Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Archit Taneja | 5406 | 36.85% | 1 | 0.95% |
Md Sadre Alam | 4032 | 27.48% | 13 | 12.38% |
Abhishek Sahu | 3144 | 21.43% | 32 | 30.48% |
Ansuel Smith | 1008 | 6.87% | 4 | 3.81% |
Peter Ujfalusi | 218 | 1.49% | 2 | 1.90% |
Manivannan Sadhasivam | 204 | 1.39% | 12 | 11.43% |
Boris Brezillon | 193 | 1.32% | 12 | 11.43% |
Arnd Bergmann | 137 | 0.93% | 2 | 1.90% |
Sricharan Ramabadhran | 118 | 0.80% | 1 | 0.95% |
Miquel Raynal | 117 | 0.80% | 11 | 10.48% |
Sivaprakash Murugesan | 30 | 0.20% | 2 | 1.90% |
Krzysztof Kozlowski | 12 | 0.08% | 1 | 0.95% |
Olof Johansson | 12 | 0.08% | 1 | 0.95% |
Fabio Estevam | 11 | 0.07% | 1 | 0.95% |
Bryan O'Donoghue | 8 | 0.05% | 1 | 0.95% |
Kathiravan T | 5 | 0.03% | 1 | 0.95% |
Praveenkumar I | 4 | 0.03% | 1 | 0.95% |
Rob Herring | 3 | 0.02% | 2 | 1.90% |
Thomas Gleixner | 2 | 0.01% | 1 | 0.95% |
Christian Lamparter | 2 | 0.01% | 1 | 0.95% |
Kees Cook | 2 | 0.01% | 1 | 0.95% |
Uwe Kleine-König | 2 | 0.01% | 1 | 0.95% |
Bibek Kumar Patro | 2 | 0.01% | 1 | 0.95% |
Total | 14672 | 105 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2016, The Linux Foundation. All rights reserved. */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/dma/qcom_adm.h> #include <linux/dma/qcom_bam_dma.h> #include <linux/module.h> #include <linux/mtd/partitions.h> #include <linux/mtd/rawnand.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/slab.h> /* NANDc reg offsets */ #define NAND_FLASH_CMD 0x00 #define NAND_ADDR0 0x04 #define NAND_ADDR1 0x08 #define NAND_FLASH_CHIP_SELECT 0x0c #define NAND_EXEC_CMD 0x10 #define NAND_FLASH_STATUS 0x14 #define NAND_BUFFER_STATUS 0x18 #define NAND_DEV0_CFG0 0x20 #define NAND_DEV0_CFG1 0x24 #define NAND_DEV0_ECC_CFG 0x28 #define NAND_AUTO_STATUS_EN 0x2c #define NAND_DEV1_CFG0 0x30 #define NAND_DEV1_CFG1 0x34 #define NAND_READ_ID 0x40 #define NAND_READ_STATUS 0x44 #define NAND_DEV_CMD0 0xa0 #define NAND_DEV_CMD1 0xa4 #define NAND_DEV_CMD2 0xa8 #define NAND_DEV_CMD_VLD 0xac #define SFLASHC_BURST_CFG 0xe0 #define NAND_ERASED_CW_DETECT_CFG 0xe8 #define NAND_ERASED_CW_DETECT_STATUS 0xec #define NAND_EBI2_ECC_BUF_CFG 0xf0 #define FLASH_BUF_ACC 0x100 #define NAND_CTRL 0xf00 #define NAND_VERSION 0xf08 #define NAND_READ_LOCATION_0 0xf20 #define NAND_READ_LOCATION_1 0xf24 #define NAND_READ_LOCATION_2 0xf28 #define NAND_READ_LOCATION_3 0xf2c #define NAND_READ_LOCATION_LAST_CW_0 0xf40 #define NAND_READ_LOCATION_LAST_CW_1 0xf44 #define NAND_READ_LOCATION_LAST_CW_2 0xf48 #define NAND_READ_LOCATION_LAST_CW_3 0xf4c /* dummy register offsets, used by write_reg_dma */ #define NAND_DEV_CMD1_RESTORE 0xdead #define NAND_DEV_CMD_VLD_RESTORE 0xbeef /* NAND_FLASH_CMD bits */ #define PAGE_ACC BIT(4) #define LAST_PAGE BIT(5) /* NAND_FLASH_CHIP_SELECT bits */ #define NAND_DEV_SEL 0 #define DM_EN BIT(2) /* NAND_FLASH_STATUS bits */ #define FS_OP_ERR BIT(4) #define FS_READY_BSY_N BIT(5) #define FS_MPU_ERR BIT(8) #define FS_DEVICE_STS_ERR BIT(16) #define FS_DEVICE_WP BIT(23) /* NAND_BUFFER_STATUS bits */ #define BS_UNCORRECTABLE_BIT BIT(8) #define BS_CORRECTABLE_ERR_MSK 0x1f /* NAND_DEVn_CFG0 bits */ #define DISABLE_STATUS_AFTER_WRITE 4 #define CW_PER_PAGE 6 #define UD_SIZE_BYTES 9 #define UD_SIZE_BYTES_MASK GENMASK(18, 9) #define ECC_PARITY_SIZE_BYTES_RS 19 #define SPARE_SIZE_BYTES 23 #define SPARE_SIZE_BYTES_MASK GENMASK(26, 23) #define NUM_ADDR_CYCLES 27 #define STATUS_BFR_READ 30 #define SET_RD_MODE_AFTER_STATUS 31 /* NAND_DEVn_CFG0 bits */ #define DEV0_CFG1_ECC_DISABLE 0 #define WIDE_FLASH 1 #define NAND_RECOVERY_CYCLES 2 #define CS_ACTIVE_BSY 5 #define BAD_BLOCK_BYTE_NUM 6 #define BAD_BLOCK_IN_SPARE_AREA 16 #define WR_RD_BSY_GAP 17 #define ENABLE_BCH_ECC 27 /* NAND_DEV0_ECC_CFG bits */ #define ECC_CFG_ECC_DISABLE 0 #define ECC_SW_RESET 1 #define ECC_MODE 4 #define ECC_PARITY_SIZE_BYTES_BCH 8 #define ECC_NUM_DATA_BYTES 16 #define ECC_NUM_DATA_BYTES_MASK GENMASK(25, 16) #define ECC_FORCE_CLK_OPEN 30 /* NAND_DEV_CMD1 bits */ #define READ_ADDR 0 /* NAND_DEV_CMD_VLD bits */ #define READ_START_VLD BIT(0) #define READ_STOP_VLD BIT(1) #define WRITE_START_VLD BIT(2) #define ERASE_START_VLD BIT(3) #define SEQ_READ_START_VLD BIT(4) /* NAND_EBI2_ECC_BUF_CFG bits */ #define NUM_STEPS 0 /* NAND_ERASED_CW_DETECT_CFG bits */ #define ERASED_CW_ECC_MASK 1 #define AUTO_DETECT_RES 0 #define MASK_ECC BIT(ERASED_CW_ECC_MASK) #define RESET_ERASED_DET BIT(AUTO_DETECT_RES) #define ACTIVE_ERASED_DET (0 << AUTO_DETECT_RES) #define CLR_ERASED_PAGE_DET (RESET_ERASED_DET | MASK_ECC) #define SET_ERASED_PAGE_DET (ACTIVE_ERASED_DET | MASK_ECC) /* NAND_ERASED_CW_DETECT_STATUS bits */ #define PAGE_ALL_ERASED BIT(7) #define CODEWORD_ALL_ERASED BIT(6) #define PAGE_ERASED BIT(5) #define CODEWORD_ERASED BIT(4) #define ERASED_PAGE (PAGE_ALL_ERASED | PAGE_ERASED) #define ERASED_CW (CODEWORD_ALL_ERASED | CODEWORD_ERASED) /* NAND_READ_LOCATION_n bits */ #define READ_LOCATION_OFFSET 0 #define READ_LOCATION_SIZE 16 #define READ_LOCATION_LAST 31 /* Version Mask */ #define NAND_VERSION_MAJOR_MASK 0xf0000000 #define NAND_VERSION_MAJOR_SHIFT 28 #define NAND_VERSION_MINOR_MASK 0x0fff0000 #define NAND_VERSION_MINOR_SHIFT 16 /* NAND OP_CMDs */ #define OP_PAGE_READ 0x2 #define OP_PAGE_READ_WITH_ECC 0x3 #define OP_PAGE_READ_WITH_ECC_SPARE 0x4 #define OP_PAGE_READ_ONFI_READ 0x5 #define OP_PROGRAM_PAGE 0x6 #define OP_PAGE_PROGRAM_WITH_ECC 0x7 #define OP_PROGRAM_PAGE_SPARE 0x9 #define OP_BLOCK_ERASE 0xa #define OP_CHECK_STATUS 0xc #define OP_FETCH_ID 0xb #define OP_RESET_DEVICE 0xd /* Default Value for NAND_DEV_CMD_VLD */ #define NAND_DEV_CMD_VLD_VAL (READ_START_VLD | WRITE_START_VLD | \ ERASE_START_VLD | SEQ_READ_START_VLD) /* NAND_CTRL bits */ #define BAM_MODE_EN BIT(0) /* * the NAND controller performs reads/writes with ECC in 516 byte chunks. * the driver calls the chunks 'step' or 'codeword' interchangeably */ #define NANDC_STEP_SIZE 512 /* * the largest page size we support is 8K, this will have 16 steps/codewords * of 512 bytes each */ #define MAX_NUM_STEPS (SZ_8K / NANDC_STEP_SIZE) /* we read at most 3 registers per codeword scan */ #define MAX_REG_RD (3 * MAX_NUM_STEPS) /* ECC modes supported by the controller */ #define ECC_NONE BIT(0) #define ECC_RS_4BIT BIT(1) #define ECC_BCH_4BIT BIT(2) #define ECC_BCH_8BIT BIT(3) #define nandc_set_read_loc_first(chip, reg, cw_offset, read_size, is_last_read_loc) \ nandc_set_reg(chip, reg, \ ((cw_offset) << READ_LOCATION_OFFSET) | \ ((read_size) << READ_LOCATION_SIZE) | \ ((is_last_read_loc) << READ_LOCATION_LAST)) #define nandc_set_read_loc_last(chip, reg, cw_offset, read_size, is_last_read_loc) \ nandc_set_reg(chip, reg, \ ((cw_offset) << READ_LOCATION_OFFSET) | \ ((read_size) << READ_LOCATION_SIZE) | \ ((is_last_read_loc) << READ_LOCATION_LAST)) /* * Returns the actual register address for all NAND_DEV_ registers * (i.e. NAND_DEV_CMD0, NAND_DEV_CMD1, NAND_DEV_CMD2 and NAND_DEV_CMD_VLD) */ #define dev_cmd_reg_addr(nandc, reg) ((nandc)->props->dev_cmd_reg_start + (reg)) /* Returns the NAND register physical address */ #define nandc_reg_phys(chip, offset) ((chip)->base_phys + (offset)) /* Returns the dma address for reg read buffer */ #define reg_buf_dma_addr(chip, vaddr) \ ((chip)->reg_read_dma + \ ((u8 *)(vaddr) - (u8 *)(chip)->reg_read_buf)) #define QPIC_PER_CW_CMD_ELEMENTS 32 #define QPIC_PER_CW_CMD_SGL 32 #define QPIC_PER_CW_DATA_SGL 8 #define QPIC_NAND_COMPLETION_TIMEOUT msecs_to_jiffies(2000) /* * Flags used in DMA descriptor preparation helper functions * (i.e. read_reg_dma/write_reg_dma/read_data_dma/write_data_dma) */ /* Don't set the EOT in current tx BAM sgl */ #define NAND_BAM_NO_EOT BIT(0) /* Set the NWD flag in current BAM sgl */ #define NAND_BAM_NWD BIT(1) /* Finish writing in the current BAM sgl and start writing in another BAM sgl */ #define NAND_BAM_NEXT_SGL BIT(2) /* * Erased codeword status is being used two times in single transfer so this * flag will determine the current value of erased codeword status register */ #define NAND_ERASED_CW_SET BIT(4) #define MAX_ADDRESS_CYCLE 5 /* * This data type corresponds to the BAM transaction which will be used for all * NAND transfers. * @bam_ce - the array of BAM command elements * @cmd_sgl - sgl for NAND BAM command pipe * @data_sgl - sgl for NAND BAM consumer/producer pipe * @last_data_desc - last DMA desc in data channel (tx/rx). * @last_cmd_desc - last DMA desc in command channel. * @txn_done - completion for NAND transfer. * @bam_ce_pos - the index in bam_ce which is available for next sgl * @bam_ce_start - the index in bam_ce which marks the start position ce * for current sgl. It will be used for size calculation * for current sgl * @cmd_sgl_pos - current index in command sgl. * @cmd_sgl_start - start index in command sgl. * @tx_sgl_pos - current index in data sgl for tx. * @tx_sgl_start - start index in data sgl for tx. * @rx_sgl_pos - current index in data sgl for rx. * @rx_sgl_start - start index in data sgl for rx. * @wait_second_completion - wait for second DMA desc completion before making * the NAND transfer completion. */ struct bam_transaction { struct bam_cmd_element *bam_ce; struct scatterlist *cmd_sgl; struct scatterlist *data_sgl; struct dma_async_tx_descriptor *last_data_desc; struct dma_async_tx_descriptor *last_cmd_desc; struct completion txn_done; u32 bam_ce_pos; u32 bam_ce_start; u32 cmd_sgl_pos; u32 cmd_sgl_start; u32 tx_sgl_pos; u32 tx_sgl_start; u32 rx_sgl_pos; u32 rx_sgl_start; bool wait_second_completion; }; /* * This data type corresponds to the nand dma descriptor * @dma_desc - low level DMA engine descriptor * @list - list for desc_info * * @adm_sgl - sgl which will be used for single sgl dma descriptor. Only used by * ADM * @bam_sgl - sgl which will be used for dma descriptor. Only used by BAM * @sgl_cnt - number of SGL in bam_sgl. Only used by BAM * @dir - DMA transfer direction */ struct desc_info { struct dma_async_tx_descriptor *dma_desc; struct list_head node; union { struct scatterlist adm_sgl; struct { struct scatterlist *bam_sgl; int sgl_cnt; }; }; enum dma_data_direction dir; }; /* * holds the current register values that we want to write. acts as a contiguous * chunk of memory which we use to write the controller registers through DMA. */ struct nandc_regs { __le32 cmd; __le32 addr0; __le32 addr1; __le32 chip_sel; __le32 exec; __le32 cfg0; __le32 cfg1; __le32 ecc_bch_cfg; __le32 clrflashstatus; __le32 clrreadstatus; __le32 cmd1; __le32 vld; __le32 orig_cmd1; __le32 orig_vld; __le32 ecc_buf_cfg; __le32 read_location0; __le32 read_location1; __le32 read_location2; __le32 read_location3; __le32 read_location_last0; __le32 read_location_last1; __le32 read_location_last2; __le32 read_location_last3; __le32 erased_cw_detect_cfg_clr; __le32 erased_cw_detect_cfg_set; }; /* * NAND controller data struct * * @dev: parent device * * @base: MMIO base * * @core_clk: controller clock * @aon_clk: another controller clock * * @regs: a contiguous chunk of memory for DMA register * writes. contains the register values to be * written to controller * * @props: properties of current NAND controller, * initialized via DT match data * * @controller: base controller structure * @host_list: list containing all the chips attached to the * controller * * @chan: dma channel * @cmd_crci: ADM DMA CRCI for command flow control * @data_crci: ADM DMA CRCI for data flow control * * @desc_list: DMA descriptor list (list of desc_infos) * * @data_buffer: our local DMA buffer for page read/writes, * used when we can't use the buffer provided * by upper layers directly * @reg_read_buf: local buffer for reading back registers via DMA * * @base_phys: physical base address of controller registers * @base_dma: dma base address of controller registers * @reg_read_dma: contains dma address for register read buffer * * @buf_size/count/start: markers for chip->legacy.read_buf/write_buf * functions * @max_cwperpage: maximum QPIC codewords required. calculated * from all connected NAND devices pagesize * * @reg_read_pos: marker for data read in reg_read_buf * * @cmd1/vld: some fixed controller register values * * @exec_opwrite: flag to select correct number of code word * while reading status */ struct qcom_nand_controller { struct device *dev; void __iomem *base; struct clk *core_clk; struct clk *aon_clk; struct nandc_regs *regs; struct bam_transaction *bam_txn; const struct qcom_nandc_props *props; struct nand_controller controller; struct list_head host_list; union { /* will be used only by QPIC for BAM DMA */ struct { struct dma_chan *tx_chan; struct dma_chan *rx_chan; struct dma_chan *cmd_chan; }; /* will be used only by EBI2 for ADM DMA */ struct { struct dma_chan *chan; unsigned int cmd_crci; unsigned int data_crci; }; }; struct list_head desc_list; u8 *data_buffer; __le32 *reg_read_buf; phys_addr_t base_phys; dma_addr_t base_dma; dma_addr_t reg_read_dma; int buf_size; int buf_count; int buf_start; unsigned int max_cwperpage; int reg_read_pos; u32 cmd1, vld; bool exec_opwrite; }; /* * NAND special boot partitions * * @page_offset: offset of the partition where spare data is not protected * by ECC (value in pages) * @page_offset: size of the partition where spare data is not protected * by ECC (value in pages) */ struct qcom_nand_boot_partition { u32 page_offset; u32 page_size; }; /* * Qcom op for each exec_op transfer * * @data_instr: data instruction pointer * @data_instr_idx: data instruction index * @rdy_timeout_ms: wait ready timeout in ms * @rdy_delay_ns: Additional delay in ns * @addr1_reg: Address1 register value * @addr2_reg: Address2 register value * @cmd_reg: CMD register value * @flag: flag for misc instruction */ struct qcom_op { const struct nand_op_instr *data_instr; unsigned int data_instr_idx; unsigned int rdy_timeout_ms; unsigned int rdy_delay_ns; u32 addr1_reg; u32 addr2_reg; u32 cmd_reg; u8 flag; }; /* * NAND chip structure * * @boot_partitions: array of boot partitions where offset and size of the * boot partitions are stored * * @chip: base NAND chip structure * @node: list node to add itself to host_list in * qcom_nand_controller * * @nr_boot_partitions: count of the boot partitions where spare data is not * protected by ECC * * @cs: chip select value for this chip * @cw_size: the number of bytes in a single step/codeword * of a page, consisting of all data, ecc, spare * and reserved bytes * @cw_data: the number of bytes within a codeword protected * by ECC * @ecc_bytes_hw: ECC bytes used by controller hardware for this * chip * * @last_command: keeps track of last command on this chip. used * for reading correct status * * @cfg0, cfg1, cfg0_raw..: NANDc register configurations needed for * ecc/non-ecc mode for the current nand flash * device * * @status: value to be returned if NAND_CMD_STATUS command * is executed * @codeword_fixup: keep track of the current layout used by * the driver for read/write operation. * @use_ecc: request the controller to use ECC for the * upcoming read/write * @bch_enabled: flag to tell whether BCH ECC mode is used */ struct qcom_nand_host { struct qcom_nand_boot_partition *boot_partitions; struct nand_chip chip; struct list_head node; int nr_boot_partitions; int cs; int cw_size; int cw_data; int ecc_bytes_hw; int spare_bytes; int bbm_size; int last_command; u32 cfg0, cfg1; u32 cfg0_raw, cfg1_raw; u32 ecc_buf_cfg; u32 ecc_bch_cfg; u32 clrflashstatus; u32 clrreadstatus; u8 status; bool codeword_fixup; bool use_ecc; bool bch_enabled; }; /* * This data type corresponds to the NAND controller properties which varies * among different NAND controllers. * @ecc_modes - ecc mode for NAND * @dev_cmd_reg_start - NAND_DEV_CMD_* registers starting offset * @is_bam - whether NAND controller is using BAM * @is_qpic - whether NAND CTRL is part of qpic IP * @qpic_v2 - flag to indicate QPIC IP version 2 * @use_codeword_fixup - whether NAND has different layout for boot partitions */ struct qcom_nandc_props { u32 ecc_modes; u32 dev_cmd_reg_start; bool is_bam; bool is_qpic; bool qpic_v2; bool use_codeword_fixup; }; /* Frees the BAM transaction memory */ static void free_bam_transaction(struct qcom_nand_controller *nandc) { struct bam_transaction *bam_txn = nandc->bam_txn; devm_kfree(nandc->dev, bam_txn); } /* Allocates and Initializes the BAM transaction */ static struct bam_transaction * alloc_bam_transaction(struct qcom_nand_controller *nandc) { struct bam_transaction *bam_txn; size_t bam_txn_size; unsigned int num_cw = nandc->max_cwperpage; void *bam_txn_buf; bam_txn_size = sizeof(*bam_txn) + num_cw * ((sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS) + (sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL) + (sizeof(*bam_txn->data_sgl) * QPIC_PER_CW_DATA_SGL)); bam_txn_buf = devm_kzalloc(nandc->dev, bam_txn_size, GFP_KERNEL); if (!bam_txn_buf) return NULL; bam_txn = bam_txn_buf; bam_txn_buf += sizeof(*bam_txn); bam_txn->bam_ce = bam_txn_buf; bam_txn_buf += sizeof(*bam_txn->bam_ce) * QPIC_PER_CW_CMD_ELEMENTS * num_cw; bam_txn->cmd_sgl = bam_txn_buf; bam_txn_buf += sizeof(*bam_txn->cmd_sgl) * QPIC_PER_CW_CMD_SGL * num_cw; bam_txn->data_sgl = bam_txn_buf; init_completion(&bam_txn->txn_done); return bam_txn; } /* Clears the BAM transaction indexes */ static void clear_bam_transaction(struct qcom_nand_controller *nandc) { struct bam_transaction *bam_txn = nandc->bam_txn; if (!nandc->props->is_bam) return; bam_txn->bam_ce_pos = 0; bam_txn->bam_ce_start = 0; bam_txn->cmd_sgl_pos = 0; bam_txn->cmd_sgl_start = 0; bam_txn->tx_sgl_pos = 0; bam_txn->tx_sgl_start = 0; bam_txn->rx_sgl_pos = 0; bam_txn->rx_sgl_start = 0; bam_txn->last_data_desc = NULL; bam_txn->wait_second_completion = false; sg_init_table(bam_txn->cmd_sgl, nandc->max_cwperpage * QPIC_PER_CW_CMD_SGL); sg_init_table(bam_txn->data_sgl, nandc->max_cwperpage * QPIC_PER_CW_DATA_SGL); reinit_completion(&bam_txn->txn_done); } /* Callback for DMA descriptor completion */ static void qpic_bam_dma_done(void *data) { struct bam_transaction *bam_txn = data; /* * In case of data transfer with NAND, 2 callbacks will be generated. * One for command channel and another one for data channel. * If current transaction has data descriptors * (i.e. wait_second_completion is true), then set this to false * and wait for second DMA descriptor completion. */ if (bam_txn->wait_second_completion) bam_txn->wait_second_completion = false; else complete(&bam_txn->txn_done); } static inline struct qcom_nand_host *to_qcom_nand_host(struct nand_chip *chip) { return container_of(chip, struct qcom_nand_host, chip); } static inline struct qcom_nand_controller * get_qcom_nand_controller(struct nand_chip *chip) { return container_of(chip->controller, struct qcom_nand_controller, controller); } static inline u32 nandc_read(struct qcom_nand_controller *nandc, int offset) { return ioread32(nandc->base + offset); } static inline void nandc_write(struct qcom_nand_controller *nandc, int offset, u32 val) { iowrite32(val, nandc->base + offset); } static inline void nandc_read_buffer_sync(struct qcom_nand_controller *nandc, bool is_cpu) { if (!nandc->props->is_bam) return; if (is_cpu) dma_sync_single_for_cpu(nandc->dev, nandc->reg_read_dma, MAX_REG_RD * sizeof(*nandc->reg_read_buf), DMA_FROM_DEVICE); else dma_sync_single_for_device(nandc->dev, nandc->reg_read_dma, MAX_REG_RD * sizeof(*nandc->reg_read_buf), DMA_FROM_DEVICE); } static __le32 *offset_to_nandc_reg(struct nandc_regs *regs, int offset) { switch (offset) { case NAND_FLASH_CMD: return ®s->cmd; case NAND_ADDR0: return ®s->addr0; case NAND_ADDR1: return ®s->addr1; case NAND_FLASH_CHIP_SELECT: return ®s->chip_sel; case NAND_EXEC_CMD: return ®s->exec; case NAND_FLASH_STATUS: return ®s->clrflashstatus; case NAND_DEV0_CFG0: return ®s->cfg0; case NAND_DEV0_CFG1: return ®s->cfg1; case NAND_DEV0_ECC_CFG: return ®s->ecc_bch_cfg; case NAND_READ_STATUS: return ®s->clrreadstatus; case NAND_DEV_CMD1: return ®s->cmd1; case NAND_DEV_CMD1_RESTORE: return ®s->orig_cmd1; case NAND_DEV_CMD_VLD: return ®s->vld; case NAND_DEV_CMD_VLD_RESTORE: return ®s->orig_vld; case NAND_EBI2_ECC_BUF_CFG: return ®s->ecc_buf_cfg; case NAND_READ_LOCATION_0: return ®s->read_location0; case NAND_READ_LOCATION_1: return ®s->read_location1; case NAND_READ_LOCATION_2: return ®s->read_location2; case NAND_READ_LOCATION_3: return ®s->read_location3; case NAND_READ_LOCATION_LAST_CW_0: return ®s->read_location_last0; case NAND_READ_LOCATION_LAST_CW_1: return ®s->read_location_last1; case NAND_READ_LOCATION_LAST_CW_2: return ®s->read_location_last2; case NAND_READ_LOCATION_LAST_CW_3: return ®s->read_location_last3; default: return NULL; } } static void nandc_set_reg(struct nand_chip *chip, int offset, u32 val) { struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nandc_regs *regs = nandc->regs; __le32 *reg; reg = offset_to_nandc_reg(regs, offset); if (reg) *reg = cpu_to_le32(val); } /* Helper to check the code word, whether it is last cw or not */ static bool qcom_nandc_is_last_cw(struct nand_ecc_ctrl *ecc, int cw) { return cw == (ecc->steps - 1); } /* helper to configure location register values */ static void nandc_set_read_loc(struct nand_chip *chip, int cw, int reg, int cw_offset, int read_size, int is_last_read_loc) { struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int reg_base = NAND_READ_LOCATION_0; if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw)) reg_base = NAND_READ_LOCATION_LAST_CW_0; reg_base += reg * 4; if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw)) return nandc_set_read_loc_last(chip, reg_base, cw_offset, read_size, is_last_read_loc); else return nandc_set_read_loc_first(chip, reg_base, cw_offset, read_size, is_last_read_loc); } /* helper to configure address register values */ static void set_address(struct qcom_nand_host *host, u16 column, int page) { struct nand_chip *chip = &host->chip; if (chip->options & NAND_BUSWIDTH_16) column >>= 1; nandc_set_reg(chip, NAND_ADDR0, page << 16 | column); nandc_set_reg(chip, NAND_ADDR1, page >> 16 & 0xff); } /* * update_rw_regs: set up read/write register values, these will be * written to the NAND controller registers via DMA * * @num_cw: number of steps for the read/write operation * @read: read or write operation * @cw : which code word */ static void update_rw_regs(struct qcom_nand_host *host, int num_cw, bool read, int cw) { struct nand_chip *chip = &host->chip; u32 cmd, cfg0, cfg1, ecc_bch_cfg; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); if (read) { if (host->use_ecc) cmd = OP_PAGE_READ_WITH_ECC | PAGE_ACC | LAST_PAGE; else cmd = OP_PAGE_READ | PAGE_ACC | LAST_PAGE; } else { cmd = OP_PROGRAM_PAGE | PAGE_ACC | LAST_PAGE; } if (host->use_ecc) { cfg0 = (host->cfg0 & ~(7U << CW_PER_PAGE)) | (num_cw - 1) << CW_PER_PAGE; cfg1 = host->cfg1; ecc_bch_cfg = host->ecc_bch_cfg; } else { cfg0 = (host->cfg0_raw & ~(7U << CW_PER_PAGE)) | (num_cw - 1) << CW_PER_PAGE; cfg1 = host->cfg1_raw; ecc_bch_cfg = 1 << ECC_CFG_ECC_DISABLE; } nandc_set_reg(chip, NAND_FLASH_CMD, cmd); nandc_set_reg(chip, NAND_DEV0_CFG0, cfg0); nandc_set_reg(chip, NAND_DEV0_CFG1, cfg1); nandc_set_reg(chip, NAND_DEV0_ECC_CFG, ecc_bch_cfg); if (!nandc->props->qpic_v2) nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, host->ecc_buf_cfg); nandc_set_reg(chip, NAND_FLASH_STATUS, host->clrflashstatus); nandc_set_reg(chip, NAND_READ_STATUS, host->clrreadstatus); nandc_set_reg(chip, NAND_EXEC_CMD, 1); if (read) nandc_set_read_loc(chip, cw, 0, 0, host->use_ecc ? host->cw_data : host->cw_size, 1); } /* * Maps the scatter gather list for DMA transfer and forms the DMA descriptor * for BAM. This descriptor will be added in the NAND DMA descriptor queue * which will be submitted to DMA engine. */ static int prepare_bam_async_desc(struct qcom_nand_controller *nandc, struct dma_chan *chan, unsigned long flags) { struct desc_info *desc; struct scatterlist *sgl; unsigned int sgl_cnt; int ret; struct bam_transaction *bam_txn = nandc->bam_txn; enum dma_transfer_direction dir_eng; struct dma_async_tx_descriptor *dma_desc; desc = kzalloc(sizeof(*desc), GFP_KERNEL); if (!desc) return -ENOMEM; if (chan == nandc->cmd_chan) { sgl = &bam_txn->cmd_sgl[bam_txn->cmd_sgl_start]; sgl_cnt = bam_txn->cmd_sgl_pos - bam_txn->cmd_sgl_start; bam_txn->cmd_sgl_start = bam_txn->cmd_sgl_pos; dir_eng = DMA_MEM_TO_DEV; desc->dir = DMA_TO_DEVICE; } else if (chan == nandc->tx_chan) { sgl = &bam_txn->data_sgl[bam_txn->tx_sgl_start]; sgl_cnt = bam_txn->tx_sgl_pos - bam_txn->tx_sgl_start; bam_txn->tx_sgl_start = bam_txn->tx_sgl_pos; dir_eng = DMA_MEM_TO_DEV; desc->dir = DMA_TO_DEVICE; } else { sgl = &bam_txn->data_sgl[bam_txn->rx_sgl_start]; sgl_cnt = bam_txn->rx_sgl_pos - bam_txn->rx_sgl_start; bam_txn->rx_sgl_start = bam_txn->rx_sgl_pos; dir_eng = DMA_DEV_TO_MEM; desc->dir = DMA_FROM_DEVICE; } sg_mark_end(sgl + sgl_cnt - 1); ret = dma_map_sg(nandc->dev, sgl, sgl_cnt, desc->dir); if (ret == 0) { dev_err(nandc->dev, "failure in mapping desc\n"); kfree(desc); return -ENOMEM; } desc->sgl_cnt = sgl_cnt; desc->bam_sgl = sgl; dma_desc = dmaengine_prep_slave_sg(chan, sgl, sgl_cnt, dir_eng, flags); if (!dma_desc) { dev_err(nandc->dev, "failure in prep desc\n"); dma_unmap_sg(nandc->dev, sgl, sgl_cnt, desc->dir); kfree(desc); return -EINVAL; } desc->dma_desc = dma_desc; /* update last data/command descriptor */ if (chan == nandc->cmd_chan) bam_txn->last_cmd_desc = dma_desc; else bam_txn->last_data_desc = dma_desc; list_add_tail(&desc->node, &nandc->desc_list); return 0; } /* * Prepares the command descriptor for BAM DMA which will be used for NAND * register reads and writes. The command descriptor requires the command * to be formed in command element type so this function uses the command * element from bam transaction ce array and fills the same with required * data. A single SGL can contain multiple command elements so * NAND_BAM_NEXT_SGL will be used for starting the separate SGL * after the current command element. */ static int prep_bam_dma_desc_cmd(struct qcom_nand_controller *nandc, bool read, int reg_off, const void *vaddr, int size, unsigned int flags) { int bam_ce_size; int i, ret; struct bam_cmd_element *bam_ce_buffer; struct bam_transaction *bam_txn = nandc->bam_txn; bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_pos]; /* fill the command desc */ for (i = 0; i < size; i++) { if (read) bam_prep_ce(&bam_ce_buffer[i], nandc_reg_phys(nandc, reg_off + 4 * i), BAM_READ_COMMAND, reg_buf_dma_addr(nandc, (__le32 *)vaddr + i)); else bam_prep_ce_le32(&bam_ce_buffer[i], nandc_reg_phys(nandc, reg_off + 4 * i), BAM_WRITE_COMMAND, *((__le32 *)vaddr + i)); } bam_txn->bam_ce_pos += size; /* use the separate sgl after this command */ if (flags & NAND_BAM_NEXT_SGL) { bam_ce_buffer = &bam_txn->bam_ce[bam_txn->bam_ce_start]; bam_ce_size = (bam_txn->bam_ce_pos - bam_txn->bam_ce_start) * sizeof(struct bam_cmd_element); sg_set_buf(&bam_txn->cmd_sgl[bam_txn->cmd_sgl_pos], bam_ce_buffer, bam_ce_size); bam_txn->cmd_sgl_pos++; bam_txn->bam_ce_start = bam_txn->bam_ce_pos; if (flags & NAND_BAM_NWD) { ret = prepare_bam_async_desc(nandc, nandc->cmd_chan, DMA_PREP_FENCE | DMA_PREP_CMD); if (ret) return ret; } } return 0; } /* * Prepares the data descriptor for BAM DMA which will be used for NAND * data reads and writes. */ static int prep_bam_dma_desc_data(struct qcom_nand_controller *nandc, bool read, const void *vaddr, int size, unsigned int flags) { int ret; struct bam_transaction *bam_txn = nandc->bam_txn; if (read) { sg_set_buf(&bam_txn->data_sgl[bam_txn->rx_sgl_pos], vaddr, size); bam_txn->rx_sgl_pos++; } else { sg_set_buf(&bam_txn->data_sgl[bam_txn->tx_sgl_pos], vaddr, size); bam_txn->tx_sgl_pos++; /* * BAM will only set EOT for DMA_PREP_INTERRUPT so if this flag * is not set, form the DMA descriptor */ if (!(flags & NAND_BAM_NO_EOT)) { ret = prepare_bam_async_desc(nandc, nandc->tx_chan, DMA_PREP_INTERRUPT); if (ret) return ret; } } return 0; } static int prep_adm_dma_desc(struct qcom_nand_controller *nandc, bool read, int reg_off, const void *vaddr, int size, bool flow_control) { struct desc_info *desc; struct dma_async_tx_descriptor *dma_desc; struct scatterlist *sgl; struct dma_slave_config slave_conf; struct qcom_adm_peripheral_config periph_conf = {}; enum dma_transfer_direction dir_eng; int ret; desc = kzalloc(sizeof(*desc), GFP_KERNEL); if (!desc) return -ENOMEM; sgl = &desc->adm_sgl; sg_init_one(sgl, vaddr, size); if (read) { dir_eng = DMA_DEV_TO_MEM; desc->dir = DMA_FROM_DEVICE; } else { dir_eng = DMA_MEM_TO_DEV; desc->dir = DMA_TO_DEVICE; } ret = dma_map_sg(nandc->dev, sgl, 1, desc->dir); if (ret == 0) { ret = -ENOMEM; goto err; } memset(&slave_conf, 0x00, sizeof(slave_conf)); slave_conf.device_fc = flow_control; if (read) { slave_conf.src_maxburst = 16; slave_conf.src_addr = nandc->base_dma + reg_off; if (nandc->data_crci) { periph_conf.crci = nandc->data_crci; slave_conf.peripheral_config = &periph_conf; slave_conf.peripheral_size = sizeof(periph_conf); } } else { slave_conf.dst_maxburst = 16; slave_conf.dst_addr = nandc->base_dma + reg_off; if (nandc->cmd_crci) { periph_conf.crci = nandc->cmd_crci; slave_conf.peripheral_config = &periph_conf; slave_conf.peripheral_size = sizeof(periph_conf); } } ret = dmaengine_slave_config(nandc->chan, &slave_conf); if (ret) { dev_err(nandc->dev, "failed to configure dma channel\n"); goto err; } dma_desc = dmaengine_prep_slave_sg(nandc->chan, sgl, 1, dir_eng, 0); if (!dma_desc) { dev_err(nandc->dev, "failed to prepare desc\n"); ret = -EINVAL; goto err; } desc->dma_desc = dma_desc; list_add_tail(&desc->node, &nandc->desc_list); return 0; err: kfree(desc); return ret; } /* * read_reg_dma: prepares a descriptor to read a given number of * contiguous registers to the reg_read_buf pointer * * @first: offset of the first register in the contiguous block * @num_regs: number of registers to read * @flags: flags to control DMA descriptor preparation */ static int read_reg_dma(struct qcom_nand_controller *nandc, int first, int num_regs, unsigned int flags) { bool flow_control = false; void *vaddr; vaddr = nandc->reg_read_buf + nandc->reg_read_pos; nandc->reg_read_pos += num_regs; if (first == NAND_DEV_CMD_VLD || first == NAND_DEV_CMD1) first = dev_cmd_reg_addr(nandc, first); if (nandc->props->is_bam) return prep_bam_dma_desc_cmd(nandc, true, first, vaddr, num_regs, flags); if (first == NAND_READ_ID || first == NAND_FLASH_STATUS) flow_control = true; return prep_adm_dma_desc(nandc, true, first, vaddr, num_regs * sizeof(u32), flow_control); } /* * write_reg_dma: prepares a descriptor to write a given number of * contiguous registers * * @first: offset of the first register in the contiguous block * @num_regs: number of registers to write * @flags: flags to control DMA descriptor preparation */ static int write_reg_dma(struct qcom_nand_controller *nandc, int first, int num_regs, unsigned int flags) { bool flow_control = false; struct nandc_regs *regs = nandc->regs; void *vaddr; vaddr = offset_to_nandc_reg(regs, first); if (first == NAND_ERASED_CW_DETECT_CFG) { if (flags & NAND_ERASED_CW_SET) vaddr = ®s->erased_cw_detect_cfg_set; else vaddr = ®s->erased_cw_detect_cfg_clr; } if (first == NAND_EXEC_CMD) flags |= NAND_BAM_NWD; if (first == NAND_DEV_CMD1_RESTORE || first == NAND_DEV_CMD1) first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD1); if (first == NAND_DEV_CMD_VLD_RESTORE || first == NAND_DEV_CMD_VLD) first = dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD); if (nandc->props->is_bam) return prep_bam_dma_desc_cmd(nandc, false, first, vaddr, num_regs, flags); if (first == NAND_FLASH_CMD) flow_control = true; return prep_adm_dma_desc(nandc, false, first, vaddr, num_regs * sizeof(u32), flow_control); } /* * read_data_dma: prepares a DMA descriptor to transfer data from the * controller's internal buffer to the buffer 'vaddr' * * @reg_off: offset within the controller's data buffer * @vaddr: virtual address of the buffer we want to write to * @size: DMA transaction size in bytes * @flags: flags to control DMA descriptor preparation */ static int read_data_dma(struct qcom_nand_controller *nandc, int reg_off, const u8 *vaddr, int size, unsigned int flags) { if (nandc->props->is_bam) return prep_bam_dma_desc_data(nandc, true, vaddr, size, flags); return prep_adm_dma_desc(nandc, true, reg_off, vaddr, size, false); } /* * write_data_dma: prepares a DMA descriptor to transfer data from * 'vaddr' to the controller's internal buffer * * @reg_off: offset within the controller's data buffer * @vaddr: virtual address of the buffer we want to read from * @size: DMA transaction size in bytes * @flags: flags to control DMA descriptor preparation */ static int write_data_dma(struct qcom_nand_controller *nandc, int reg_off, const u8 *vaddr, int size, unsigned int flags) { if (nandc->props->is_bam) return prep_bam_dma_desc_data(nandc, false, vaddr, size, flags); return prep_adm_dma_desc(nandc, false, reg_off, vaddr, size, false); } /* * Helper to prepare DMA descriptors for configuring registers * before reading a NAND page. */ static void config_nand_page_read(struct nand_chip *chip) { struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); write_reg_dma(nandc, NAND_ADDR0, 2, 0); write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); if (!nandc->props->qpic_v2) write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, 0); write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, 0); write_reg_dma(nandc, NAND_ERASED_CW_DETECT_CFG, 1, NAND_ERASED_CW_SET | NAND_BAM_NEXT_SGL); } /* * Helper to prepare DMA descriptors for configuring registers * before reading each codeword in NAND page. */ static void config_nand_cw_read(struct nand_chip *chip, bool use_ecc, int cw) { struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int reg = NAND_READ_LOCATION_0; if (nandc->props->qpic_v2 && qcom_nandc_is_last_cw(ecc, cw)) reg = NAND_READ_LOCATION_LAST_CW_0; if (nandc->props->is_bam) write_reg_dma(nandc, reg, 4, NAND_BAM_NEXT_SGL); write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); if (use_ecc) { read_reg_dma(nandc, NAND_FLASH_STATUS, 2, 0); read_reg_dma(nandc, NAND_ERASED_CW_DETECT_STATUS, 1, NAND_BAM_NEXT_SGL); } else { read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); } } /* * Helper to prepare dma descriptors to configure registers needed for reading a * single codeword in page */ static void config_nand_single_cw_page_read(struct nand_chip *chip, bool use_ecc, int cw) { config_nand_page_read(chip); config_nand_cw_read(chip, use_ecc, cw); } /* * Helper to prepare DMA descriptors used to configure registers needed for * before writing a NAND page. */ static void config_nand_page_write(struct nand_chip *chip) { struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); write_reg_dma(nandc, NAND_ADDR0, 2, 0); write_reg_dma(nandc, NAND_DEV0_CFG0, 3, 0); if (!nandc->props->qpic_v2) write_reg_dma(nandc, NAND_EBI2_ECC_BUF_CFG, 1, NAND_BAM_NEXT_SGL); } /* * Helper to prepare DMA descriptors for configuring registers * before writing each codeword in NAND page. */ static void config_nand_cw_write(struct nand_chip *chip) { struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); write_reg_dma(nandc, NAND_FLASH_STATUS, 1, 0); write_reg_dma(nandc, NAND_READ_STATUS, 1, NAND_BAM_NEXT_SGL); } /* helpers to submit/free our list of dma descriptors */ static int submit_descs(struct qcom_nand_controller *nandc) { struct desc_info *desc, *n; dma_cookie_t cookie = 0; struct bam_transaction *bam_txn = nandc->bam_txn; int ret = 0; if (nandc->props->is_bam) { if (bam_txn->rx_sgl_pos > bam_txn->rx_sgl_start) { ret = prepare_bam_async_desc(nandc, nandc->rx_chan, 0); if (ret) goto err_unmap_free_desc; } if (bam_txn->tx_sgl_pos > bam_txn->tx_sgl_start) { ret = prepare_bam_async_desc(nandc, nandc->tx_chan, DMA_PREP_INTERRUPT); if (ret) goto err_unmap_free_desc; } if (bam_txn->cmd_sgl_pos > bam_txn->cmd_sgl_start) { ret = prepare_bam_async_desc(nandc, nandc->cmd_chan, DMA_PREP_CMD); if (ret) goto err_unmap_free_desc; } } list_for_each_entry(desc, &nandc->desc_list, node) cookie = dmaengine_submit(desc->dma_desc); if (nandc->props->is_bam) { bam_txn->last_cmd_desc->callback = qpic_bam_dma_done; bam_txn->last_cmd_desc->callback_param = bam_txn; if (bam_txn->last_data_desc) { bam_txn->last_data_desc->callback = qpic_bam_dma_done; bam_txn->last_data_desc->callback_param = bam_txn; bam_txn->wait_second_completion = true; } dma_async_issue_pending(nandc->tx_chan); dma_async_issue_pending(nandc->rx_chan); dma_async_issue_pending(nandc->cmd_chan); if (!wait_for_completion_timeout(&bam_txn->txn_done, QPIC_NAND_COMPLETION_TIMEOUT)) ret = -ETIMEDOUT; } else { if (dma_sync_wait(nandc->chan, cookie) != DMA_COMPLETE) ret = -ETIMEDOUT; } err_unmap_free_desc: /* * Unmap the dma sg_list and free the desc allocated by both * prepare_bam_async_desc() and prep_adm_dma_desc() functions. */ list_for_each_entry_safe(desc, n, &nandc->desc_list, node) { list_del(&desc->node); if (nandc->props->is_bam) dma_unmap_sg(nandc->dev, desc->bam_sgl, desc->sgl_cnt, desc->dir); else dma_unmap_sg(nandc->dev, &desc->adm_sgl, 1, desc->dir); kfree(desc); } return ret; } /* reset the register read buffer for next NAND operation */ static void clear_read_regs(struct qcom_nand_controller *nandc) { nandc->reg_read_pos = 0; nandc_read_buffer_sync(nandc, false); } /* * when using BCH ECC, the HW flags an error in NAND_FLASH_STATUS if it read * an erased CW, and reports an erased CW in NAND_ERASED_CW_DETECT_STATUS. * * when using RS ECC, the HW reports the same erros when reading an erased CW, * but it notifies that it is an erased CW by placing special characters at * certain offsets in the buffer. * * verify if the page is erased or not, and fix up the page for RS ECC by * replacing the special characters with 0xff. */ static bool erased_chunk_check_and_fixup(u8 *data_buf, int data_len) { u8 empty1, empty2; /* * an erased page flags an error in NAND_FLASH_STATUS, check if the page * is erased by looking for 0x54s at offsets 3 and 175 from the * beginning of each codeword */ empty1 = data_buf[3]; empty2 = data_buf[175]; /* * if the erased codework markers, if they exist override them with * 0xffs */ if ((empty1 == 0x54 && empty2 == 0xff) || (empty1 == 0xff && empty2 == 0x54)) { data_buf[3] = 0xff; data_buf[175] = 0xff; } /* * check if the entire chunk contains 0xffs or not. if it doesn't, then * restore the original values at the special offsets */ if (memchr_inv(data_buf, 0xff, data_len)) { data_buf[3] = empty1; data_buf[175] = empty2; return false; } return true; } struct read_stats { __le32 flash; __le32 buffer; __le32 erased_cw; }; /* reads back FLASH_STATUS register set by the controller */ static int check_flash_errors(struct qcom_nand_host *host, int cw_cnt) { struct nand_chip *chip = &host->chip; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); int i; nandc_read_buffer_sync(nandc, true); for (i = 0; i < cw_cnt; i++) { u32 flash = le32_to_cpu(nandc->reg_read_buf[i]); if (flash & (FS_OP_ERR | FS_MPU_ERR)) return -EIO; } return 0; } /* performs raw read for one codeword */ static int qcom_nandc_read_cw_raw(struct mtd_info *mtd, struct nand_chip *chip, u8 *data_buf, u8 *oob_buf, int page, int cw) { struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int data_size1, data_size2, oob_size1, oob_size2; int ret, reg_off = FLASH_BUF_ACC, read_loc = 0; int raw_cw = cw; nand_read_page_op(chip, page, 0, NULL, 0); nandc->buf_count = 0; nandc->buf_start = 0; clear_read_regs(nandc); host->use_ecc = false; if (nandc->props->qpic_v2) raw_cw = ecc->steps - 1; clear_bam_transaction(nandc); set_address(host, host->cw_size * cw, page); update_rw_regs(host, 1, true, raw_cw); config_nand_page_read(chip); data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); oob_size1 = host->bbm_size; if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) { data_size2 = ecc->size - data_size1 - ((ecc->steps - 1) * 4); oob_size2 = (ecc->steps * 4) + host->ecc_bytes_hw + host->spare_bytes; } else { data_size2 = host->cw_data - data_size1; oob_size2 = host->ecc_bytes_hw + host->spare_bytes; } if (nandc->props->is_bam) { nandc_set_read_loc(chip, cw, 0, read_loc, data_size1, 0); read_loc += data_size1; nandc_set_read_loc(chip, cw, 1, read_loc, oob_size1, 0); read_loc += oob_size1; nandc_set_read_loc(chip, cw, 2, read_loc, data_size2, 0); read_loc += data_size2; nandc_set_read_loc(chip, cw, 3, read_loc, oob_size2, 1); } config_nand_cw_read(chip, false, raw_cw); read_data_dma(nandc, reg_off, data_buf, data_size1, 0); reg_off += data_size1; read_data_dma(nandc, reg_off, oob_buf, oob_size1, 0); reg_off += oob_size1; read_data_dma(nandc, reg_off, data_buf + data_size1, data_size2, 0); reg_off += data_size2; read_data_dma(nandc, reg_off, oob_buf + oob_size1, oob_size2, 0); ret = submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure to read raw cw %d\n", cw); return ret; } return check_flash_errors(host, 1); } /* * Bitflips can happen in erased codewords also so this function counts the * number of 0 in each CW for which ECC engine returns the uncorrectable * error. The page will be assumed as erased if this count is less than or * equal to the ecc->strength for each CW. * * 1. Both DATA and OOB need to be checked for number of 0. The * top-level API can be called with only data buf or OOB buf so use * chip->data_buf if data buf is null and chip->oob_poi if oob buf * is null for copying the raw bytes. * 2. Perform raw read for all the CW which has uncorrectable errors. * 3. For each CW, check the number of 0 in cw_data and usable OOB bytes. * The BBM and spare bytes bit flip won’t affect the ECC so don’t check * the number of bitflips in this area. */ static int check_for_erased_page(struct qcom_nand_host *host, u8 *data_buf, u8 *oob_buf, unsigned long uncorrectable_cws, int page, unsigned int max_bitflips) { struct nand_chip *chip = &host->chip; struct mtd_info *mtd = nand_to_mtd(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; u8 *cw_data_buf, *cw_oob_buf; int cw, data_size, oob_size, ret; if (!data_buf) data_buf = nand_get_data_buf(chip); if (!oob_buf) { nand_get_data_buf(chip); oob_buf = chip->oob_poi; } for_each_set_bit(cw, &uncorrectable_cws, ecc->steps) { if (qcom_nandc_is_last_cw(ecc, cw) && !host->codeword_fixup) { data_size = ecc->size - ((ecc->steps - 1) * 4); oob_size = (ecc->steps * 4) + host->ecc_bytes_hw; } else { data_size = host->cw_data; oob_size = host->ecc_bytes_hw; } /* determine starting buffer address for current CW */ cw_data_buf = data_buf + (cw * host->cw_data); cw_oob_buf = oob_buf + (cw * ecc->bytes); ret = qcom_nandc_read_cw_raw(mtd, chip, cw_data_buf, cw_oob_buf, page, cw); if (ret) return ret; /* * make sure it isn't an erased page reported * as not-erased by HW because of a few bitflips */ ret = nand_check_erased_ecc_chunk(cw_data_buf, data_size, cw_oob_buf + host->bbm_size, oob_size, NULL, 0, ecc->strength); if (ret < 0) { mtd->ecc_stats.failed++; } else { mtd->ecc_stats.corrected += ret; max_bitflips = max_t(unsigned int, max_bitflips, ret); } } return max_bitflips; } /* * reads back status registers set by the controller to notify page read * errors. this is equivalent to what 'ecc->correct()' would do. */ static int parse_read_errors(struct qcom_nand_host *host, u8 *data_buf, u8 *oob_buf, int page) { struct nand_chip *chip = &host->chip; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct mtd_info *mtd = nand_to_mtd(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; unsigned int max_bitflips = 0, uncorrectable_cws = 0; struct read_stats *buf; bool flash_op_err = false, erased; int i; u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; buf = (struct read_stats *)nandc->reg_read_buf; nandc_read_buffer_sync(nandc, true); for (i = 0; i < ecc->steps; i++, buf++) { u32 flash, buffer, erased_cw; int data_len, oob_len; if (qcom_nandc_is_last_cw(ecc, i)) { data_len = ecc->size - ((ecc->steps - 1) << 2); oob_len = ecc->steps << 2; } else { data_len = host->cw_data; oob_len = 0; } flash = le32_to_cpu(buf->flash); buffer = le32_to_cpu(buf->buffer); erased_cw = le32_to_cpu(buf->erased_cw); /* * Check ECC failure for each codeword. ECC failure can * happen in either of the following conditions * 1. If number of bitflips are greater than ECC engine * capability. * 2. If this codeword contains all 0xff for which erased * codeword detection check will be done. */ if ((flash & FS_OP_ERR) && (buffer & BS_UNCORRECTABLE_BIT)) { /* * For BCH ECC, ignore erased codeword errors, if * ERASED_CW bits are set. */ if (host->bch_enabled) { erased = (erased_cw & ERASED_CW) == ERASED_CW; /* * For RS ECC, HW reports the erased CW by placing * special characters at certain offsets in the buffer. * These special characters will be valid only if * complete page is read i.e. data_buf is not NULL. */ } else if (data_buf) { erased = erased_chunk_check_and_fixup(data_buf, data_len); } else { erased = false; } if (!erased) uncorrectable_cws |= BIT(i); /* * Check if MPU or any other operational error (timeout, * device failure, etc.) happened for this codeword and * make flash_op_err true. If flash_op_err is set, then * EIO will be returned for page read. */ } else if (flash & (FS_OP_ERR | FS_MPU_ERR)) { flash_op_err = true; /* * No ECC or operational errors happened. Check the number of * bits corrected and update the ecc_stats.corrected. */ } else { unsigned int stat; stat = buffer & BS_CORRECTABLE_ERR_MSK; mtd->ecc_stats.corrected += stat; max_bitflips = max(max_bitflips, stat); } if (data_buf) data_buf += data_len; if (oob_buf) oob_buf += oob_len + ecc->bytes; } if (flash_op_err) return -EIO; if (!uncorrectable_cws) return max_bitflips; return check_for_erased_page(host, data_buf_start, oob_buf_start, uncorrectable_cws, page, max_bitflips); } /* * helper to perform the actual page read operation, used by ecc->read_page(), * ecc->read_oob() */ static int read_page_ecc(struct qcom_nand_host *host, u8 *data_buf, u8 *oob_buf, int page) { struct nand_chip *chip = &host->chip; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; u8 *data_buf_start = data_buf, *oob_buf_start = oob_buf; int i, ret; config_nand_page_read(chip); /* queue cmd descs for each codeword */ for (i = 0; i < ecc->steps; i++) { int data_size, oob_size; if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) { data_size = ecc->size - ((ecc->steps - 1) << 2); oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + host->spare_bytes; } else { data_size = host->cw_data; oob_size = host->ecc_bytes_hw + host->spare_bytes; } if (nandc->props->is_bam) { if (data_buf && oob_buf) { nandc_set_read_loc(chip, i, 0, 0, data_size, 0); nandc_set_read_loc(chip, i, 1, data_size, oob_size, 1); } else if (data_buf) { nandc_set_read_loc(chip, i, 0, 0, data_size, 1); } else { nandc_set_read_loc(chip, i, 0, data_size, oob_size, 1); } } config_nand_cw_read(chip, true, i); if (data_buf) read_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size, 0); /* * when ecc is enabled, the controller doesn't read the real * or dummy bad block markers in each chunk. To maintain a * consistent layout across RAW and ECC reads, we just * leave the real/dummy BBM offsets empty (i.e, filled with * 0xffs) */ if (oob_buf) { int j; for (j = 0; j < host->bbm_size; j++) *oob_buf++ = 0xff; read_data_dma(nandc, FLASH_BUF_ACC + data_size, oob_buf, oob_size, 0); } if (data_buf) data_buf += data_size; if (oob_buf) oob_buf += oob_size; } ret = submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure to read page/oob\n"); return ret; } return parse_read_errors(host, data_buf_start, oob_buf_start, page); } /* * a helper that copies the last step/codeword of a page (containing free oob) * into our local buffer */ static int copy_last_cw(struct qcom_nand_host *host, int page) { struct nand_chip *chip = &host->chip; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int size; int ret; clear_read_regs(nandc); size = host->use_ecc ? host->cw_data : host->cw_size; /* prepare a clean read buffer */ memset(nandc->data_buffer, 0xff, size); set_address(host, host->cw_size * (ecc->steps - 1), page); update_rw_regs(host, 1, true, ecc->steps - 1); config_nand_single_cw_page_read(chip, host->use_ecc, ecc->steps - 1); read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, size, 0); ret = submit_descs(nandc); if (ret) dev_err(nandc->dev, "failed to copy last codeword\n"); return ret; } static bool qcom_nandc_is_boot_partition(struct qcom_nand_host *host, int page) { struct qcom_nand_boot_partition *boot_partition; u32 start, end; int i; /* * Since the frequent access will be to the non-boot partitions like rootfs, * optimize the page check by: * * 1. Checking if the page lies after the last boot partition. * 2. Checking from the boot partition end. */ /* First check the last boot partition */ boot_partition = &host->boot_partitions[host->nr_boot_partitions - 1]; start = boot_partition->page_offset; end = start + boot_partition->page_size; /* Page is after the last boot partition end. This is NOT a boot partition */ if (page > end) return false; /* Actually check if it's a boot partition */ if (page < end && page >= start) return true; /* Check the other boot partitions starting from the second-last partition */ for (i = host->nr_boot_partitions - 2; i >= 0; i--) { boot_partition = &host->boot_partitions[i]; start = boot_partition->page_offset; end = start + boot_partition->page_size; if (page < end && page >= start) return true; } return false; } static void qcom_nandc_codeword_fixup(struct qcom_nand_host *host, int page) { bool codeword_fixup = qcom_nandc_is_boot_partition(host, page); /* Skip conf write if we are already in the correct mode */ if (codeword_fixup == host->codeword_fixup) return; host->codeword_fixup = codeword_fixup; host->cw_data = codeword_fixup ? 512 : 516; host->spare_bytes = host->cw_size - host->ecc_bytes_hw - host->bbm_size - host->cw_data; host->cfg0 &= ~(SPARE_SIZE_BYTES_MASK | UD_SIZE_BYTES_MASK); host->cfg0 |= host->spare_bytes << SPARE_SIZE_BYTES | host->cw_data << UD_SIZE_BYTES; host->ecc_bch_cfg &= ~ECC_NUM_DATA_BYTES_MASK; host->ecc_bch_cfg |= host->cw_data << ECC_NUM_DATA_BYTES; host->ecc_buf_cfg = (host->cw_data - 1) << NUM_STEPS; } /* implements ecc->read_page() */ static int qcom_nandc_read_page(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; u8 *data_buf, *oob_buf = NULL; if (host->nr_boot_partitions) qcom_nandc_codeword_fixup(host, page); nand_read_page_op(chip, page, 0, NULL, 0); nandc->buf_count = 0; nandc->buf_start = 0; host->use_ecc = true; clear_read_regs(nandc); set_address(host, 0, page); update_rw_regs(host, ecc->steps, true, 0); data_buf = buf; oob_buf = oob_required ? chip->oob_poi : NULL; clear_bam_transaction(nandc); return read_page_ecc(host, data_buf, oob_buf, page); } /* implements ecc->read_page_raw() */ static int qcom_nandc_read_page_raw(struct nand_chip *chip, u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct qcom_nand_host *host = to_qcom_nand_host(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int cw, ret; u8 *data_buf = buf, *oob_buf = chip->oob_poi; if (host->nr_boot_partitions) qcom_nandc_codeword_fixup(host, page); for (cw = 0; cw < ecc->steps; cw++) { ret = qcom_nandc_read_cw_raw(mtd, chip, data_buf, oob_buf, page, cw); if (ret) return ret; data_buf += host->cw_data; oob_buf += ecc->bytes; } return 0; } /* implements ecc->read_oob() */ static int qcom_nandc_read_oob(struct nand_chip *chip, int page) { struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; if (host->nr_boot_partitions) qcom_nandc_codeword_fixup(host, page); clear_read_regs(nandc); clear_bam_transaction(nandc); host->use_ecc = true; set_address(host, 0, page); update_rw_regs(host, ecc->steps, true, 0); return read_page_ecc(host, NULL, chip->oob_poi, page); } /* implements ecc->write_page() */ static int qcom_nandc_write_page(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; u8 *data_buf, *oob_buf; int i, ret; if (host->nr_boot_partitions) qcom_nandc_codeword_fixup(host, page); nand_prog_page_begin_op(chip, page, 0, NULL, 0); set_address(host, 0, page); nandc->buf_count = 0; nandc->buf_start = 0; clear_read_regs(nandc); clear_bam_transaction(nandc); data_buf = (u8 *)buf; oob_buf = chip->oob_poi; host->use_ecc = true; update_rw_regs(host, ecc->steps, false, 0); config_nand_page_write(chip); for (i = 0; i < ecc->steps; i++) { int data_size, oob_size; if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) { data_size = ecc->size - ((ecc->steps - 1) << 2); oob_size = (ecc->steps << 2) + host->ecc_bytes_hw + host->spare_bytes; } else { data_size = host->cw_data; oob_size = ecc->bytes; } write_data_dma(nandc, FLASH_BUF_ACC, data_buf, data_size, i == (ecc->steps - 1) ? NAND_BAM_NO_EOT : 0); /* * when ECC is enabled, we don't really need to write anything * to oob for the first n - 1 codewords since these oob regions * just contain ECC bytes that's written by the controller * itself. For the last codeword, we skip the bbm positions and * write to the free oob area. */ if (qcom_nandc_is_last_cw(ecc, i)) { oob_buf += host->bbm_size; write_data_dma(nandc, FLASH_BUF_ACC + data_size, oob_buf, oob_size, 0); } config_nand_cw_write(chip); data_buf += data_size; oob_buf += oob_size; } ret = submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure to write page\n"); return ret; } return nand_prog_page_end_op(chip); } /* implements ecc->write_page_raw() */ static int qcom_nandc_write_page_raw(struct nand_chip *chip, const u8 *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; u8 *data_buf, *oob_buf; int i, ret; if (host->nr_boot_partitions) qcom_nandc_codeword_fixup(host, page); nand_prog_page_begin_op(chip, page, 0, NULL, 0); clear_read_regs(nandc); clear_bam_transaction(nandc); data_buf = (u8 *)buf; oob_buf = chip->oob_poi; host->use_ecc = false; update_rw_regs(host, ecc->steps, false, 0); config_nand_page_write(chip); for (i = 0; i < ecc->steps; i++) { int data_size1, data_size2, oob_size1, oob_size2; int reg_off = FLASH_BUF_ACC; data_size1 = mtd->writesize - host->cw_size * (ecc->steps - 1); oob_size1 = host->bbm_size; if (qcom_nandc_is_last_cw(ecc, i) && !host->codeword_fixup) { data_size2 = ecc->size - data_size1 - ((ecc->steps - 1) << 2); oob_size2 = (ecc->steps << 2) + host->ecc_bytes_hw + host->spare_bytes; } else { data_size2 = host->cw_data - data_size1; oob_size2 = host->ecc_bytes_hw + host->spare_bytes; } write_data_dma(nandc, reg_off, data_buf, data_size1, NAND_BAM_NO_EOT); reg_off += data_size1; data_buf += data_size1; write_data_dma(nandc, reg_off, oob_buf, oob_size1, NAND_BAM_NO_EOT); reg_off += oob_size1; oob_buf += oob_size1; write_data_dma(nandc, reg_off, data_buf, data_size2, NAND_BAM_NO_EOT); reg_off += data_size2; data_buf += data_size2; write_data_dma(nandc, reg_off, oob_buf, oob_size2, 0); oob_buf += oob_size2; config_nand_cw_write(chip); } ret = submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure to write raw page\n"); return ret; } return nand_prog_page_end_op(chip); } /* * implements ecc->write_oob() * * the NAND controller cannot write only data or only OOB within a codeword * since ECC is calculated for the combined codeword. So update the OOB from * chip->oob_poi, and pad the data area with OxFF before writing. */ static int qcom_nandc_write_oob(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; u8 *oob = chip->oob_poi; int data_size, oob_size; int ret; if (host->nr_boot_partitions) qcom_nandc_codeword_fixup(host, page); host->use_ecc = true; clear_bam_transaction(nandc); /* calculate the data and oob size for the last codeword/step */ data_size = ecc->size - ((ecc->steps - 1) << 2); oob_size = mtd->oobavail; memset(nandc->data_buffer, 0xff, host->cw_data); /* override new oob content to last codeword */ mtd_ooblayout_get_databytes(mtd, nandc->data_buffer + data_size, oob, 0, mtd->oobavail); set_address(host, host->cw_size * (ecc->steps - 1), page); update_rw_regs(host, 1, false, 0); config_nand_page_write(chip); write_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, data_size + oob_size, 0); config_nand_cw_write(chip); ret = submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure to write oob\n"); return ret; } return nand_prog_page_end_op(chip); } static int qcom_nandc_block_bad(struct nand_chip *chip, loff_t ofs) { struct mtd_info *mtd = nand_to_mtd(chip); struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int page, ret, bbpos, bad = 0; page = (int)(ofs >> chip->page_shift) & chip->pagemask; /* * configure registers for a raw sub page read, the address is set to * the beginning of the last codeword, we don't care about reading ecc * portion of oob. we just want the first few bytes from this codeword * that contains the BBM */ host->use_ecc = false; clear_bam_transaction(nandc); ret = copy_last_cw(host, page); if (ret) goto err; if (check_flash_errors(host, 1)) { dev_warn(nandc->dev, "error when trying to read BBM\n"); goto err; } bbpos = mtd->writesize - host->cw_size * (ecc->steps - 1); bad = nandc->data_buffer[bbpos] != 0xff; if (chip->options & NAND_BUSWIDTH_16) bad = bad || (nandc->data_buffer[bbpos + 1] != 0xff); err: return bad; } static int qcom_nandc_block_markbad(struct nand_chip *chip, loff_t ofs) { struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; int page, ret; clear_read_regs(nandc); clear_bam_transaction(nandc); /* * to mark the BBM as bad, we flash the entire last codeword with 0s. * we don't care about the rest of the content in the codeword since * we aren't going to use this block again */ memset(nandc->data_buffer, 0x00, host->cw_size); page = (int)(ofs >> chip->page_shift) & chip->pagemask; /* prepare write */ host->use_ecc = false; set_address(host, host->cw_size * (ecc->steps - 1), page); update_rw_regs(host, 1, false, ecc->steps - 1); config_nand_page_write(chip); write_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, host->cw_size, 0); config_nand_cw_write(chip); ret = submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure to update BBM\n"); return ret; } return nand_prog_page_end_op(chip); } /* * NAND controller page layout info * * Layout with ECC enabled: * * |----------------------| |---------------------------------| * | xx.......yy| | *********xx.......yy| * | DATA xx..ECC..yy| | DATA **SPARE**xx..ECC..yy| * | (516) xx.......yy| | (516-n*4) **(n*4)**xx.......yy| * | xx.......yy| | *********xx.......yy| * |----------------------| |---------------------------------| * codeword 1,2..n-1 codeword n * <---(528/532 Bytes)--> <-------(528/532 Bytes)---------> * * n = Number of codewords in the page * . = ECC bytes * * = Spare/free bytes * x = Unused byte(s) * y = Reserved byte(s) * * 2K page: n = 4, spare = 16 bytes * 4K page: n = 8, spare = 32 bytes * 8K page: n = 16, spare = 64 bytes * * the qcom nand controller operates at a sub page/codeword level. each * codeword is 528 and 532 bytes for 4 bit and 8 bit ECC modes respectively. * the number of ECC bytes vary based on the ECC strength and the bus width. * * the first n - 1 codewords contains 516 bytes of user data, the remaining * 12/16 bytes consist of ECC and reserved data. The nth codeword contains * both user data and spare(oobavail) bytes that sum up to 516 bytes. * * When we access a page with ECC enabled, the reserved bytes(s) are not * accessible at all. When reading, we fill up these unreadable positions * with 0xffs. When writing, the controller skips writing the inaccessible * bytes. * * Layout with ECC disabled: * * |------------------------------| |---------------------------------------| * | yy xx.......| | bb *********xx.......| * | DATA1 yy DATA2 xx..ECC..| | DATA1 bb DATA2 **SPARE**xx..ECC..| * | (size1) yy (size2) xx.......| | (size1) bb (size2) **(n*4)**xx.......| * | yy xx.......| | bb *********xx.......| * |------------------------------| |---------------------------------------| * codeword 1,2..n-1 codeword n * <-------(528/532 Bytes)------> <-----------(528/532 Bytes)-----------> * * n = Number of codewords in the page * . = ECC bytes * * = Spare/free bytes * x = Unused byte(s) * y = Dummy Bad Bock byte(s) * b = Real Bad Block byte(s) * size1/size2 = function of codeword size and 'n' * * when the ECC block is disabled, one reserved byte (or two for 16 bit bus * width) is now accessible. For the first n - 1 codewords, these are dummy Bad * Block Markers. In the last codeword, this position contains the real BBM * * In order to have a consistent layout between RAW and ECC modes, we assume * the following OOB layout arrangement: * * |-----------| |--------------------| * |yyxx.......| |bb*********xx.......| * |yyxx..ECC..| |bb*FREEOOB*xx..ECC..| * |yyxx.......| |bb*********xx.......| * |yyxx.......| |bb*********xx.......| * |-----------| |--------------------| * first n - 1 nth OOB region * OOB regions * * n = Number of codewords in the page * . = ECC bytes * * = FREE OOB bytes * y = Dummy bad block byte(s) (inaccessible when ECC enabled) * x = Unused byte(s) * b = Real bad block byte(s) (inaccessible when ECC enabled) * * This layout is read as is when ECC is disabled. When ECC is enabled, the * inaccessible Bad Block byte(s) are ignored when we write to a page/oob, * and assumed as 0xffs when we read a page/oob. The ECC, unused and * dummy/real bad block bytes are grouped as ecc bytes (i.e, ecc->bytes is * the sum of the three). */ static int qcom_nand_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct qcom_nand_host *host = to_qcom_nand_host(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; if (section > 1) return -ERANGE; if (!section) { oobregion->length = (ecc->bytes * (ecc->steps - 1)) + host->bbm_size; oobregion->offset = 0; } else { oobregion->length = host->ecc_bytes_hw + host->spare_bytes; oobregion->offset = mtd->oobsize - oobregion->length; } return 0; } static int qcom_nand_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct qcom_nand_host *host = to_qcom_nand_host(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; if (section) return -ERANGE; oobregion->length = ecc->steps * 4; oobregion->offset = ((ecc->steps - 1) * ecc->bytes) + host->bbm_size; return 0; } static const struct mtd_ooblayout_ops qcom_nand_ooblayout_ops = { .ecc = qcom_nand_ooblayout_ecc, .free = qcom_nand_ooblayout_free, }; static int qcom_nandc_calc_ecc_bytes(int step_size, int strength) { return strength == 4 ? 12 : 16; } NAND_ECC_CAPS_SINGLE(qcom_nandc_ecc_caps, qcom_nandc_calc_ecc_bytes, NANDC_STEP_SIZE, 4, 8); static int qcom_nand_attach_chip(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct qcom_nand_host *host = to_qcom_nand_host(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); int cwperpage, bad_block_byte, ret; bool wide_bus; int ecc_mode = 1; /* controller only supports 512 bytes data steps */ ecc->size = NANDC_STEP_SIZE; wide_bus = chip->options & NAND_BUSWIDTH_16 ? true : false; cwperpage = mtd->writesize / NANDC_STEP_SIZE; /* * Each CW has 4 available OOB bytes which will be protected with ECC * so remaining bytes can be used for ECC. */ ret = nand_ecc_choose_conf(chip, &qcom_nandc_ecc_caps, mtd->oobsize - (cwperpage * 4)); if (ret) { dev_err(nandc->dev, "No valid ECC settings possible\n"); return ret; } if (ecc->strength >= 8) { /* 8 bit ECC defaults to BCH ECC on all platforms */ host->bch_enabled = true; ecc_mode = 1; if (wide_bus) { host->ecc_bytes_hw = 14; host->spare_bytes = 0; host->bbm_size = 2; } else { host->ecc_bytes_hw = 13; host->spare_bytes = 2; host->bbm_size = 1; } } else { /* * if the controller supports BCH for 4 bit ECC, the controller * uses lesser bytes for ECC. If RS is used, the ECC bytes is * always 10 bytes */ if (nandc->props->ecc_modes & ECC_BCH_4BIT) { /* BCH */ host->bch_enabled = true; ecc_mode = 0; if (wide_bus) { host->ecc_bytes_hw = 8; host->spare_bytes = 2; host->bbm_size = 2; } else { host->ecc_bytes_hw = 7; host->spare_bytes = 4; host->bbm_size = 1; } } else { /* RS */ host->ecc_bytes_hw = 10; if (wide_bus) { host->spare_bytes = 0; host->bbm_size = 2; } else { host->spare_bytes = 1; host->bbm_size = 1; } } } /* * we consider ecc->bytes as the sum of all the non-data content in a * step. It gives us a clean representation of the oob area (even if * all the bytes aren't used for ECC).It is always 16 bytes for 8 bit * ECC and 12 bytes for 4 bit ECC */ ecc->bytes = host->ecc_bytes_hw + host->spare_bytes + host->bbm_size; ecc->read_page = qcom_nandc_read_page; ecc->read_page_raw = qcom_nandc_read_page_raw; ecc->read_oob = qcom_nandc_read_oob; ecc->write_page = qcom_nandc_write_page; ecc->write_page_raw = qcom_nandc_write_page_raw; ecc->write_oob = qcom_nandc_write_oob; ecc->engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; mtd_set_ooblayout(mtd, &qcom_nand_ooblayout_ops); /* Free the initially allocated BAM transaction for reading the ONFI params */ if (nandc->props->is_bam) free_bam_transaction(nandc); nandc->max_cwperpage = max_t(unsigned int, nandc->max_cwperpage, cwperpage); /* Now allocate the BAM transaction based on updated max_cwperpage */ if (nandc->props->is_bam) { nandc->bam_txn = alloc_bam_transaction(nandc); if (!nandc->bam_txn) { dev_err(nandc->dev, "failed to allocate bam transaction\n"); return -ENOMEM; } } /* * DATA_UD_BYTES varies based on whether the read/write command protects * spare data with ECC too. We protect spare data by default, so we set * it to main + spare data, which are 512 and 4 bytes respectively. */ host->cw_data = 516; /* * total bytes in a step, either 528 bytes for 4 bit ECC, or 532 bytes * for 8 bit ECC */ host->cw_size = host->cw_data + ecc->bytes; bad_block_byte = mtd->writesize - host->cw_size * (cwperpage - 1) + 1; host->cfg0 = (cwperpage - 1) << CW_PER_PAGE | host->cw_data << UD_SIZE_BYTES | 0 << DISABLE_STATUS_AFTER_WRITE | 5 << NUM_ADDR_CYCLES | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_RS | 0 << STATUS_BFR_READ | 1 << SET_RD_MODE_AFTER_STATUS | host->spare_bytes << SPARE_SIZE_BYTES; host->cfg1 = 7 << NAND_RECOVERY_CYCLES | 0 << CS_ACTIVE_BSY | bad_block_byte << BAD_BLOCK_BYTE_NUM | 0 << BAD_BLOCK_IN_SPARE_AREA | 2 << WR_RD_BSY_GAP | wide_bus << WIDE_FLASH | host->bch_enabled << ENABLE_BCH_ECC; host->cfg0_raw = (cwperpage - 1) << CW_PER_PAGE | host->cw_size << UD_SIZE_BYTES | 5 << NUM_ADDR_CYCLES | 0 << SPARE_SIZE_BYTES; host->cfg1_raw = 7 << NAND_RECOVERY_CYCLES | 0 << CS_ACTIVE_BSY | 17 << BAD_BLOCK_BYTE_NUM | 1 << BAD_BLOCK_IN_SPARE_AREA | 2 << WR_RD_BSY_GAP | wide_bus << WIDE_FLASH | 1 << DEV0_CFG1_ECC_DISABLE; host->ecc_bch_cfg = !host->bch_enabled << ECC_CFG_ECC_DISABLE | 0 << ECC_SW_RESET | host->cw_data << ECC_NUM_DATA_BYTES | 1 << ECC_FORCE_CLK_OPEN | ecc_mode << ECC_MODE | host->ecc_bytes_hw << ECC_PARITY_SIZE_BYTES_BCH; if (!nandc->props->qpic_v2) host->ecc_buf_cfg = 0x203 << NUM_STEPS; host->clrflashstatus = FS_READY_BSY_N; host->clrreadstatus = 0xc0; nandc->regs->erased_cw_detect_cfg_clr = cpu_to_le32(CLR_ERASED_PAGE_DET); nandc->regs->erased_cw_detect_cfg_set = cpu_to_le32(SET_ERASED_PAGE_DET); dev_dbg(nandc->dev, "cfg0 %x cfg1 %x ecc_buf_cfg %x ecc_bch cfg %x cw_size %d cw_data %d strength %d parity_bytes %d steps %d\n", host->cfg0, host->cfg1, host->ecc_buf_cfg, host->ecc_bch_cfg, host->cw_size, host->cw_data, ecc->strength, ecc->bytes, cwperpage); return 0; } static int qcom_op_cmd_mapping(struct nand_chip *chip, u8 opcode, struct qcom_op *q_op) { struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct qcom_nand_host *host = to_qcom_nand_host(chip); int cmd; switch (opcode) { case NAND_CMD_RESET: cmd = OP_RESET_DEVICE; break; case NAND_CMD_READID: cmd = OP_FETCH_ID; break; case NAND_CMD_PARAM: if (nandc->props->qpic_v2) cmd = OP_PAGE_READ_ONFI_READ; else cmd = OP_PAGE_READ; break; case NAND_CMD_ERASE1: case NAND_CMD_ERASE2: cmd = OP_BLOCK_ERASE; break; case NAND_CMD_STATUS: cmd = OP_CHECK_STATUS; break; case NAND_CMD_PAGEPROG: cmd = OP_PROGRAM_PAGE; q_op->flag = OP_PROGRAM_PAGE; nandc->exec_opwrite = true; break; case NAND_CMD_READ0: case NAND_CMD_READSTART: if (host->use_ecc) cmd = OP_PAGE_READ_WITH_ECC; else cmd = OP_PAGE_READ; break; default: dev_err(nandc->dev, "Opcode not supported: %u\n", opcode); return -EOPNOTSUPP; } return cmd; } /* NAND framework ->exec_op() hooks and related helpers */ static int qcom_parse_instructions(struct nand_chip *chip, const struct nand_subop *subop, struct qcom_op *q_op) { const struct nand_op_instr *instr = NULL; unsigned int op_id; int i, ret; for (op_id = 0; op_id < subop->ninstrs; op_id++) { unsigned int offset, naddrs; const u8 *addrs; instr = &subop->instrs[op_id]; switch (instr->type) { case NAND_OP_CMD_INSTR: ret = qcom_op_cmd_mapping(chip, instr->ctx.cmd.opcode, q_op); if (ret < 0) return ret; q_op->cmd_reg = ret; q_op->rdy_delay_ns = instr->delay_ns; break; case NAND_OP_ADDR_INSTR: offset = nand_subop_get_addr_start_off(subop, op_id); naddrs = nand_subop_get_num_addr_cyc(subop, op_id); addrs = &instr->ctx.addr.addrs[offset]; for (i = 0; i < min_t(unsigned int, 4, naddrs); i++) q_op->addr1_reg |= addrs[i] << (i * 8); if (naddrs > 4) q_op->addr2_reg |= addrs[4]; q_op->rdy_delay_ns = instr->delay_ns; break; case NAND_OP_DATA_IN_INSTR: q_op->data_instr = instr; q_op->data_instr_idx = op_id; q_op->rdy_delay_ns = instr->delay_ns; fallthrough; case NAND_OP_DATA_OUT_INSTR: q_op->rdy_delay_ns = instr->delay_ns; break; case NAND_OP_WAITRDY_INSTR: q_op->rdy_timeout_ms = instr->ctx.waitrdy.timeout_ms; q_op->rdy_delay_ns = instr->delay_ns; break; } } return 0; } static void qcom_delay_ns(unsigned int ns) { if (!ns) return; if (ns < 10000) ndelay(ns); else udelay(DIV_ROUND_UP(ns, 1000)); } static int qcom_wait_rdy_poll(struct nand_chip *chip, unsigned int time_ms) { struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); unsigned long start = jiffies + msecs_to_jiffies(time_ms); u32 flash; nandc_read_buffer_sync(nandc, true); do { flash = le32_to_cpu(nandc->reg_read_buf[0]); if (flash & FS_READY_BSY_N) return 0; cpu_relax(); } while (time_after(start, jiffies)); dev_err(nandc->dev, "Timeout waiting for device to be ready:0x%08x\n", flash); return -ETIMEDOUT; } static int qcom_read_status_exec(struct nand_chip *chip, const struct nand_subop *subop) { struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct nand_ecc_ctrl *ecc = &chip->ecc; struct qcom_op q_op = {}; const struct nand_op_instr *instr = NULL; unsigned int op_id = 0; unsigned int len = 0; int ret, num_cw, i; u32 flash_status; host->status = NAND_STATUS_READY | NAND_STATUS_WP; ret = qcom_parse_instructions(chip, subop, &q_op); if (ret) return ret; num_cw = nandc->exec_opwrite ? ecc->steps : 1; nandc->exec_opwrite = false; nandc->buf_count = 0; nandc->buf_start = 0; host->use_ecc = false; clear_read_regs(nandc); clear_bam_transaction(nandc); nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg); nandc_set_reg(chip, NAND_EXEC_CMD, 1); write_reg_dma(nandc, NAND_FLASH_CMD, 1, NAND_BAM_NEXT_SGL); write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); ret = submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure in submitting status descriptor\n"); goto err_out; } nandc_read_buffer_sync(nandc, true); for (i = 0; i < num_cw; i++) { flash_status = le32_to_cpu(nandc->reg_read_buf[i]); if (flash_status & FS_MPU_ERR) host->status &= ~NAND_STATUS_WP; if (flash_status & FS_OP_ERR || (i == (num_cw - 1) && (flash_status & FS_DEVICE_STS_ERR))) host->status |= NAND_STATUS_FAIL; } flash_status = host->status; instr = q_op.data_instr; op_id = q_op.data_instr_idx; len = nand_subop_get_data_len(subop, op_id); memcpy(instr->ctx.data.buf.in, &flash_status, len); err_out: return ret; } static int qcom_read_id_type_exec(struct nand_chip *chip, const struct nand_subop *subop) { struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_op q_op = {}; const struct nand_op_instr *instr = NULL; unsigned int op_id = 0; unsigned int len = 0; int ret; ret = qcom_parse_instructions(chip, subop, &q_op); if (ret) return ret; nandc->buf_count = 0; nandc->buf_start = 0; host->use_ecc = false; clear_read_regs(nandc); clear_bam_transaction(nandc); nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg); nandc_set_reg(chip, NAND_ADDR0, q_op.addr1_reg); nandc_set_reg(chip, NAND_ADDR1, q_op.addr2_reg); nandc_set_reg(chip, NAND_FLASH_CHIP_SELECT, nandc->props->is_bam ? 0 : DM_EN); nandc_set_reg(chip, NAND_EXEC_CMD, 1); write_reg_dma(nandc, NAND_FLASH_CMD, 4, NAND_BAM_NEXT_SGL); write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); read_reg_dma(nandc, NAND_READ_ID, 1, NAND_BAM_NEXT_SGL); ret = submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure in submitting read id descriptor\n"); goto err_out; } instr = q_op.data_instr; op_id = q_op.data_instr_idx; len = nand_subop_get_data_len(subop, op_id); nandc_read_buffer_sync(nandc, true); memcpy(instr->ctx.data.buf.in, nandc->reg_read_buf, len); err_out: return ret; } static int qcom_misc_cmd_type_exec(struct nand_chip *chip, const struct nand_subop *subop) { struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_op q_op = {}; int ret; int instrs = 1; ret = qcom_parse_instructions(chip, subop, &q_op); if (ret) return ret; if (q_op.flag == OP_PROGRAM_PAGE) { goto wait_rdy; } else if (q_op.cmd_reg == OP_BLOCK_ERASE) { q_op.cmd_reg |= PAGE_ACC | LAST_PAGE; nandc_set_reg(chip, NAND_ADDR0, q_op.addr1_reg); nandc_set_reg(chip, NAND_ADDR1, q_op.addr2_reg); nandc_set_reg(chip, NAND_DEV0_CFG0, host->cfg0_raw & ~(7 << CW_PER_PAGE)); nandc_set_reg(chip, NAND_DEV0_CFG1, host->cfg1_raw); instrs = 3; } else if (q_op.cmd_reg != OP_RESET_DEVICE) { return 0; } nandc->buf_count = 0; nandc->buf_start = 0; host->use_ecc = false; clear_read_regs(nandc); clear_bam_transaction(nandc); nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg); nandc_set_reg(chip, NAND_EXEC_CMD, 1); write_reg_dma(nandc, NAND_FLASH_CMD, instrs, NAND_BAM_NEXT_SGL); if (q_op.cmd_reg == OP_BLOCK_ERASE) write_reg_dma(nandc, NAND_DEV0_CFG0, 2, NAND_BAM_NEXT_SGL); write_reg_dma(nandc, NAND_EXEC_CMD, 1, NAND_BAM_NEXT_SGL); read_reg_dma(nandc, NAND_FLASH_STATUS, 1, NAND_BAM_NEXT_SGL); ret = submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure in submitting misc descriptor\n"); goto err_out; } wait_rdy: qcom_delay_ns(q_op.rdy_delay_ns); ret = qcom_wait_rdy_poll(chip, q_op.rdy_timeout_ms); err_out: return ret; } static int qcom_param_page_type_exec(struct nand_chip *chip, const struct nand_subop *subop) { struct qcom_nand_host *host = to_qcom_nand_host(chip); struct qcom_nand_controller *nandc = get_qcom_nand_controller(chip); struct qcom_op q_op = {}; const struct nand_op_instr *instr = NULL; unsigned int op_id = 0; unsigned int len = 0; int ret; ret = qcom_parse_instructions(chip, subop, &q_op); if (ret) return ret; q_op.cmd_reg |= PAGE_ACC | LAST_PAGE; nandc->buf_count = 0; nandc->buf_start = 0; host->use_ecc = false; clear_read_regs(nandc); clear_bam_transaction(nandc); nandc_set_reg(chip, NAND_FLASH_CMD, q_op.cmd_reg); nandc_set_reg(chip, NAND_ADDR0, 0); nandc_set_reg(chip, NAND_ADDR1, 0); nandc_set_reg(chip, NAND_DEV0_CFG0, 0 << CW_PER_PAGE | 512 << UD_SIZE_BYTES | 5 << NUM_ADDR_CYCLES | 0 << SPARE_SIZE_BYTES); nandc_set_reg(chip, NAND_DEV0_CFG1, 7 << NAND_RECOVERY_CYCLES | 0 << CS_ACTIVE_BSY | 17 << BAD_BLOCK_BYTE_NUM | 1 << BAD_BLOCK_IN_SPARE_AREA | 2 << WR_RD_BSY_GAP | 0 << WIDE_FLASH | 1 << DEV0_CFG1_ECC_DISABLE); if (!nandc->props->qpic_v2) nandc_set_reg(chip, NAND_EBI2_ECC_BUF_CFG, 1 << ECC_CFG_ECC_DISABLE); /* configure CMD1 and VLD for ONFI param probing in QPIC v1 */ if (!nandc->props->qpic_v2) { nandc_set_reg(chip, NAND_DEV_CMD_VLD, (nandc->vld & ~READ_START_VLD)); nandc_set_reg(chip, NAND_DEV_CMD1, (nandc->cmd1 & ~(0xFF << READ_ADDR)) | NAND_CMD_PARAM << READ_ADDR); } nandc_set_reg(chip, NAND_EXEC_CMD, 1); if (!nandc->props->qpic_v2) { nandc_set_reg(chip, NAND_DEV_CMD1_RESTORE, nandc->cmd1); nandc_set_reg(chip, NAND_DEV_CMD_VLD_RESTORE, nandc->vld); } instr = q_op.data_instr; op_id = q_op.data_instr_idx; len = nand_subop_get_data_len(subop, op_id); nandc_set_read_loc(chip, 0, 0, 0, len, 1); if (!nandc->props->qpic_v2) { write_reg_dma(nandc, NAND_DEV_CMD_VLD, 1, 0); write_reg_dma(nandc, NAND_DEV_CMD1, 1, NAND_BAM_NEXT_SGL); } nandc->buf_count = len; memset(nandc->data_buffer, 0xff, nandc->buf_count); config_nand_single_cw_page_read(chip, false, 0); read_data_dma(nandc, FLASH_BUF_ACC, nandc->data_buffer, nandc->buf_count, 0); /* restore CMD1 and VLD regs */ if (!nandc->props->qpic_v2) { write_reg_dma(nandc, NAND_DEV_CMD1_RESTORE, 1, 0); write_reg_dma(nandc, NAND_DEV_CMD_VLD_RESTORE, 1, NAND_BAM_NEXT_SGL); } ret = submit_descs(nandc); if (ret) { dev_err(nandc->dev, "failure in submitting param page descriptor\n"); goto err_out; } ret = qcom_wait_rdy_poll(chip, q_op.rdy_timeout_ms); if (ret) goto err_out; memcpy(instr->ctx.data.buf.in, nandc->data_buffer, len); err_out: return ret; } static const struct nand_op_parser qcom_op_parser = NAND_OP_PARSER( NAND_OP_PARSER_PATTERN( qcom_read_id_type_exec, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE), NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 8)), NAND_OP_PARSER_PATTERN( qcom_read_status_exec, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 1)), NAND_OP_PARSER_PATTERN( qcom_param_page_type_exec, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_ADDR_ELEM(false, MAX_ADDRESS_CYCLE), NAND_OP_PARSER_PAT_WAITRDY_ELEM(true), NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 512)), NAND_OP_PARSER_PATTERN( qcom_misc_cmd_type_exec, NAND_OP_PARSER_PAT_CMD_ELEM(false), NAND_OP_PARSER_PAT_ADDR_ELEM(true, MAX_ADDRESS_CYCLE), NAND_OP_PARSER_PAT_CMD_ELEM(true), NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)), ); static int qcom_check_op(struct nand_chip *chip, const struct nand_operation *op) { const struct nand_op_instr *instr; int op_id; for (op_id = 0; op_id < op->ninstrs; op_id++) { instr = &op->instrs[op_id]; switch (instr->type) { case NAND_OP_CMD_INSTR: if (instr->ctx.cmd.opcode != NAND_CMD_RESET && instr->ctx.cmd.opcode != NAND_CMD_READID && instr->ctx.cmd.opcode != NAND_CMD_PARAM && instr->ctx.cmd.opcode != NAND_CMD_ERASE1 && instr->ctx.cmd.opcode != NAND_CMD_ERASE2 && instr->ctx.cmd.opcode != NAND_CMD_STATUS && instr->ctx.cmd.opcode != NAND_CMD_PAGEPROG && instr->ctx.cmd.opcode != NAND_CMD_READ0 && instr->ctx.cmd.opcode != NAND_CMD_READSTART) return -EOPNOTSUPP; break; default: break; } } return 0; } static int qcom_nand_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { if (check_only) return qcom_check_op(chip, op); return nand_op_parser_exec_op(chip, &qcom_op_parser, op, check_only); } static const struct nand_controller_ops qcom_nandc_ops = { .attach_chip = qcom_nand_attach_chip, .exec_op = qcom_nand_exec_op, }; static void qcom_nandc_unalloc(struct qcom_nand_controller *nandc) { if (nandc->props->is_bam) { if (!dma_mapping_error(nandc->dev, nandc->reg_read_dma)) dma_unmap_single(nandc->dev, nandc->reg_read_dma, MAX_REG_RD * sizeof(*nandc->reg_read_buf), DMA_FROM_DEVICE); if (nandc->tx_chan) dma_release_channel(nandc->tx_chan); if (nandc->rx_chan) dma_release_channel(nandc->rx_chan); if (nandc->cmd_chan) dma_release_channel(nandc->cmd_chan); } else { if (nandc->chan) dma_release_channel(nandc->chan); } } static int qcom_nandc_alloc(struct qcom_nand_controller *nandc) { int ret; ret = dma_set_coherent_mask(nandc->dev, DMA_BIT_MASK(32)); if (ret) { dev_err(nandc->dev, "failed to set DMA mask\n"); return ret; } /* * we use the internal buffer for reading ONFI params, reading small * data like ID and status, and preforming read-copy-write operations * when writing to a codeword partially. 532 is the maximum possible * size of a codeword for our nand controller */ nandc->buf_size = 532; nandc->data_buffer = devm_kzalloc(nandc->dev, nandc->buf_size, GFP_KERNEL); if (!nandc->data_buffer) return -ENOMEM; nandc->regs = devm_kzalloc(nandc->dev, sizeof(*nandc->regs), GFP_KERNEL); if (!nandc->regs) return -ENOMEM; nandc->reg_read_buf = devm_kcalloc(nandc->dev, MAX_REG_RD, sizeof(*nandc->reg_read_buf), GFP_KERNEL); if (!nandc->reg_read_buf) return -ENOMEM; if (nandc->props->is_bam) { nandc->reg_read_dma = dma_map_single(nandc->dev, nandc->reg_read_buf, MAX_REG_RD * sizeof(*nandc->reg_read_buf), DMA_FROM_DEVICE); if (dma_mapping_error(nandc->dev, nandc->reg_read_dma)) { dev_err(nandc->dev, "failed to DMA MAP reg buffer\n"); return -EIO; } nandc->tx_chan = dma_request_chan(nandc->dev, "tx"); if (IS_ERR(nandc->tx_chan)) { ret = PTR_ERR(nandc->tx_chan); nandc->tx_chan = NULL; dev_err_probe(nandc->dev, ret, "tx DMA channel request failed\n"); goto unalloc; } nandc->rx_chan = dma_request_chan(nandc->dev, "rx"); if (IS_ERR(nandc->rx_chan)) { ret = PTR_ERR(nandc->rx_chan); nandc->rx_chan = NULL; dev_err_probe(nandc->dev, ret, "rx DMA channel request failed\n"); goto unalloc; } nandc->cmd_chan = dma_request_chan(nandc->dev, "cmd"); if (IS_ERR(nandc->cmd_chan)) { ret = PTR_ERR(nandc->cmd_chan); nandc->cmd_chan = NULL; dev_err_probe(nandc->dev, ret, "cmd DMA channel request failed\n"); goto unalloc; } /* * Initially allocate BAM transaction to read ONFI param page. * After detecting all the devices, this BAM transaction will * be freed and the next BAM transaction will be allocated with * maximum codeword size */ nandc->max_cwperpage = 1; nandc->bam_txn = alloc_bam_transaction(nandc); if (!nandc->bam_txn) { dev_err(nandc->dev, "failed to allocate bam transaction\n"); ret = -ENOMEM; goto unalloc; } } else { nandc->chan = dma_request_chan(nandc->dev, "rxtx"); if (IS_ERR(nandc->chan)) { ret = PTR_ERR(nandc->chan); nandc->chan = NULL; dev_err_probe(nandc->dev, ret, "rxtx DMA channel request failed\n"); return ret; } } INIT_LIST_HEAD(&nandc->desc_list); INIT_LIST_HEAD(&nandc->host_list); nand_controller_init(&nandc->controller); nandc->controller.ops = &qcom_nandc_ops; return 0; unalloc: qcom_nandc_unalloc(nandc); return ret; } /* one time setup of a few nand controller registers */ static int qcom_nandc_setup(struct qcom_nand_controller *nandc) { u32 nand_ctrl; /* kill onenand */ if (!nandc->props->is_qpic) nandc_write(nandc, SFLASHC_BURST_CFG, 0); if (!nandc->props->qpic_v2) nandc_write(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD_VLD), NAND_DEV_CMD_VLD_VAL); /* enable ADM or BAM DMA */ if (nandc->props->is_bam) { nand_ctrl = nandc_read(nandc, NAND_CTRL); /* *NAND_CTRL is an operational registers, and CPU * access to operational registers are read only * in BAM mode. So update the NAND_CTRL register * only if it is not in BAM mode. In most cases BAM * mode will be enabled in bootloader */ if (!(nand_ctrl & BAM_MODE_EN)) nandc_write(nandc, NAND_CTRL, nand_ctrl | BAM_MODE_EN); } else { nandc_write(nandc, NAND_FLASH_CHIP_SELECT, DM_EN); } /* save the original values of these registers */ if (!nandc->props->qpic_v2) { nandc->cmd1 = nandc_read(nandc, dev_cmd_reg_addr(nandc, NAND_DEV_CMD1)); nandc->vld = NAND_DEV_CMD_VLD_VAL; } return 0; } static const char * const probes[] = { "cmdlinepart", "ofpart", "qcomsmem", NULL }; static int qcom_nand_host_parse_boot_partitions(struct qcom_nand_controller *nandc, struct qcom_nand_host *host, struct device_node *dn) { struct nand_chip *chip = &host->chip; struct mtd_info *mtd = nand_to_mtd(chip); struct qcom_nand_boot_partition *boot_partition; struct device *dev = nandc->dev; int partitions_count, i, j, ret; if (!of_property_present(dn, "qcom,boot-partitions")) return 0; partitions_count = of_property_count_u32_elems(dn, "qcom,boot-partitions"); if (partitions_count <= 0) { dev_err(dev, "Error parsing boot partition\n"); return partitions_count ? partitions_count : -EINVAL; } host->nr_boot_partitions = partitions_count / 2; host->boot_partitions = devm_kcalloc(dev, host->nr_boot_partitions, sizeof(*host->boot_partitions), GFP_KERNEL); if (!host->boot_partitions) { host->nr_boot_partitions = 0; return -ENOMEM; } for (i = 0, j = 0; i < host->nr_boot_partitions; i++, j += 2) { boot_partition = &host->boot_partitions[i]; ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j, &boot_partition->page_offset); if (ret) { dev_err(dev, "Error parsing boot partition offset at index %d\n", i); host->nr_boot_partitions = 0; return ret; } if (boot_partition->page_offset % mtd->writesize) { dev_err(dev, "Boot partition offset not multiple of writesize at index %i\n", i); host->nr_boot_partitions = 0; return -EINVAL; } /* Convert offset to nand pages */ boot_partition->page_offset /= mtd->writesize; ret = of_property_read_u32_index(dn, "qcom,boot-partitions", j + 1, &boot_partition->page_size); if (ret) { dev_err(dev, "Error parsing boot partition size at index %d\n", i); host->nr_boot_partitions = 0; return ret; } if (boot_partition->page_size % mtd->writesize) { dev_err(dev, "Boot partition size not multiple of writesize at index %i\n", i); host->nr_boot_partitions = 0; return -EINVAL; } /* Convert size to nand pages */ boot_partition->page_size /= mtd->writesize; } return 0; } static int qcom_nand_host_init_and_register(struct qcom_nand_controller *nandc, struct qcom_nand_host *host, struct device_node *dn) { struct nand_chip *chip = &host->chip; struct mtd_info *mtd = nand_to_mtd(chip); struct device *dev = nandc->dev; int ret; ret = of_property_read_u32(dn, "reg", &host->cs); if (ret) { dev_err(dev, "can't get chip-select\n"); return -ENXIO; } nand_set_flash_node(chip, dn); mtd->name = devm_kasprintf(dev, GFP_KERNEL, "qcom_nand.%d", host->cs); if (!mtd->name) return -ENOMEM; mtd->owner = THIS_MODULE; mtd->dev.parent = dev; /* * the bad block marker is readable only when we read the last codeword * of a page with ECC disabled. currently, the nand_base and nand_bbt * helpers don't allow us to read BB from a nand chip with ECC * disabled (MTD_OPS_PLACE_OOB is set by default). use the block_bad * and block_markbad helpers until we permanently switch to using * MTD_OPS_RAW for all drivers (with the help of badblockbits) */ chip->legacy.block_bad = qcom_nandc_block_bad; chip->legacy.block_markbad = qcom_nandc_block_markbad; chip->controller = &nandc->controller; chip->options |= NAND_NO_SUBPAGE_WRITE | NAND_USES_DMA | NAND_SKIP_BBTSCAN; /* set up initial status value */ host->status = NAND_STATUS_READY | NAND_STATUS_WP; ret = nand_scan(chip, 1); if (ret) return ret; ret = mtd_device_parse_register(mtd, probes, NULL, NULL, 0); if (ret) goto err; if (nandc->props->use_codeword_fixup) { ret = qcom_nand_host_parse_boot_partitions(nandc, host, dn); if (ret) goto err; } return 0; err: nand_cleanup(chip); return ret; } static int qcom_probe_nand_devices(struct qcom_nand_controller *nandc) { struct device *dev = nandc->dev; struct device_node *dn = dev->of_node, *child; struct qcom_nand_host *host; int ret = -ENODEV; for_each_available_child_of_node(dn, child) { host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); if (!host) { of_node_put(child); return -ENOMEM; } ret = qcom_nand_host_init_and_register(nandc, host, child); if (ret) { devm_kfree(dev, host); continue; } list_add_tail(&host->node, &nandc->host_list); } return ret; } /* parse custom DT properties here */ static int qcom_nandc_parse_dt(struct platform_device *pdev) { struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); struct device_node *np = nandc->dev->of_node; int ret; if (!nandc->props->is_bam) { ret = of_property_read_u32(np, "qcom,cmd-crci", &nandc->cmd_crci); if (ret) { dev_err(nandc->dev, "command CRCI unspecified\n"); return ret; } ret = of_property_read_u32(np, "qcom,data-crci", &nandc->data_crci); if (ret) { dev_err(nandc->dev, "data CRCI unspecified\n"); return ret; } } return 0; } static int qcom_nandc_probe(struct platform_device *pdev) { struct qcom_nand_controller *nandc; const void *dev_data; struct device *dev = &pdev->dev; struct resource *res; int ret; nandc = devm_kzalloc(&pdev->dev, sizeof(*nandc), GFP_KERNEL); if (!nandc) return -ENOMEM; platform_set_drvdata(pdev, nandc); nandc->dev = dev; dev_data = of_device_get_match_data(dev); if (!dev_data) { dev_err(&pdev->dev, "failed to get device data\n"); return -ENODEV; } nandc->props = dev_data; nandc->core_clk = devm_clk_get(dev, "core"); if (IS_ERR(nandc->core_clk)) return PTR_ERR(nandc->core_clk); nandc->aon_clk = devm_clk_get(dev, "aon"); if (IS_ERR(nandc->aon_clk)) return PTR_ERR(nandc->aon_clk); ret = qcom_nandc_parse_dt(pdev); if (ret) return ret; nandc->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(nandc->base)) return PTR_ERR(nandc->base); nandc->base_phys = res->start; nandc->base_dma = dma_map_resource(dev, res->start, resource_size(res), DMA_BIDIRECTIONAL, 0); if (dma_mapping_error(dev, nandc->base_dma)) return -ENXIO; ret = clk_prepare_enable(nandc->core_clk); if (ret) goto err_core_clk; ret = clk_prepare_enable(nandc->aon_clk); if (ret) goto err_aon_clk; ret = qcom_nandc_alloc(nandc); if (ret) goto err_nandc_alloc; ret = qcom_nandc_setup(nandc); if (ret) goto err_setup; ret = qcom_probe_nand_devices(nandc); if (ret) goto err_setup; return 0; err_setup: qcom_nandc_unalloc(nandc); err_nandc_alloc: clk_disable_unprepare(nandc->aon_clk); err_aon_clk: clk_disable_unprepare(nandc->core_clk); err_core_clk: dma_unmap_resource(dev, nandc->base_dma, resource_size(res), DMA_BIDIRECTIONAL, 0); return ret; } static void qcom_nandc_remove(struct platform_device *pdev) { struct qcom_nand_controller *nandc = platform_get_drvdata(pdev); struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0); struct qcom_nand_host *host; struct nand_chip *chip; int ret; list_for_each_entry(host, &nandc->host_list, node) { chip = &host->chip; ret = mtd_device_unregister(nand_to_mtd(chip)); WARN_ON(ret); nand_cleanup(chip); } qcom_nandc_unalloc(nandc); clk_disable_unprepare(nandc->aon_clk); clk_disable_unprepare(nandc->core_clk); dma_unmap_resource(&pdev->dev, nandc->base_dma, resource_size(res), DMA_BIDIRECTIONAL, 0); } static const struct qcom_nandc_props ipq806x_nandc_props = { .ecc_modes = (ECC_RS_4BIT | ECC_BCH_8BIT), .is_bam = false, .use_codeword_fixup = true, .dev_cmd_reg_start = 0x0, }; static const struct qcom_nandc_props ipq4019_nandc_props = { .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), .is_bam = true, .is_qpic = true, .dev_cmd_reg_start = 0x0, }; static const struct qcom_nandc_props ipq8074_nandc_props = { .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), .is_bam = true, .is_qpic = true, .dev_cmd_reg_start = 0x7000, }; static const struct qcom_nandc_props sdx55_nandc_props = { .ecc_modes = (ECC_BCH_4BIT | ECC_BCH_8BIT), .is_bam = true, .is_qpic = true, .qpic_v2 = true, .dev_cmd_reg_start = 0x7000, }; /* * data will hold a struct pointer containing more differences once we support * more controller variants */ static const struct of_device_id qcom_nandc_of_match[] = { { .compatible = "qcom,ipq806x-nand", .data = &ipq806x_nandc_props, }, { .compatible = "qcom,ipq4019-nand", .data = &ipq4019_nandc_props, }, { .compatible = "qcom,ipq6018-nand", .data = &ipq8074_nandc_props, }, { .compatible = "qcom,ipq8074-nand", .data = &ipq8074_nandc_props, }, { .compatible = "qcom,sdx55-nand", .data = &sdx55_nandc_props, }, {} }; MODULE_DEVICE_TABLE(of, qcom_nandc_of_match); static struct platform_driver qcom_nandc_driver = { .driver = { .name = "qcom-nandc", .of_match_table = qcom_nandc_of_match, }, .probe = qcom_nandc_probe, .remove_new = qcom_nandc_remove, }; module_platform_driver(qcom_nandc_driver); MODULE_AUTHOR("Archit Taneja <architt@codeaurora.org>"); MODULE_DESCRIPTION("Qualcomm NAND Controller driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1