (retry_mode >= chip->read_retries)
		return -EINVAL;

	if (!chip->ops.setup_read_retry)
		return -EOPNOTSUPP;

	return chip->ops.setup_read_retry(chip, retry_mode);
}

static void nand_wait_readrdy(struct nand_chip *chip)
{
	const struct nand_interface_config *conf;

	if (!(chip->options & NAND_NEED_READRDY))
		return;

	conf = nand_get_interface_config(chip);
	WARN_ON(nand_wait_rdy_op(chip, NAND_COMMON_TIMING_MS(conf, tR_max), 0));
}

/**
 * nand_do_read_ops - [INTERN] Read data with ECC
 * @chip: NAND chip object
 * @from: offset to read from
 * @ops: oob ops structure
 *
 * Internal function. Called with chip held.
 */
static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
			    struct mtd_oob_ops *ops)
{
	int chipnr, page, realpage, col, bytes, aligned, oob_required;
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret = 0;
	uint32_t readlen = ops->len;
	uint32_t oobreadlen = ops->ooblen;
	uint32_t max_oobsize = mtd_oobavail(mtd, ops);

	uint8_t *bufpoi, *oob, *buf;
	int use_bounce_buf;
	unsigned int max_bitflips = 0;
	int retry_mode = 0;
	bool ecc_fail = false;

	/* Check if the region is secured */
	if (nand_region_is_secured(chip, from, readlen))
		return -EIO;

	chipnr = (int)(from >> chip->chip_shift);
	nand_select_target(chip, chipnr);

	realpage = (int)(from >> chip->page_shift);
	page = realpage & chip->pagemask;

	col = (int)(from & (mtd->writesize - 1));

	buf = ops->datbuf;
	oob = ops->oobbuf;
	oob_required = oob ? 1 : 0;

	if (likely(ops->mode != MTD_OPS_RAW))
		rawnand_enable_cont_reads(chip, page, readlen, col);

	while (1) {
		struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;

		bytes = min(mtd->writesize - col, readlen);
		aligned = (bytes == mtd->writesize);

		if (!aligned)
			use_bounce_buf = 1;
		else if (chip->options & NAND_USES_DMA)
			use_bounce_buf = !virt_addr_valid(buf) ||
					 !IS_ALIGNED((unsigned long)buf,
						     chip->buf_align);
		else
			use_bounce_buf = 0;

		/* Is the current page in the buffer? */
		if (realpage != chip->pagecache.page || oob) {
			bufpoi = use_bounce_buf ? chip->data_buf : buf;

			if (use_bounce_buf && aligned)
				pr_debug("%s: using read bounce buffer for buf@%p\n",
						 __func__, buf);

read_retry:
			/*
			 * Now read the page into the buffer.  Absent an error,
			 * the read methods return max bitflips per ecc step.
			 */
			if (unlikely(ops->mode == MTD_OPS_RAW))
				ret = chip->ecc.read_page_raw(chip, bufpoi,
							      oob_required,
							      page);
			else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
				 !oob)
				ret = chip->ecc.read_subpage(chip, col, bytes,
							     bufpoi, page);
			else
				ret = chip->ecc.read_page(chip, bufpoi,
							  oob_required, page);
			if (ret < 0) {
				if (use_bounce_buf)
					/* Invalidate page cache */
					chip->pagecache.page = -1;
				break;
			}

			/*
			 * Copy back the data in the initial buffer when reading
			 * partial pages or when a bounce buffer is required.
			 */
			if (use_bounce_buf) {
				if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
				    !(mtd->ecc_stats.failed - ecc_stats.failed) &&
				    (ops->mode != MTD_OPS_RAW)) {
					chip->pagecache.page = realpage;
					chip->pagecache.bitflips = ret;
				} else {
					/* Invalidate page cache */
					chip->pagecache.page = -1;
				}
				memcpy(buf, bufpoi + col, bytes);
			}

			if (unlikely(oob)) {
				int toread = min(oobreadlen, max_oobsize);

				if (toread) {
					oob = nand_transfer_oob(chip, oob, ops,
								toread);
					oobreadlen -= toread;
				}
			}

			nand_wait_readrdy(chip);

			if (mtd->ecc_stats.failed - ecc_stats.failed) {
				if (retry_mode + 1 < chip->read_retries) {
					retry_mode++;
					ret = nand_setup_read_retry(chip,
							retry_mode);
					if (ret < 0)
						break;

					/* Reset ecc_stats; retry */
					mtd->ecc_stats = ecc_stats;
					goto read_retry;
				} else {
					/* No more retry modes; real failure */
					ecc_fail = true;
				}
			}

			buf += bytes;
			max_bitflips = max_t(unsigned int, max_bitflips, ret);
		} else {
			memcpy(buf, chip->data_buf + col, bytes);
			buf += bytes;
			max_bitflips = max_t(unsigned int, max_bitflips,
					     chip->pagecache.bitflips);

			rawnand_cont_read_skip_first_page(chip, page);
		}

		readlen -= bytes;

		/* Reset to retry mode 0 */
		if (retry_mode) {
			ret = nand_setup_read_retry(chip, 0);
			if (ret < 0)
				break;
			retry_mode = 0;
		}

		if (!readlen)
			break;

		/* For subsequent reads align to page boundary */
		col = 0;
		/* Increment page address */
		realpage++;

		page = realpage & chip->pagemask;
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
			nand_deselect_target(chip);
			nand_select_target(chip, chipnr);
		}
	}
	nand_deselect_target(chip);

	if (WARN_ON_ONCE(chip->cont_read.ongoing))
		chip->cont_read.ongoing = false;

	ops->retlen = ops->len - (size_t) readlen;
	if (oob)
		ops->oobretlen = ops->ooblen - oobreadlen;

	if (ret < 0)
		return ret;

	if (ecc_fail)
		return -EBADMSG;

	return max_bitflips;
}

/**
 * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
 * @chip: nand chip info structure
 * @page: page number to read
 */
int nand_read_oob_std(struct nand_chip *chip, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);

	return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
}
EXPORT_SYMBOL(nand_read_oob_std);

/**
 * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
 *			    with syndromes
 * @chip: nand chip info structure
 * @page: page number to read
 */
static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int length = mtd->oobsize;
	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
	int eccsize = chip->ecc.size;
	uint8_t *bufpoi = chip->oob_poi;
	int i, toread, sndrnd = 0, pos, ret;

	ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
	if (ret)
		return ret;

	for (i = 0; i < chip->ecc.steps; i++) {
		if (sndrnd) {
			int ret;

			pos = eccsize + i * (eccsize + chunk);
			if (mtd->writesize > 512)
				ret = nand_change_read_column_op(chip, pos,
								 NULL, 0,
								 false);
			else
				ret = nand_read_page_op(chip, page, pos, NULL,
							0);

			if (ret)
				return ret;
		} else
			sndrnd = 1;
		toread = min_t(int, length, chunk);

		ret = nand_read_data_op(chip, bufpoi, toread, false, false);
		if (ret)
			return ret;

		bufpoi += toread;
		length -= toread;
	}
	if (length > 0) {
		ret = nand_read_data_op(chip, bufpoi, length, false, false);
		if (ret)
			return ret;
	}

	return 0;
}

/**
 * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
 * @chip: nand chip info structure
 * @page: page number to write
 */
int nand_write_oob_std(struct nand_chip *chip, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);

	return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
				 mtd->oobsize);
}
EXPORT_SYMBOL(nand_write_oob_std);

/**
 * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
 *			     with syndrome - only for large page flash
 * @chip: nand chip info structure
 * @page: page number to write
 */
static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
	int eccsize = chip->ecc.size, length = mtd->oobsize;
	int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
	const uint8_t *bufpoi = chip->oob_poi;

	/*
	 * data-ecc-data-ecc ... ecc-oob
	 * or
	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
	 */
	if (!chip->ecc.prepad && !chip->ecc.postpad) {
		pos = steps * (eccsize + chunk);
		steps = 0;
	} else
		pos = eccsize;

	ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
	if (ret)
		return ret;

	for (i = 0; i < steps; i++) {
		if (sndcmd) {
			if (mtd->writesize <= 512) {
				uint32_t fill = 0xFFFFFFFF;

				len = eccsize;
				while (len > 0) {
					int num = min_t(int, len, 4);

					ret = nand_write_data_op(chip, &fill,
								 num, false);
					if (ret)
						return ret;

					len -= num;
				}
			} else {
				pos = eccsize + i * (eccsize + chunk);
				ret = nand_change_write_column_op(chip, pos,
								  NULL, 0,
								  false);
				if (ret)
					return ret;
			}
		} else
			sndcmd = 1;
		len = min_t(int, length, chunk);

		ret = nand_write_data_op(chip, bufpoi, len, false);
		if (ret)
			return ret;

		bufpoi += len;
		length -= len;
	}
	if (length > 0) {
		ret = nand_write_data_op(chip, bufpoi, length, false);
		if (ret)
			return ret;
	}

	return nand_prog_page_end_op(chip);
}

/**
 * nand_do_read_oob - [INTERN] NAND read out-of-band
 * @chip: NAND chip object
 * @from: offset to read from
 * @ops: oob operations description structure
 *
 * NAND read out-of-band data from the spare area.
 */
static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
			    struct mtd_oob_ops *ops)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	unsigned int max_bitflips = 0;
	int page, realpage, chipnr;
	struct mtd_ecc_stats stats;
	int readlen = ops->ooblen;
	int len;
	uint8_t *buf = ops->oobbuf;
	int ret = 0;

	pr_debug("%s: from = 0x%08Lx, len = %i\n",
			__func__, (unsigned long long)from, readlen);

	/* Check if the region is secured */
	if (nand_region_is_secured(chip, from, readlen))
		return -EIO;

	stats = mtd->ecc_stats;

	len = mtd_oobavail(mtd, ops);

	chipnr = (int)(from >> chip->chip_shift);
	nand_select_target(chip, chipnr);

	/* Shift to get page */
	realpage = (int)(from >> chip->page_shift);
	page = realpage & chip->pagemask;

	while (1) {
		if (ops->mode == MTD_OPS_RAW)
			ret = chip->ecc.read_oob_raw(chip, page);
		else
			ret = chip->ecc.read_oob(chip, page);

		if (ret < 0)
			break;

		len = min(len, readlen);
		buf = nand_transfer_oob(chip, buf, ops, len);

		nand_wait_readrdy(chip);

		max_bitflips = max_t(unsigned int, max_bitflips, ret);

		readlen -= len;
		if (!readlen)
			break;

		/* Increment page address */
		realpage++;

		page = realpage & chip->pagemask;
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
			nand_deselect_target(chip);
			nand_select_target(chip, chipnr);
		}
	}
	nand_deselect_target(chip);

	ops->oobretlen = ops->ooblen - readlen;

	if (ret < 0)
		return ret;

	if (mtd->ecc_stats.failed - stats.failed)
		return -EBADMSG;

	return max_bitflips;
}

/**
 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
 * @mtd: MTD device structure
 * @from: offset to read from
 * @ops: oob operation description structure
 *
 * NAND read data and/or out-of-band data.
 */
static int nand_read_oob(struct mtd_info *mtd, loff_t from,
			 struct mtd_oob_ops *ops)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	struct mtd_ecc_stats old_stats;
	int ret;

	ops->retlen = 0;

	if (ops->mode != MTD_OPS_PLACE_OOB &&
	    ops->mode != MTD_OPS_AUTO_OOB &&
	    ops->mode != MTD_OPS_RAW)
		return -ENOTSUPP;

	nand_get_device(chip);

	old_stats = mtd->ecc_stats;

	if (!ops->datbuf)
		ret = nand_do_read_oob(chip, from, ops);
	else
		ret = nand_do_read_ops(chip, from, ops);

	if (ops->stats) {
		ops->stats->uncorrectable_errors +=
			mtd->ecc_stats.failed - old_stats.failed;
		ops->stats->corrected_bitflips +=
			mtd->ecc_stats.corrected - old_stats.corrected;
	}

	nand_release_device(chip);
	return ret;
}

/**
 * nand_write_page_raw_notsupp - dummy raw page write function
 * @chip: nand chip info structure
 * @buf: data buffer
 * @oob_required: must write chip->oob_poi to OOB
 * @page: page number to write
 *
 * Returns -ENOTSUPP unconditionally.
 */
int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
				int oob_required, int page)
{
	return -ENOTSUPP;
}

/**
 * nand_write_page_raw - [INTERN] raw page write function
 * @chip: nand chip info structure
 * @buf: data buffer
 * @oob_required: must write chip->oob_poi to OOB
 * @page: page number to write
 *
 * Not for syndrome calculating ECC controllers, which use a special oob layout.
 */
int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
			int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret;

	ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
	if (ret)
		return ret;

	if (oob_required) {
		ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
					 false);
		if (ret)
			return ret;
	}

	return nand_prog_page_end_op(chip);
}
EXPORT_SYMBOL(nand_write_page_raw);

/**
 * nand_monolithic_write_page_raw - Monolithic page write in raw mode
 * @chip: NAND chip info structure
 * @buf: data buffer to write
 * @oob_required: must write chip->oob_poi to OOB
 * @page: page number to write
 *
 * This is a raw page write, ie. without any error detection/correction.
 * Monolithic means we are requesting all the relevant data (main plus
 * eventually OOB) to be sent over the bus and effectively programmed
 * into the NAND chip arrays in a single operation. This is an
 * alternative to nand_write_page_raw(), which first sends the main
 * data, then eventually send the OOB data by latching more data
 * cycles on the NAND bus, and finally sends the program command to
 * synchronyze the NAND chip cache.
 */
int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
				   int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	unsigned int size = mtd->writesize;
	u8 *write_buf = (u8 *)buf;

	if (oob_required) {
		size += mtd->oobsize;

		if (buf != chip->data_buf) {
			write_buf = nand_get_data_buf(chip);
			memcpy(write_buf, buf, mtd->writesize);
		}
	}

	return nand_prog_page_op(chip, page, 0, write_buf, size);
}
EXPORT_SYMBOL(nand_monolithic_write_page_raw);

/**
 * nand_write_page_raw_syndrome - [INTERN] raw page write function
 * @chip: nand chip info structure
 * @buf: data buffer
 * @oob_required: must write chip->oob_poi to OOB
 * @page: page number to write
 *
 * We need a special oob layout and handling even when ECC isn't checked.
 */
static int nand_write_page_raw_syndrome(struct nand_chip *chip,
					const uint8_t *buf, int oob_required,
					int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	uint8_t *oob = chip->oob_poi;
	int steps, size, ret;

	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
	if (ret)
		return ret;

	for (steps = chip->ecc.steps; steps > 0; steps--) {
		ret = nand_write_data_op(chip, buf, eccsize, false);
		if (ret)
			return ret;

		buf += eccsize;

		if (chip->ecc.prepad) {
			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
						 false);
			if (ret)
				return ret;

			oob += chip->ecc.prepad;
		}

		ret = nand_write_data_op(chip, oob, eccbytes, false);
		if (ret)
			return ret;

		oob += eccbytes;

		if (chip->ecc.postpad) {
			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
						 false);
			if (ret)
				return ret;

			oob += chip->ecc.postpad;
		}
	}

	size = mtd->oobsize - (oob - chip->oob_poi);
	if (size) {
		ret = nand_write_data_op(chip, oob, size, false);
		if (ret)
			return ret;
	}

	return nand_prog_page_end_op(chip);
}
/**
 * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
 * @chip: nand chip info structure
 * @buf: data buffer
 * @oob_required: must write chip->oob_poi to OOB
 * @page: page number to write
 */
static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
				 int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int i, eccsize = chip->ecc.size, ret;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *ecc_calc = chip->ecc.calc_buf;
	const uint8_t *p = buf;

	/* Software ECC calculation */
	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
		chip->ecc.calculate(chip, p, &ecc_calc[i]);

	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;

	return chip->ecc.write_page_raw(chip, buf, 1, page);
}

/**
 * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
 * @chip: nand chip info structure
 * @buf: data buffer
 * @oob_required: must write chip->oob_poi to OOB
 * @page: page number to write
 */
static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
				 int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int i, eccsize = chip->ecc.size, ret;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	uint8_t *ecc_calc = chip->ecc.calc_buf;
	const uint8_t *p = buf;

	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
	if (ret)
		return ret;

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		chip->ecc.hwctl(chip, NAND_ECC_WRITE);

		ret = nand_write_data_op(chip, p, eccsize, false);
		if (ret)
			return ret;

		chip->ecc.calculate(chip, p, &ecc_calc[i]);
	}

	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;

	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
	if (ret)
		return ret;

	return nand_prog_page_end_op(chip);
}


/**
 * nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
 * @chip:	nand chip info structure
 * @offset:	column address of subpage within the page
 * @data_len:	data length
 * @buf:	data buffer
 * @oob_required: must write chip->oob_poi to OOB
 * @page: page number to write
 */
static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
				    uint32_t data_len, const uint8_t *buf,
				    int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	uint8_t *oob_buf  = chip->oob_poi;
	uint8_t *ecc_calc = chip->ecc.calc_buf;
	int ecc_size      = chip->ecc.size;
	int ecc_bytes     = chip->ecc.bytes;
	int ecc_steps     = chip->ecc.steps;
	uint32_t start_step = offset / ecc_size;
	uint32_t end_step   = (offset + data_len - 1) / ecc_size;
	int oob_bytes       = mtd->oobsize / ecc_steps;
	int step, ret;

	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
	if (ret)
		return ret;

	for (step = 0; step < ecc_steps; step++) {
		/* configure controller for WRITE access */
		chip->ecc.hwctl(chip, NAND_ECC_WRITE);

		/* write data (untouched subpages already masked by 0xFF) */
		ret = nand_write_data_op(chip, buf, ecc_size, false);
		if (ret)
			return ret;

		/* mask ECC of un-touched subpages by padding 0xFF */
		if ((step < start_step) || (step > end_step))
			memset(ecc_calc, 0xff, ecc_bytes);
		else
			chip->ecc.calculate(chip, buf, ecc_calc);

		/* mask OOB of un-touched subpages by padding 0xFF */
		/* if oob_required, preserve OOB metadata of written subpage */
		if (!oob_required || (step < start_step) || (step > end_step))
			memset(oob_buf, 0xff, oob_bytes);

		buf += ecc_size;
		ecc_calc += ecc_bytes;
		oob_buf  += oob_bytes;
	}

	/* copy calculated ECC for whole page to chip->buffer->oob */
	/* this include masked-value(0xFF) for unwritten subpages */
	ecc_calc = chip->ecc.calc_buf;
	ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
					 chip->ecc.total);
	if (ret)
		return ret;

	/* write OOB buffer to NAND device */
	ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
	if (ret)
		return ret;

	return nand_prog_page_end_op(chip);
}


/**
 * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
 * @chip: nand chip info structure
 * @buf: data buffer
 * @oob_required: must write chip->oob_poi to OOB
 * @page: page number to write
 *
 * The hw generator calculates the error syndrome automatically. Therefore we
 * need a special oob layout and handling.
 */
static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
				    int oob_required, int page)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int i, eccsize = chip->ecc.size;
	int eccbytes = chip->ecc.bytes;
	int eccsteps = chip->ecc.steps;
	const uint8_t *p = buf;
	uint8_t *oob = chip->oob_poi;
	int ret;

	ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
	if (ret)
		return ret;

	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
		chip->ecc.hwctl(chip, NAND_ECC_WRITE);

		ret = nand_write_data_op(chip, p, eccsize, false);
		if (ret)
			return ret;

		if (chip->ecc.prepad) {
			ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
						 false);
			if (ret)
				return ret;

			oob += chip->ecc.prepad;
		}

		chip->ecc.calculate(chip, p, oob);

		ret = nand_write_data_op(chip, oob, eccbytes, false);
		if (ret)
			return ret;

		oob += eccbytes;

		if (chip->ecc.postpad) {
			ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
						 false);
			if (ret)
				return ret;

			oob += chip->ecc.postpad;
		}
	}

	/* Calculate remaining oob bytes */
	i = mtd->oobsize - (oob - chip->oob_poi);
	if (i) {
		ret = nand_write_data_op(chip, oob, i, false);
		if (ret)
			return ret;
	}

	return nand_prog_page_end_op(chip);
}

/**
 * nand_write_page - write one page
 * @chip: NAND chip descriptor
 * @offset: address offset within the page
 * @data_len: length of actual data to be written
 * @buf: the data to write
 * @oob_required: must write chip->oob_poi to OOB
 * @page: page number to write
 * @raw: use _raw version of write_page
 */
static int nand_write_page(struct nand_chip *chip, uint32_t offset,
			   int data_len, const uint8_t *buf, int oob_required,
			   int page, int raw)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int status, subpage;

	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
		chip->ecc.write_subpage)
		subpage = offset || (data_len < mtd->writesize);
	else
		subpage = 0;

	if (unlikely(raw))
		status = chip->ecc.write_page_raw(chip, buf, oob_required,
						  page);
	else if (subpage)
		status = chip->ecc.write_subpage(chip, offset, data_len, buf,
						 oob_required, page);
	else
		status = chip->ecc.write_page(chip, buf, oob_required, page);

	if (status < 0)
		return status;

	return 0;
}

#define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)

/**
 * nand_do_write_ops - [INTERN] NAND write with ECC
 * @chip: NAND chip object
 * @to: offset to write to
 * @ops: oob operations description structure
 *
 * NAND write with ECC.
 */
static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
			     struct mtd_oob_ops *ops)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int chipnr, realpage, page, column;
	uint32_t writelen = ops->len;

	uint32_t oobwritelen = ops->ooblen;
	uint32_t oobmaxlen = mtd_oobavail(mtd, ops);

	uint8_t *oob = ops->oobbuf;
	uint8_t *buf = ops->datbuf;
	int ret;
	int oob_required = oob ? 1 : 0;

	ops->retlen = 0;
	if (!writelen)
		return 0;

	/* Reject writes, which are not page aligned */
	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
		pr_notice("%s: attempt to write non page aligned data\n",
			   __func__);
		return -EINVAL;
	}

	/* Check if the region is secured */
	if (nand_region_is_secured(chip, to, writelen))
		return -EIO;

	column = to & (mtd->writesize - 1);

	chipnr = (int)(to >> chip->chip_shift);
	nand_select_target(chip, chipnr);

	/* Check, if it is write protected */
	if (nand_check_wp(chip)) {
		ret = -EIO;
		goto err_out;
	}

	realpage = (int)(to >> chip->page_shift);
	page = realpage & chip->pagemask;

	/* Invalidate the page cache, when we write to the cached page */
	if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
	    ((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
		chip->pagecache.page = -1;

	/* Don't allow multipage oob writes with offset */
	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
		ret = -EINVAL;
		goto err_out;
	}

	while (1) {
		int bytes = mtd->writesize;
		uint8_t *wbuf = buf;
		int use_bounce_buf;
		int part_pagewr = (column || writelen < mtd->writesize);

		if (part_pagewr)
			use_bounce_buf = 1;
		else if (chip->options & NAND_USES_DMA)
			use_bounce_buf = !virt_addr_valid(buf) ||
					 !IS_ALIGNED((unsigned long)buf,
						     chip->buf_align);
		else
			use_bounce_buf = 0;

		/*
		 * Copy the data from the initial buffer when doing partial page
		 * writes or when a bounce buffer is required.
		 */
		if (use_bounce_buf) {
			pr_debug("%s: using write bounce buffer for buf@%p\n",
					 __func__, buf);
			if (part_pagewr)
				bytes = min_t(int, bytes - column, writelen);
			wbuf = nand_get_data_buf(chip);
			memset(wbuf, 0xff, mtd->writesize);
			memcpy(&wbuf[column], buf, bytes);
		}

		if (unlikely(oob)) {
			size_t len = min(oobwritelen, oobmaxlen);
			oob = nand_fill_oob(chip, oob, len, ops);
			oobwritelen -= len;
		} else {
			/* We still need to erase leftover OOB data */
			memset(chip->oob_poi, 0xff, mtd->oobsize);
		}

		ret = nand_write_page(chip, column, bytes, wbuf,
				      oob_required, page,
				      (ops->mode == MTD_OPS_RAW));
		if (ret)
			break;

		writelen -= bytes;
		if (!writelen)
			break;

		column = 0;
		buf += bytes;
		realpage++;

		page = realpage & chip->pagemask;
		/* Check, if we cross a chip boundary */
		if (!page) {
			chipnr++;
			nand_deselect_target(chip);
			nand_select_target(chip, chipnr);
		}
	}

	ops->retlen = ops->len - writelen;
	if (unlikely(oob))
		ops->oobretlen = ops->ooblen;

err_out:
	nand_deselect_target(chip);
	return ret;
}

/**
 * panic_nand_write - [MTD Interface] NAND write with ECC
 * @mtd: MTD device structure
 * @to: offset to write to
 * @len: number of bytes to write
 * @retlen: pointer to variable to store the number of written bytes
 * @buf: the data to write
 *
 * NAND write with ECC. Used when performing writes in interrupt context, this
 * may for example be called by mtdoops when writing an oops while in panic.
 */
static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
			    size_t *retlen, const uint8_t *buf)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	int chipnr = (int)(to >> chip->chip_shift);
	struct mtd_oob_ops ops;
	int ret;

	nand_select_target(chip, chipnr);

	/* Wait for the device to get ready */
	panic_nand_wait(chip, 400);

	memset(&ops, 0, sizeof(ops));
	ops.len = len;
	ops.datbuf = (uint8_t *)buf;
	ops.mode = MTD_OPS_PLACE_OOB;

	ret = nand_do_write_ops(chip, to, &ops);

	*retlen = ops.retlen;
	return ret;
}

/**
 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
 * @mtd: MTD device structure
 * @to: offset to write to
 * @ops: oob operation description structure
 */
static int nand_write_oob(struct mtd_info *mtd, loff_t to,
			  struct mtd_oob_ops *ops)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	int ret = 0;

	ops->retlen = 0;

	nand_get_device(chip);

	switch (ops->mode) {
	case MTD_OPS_PLACE_OOB:
	case MTD_OPS_AUTO_OOB:
	case MTD_OPS_RAW:
		break;

	default:
		goto out;
	}

	if (!ops->datbuf)
		ret = nand_do_write_oob(chip, to, ops);
	else
		ret = nand_do_write_ops(chip, to, ops);

out:
	nand_release_device(chip);
	return ret;
}

/**
 * nand_erase - [MTD Interface] erase block(s)
 * @mtd: MTD device structure
 * @instr: erase instruction
 *
 * Erase one ore more blocks.
 */
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
{
	return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
}

/**
 * nand_erase_nand - [INTERN] erase block(s)
 * @chip: NAND chip object
 * @instr: erase instruction
 * @allowbbt: allow erasing the bbt area
 *
 * Erase one ore more blocks.
 */
int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
		    int allowbbt)
{
	int page, pages_per_block, ret, chipnr;
	loff_t len;

	pr_debug("%s: start = 0x%012llx, len = %llu\n",
			__func__, (unsigned long long)instr->addr,
			(unsigned long long)instr->len);

	if (check_offs_len(chip, instr->addr, instr->len))
		return -EINVAL;

	/* Check if the region is secured */
	if (nand_region_is_secured(chip, instr->addr, instr->len))
		return -EIO;

	/* Grab the lock and see if the device is available */
	nand_get_device(chip);

	/* Shift to get first page */
	page = (int)(instr->addr >> chip->page_shift);
	chipnr = (int)(instr->addr >> chip->chip_shift);

	/* Calculate pages in each block */
	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);

	/* Select the NAND device */
	nand_select_target(chip, chipnr);

	/* Check, if it is write protected */
	if (nand_check_wp(chip)) {
		pr_debug("%s: device is write protected!\n",
				__func__);
		ret = -EIO;
		goto erase_exit;
	}

	/* Loop through the pages */
	len = instr->len;

	while (len) {
		loff_t ofs = (loff_t)page << chip->page_shift;

		/* Check if we have a bad block, we do not erase bad blocks! */
		if (nand_block_checkbad(chip, ((loff_t) page) <<
					chip->page_shift, allowbbt)) {
			pr_warn("%s: attempt to erase a bad block at 0x%08llx\n",
				    __func__, (unsigned long long)ofs);
			ret = -EIO;
			goto erase_exit;
		}

		/*
		 * Invalidate the page cache, if we erase the block which
		 * contains the current cached page.
		 */
		if (page <= chip->pagecache.page && chip->pagecache.page <
		    (page + pages_per_block))
			chip->pagecache.page = -1;

		ret = nand_erase_op(chip, (page & chip->pagemask) >>
				    (chip->phys_erase_shift - chip->page_shift));
		if (ret) {
			pr_debug("%s: failed erase, page 0x%08x\n",
					__func__, page);
			instr->fail_addr = ofs;
			goto erase_exit;
		}

		/* Increment page address and decrement length */
		len -= (1ULL << chip->phys_erase_shift);
		page += pages_per_block;

		/* Check, if we cross a chip boundary */
		if (len && !(page & chip->pagemask)) {
			chipnr++;
			nand_deselect_target(chip);
			nand_select_target(chip, chipnr);
		}
	}

	ret = 0;
erase_exit:

	/* Deselect and wake up anyone waiting on the device */
	nand_deselect_target(chip);
	nand_release_device(chip);

	/* Return more or less happy */
	return ret;
}

/**
 * nand_sync - [MTD Interface] sync
 * @mtd: MTD device structure
 *
 * Sync is actually a wait for chip ready function.
 */
static void nand_sync(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	pr_debug("%s: called\n", __func__);

	/* Grab the lock and see if the device is available */
	nand_get_device(chip);
	/* Release it and go back */
	nand_release_device(chip);
}

/**
 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
 * @mtd: MTD device structure
 * @offs: offset relative to mtd start
 */
static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	int chipnr = (int)(offs >> chip->chip_shift);
	int ret;

	/* Select the NAND device */
	nand_get_device(chip);

	nand_select_target(chip, chipnr);

	ret = nand_block_checkbad(chip, offs, 0);

	nand_deselect_target(chip);
	nand_release_device(chip);

	return ret;
}

/**
 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
 * @mtd: MTD device structure
 * @ofs: offset relative to mtd start
 */
static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
{
	int ret;

	ret = nand_block_isbad(mtd, ofs);
	if (ret) {
		/* If it was bad already, return success and do nothing */
		if (ret > 0)
			return 0;
		return ret;
	}

	return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
}

/**
 * nand_suspend - [MTD Interface] Suspend the NAND flash
 * @mtd: MTD device structure
 *
 * Returns 0 for success or negative error code otherwise.
 */
static int nand_suspend(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd_to_nand(mtd);
	int ret = 0;

	mutex_lock(&chip->lock);
	if (chip->ops.suspend)
		ret = chip->ops.suspend(chip);
	if (!ret)
		chip->suspended = 1;
	mutex_unlock(&chip->lock);

	return ret;
}

/**
 * nand_resume - [MTD Interface] Resume the NAND flash
 * @mtd: MTD device structure
 */
static void nand_resume(struct mtd_info *mtd)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	mutex_lock(&chip->lock);
	if (chip->suspended) {
		if (chip->ops.resume)
			chip->ops.resume(chip);
		chip->suspended = 0;
	} else {
		pr_err("%s called for a chip which is not in suspended state\n",
			__func__);
	}
	mutex_unlock(&chip->lock);

	wake_up_all(&chip->resume_wq);
}

/**
 * nand_shutdown - [MTD Interface] Finish the current NAND operation and
 *                 prevent further operations
 * @mtd: MTD device structure
 */
static void nand_shutdown(struct mtd_info *mtd)
{
	nand_suspend(mtd);
}

/**
 * nand_lock - [MTD Interface] Lock the NAND flash
 * @mtd: MTD device structure
 * @ofs: offset byte address
 * @len: number of bytes to lock (must be a multiple of block/page size)
 */
static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (!chip->ops.lock_area)
		return -ENOTSUPP;

	return chip->ops.lock_area(chip, ofs, len);
}

/**
 * nand_unlock - [MTD Interface] Unlock the NAND flash
 * @mtd: MTD device structure
 * @ofs: offset byte address
 * @len: number of bytes to unlock (must be a multiple of block/page size)
 */
static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
{
	struct nand_chip *chip = mtd_to_nand(mtd);

	if (!chip->ops.unlock_area)
		return -ENOTSUPP;

	return chip->ops.unlock_area(chip, ofs, len);
}

/* Set default functions */
static void nand_set_defaults(struct nand_chip *chip)
{
	/* If no controller is provided, use the dummy, legacy one. */
	if (!chip->controller) {
		chip->controller = &chip->legacy.dummy_controller;
		nand_controller_init(chip->controller);
	}

	nand_legacy_set_defaults(chip);

	if (!chip->buf_align)
		chip->buf_align = 1;
}

/* Sanitize ONFI strings so we can safely print them */
void sanitize_string(uint8_t *s, size_t len)
{
	ssize_t i;

	/* Null terminate */
	s[len - 1] = 0;

	/* Remove non printable chars */
	for (i = 0; i < len - 1; i++) {
		if (s[i] < ' ' || s[i] > 127)
			s[i] = '?';
	}

	/* Remove trailing spaces */
	strim(s);
}

/*
 * nand_id_has_period - Check if an ID string has a given wraparound period
 * @id_data: the ID string
 * @arrlen: the length of the @id_data array
 * @period: the period of repitition
 *
 * Check if an ID string is repeated within a given sequence of bytes at
 * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
 * period of 3). This is a helper function for nand_id_len(). Returns non-zero
 * if the repetition has a period of @period; otherwise, returns zero.
 */
static int nand_id_has_period(u8 *id_data, int arrlen, int period)
{
	int i, j;
	for (i = 0; i < period; i++)
		for (j = i + period; j < arrlen; j += period)
			if (id_data[i] != id_data[j])
				return 0;
	return 1;
}

/*
 * nand_id_len - Get the length of an ID string returned by CMD_READID
 * @id_data: the ID string
 * @arrlen: the length of the @id_data array

 * Returns the length of the ID string, according to known wraparound/trailing
 * zero patterns. If no pattern exists, returns the length of the array.
 */
static int nand_id_len(u8 *id_data, int arrlen)
{
	int last_nonzero, period;

	/* Find last non-zero byte */
	for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
		if (id_data[last_nonzero])
			break;

	/* All zeros */
	if (last_nonzero < 0)
		return 0;

	/* Calculate wraparound period */
	for (period = 1; period < arrlen; period++)
		if (nand_id_has_period(id_data, arrlen, period))
			break;

	/* There's a repeated pattern */
	if (period < arrlen)
		return period;

	/* There are trailing zeros */
	if (last_nonzero < arrlen - 1)
		return last_nonzero + 1;

	/* No pattern detected */
	return arrlen;
}

/* Extract the bits of per cell from the 3rd byte of the extended ID */
static int nand_get_bits_per_cell(u8 cellinfo)
{
	int bits;

	bits = cellinfo & NAND_CI_CELLTYPE_MSK;
	bits >>= NAND_CI_CELLTYPE_SHIFT;
	return bits + 1;
}

/*
 * Many new NAND share similar device ID codes, which represent the size of the
 * chip. The rest of the parameters must be decoded according to generic or
 * manufacturer-specific "extended ID" decoding patterns.
 */
void nand_decode_ext_id(struct nand_chip *chip)
{
	struct nand_memory_organization *memorg;
	struct mtd_info *mtd = nand_to_mtd(chip);
	int extid;
	u8 *id_data = chip->id.data;

	memorg = nanddev_get_memorg(&chip->base);

	/* The 3rd id byte holds MLC / multichip data */
	memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
	/* The 4th id byte is the important one */
	extid = id_data[3];

	/* Calc pagesize */
	memorg->pagesize = 1024 << (extid & 0x03);
	mtd->writesize = memorg->pagesize;
	extid >>= 2;
	/* Calc oobsize */
	memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
	mtd->oobsize = memorg->oobsize;
	extid >>= 2;
	/* Calc blocksize. Blocksize is multiples of 64KiB */
	memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
				       memorg->pagesize;
	mtd->erasesize = (64 * 1024) << (extid & 0x03);
	extid >>= 2;
	/* Get buswidth information */
	if (extid & 0x1)
		chip->options |= NAND_BUSWIDTH_16;
}
EXPORT_SYMBOL_GPL(nand_decode_ext_id);

/*
 * Old devices have chip data hardcoded in the device ID table. nand_decode_id
 * decodes a matching ID table entry and assigns the MTD size parameters for
 * the chip.
 */
static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct nand_memory_organization *memorg;

	memorg = nanddev_get_memorg(&chip->base);

	memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
	mtd->erasesize = type->erasesize;
	memorg->pagesize = type->pagesize;
	mtd->writesize = memorg->pagesize;
	memorg->oobsize = memorg->pagesize / 32;
	mtd->oobsize = memorg->oobsize;

	/* All legacy ID NAND are small-page, SLC */
	memorg->bits_per_cell = 1;
}

/*
 * Set the bad block marker/indicator (BBM/BBI) patterns according to some
 * heuristic patterns using various detected parameters (e.g., manufacturer,
 * page size, cell-type information).
 */
static void nand_decode_bbm_options(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);

	/* Set the bad block position */
	if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
		chip->badblockpos = NAND_BBM_POS_LARGE;
	else
		chip->badblockpos = NAND_BBM_POS_SMALL;
}

static inline bool is_full_id_nand(struct nand_flash_dev *type)
{
	return type->id_len;
}

static bool find_full_id_nand(struct nand_chip *chip,
			      struct nand_flash_dev *type)
{
	struct nand_device *base = &chip->base;
	struct nand_ecc_props requirements;
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct nand_memory_organization *memorg;
	u8 *id_data = chip->id.data;

	memorg = nanddev_get_memorg(&chip->base);

	if (!strncmp(type->id, id_data, type->id_len)) {
		memorg->pagesize = type->pagesize;
		mtd->writesize = memorg->pagesize;
		memorg->pages_per_eraseblock = type->erasesize /
					       type->pagesize;
		mtd->erasesize = type->erasesize;
		memorg->oobsize = type->oobsize;
		mtd->oobsize = memorg->oobsize;

		memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
		memorg->eraseblocks_per_lun =
			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
					   memorg->pagesize *
					   memorg->pages_per_eraseblock);
		chip->options |= type->options;
		requirements.strength = NAND_ECC_STRENGTH(type);
		requirements.step_size = NAND_ECC_STEP(type);
		nanddev_set_ecc_requirements(base, &requirements);

		chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
		if (!chip->parameters.model)
			return false;

		return true;
	}
	return false;
}

/*
 * Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
 * compliant and does not have a full-id or legacy-id entry in the nand_ids
 * table.
 */
static void nand_manufacturer_detect(struct nand_chip *chip)
{
	/*
	 * Try manufacturer detection if available and use
	 * nand_decode_ext_id() otherwise.
	 */
	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
	    chip->manufacturer.desc->ops->detect) {
		struct nand_memory_organization *memorg;

		memorg = nanddev_get_memorg(&chip->base);

		/* The 3rd id byte holds MLC / multichip data */
		memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
		chip->manufacturer.desc->ops->detect(chip);
	} else {
		nand_decode_ext_id(chip);
	}
}

/*
 * Manufacturer initialization. This function is called for all NANDs including
 * ONFI and JEDEC compliant ones.
 * Manufacturer drivers should put all their specific initialization code in
 * their ->init() hook.
 */
static int nand_manufacturer_init(struct nand_chip *chip)
{
	if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
	    !chip->manufacturer.desc->ops->init)
		return 0;

	return chip->manufacturer.desc->ops->init(chip);
}

/*
 * Manufacturer cleanup. This function is called for all NANDs including
 * ONFI and JEDEC compliant ones.
 * Manufacturer drivers should put all their specific cleanup code in their
 * ->cleanup() hook.
 */
static void nand_manufacturer_cleanup(struct nand_chip *chip)
{
	/* Release manufacturer private data */
	if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
	    chip->manufacturer.desc->ops->cleanup)
		chip->manufacturer.desc->ops->cleanup(chip);
}

static const char *
nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
{
	return manufacturer_desc ? manufacturer_desc->name : "Unknown";
}

static void rawnand_check_data_only_read_support(struct nand_chip *chip)
{
	/* Use an arbitrary size for the check */
	if (!nand_read_data_op(chip, NULL, SZ_512, true, true))
		chip->controller->supported_op.data_only_read = 1;
}

static void rawnand_early_check_supported_ops(struct nand_chip *chip)
{
	/* The supported_op fields should not be set by individual drivers */
	WARN_ON_ONCE(chip->controller->supported_op.data_only_read);

	if (!nand_has_exec_op(chip))
		return;

	rawnand_check_data_only_read_support(chip);
}

static void rawnand_check_cont_read_support(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);

	if (!chip->parameters.supports_read_cache)
		return;

	if (chip->read_retries)
		return;

	if (!nand_lp_exec_cont_read_page_op(chip, 0, 0, NULL,
					    mtd->writesize, true))
		chip->controller->supported_op.cont_read = 1;
}

static void rawnand_late_check_supported_ops(struct nand_chip *chip)
{
	/* The supported_op fields should not be set by individual drivers */
	WARN_ON_ONCE(chip->controller->supported_op.cont_read);

	/*
	 * Too many devices do not support sequential cached reads with on-die
	 * ECC correction enabled, so in this case refuse to perform the
	 * automation.
	 */
	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_ON_DIE)
		return;

	if (!nand_has_exec_op(chip))
		return;

	/*
	 * For now, continuous reads can only be used with the core page helpers.
	 * This can be extended later.
	 */
	if (!(chip->ecc.read_page == nand_read_page_hwecc ||
	      chip->ecc.read_page == nand_read_page_syndrome ||
	      chip->ecc.read_page == nand_read_page_swecc))
		return;

	rawnand_check_cont_read_support(chip);
}

/*
 * Get the flash and manufacturer id and lookup if the type is supported.
 */
static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
{
	const struct nand_manufacturer_desc *manufacturer_desc;
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct nand_memory_organization *memorg;
	int busw, ret;
	u8 *id_data = chip->id.data;
	u8 maf_id, dev_id;
	u64 targetsize;

	/*
	 * Let's start by initializing memorg fields that might be left
	 * unassigned by the ID-based detection logic.
	 */
	memorg = nanddev_get_memorg(&chip->base);
	memorg->planes_per_lun = 1;
	memorg->luns_per_target = 1;

	/*
	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
	 * after power-up.
	 */
	ret = nand_reset(chip, 0);
	if (ret)
		return ret;

	/* Select the device */
	nand_select_target(chip, 0);

	rawnand_early_check_supported_ops(chip);

	/* Send the command for reading device ID */
	ret = nand_readid_op(chip, 0, id_data, 2);
	if (ret)
		return ret;

	/* Read manufacturer and device IDs */
	maf_id = id_data[0];
	dev_id = id_data[1];

	/*
	 * Try again to make sure, as some systems the bus-hold or other
	 * interface concerns can cause random data which looks like a
	 * possibly credible NAND flash to appear. If the two results do
	 * not match, ignore the device completely.
	 */

	/* Read entire ID string */
	ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
	if (ret)
		return ret;

	if (id_data[0] != maf_id || id_data[1] != dev_id) {
		pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
			maf_id, dev_id, id_data[0], id_data[1]);
		return -ENODEV;
	}

	chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));

	/* Try to identify manufacturer */
	manufacturer_desc = nand_get_manufacturer_desc(maf_id);
	chip->manufacturer.desc = manufacturer_desc;

	if (!type)
		type = nand_flash_ids;

	/*
	 * Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
	 * override it.
	 * This is required to make sure initial NAND bus width set by the
	 * NAND controller driver is coherent with the real NAND bus width
	 * (extracted by auto-detection code).
	 */
	busw = chip->options & NAND_BUSWIDTH_16;

	/*
	 * The flag is only set (never cleared), reset it to its default value
	 * before starting auto-detection.
	 */
	chip->options &= ~NAND_BUSWIDTH_16;

	for (; type->name != NULL; type++) {
		if (is_full_id_nand(type)) {
			if (find_full_id_nand(chip, type))
				goto ident_done;
		} else if (dev_id == type->dev_id) {
			break;
		}
	}

	if (!type->name || !type->pagesize) {
		/* Check if the chip is ONFI compliant */
		ret = nand_onfi_detect(chip);
		if (ret < 0)
			return ret;
		else if (ret)
			goto ident_done;

		/* Check if the chip is JEDEC compliant */
		ret = nand_jedec_detect(chip);
		if (ret < 0)
			return ret;
		else if (ret)
			goto ident_done;
	}

	if (!type->name)
		return -ENODEV;

	chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
	if (!chip->parameters.model)
		return -ENOMEM;

	if (!type->pagesize)
		nand_manufacturer_detect(chip);
	else
		nand_decode_id(chip, type);

	/* Get chip options */
	chip->options |= type->options;

	memorg->eraseblocks_per_lun =
			DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
					   memorg->pagesize *
					   memorg->pages_per_eraseblock);

ident_done:
	if (!mtd->name)
		mtd->name = chip->parameters.model;

	if (chip->options & NAND_BUSWIDTH_AUTO) {
		WARN_ON(busw & NAND_BUSWIDTH_16);
		nand_set_defaults(chip);
	} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
		/*
		 * Check, if buswidth is correct. Hardware drivers should set
		 * chip correct!
		 */
		pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
			maf_id, dev_id);
		pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
			mtd->name);
		pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
			(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
		ret = -EINVAL;

		goto free_detect_allocation;
	}

	nand_decode_bbm_options(chip);

	/* Calculate the address shift from the page size */
	chip->page_shift = ffs(mtd->writesize) - 1;
	/* Convert chipsize to number of pages per chip -1 */
	targetsize = nanddev_target_size(&chip->base);
	chip->pagemask = (targetsize >> chip->page_shift) - 1;

	chip->bbt_erase_shift = chip->phys_erase_shift =
		ffs(mtd->erasesize) - 1;
	if (targetsize & 0xffffffff)
		chip->chip_shift = ffs((unsigned)targetsize) - 1;
	else {
		chip->chip_shift = ffs((unsigned)(targetsize >> 32));
		chip->chip_shift += 32 - 1;
	}

	if (chip->chip_shift - chip->page_shift > 16)
		chip->options |= NAND_ROW_ADDR_3;

	chip->badblockbits = 8;

	nand_legacy_adjust_cmdfunc(chip);

	pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
		maf_id, dev_id);
	pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
		chip->parameters.model);
	pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
		(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
		mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
	return 0;

free_detect_allocation:
	kfree(chip->parameters.model);

	return ret;
}

static enum nand_ecc_engine_type
of_get_rawnand_ecc_engine_type_legacy(struct device_node *np)
{
	enum nand_ecc_legacy_mode {
		NAND_ECC_INVALID,
		NAND_ECC_NONE,
		NAND_ECC_SOFT,
		NAND_ECC_SOFT_BCH,
		NAND_ECC_HW,
		NAND_ECC_HW_SYNDROME,
		NAND_ECC_ON_DIE,
	};
	const char * const nand_ecc_legacy_modes[] = {
		[NAND_ECC_NONE]		= "none",
		[NAND_ECC_SOFT]		= "soft",
		[NAND_ECC_SOFT_BCH]	= "soft_bch",
		[NAND_ECC_HW]		= "hw",
		[NAND_ECC_HW_SYNDROME]	= "hw_syndrome",
		[NAND_ECC_ON_DIE]	= "on-die",
	};
	enum nand_ecc_legacy_mode eng_type;
	const char *pm;
	int err;

	err = of_property_read_string(np, "nand-ecc-mode", &pm);
	if (err)
		return NAND_ECC_ENGINE_TYPE_INVALID;

	for (eng_type = NAND_ECC_NONE;
	     eng_type < ARRAY_SIZE(nand_ecc_legacy_modes); eng_type++) {
		if (!strcasecmp(pm, nand_ecc_legacy_modes[eng_type])) {
			switch (eng_type) {
			case NAND_ECC_NONE:
				return NAND_ECC_ENGINE_TYPE_NONE;
			case NAND_ECC_SOFT:
			case NAND_ECC_SOFT_BCH:
				return NAND_ECC_ENGINE_TYPE_SOFT;
			case NAND_ECC_HW:
			case NAND_ECC_HW_SYNDROME:
				return NAND_ECC_ENGINE_TYPE_ON_HOST;
			case NAND_ECC_ON_DIE:
				return NAND_ECC_ENGINE_TYPE_ON_DIE;
			default:
				break;
			}
		}
	}

	return NAND_ECC_ENGINE_TYPE_INVALID;
}

static enum nand_ecc_placement
of_get_rawnand_ecc_placement_legacy(struct device_node *np)
{
	const char *pm;
	int err;

	err = of_property_read_string(np, "nand-ecc-mode", &pm);
	if (!err) {
		if (!strcasecmp(pm, "hw_syndrome"))
			return NAND_ECC_PLACEMENT_INTERLEAVED;
	}

	return NAND_ECC_PLACEMENT_UNKNOWN;
}

static enum nand_ecc_algo of_get_rawnand_ecc_algo_legacy(struct device_node *np)
{
	const char *pm;
	int err;

	err = of_property_read_string(np, "nand-ecc-mode", &pm);
	if (!err) {
		if (!strcasecmp(pm, "soft"))
			return NAND_ECC_ALGO_HAMMING;
		else if (!strcasecmp(pm, "soft_bch"))
			return NAND_ECC_ALGO_BCH;
	}

	return NAND_ECC_ALGO_UNKNOWN;
}

static void of_get_nand_ecc_legacy_user_config(struct nand_chip *chip)
{
	struct device_node *dn = nand_get_flash_node(chip);
	struct nand_ecc_props *user_conf = &chip->base.ecc.user_conf;

	if (user_conf->engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
		user_conf->engine_type = of_get_rawnand_ecc_engine_type_legacy(dn);

	if (user_conf->algo == NAND_ECC_ALGO_UNKNOWN)
		user_conf->algo = of_get_rawnand_ecc_algo_legacy(dn);

	if (user_conf->placement == NAND_ECC_PLACEMENT_UNKNOWN)
		user_conf->placement = of_get_rawnand_ecc_placement_legacy(dn);
}

static int of_get_nand_bus_width(struct nand_chip *chip)
{
	struct device_node *dn = nand_get_flash_node(chip);
	u32 val;
	int ret;

	ret = of_property_read_u32(dn, "nand-bus-width", &val);
	if (ret == -EINVAL)
		/* Buswidth defaults to 8 if the property does not exist .*/
		return 0;
	else if (ret)
		return ret;

	if (val == 16)
		chip->options |= NAND_BUSWIDTH_16;
	else if (val != 8)
		return -EINVAL;
	return 0;
}

static int of_get_nand_secure_regions(struct nand_chip *chip)
{
	struct device_node *dn = nand_get_flash_node(chip);
	struct property *prop;
	int nr_elem, i, j;

	/* Only proceed if the "secure-regions" property is present in DT */
	prop = of_find_property(dn, "secure-regions", NULL);
	if (!prop)
		return 0;

	nr_elem = of_property_count_elems_of_size(dn, "secure-regions", sizeof(u64));
	if (nr_elem <= 0)
		return nr_elem;

	chip->nr_secure_regions = nr_elem / 2;
	chip->secure_regions = kcalloc(chip->nr_secure_regions, sizeof(*chip->secure_regions),
				       GFP_KERNEL);
	if (!chip->secure_regions)
		return -ENOMEM;

	for (i = 0, j = 0; i < chip->nr_secure_regions; i++, j += 2) {
		of_property_read_u64_index(dn, "secure-regions", j,
					   &chip->secure_regions[i].offset);
		of_property_read_u64_index(dn, "secure-regions", j + 1,
					   &chip->secure_regions[i].size);
	}

	return 0;
}

/**
 * rawnand_dt_parse_gpio_cs - Parse the gpio-cs property of a controller
 * @dev: Device that will be parsed. Also used for managed allocations.
 * @cs_array: Array of GPIO desc pointers allocated on success
 * @ncs_array: Number of entries in @cs_array updated on success.
 * @return 0 on success, an error otherwise.
 */
int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array,
			     unsigned int *ncs_array)
{
	struct gpio_desc **descs;
	int ndescs, i;

	ndescs = gpiod_count(dev, "cs");
	if (ndescs < 0) {
		dev_dbg(dev, "No valid cs-gpios property\n");
		return 0;
	}

	descs = devm_kcalloc(dev, ndescs, sizeof(*descs), GFP_KERNEL);
	if (!descs)
		return -ENOMEM;

	for (i = 0; i < ndescs; i++) {
		descs[i] = gpiod_get_index_optional(dev, "cs", i,
						    GPIOD_OUT_HIGH);
		if (IS_ERR(descs[i]))
			return PTR_ERR(descs[i]);
	}

	*ncs_array = ndescs;
	*cs_array = descs;

	return 0;
}
EXPORT_SYMBOL(rawnand_dt_parse_gpio_cs);

static int rawnand_dt_init(struct nand_chip *chip)
{
	struct nand_device *nand = mtd_to_nanddev(nand_to_mtd(chip));
	struct device_node *dn = nand_get_flash_node(chip);
	int ret;

	if (!dn)
		return 0;

	ret = of_get_nand_bus_width(chip);
	if (ret)
		return ret;

	if (of_property_read_bool(dn, "nand-is-boot-medium"))
		chip->options |= NAND_IS_BOOT_MEDIUM;

	if (of_property_read_bool(dn, "nand-on-flash-bbt"))
		chip->bbt_options |= NAND_BBT_USE_FLASH;

	of_get_nand_ecc_user_config(nand);
	of_get_nand_ecc_legacy_user_config(chip);

	/*
	 * If neither the user nor the NAND controller have requested a specific
	 * ECC engine type, we will default to NAND_ECC_ENGINE_TYPE_ON_HOST.
	 */
	nand->ecc.defaults.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;

	/*
	 * Use the user requested engine type, unless there is none, in this
	 * case default to the NAND controller choice, otherwise fallback to
	 * the raw NAND default one.
	 */
	if (nand->ecc.user_conf.engine_type != NAND_ECC_ENGINE_TYPE_INVALID)
		chip->ecc.engine_type = nand->ecc.user_conf.engine_type;
	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_INVALID)
		chip->ecc.engine_type = nand->ecc.defaults.engine_type;

	chip->ecc.placement = nand->ecc.user_conf.placement;
	chip->ecc.algo = nand->ecc.user_conf.algo;
	chip->ecc.strength = nand->ecc.user_conf.strength;
	chip->ecc.size = nand->ecc.user_conf.step_size;

	return 0;
}

/**
 * nand_scan_ident - Scan for the NAND device
 * @chip: NAND chip object
 * @maxchips: number of chips to scan for
 * @table: alternative NAND ID table
 *
 * This is the first phase of the normal nand_scan() function. It reads the
 * flash ID and sets up MTD fields accordingly.
 *
 * This helper used to be called directly from controller drivers that needed
 * to tweak some ECC-related parameters before nand_scan_tail(). This separation
 * prevented dynamic allocations during this phase which was unconvenient and
 * as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
 */
static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
			   struct nand_flash_dev *table)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct nand_memory_organization *memorg;
	int nand_maf_id, nand_dev_id;
	unsigned int i;
	int ret;

	memorg = nanddev_get_memorg(&chip->base);

	/* Assume all dies are deselected when we enter nand_scan_ident(). */
	chip->cur_cs = -1;

	mutex_init(&chip->lock);
	init_waitqueue_head(&chip->resume_wq);

	/* Enforce the right timings for reset/detection */
	chip->current_interface_config = nand_get_reset_interface_config();

	ret = rawnand_dt_init(chip);
	if (ret)
		return ret;

	if (!mtd->name && mtd->dev.parent)
		mtd->name = dev_name(mtd->dev.parent);

	/* Set the default functions */
	nand_set_defaults(chip);

	ret = nand_legacy_check_hooks(chip);
	if (ret)
		return ret;

	memorg->ntargets = maxchips;

	/* Read the flash type */
	ret = nand_detect(chip, table);
	if (ret) {
		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
			pr_warn("No NAND device found\n");
		nand_deselect_target(chip);
		return ret;
	}

	nand_maf_id = chip->id.data[0];
	nand_dev_id = chip->id.data[1];

	nand_deselect_target(chip);

	/* Check for a chip array */
	for (i = 1; i < maxchips; i++) {
		u8 id[2];

		/* See comment in nand_get_flash_type for reset */
		ret = nand_reset(chip, i);
		if (ret)
			break;

		nand_select_target(chip, i);
		/* Send the command for reading device ID */
		ret = nand_readid_op(chip, 0, id, sizeof(id));
		if (ret)
			break;
		/* Read manufacturer and device IDs */
		if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
			nand_deselect_target(chip);
			break;
		}
		nand_deselect_target(chip);
	}
	if (i > 1)
		pr_info("%d chips detected\n", i);

	/* Store the number of chips and calc total size for mtd */
	memorg->ntargets = i;
	mtd->size = i * nanddev_target_size(&chip->base);

	return 0;
}

static void nand_scan_ident_cleanup(struct nand_chip *chip)
{
	kfree(chip->parameters.model);
	kfree(chip->parameters.onfi);
}

int rawnand_sw_hamming_init(struct nand_chip *chip)
{
	struct nand_ecc_sw_hamming_conf *engine_conf;
	struct nand_device *base = &chip->base;
	int ret;

	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
	base->ecc.user_conf.algo = NAND_ECC_ALGO_HAMMING;
	base->ecc.user_conf.strength = chip->ecc.strength;
	base->ecc.user_conf.step_size = chip->ecc.size;

	ret = nand_ecc_sw_hamming_init_ctx(base);
	if (ret)
		return ret;

	engine_conf = base->ecc.ctx.priv;

	if (chip->ecc.options & NAND_ECC_SOFT_HAMMING_SM_ORDER)
		engine_conf->sm_order = true;

	chip->ecc.size = base->ecc.ctx.conf.step_size;
	chip->ecc.strength = base->ecc.ctx.conf.strength;
	chip->ecc.total = base->ecc.ctx.total;
	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);

	return 0;
}
EXPORT_SYMBOL(rawnand_sw_hamming_init);

int rawnand_sw_hamming_calculate(struct nand_chip *chip,
				 const unsigned char *buf,
				 unsigned char *code)
{
	struct nand_device *base = &chip->base;

	return nand_ecc_sw_hamming_calculate(base, buf, code);
}
EXPORT_SYMBOL(rawnand_sw_hamming_calculate);

int rawnand_sw_hamming_correct(struct nand_chip *chip,
			       unsigned char *buf,
			       unsigned char *read_ecc,
			       unsigned char *calc_ecc)
{
	struct nand_device *base = &chip->base;

	return nand_ecc_sw_hamming_correct(base, buf, read_ecc, calc_ecc);
}
EXPORT_SYMBOL(rawnand_sw_hamming_correct);

void rawnand_sw_hamming_cleanup(struct nand_chip *chip)
{
	struct nand_device *base = &chip->base;

	nand_ecc_sw_hamming_cleanup_ctx(base);
}
EXPORT_SYMBOL(rawnand_sw_hamming_cleanup);

int rawnand_sw_bch_init(struct nand_chip *chip)
{
	struct nand_device *base = &chip->base;
	const struct nand_ecc_props *ecc_conf = nanddev_get_ecc_conf(base);
	int ret;

	base->ecc.user_conf.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
	base->ecc.user_conf.algo = NAND_ECC_ALGO_BCH;
	base->ecc.user_conf.step_size = chip->ecc.size;
	base->ecc.user_conf.strength = chip->ecc.strength;

	ret = nand_ecc_sw_bch_init_ctx(base);
	if (ret)
		return ret;

	chip->ecc.size = ecc_conf->step_size;
	chip->ecc.strength = ecc_conf->strength;
	chip->ecc.total = base->ecc.ctx.total;
	chip->ecc.steps = nanddev_get_ecc_nsteps(base);
	chip->ecc.bytes = base->ecc.ctx.total / nanddev_get_ecc_nsteps(base);

	return 0;
}
EXPORT_SYMBOL(rawnand_sw_bch_init);

static int rawnand_sw_bch_calculate(struct nand_chip *chip,
				    const unsigned char *buf,
				    unsigned char *code)
{
	struct nand_device *base = &chip->base;

	return nand_ecc_sw_bch_calculate(base, buf, code);
}

int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf,
			   unsigned char *read_ecc, unsigned char *calc_ecc)
{
	struct nand_device *base = &chip->base;

	return nand_ecc_sw_bch_correct(base, buf, read_ecc, calc_ecc);
}
EXPORT_SYMBOL(rawnand_sw_bch_correct);

void rawnand_sw_bch_cleanup(struct nand_chip *chip)
{
	struct nand_device *base = &chip->base;

	nand_ecc_sw_bch_cleanup_ctx(base);
}
EXPORT_SYMBOL(rawnand_sw_bch_cleanup);

static int nand_set_ecc_on_host_ops(struct nand_chip *chip)
{
	struct nand_ecc_ctrl *ecc = &chip->ecc;

	switch (ecc->placement) {
	case NAND_ECC_PLACEMENT_UNKNOWN:
	case NAND_ECC_PLACEMENT_OOB:
		/* Use standard hwecc read page function? */
		if (!ecc->read_page)
			ecc->read_page = nand_read_page_hwecc;
		if (!ecc->write_page)
			ecc->write_page = nand_write_page_hwecc;
		if (!ecc->read_page_raw)
			ecc->read_page_raw = nand_read_page_raw;
		if (!ecc->write_page_raw)
			ecc->write_page_raw = nand_write_page_raw;
		if (!ecc->read_oob)
			ecc->read_oob = nand_read_oob_std;
		if (!ecc->write_oob)
			ecc->write_oob = nand_write_oob_std;
		if (!ecc->read_subpage)
			ecc->read_subpage = nand_read_subpage;
		if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
			ecc->write_subpage = nand_write_subpage_hwecc;
		fallthrough;

	case NAND_ECC_PLACEMENT_INTERLEAVED:
		if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
		    (!ecc->read_page ||
		     ecc->read_page == nand_read_page_hwecc ||
		     !ecc->write_page ||
		     ecc->write_page == nand_write_page_hwecc)) {
			WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
			return -EINVAL;
		}
		/* Use standard syndrome read/write page function? */
		if (!ecc->read_page)
			ecc->read_page = nand_read_page_syndrome;
		if (!ecc->write_page)
			ecc->write_page = nand_write_page_syndrome;
		if (!ecc->read_page_raw)
			ecc->read_page_raw = nand_read_page_raw_syndrome;
		if (!ecc->write_page_raw)
			ecc->write_page_raw = nand_write_page_raw_syndrome;
		if (!ecc->read_oob)
			ecc->read_oob = nand_read_oob_syndrome;
		if (!ecc->write_oob)
			ecc->write_oob = nand_write_oob_syndrome;
		break;

	default:
		pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
			ecc->placement);
		return -EINVAL;
	}

	return 0;
}

static int nand_set_ecc_soft_ops(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct nand_device *nanddev = mtd_to_nanddev(mtd);
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	int ret;

	if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
		return -EINVAL;

	switch (ecc->algo) {
	case NAND_ECC_ALGO_HAMMING:
		ecc->calculate = rawnand_sw_hamming_calculate;
		ecc->correct = rawnand_sw_hamming_correct;
		ecc->read_page = nand_read_page_swecc;
		ecc->read_subpage = nand_read_subpage;
		ecc->write_page = nand_write_page_swecc;
		if (!ecc->read_page_raw)
			ecc->read_page_raw = nand_read_page_raw;
		if (!ecc->write_page_raw)
			ecc->write_page_raw = nand_write_page_raw;
		ecc->read_oob = nand_read_oob_std;
		ecc->write_oob = nand_write_oob_std;
		if (!ecc->size)
			ecc->size = 256;
		ecc->bytes = 3;
		ecc->strength = 1;

		if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
			ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;

		ret = rawnand_sw_hamming_init(chip);
		if (ret) {
			WARN(1, "Hamming ECC initialization failed!\n");
			return ret;
		}

		return 0;
	case NAND_ECC_ALGO_BCH:
		if (!IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_BCH)) {
			WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
			return -EINVAL;
		}
		ecc->calculate = rawnand_sw_bch_calculate;
		ecc->correct = rawnand_sw_bch_correct;
		ecc->read_page = nand_read_page_swecc;
		ecc->read_subpage = nand_read_subpage;
		ecc->write_page = nand_write_page_swecc;
		if (!ecc->read_page_raw)
			ecc->read_page_raw = nand_read_page_raw;
		if (!ecc->write_page_raw)
			ecc->write_page_raw = nand_write_page_raw;
		ecc->read_oob = nand_read_oob_std;
		ecc->write_oob = nand_write_oob_std;

		/*
		 * We can only maximize ECC config when the default layout is
		 * used, otherwise we don't know how many bytes can really be
		 * used.
		 */
		if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH &&
		    mtd->ooblayout != nand_get_large_page_ooblayout())
			nanddev->ecc.user_conf.flags &= ~NAND_ECC_MAXIMIZE_STRENGTH;

		ret = rawnand_sw_bch_init(chip);
		if (ret) {
			WARN(1, "BCH ECC initialization failed!\n");
			return ret;
		}

		return 0;
	default:
		WARN(1, "Unsupported ECC algorithm!\n");
		return -EINVAL;
	}
}

/**
 * nand_check_ecc_caps - check the sanity of preset ECC settings
 * @chip: nand chip info structure
 * @caps: ECC caps info structure
 * @oobavail: OOB size that the ECC engine can use
 *
 * When ECC step size and strength are already set, check if they are supported
 * by the controller and the calculated ECC bytes fit within the chip's OOB.
 * On success, the calculated ECC bytes is set.
 */
static int
nand_check_ecc_caps(struct nand_chip *chip,
		    const struct nand_ecc_caps *caps, int oobavail)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	const struct nand_ecc_step_info *stepinfo;
	int preset_step = chip->ecc.size;
	int preset_strength = chip->ecc.strength;
	int ecc_bytes, nsteps = mtd->writesize / preset_step;
	int i, j;

	for (i = 0; i < caps->nstepinfos; i++) {
		stepinfo = &caps->stepinfos[i];

		if (stepinfo->stepsize != preset_step)
			continue;

		for (j = 0; j < stepinfo->nstrengths; j++) {
			if (stepinfo->strengths[j] != preset_strength)
				continue;

			ecc_bytes = caps->calc_ecc_bytes(preset_step,
							 preset_strength);
			if (WARN_ON_ONCE(ecc_bytes < 0))
				return ecc_bytes;

			if (ecc_bytes * nsteps > oobavail) {
				pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
				       preset_step, preset_strength);
				return -ENOSPC;
			}

			chip->ecc.bytes = ecc_bytes;

			return 0;
		}
	}

	pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
	       preset_step, preset_strength);

	return -ENOTSUPP;
}

/**
 * nand_match_ecc_req - meet the chip's requirement with least ECC bytes
 * @chip: nand chip info structure
 * @caps: ECC engine caps info structure
 * @oobavail: OOB size that the ECC engine can use
 *
 * If a chip's ECC requirement is provided, try to meet it with the least
 * number of ECC bytes (i.e. with the largest number of OOB-free bytes).
 * On success, the chosen ECC settings are set.
 */
static int
nand_match_ecc_req(struct nand_chip *chip,
		   const struct nand_ecc_caps *caps, int oobavail)
{
	const struct nand_ecc_props *requirements =
		nanddev_get_ecc_requirements(&chip->base);
	struct mtd_info *mtd = nand_to_mtd(chip);
	const struct nand_ecc_step_info *stepinfo;
	int req_step = requirements->step_size;
	int req_strength = requirements->strength;
	int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
	int best_step = 0, best_strength = 0, best_ecc_bytes = 0;
	int best_ecc_bytes_total = INT_MAX;
	int i, j;

	/* No information provided by the NAND chip */
	if (!req_step || !req_strength)
		return -ENOTSUPP;

	/* number of correctable bits the chip requires in a page */
	req_corr = mtd->writesize / req_step * req_strength;

	for (i = 0; i < caps->nstepinfos; i++) {
		stepinfo = &caps->stepinfos[i];
		step_size = stepinfo->stepsize;

		for (j = 0; j < stepinfo->nstrengths; j++) {
			strength = stepinfo->strengths[j];

			/*
			 * If both step size and strength are smaller than the
			 * chip's requirement, it is not easy to compare the
			 * resulted reliability.
			 */
			if (step_size < req_step && strength < req_strength)
				continue;

			if (mtd->writesize % step_size)
				continue;

			nsteps = mtd->writesize / step_size;

			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
			if (WARN_ON_ONCE(ecc_bytes < 0))
				continue;
			ecc_bytes_total = ecc_bytes * nsteps;

			if (ecc_bytes_total > oobavail ||
			    strength * nsteps < req_corr)
				continue;

			/*
			 * We assume the best is to meet the chip's requrement
			 * with the least number of ECC bytes.
			 */
			if (ecc_bytes_total < best_ecc_bytes_total) {
				best_ecc_bytes_total = ecc_bytes_total;
				best_step = step_size;
				best_strength = strength;
				best_ecc_bytes = ecc_bytes;
			}
		}
	}

	if (best_ecc_bytes_total == INT_MAX)
		return -ENOTSUPP;

	chip->ecc.size = best_step;
	chip->ecc.strength = best_strength;
	chip->ecc.bytes = best_ecc_bytes;

	return 0;
}

/**
 * nand_maximize_ecc - choose the max ECC strength available
 * @chip: nand chip info structure
 * @caps: ECC engine caps info structure
 * @oobavail: OOB size that the ECC engine can use
 *
 * Choose the max ECC strength that is supported on the controller, and can fit
 * within the chip's OOB.  On success, the chosen ECC settings are set.
 */
static int
nand_maximize_ecc(struct nand_chip *chip,
		  const struct nand_ecc_caps *caps, int oobavail)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	const struct nand_ecc_step_info *stepinfo;
	int step_size, strength, nsteps, ecc_bytes, corr;
	int best_corr = 0;
	int best_step = 0;
	int best_strength = 0, best_ecc_bytes = 0;
	int i, j;

	for (i = 0; i < caps->nstepinfos; i++) {
		stepinfo = &caps->stepinfos[i];
		step_size = stepinfo->stepsize;

		/* If chip->ecc.size is already set, respect it */
		if (chip->ecc.size && step_size != chip->ecc.size)
			continue;

		for (j = 0; j < stepinfo->nstrengths; j++) {
			strength = stepinfo->strengths[j];

			if (mtd->writesize % step_size)
				continue;

			nsteps = mtd->writesize / step_size;

			ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
			if (WARN_ON_ONCE(ecc_bytes < 0))
				continue;

			if (ecc_bytes * nsteps > oobavail)
				continue;

			corr = strength * nsteps;

			/*
			 * If the number of correctable bits is the same,
			 * bigger step_size has more reliability.
			 */
			if (corr > best_corr ||
			    (corr == best_corr && step_size > best_step)) {
				best_corr = corr;
				best_step = step_size;
				best_strength = strength;
				best_ecc_bytes = ecc_bytes;
			}
		}
	}

	if (!best_corr)
		return -ENOTSUPP;

	chip->ecc.size = best_step;
	chip->ecc.strength = best_strength;
	chip->ecc.bytes = best_ecc_bytes;

	return 0;
}

/**
 * nand_ecc_choose_conf - Set the ECC strength and ECC step size
 * @chip: nand chip info structure
 * @caps: ECC engine caps info structure
 * @oobavail: OOB size that the ECC engine can use
 *
 * Choose the ECC configuration according to following logic.
 *
 * 1. If both ECC step size and ECC strength are already set (usually by DT)
 *    then check if it is supported by this controller.
 * 2. If the user provided the nand-ecc-maximize property, then select maximum
 *    ECC strength.
 * 3. Otherwise, try to match the ECC step size and ECC strength closest
 *    to the chip's requirement. If available OOB size can't fit the chip
 *    requirement then fallback to the maximum ECC step size and ECC strength.
 *
 * On success, the chosen ECC settings are set.
 */
int nand_ecc_choose_conf(struct nand_chip *chip,
			 const struct nand_ecc_caps *caps, int oobavail)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct nand_device *nanddev = mtd_to_nanddev(mtd);

	if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
		return -EINVAL;

	if (chip->ecc.size && chip->ecc.strength)
		return nand_check_ecc_caps(chip, caps, oobavail);

	if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
		return nand_maximize_ecc(chip, caps, oobavail);

	if (!nand_match_ecc_req(chip, caps, oobavail))
		return 0;

	return nand_maximize_ecc(chip, caps, oobavail);
}
EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);

static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
{
	struct nand_chip *chip = container_of(nand, struct nand_chip,
					      base);
	unsigned int eb = nanddev_pos_to_row(nand, pos);
	int ret;

	eb >>= nand->rowconv.eraseblock_addr_shift;

	nand_select_target(chip, pos->target);
	ret = nand_erase_op(chip, eb);
	nand_deselect_target(chip);

	return ret;
}

static int rawnand_markbad(struct nand_device *nand,
			   const struct nand_pos *pos)
{
	struct nand_chip *chip = container_of(nand, struct nand_chip,
					      base);

	return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
}

static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
{
	struct nand_chip *chip = container_of(nand, struct nand_chip,
					      base);
	int ret;

	nand_select_target(chip, pos->target);
	ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
	nand_deselect_target(chip);

	return ret;
}

static const struct nand_ops rawnand_ops = {
	.erase = rawnand_erase,
	.markbad = rawnand_markbad,
	.isbad = rawnand_isbad,
};

/**
 * nand_scan_tail - Scan for the NAND device
 * @chip: NAND chip object
 *
 * This is the second phase of the normal nand_scan() function. It fills out
 * all the uninitialized function pointers with the defaults and scans for a
 * bad block table if appropriate.
 */
static int nand_scan_tail(struct nand_chip *chip)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct nand_device *base = &chip->base;
	struct nand_ecc_ctrl *ecc = &chip->ecc;
	int ret, i;

	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
	if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
		   !(chip->bbt_options & NAND_BBT_USE_FLASH))) {
		return -EINVAL;
	}

	chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
	if (!chip->data_buf)
		return -ENOMEM;

	/*
	 * FIXME: some NAND manufacturer drivers expect the first die to be
	 * selected when manufacturer->init() is called. They should be fixed
	 * to explictly select the relevant die when interacting with the NAND
	 * chip.
	 */
	nand_select_target(chip, 0);
	ret = nand_manufacturer_init(chip);
	nand_deselect_target(chip);
	if (ret)
		goto err_free_buf;

	/* Set the internal oob buffer location, just after the page data */
	chip->oob_poi = chip->data_buf + mtd->writesize;

	/*
	 * If no default placement scheme is given, select an appropriate one.
	 */
	if (!mtd->ooblayout &&
	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
	      ecc->algo == NAND_ECC_ALGO_BCH) &&
	    !(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
	      ecc->algo == NAND_ECC_ALGO_HAMMING)) {
		switch (mtd->oobsize) {
		case 8:
		case 16:
			mtd_set_ooblayout(mtd, nand_get_small_page_ooblayout());
			break;
		case 64:
		case 128:
			mtd_set_ooblayout(mtd,
					  nand_get_large_page_hamming_ooblayout());
			break;
		default:
			/*
			 * Expose the whole OOB area to users if ECC_NONE
			 * is passed. We could do that for all kind of
			 * ->oobsize, but we must keep the old large/small
			 * page with ECC layout when ->oobsize <= 128 for
			 * compatibility reasons.
			 */
			if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
				mtd_set_ooblayout(mtd,
						  nand_get_large_page_ooblayout());
				break;
			}

			WARN(1, "No oob scheme defined for oobsize %d\n",
				mtd->oobsize);
			ret = -EINVAL;
			goto err_nand_manuf_cleanup;
		}
	}

	/*
	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
	 * selected and we have 256 byte pagesize fallback to software ECC
	 */

	switch (ecc->engine_type) {
	case NAND_ECC_ENGINE_TYPE_ON_HOST:
		ret = nand_set_ecc_on_host_ops(chip);
		if (ret)
			goto err_nand_manuf_cleanup;

		if (mtd->writesize >= ecc->size) {
			if (!ecc->strength) {
				WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
				ret = -EINVAL;
				goto err_nand_manuf_cleanup;
			}
			break;
		}
		pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
			ecc->size, mtd->writesize);
		ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
		ecc->algo = NAND_ECC_ALGO_HAMMING;
		fallthrough;

	case NAND_ECC_ENGINE_TYPE_SOFT:
		ret = nand_set_ecc_soft_ops(chip);
		if (ret)
			goto err_nand_manuf_cleanup;
		break;

	case NAND_ECC_ENGINE_TYPE_ON_DIE:
		if (!ecc->read_page || !ecc->write_page) {
			WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
			ret = -EINVAL;
			goto err_nand_manuf_cleanup;
		}
		if (!ecc->read_oob)
			ecc->read_oob = nand_read_oob_std;
		if (!ecc->write_oob)
			ecc->write_oob = nand_write_oob_std;
		break;

	case NAND_ECC_ENGINE_TYPE_NONE:
		pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
		ecc->read_page = nand_read_page_raw;
		ecc->write_page = nand_write_page_raw;
		ecc->read_oob = nand_read_oob_std;
		ecc->read_page_raw = nand_read_page_raw;
		ecc->write_page_raw = nand_write_page_raw;
		ecc->write_oob = nand_write_oob_std;
		ecc->size = mtd->writesize;
		ecc->bytes = 0;
		ecc->strength = 0;
		break;

	default:
		WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
		ret = -EINVAL;
		goto err_nand_manuf_cleanup;
	}

	if (ecc->correct || ecc->calculate) {
		ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
		ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
		if (!ecc->calc_buf || !ecc->code_buf) {
			ret = -ENOMEM;
			goto err_nand_manuf_cleanup;
		}
	}

	/* For many systems, the standard OOB write also works for raw */
	if (!ecc->read_oob_raw)
		ecc->read_oob_raw = ecc->read_oob;
	if (!ecc->write_oob_raw)
		ecc->write_oob_raw = ecc->write_oob;

	/* Propagate ECC info to the generic NAND and MTD layers */
	mtd->ecc_strength = ecc->strength;
	if (!base->ecc.ctx.conf.strength)
		base->ecc.ctx.conf.strength = ecc->strength;
	mtd->ecc_step_size = ecc->size;
	if (!base->ecc.ctx.conf.step_size)
		base->ecc.ctx.conf.step_size = ecc->size;

	/*
	 * Set the number of read / write steps for one page depending on ECC
	 * mode.
	 */
	if (!ecc->steps)
		ecc->steps = mtd->writesize / ecc->size;
	if (!base->ecc.ctx.nsteps)
		base->ecc.ctx.nsteps = ecc->steps;
	if (ecc->steps * ecc->size != mtd->writesize) {
		WARN(1, "Invalid ECC parameters\n");
		ret = -EINVAL;
		goto err_nand_manuf_cleanup;
	}

	if (!ecc->total) {
		ecc->total = ecc->steps * ecc->bytes;
		chip->base.ecc.ctx.total = ecc->total;
	}

	if (ecc->total > mtd->oobsize) {
		WARN(1, "Total number of ECC bytes exceeded oobsize\n");
		ret = -EINVAL;
		goto err_nand_manuf_cleanup;
	}

	/*
	 * The number of bytes available for a client to place data into
	 * the out of band area.
	 */
	ret = mtd_ooblayout_count_freebytes(mtd);
	if (ret < 0)
		ret = 0;

	mtd->oobavail = ret;

	/* ECC sanity check: warn if it's too weak */
	if (!nand_ecc_is_strong_enough(&chip->base))
		pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
			mtd->name, chip->ecc.strength, chip->ecc.size,
			nanddev_get_ecc_requirements(&chip->base)->strength,
			nanddev_get_ecc_requirements(&chip->base)->step_size);

	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
		switch (ecc->steps) {
		case 2:
			mtd->subpage_sft = 1;
			break;
		case 4:
		case 8:
		case 16:
			mtd->subpage_sft = 2;
			break;
		}
	}
	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;

	/* Invalidate the pagebuffer reference */
	chip->pagecache.page = -1;

	/* Large page NAND with SOFT_ECC should support subpage reads */
	switch (ecc->engine_type) {
	case NAND_ECC_ENGINE_TYPE_SOFT:
		if (chip->page_shift > 9)
			chip->options |= NAND_SUBPAGE_READ;
		break;

	default:
		break;
	}

	ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
	if (ret)
		goto err_nand_manuf_cleanup;

	/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
	if (chip->options & NAND_ROM)
		mtd->flags = MTD_CAP_ROM;

	/* Fill in remaining MTD driver data */
	mtd->_erase = nand_erase;
	mtd->_point = NULL;
	mtd->_unpoint = NULL;
	mtd->_panic_write = panic_nand_write;
	mtd->_read_oob = nand_read_oob;
	mtd->_write_oob = nand_write_oob;
	mtd->_sync = nand_sync;
	mtd->_lock = nand_lock;
	mtd->_unlock = nand_unlock;
	mtd->_suspend = nand_suspend;
	mtd->_resume = nand_resume;
	mtd->_reboot = nand_shutdown;
	mtd->_block_isreserved = nand_block_isreserved;
	mtd->_block_isbad = nand_block_isbad;
	mtd->_block_markbad = nand_block_markbad;
	mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;

	/*
	 * Initialize bitflip_threshold to its default prior scan_bbt() call.
	 * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
	 * properly set.
	 */
	if (!mtd->bitflip_threshold)
		mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);

	/* Find the fastest data interface for this chip */
	ret = nand_choose_interface_config(chip);
	if (ret)
		goto err_nanddev_cleanup;

	/* Enter fastest possible mode on all dies. */
	for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
		ret = nand_setup_interface(chip, i);
		if (ret)
			goto err_free_interface_config;
	}

	rawnand_late_check_supported_ops(chip);

	/*
	 * Look for secure regions in the NAND chip. These regions are supposed
	 * to be protected by a secure element like Trustzone. So the read/write
	 * accesses to these regions will be blocked in the runtime by this
	 * driver.
	 */
	ret = of_get_nand_secure_regions(chip);
	if (ret)
		goto err_free_interface_config;

	/* Check, if we should skip the bad block table scan */
	if (chip->options & NAND_SKIP_BBTSCAN)
		return 0;

	/* Build bad block table */
	ret = nand_create_bbt(chip);
	if (ret)
		goto err_free_secure_regions;

	return 0;

err_free_secure_regions:
	kfree(chip->secure_regions);

err_free_interface_config:
	kfree(chip->best_interface_config);

err_nanddev_cleanup:
	nanddev_cleanup(&chip->base);

err_nand_manuf_cleanup:
	nand_manufacturer_cleanup(chip);

err_free_buf:
	kfree(chip->data_buf);
	kfree(ecc->code_buf);
	kfree(ecc->calc_buf);

	return ret;
}

static int nand_attach(struct nand_chip *chip)
{
	if (chip->controller->ops && chip->controller->ops->attach_chip)
		return chip->controller->ops->attach_chip(chip);

	return 0;
}

static void nand_detach(struct nand_chip *chip)
{
	if (chip->controller->ops && chip->controller->ops->detach_chip)
		chip->controller->ops->detach_chip(chip);
}

/**
 * nand_scan_with_ids - [NAND Interface] Scan for the NAND device
 * @chip: NAND chip object
 * @maxchips: number of chips to scan for.
 * @ids: optional flash IDs table
 *
 * This fills out all the uninitialized function pointers with the defaults.
 * The flash ID is read and the mtd/chip structures are filled with the
 * appropriate values.
 */
int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
		       struct nand_flash_dev *ids)
{
	int ret;

	if (!maxchips)
		return -EINVAL;

	ret = nand_scan_ident(chip, maxchips, ids);
	if (ret)
		return ret;

	ret = nand_attach(chip);
	if (ret)
		goto cleanup_ident;

	ret = nand_scan_tail(chip);
	if (ret)
		goto detach_chip;

	return 0;

detach_chip:
	nand_detach(chip);
cleanup_ident:
	nand_scan_ident_cleanup(chip);

	return ret;
}
EXPORT_SYMBOL(nand_scan_with_ids);

/**
 * nand_cleanup - [NAND Interface] Free resources held by the NAND device
 * @chip: NAND chip object
 */
void nand_cleanup(struct nand_chip *chip)
{
	if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT) {
		if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING)
			rawnand_sw_hamming_cleanup(chip);
		else if (chip->ecc.algo == NAND_ECC_ALGO_BCH)
			rawnand_sw_bch_cleanup(chip);
	}

	nanddev_cleanup(&chip->base);

	/* Free secure regions data */
	kfree(chip->secure_regions);

	/* Free bad block table memory */
	kfree(chip->bbt);
	kfree(chip->data_buf);
	kfree(chip->ecc.code_buf);
	kfree(chip->ecc.calc_buf);

	/* Free bad block descriptor memory */
	if (chip->badblock_pattern && chip->badblock_pattern->options
			& NAND_BBT_DYNAMICSTRUCT)
		kfree(chip->badblock_pattern);

	/* Free the data interface */
	kfree(chip->best_interface_config);

	/* Free manufacturer priv data. */
	nand_manufacturer_cleanup(chip);

	/* Free controller specific allocations after chip identification */
	nand_detach(chip);

	/* Free identification phase allocations */
	nand_scan_ident_cleanup(chip);
}

EXPORT_SYMBOL_GPL(nand_cleanup);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
MODULE_DESCRIPTION("Generic NAND flash driver code");