Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ben Dooks | 1639 | 33.15% | 25 | 20.49% |
Thomas Gleixner | 1527 | 30.89% | 4 | 3.28% |
Sergio Prado | 599 | 12.12% | 2 | 1.64% |
Boris Brezillon | 396 | 8.01% | 24 | 19.67% |
Matt Reimer | 108 | 2.18% | 3 | 2.46% |
Matthieu CASTET | 104 | 2.10% | 1 | 0.82% |
Jiri Pinkava | 102 | 2.06% | 1 | 0.82% |
David Woodhouse | 79 | 1.60% | 4 | 3.28% |
Miquel Raynal | 69 | 1.40% | 7 | 5.74% |
Linus Torvalds (pre-git) | 51 | 1.03% | 12 | 9.84% |
Linus Torvalds | 51 | 1.03% | 3 | 2.46% |
Russell King | 49 | 0.99% | 3 | 2.46% |
Sachin Kamat | 47 | 0.95% | 6 | 4.92% |
Andy Green | 22 | 0.44% | 2 | 1.64% |
Peter Korsgaard | 12 | 0.24% | 2 | 1.64% |
Frans Klaver | 10 | 0.20% | 1 | 0.82% |
Richard Weinberger | 9 | 0.18% | 1 | 0.82% |
Thierry Reding | 9 | 0.18% | 1 | 0.82% |
Mike Dunn | 8 | 0.16% | 1 | 0.82% |
Andy Shevchenko | 8 | 0.16% | 1 | 0.82% |
Brian Norris | 7 | 0.14% | 2 | 1.64% |
Kees Cook | 5 | 0.10% | 1 | 0.82% |
Michel Pollet | 4 | 0.08% | 1 | 0.82% |
Jingoo Han | 4 | 0.08% | 1 | 0.82% |
Dmitry Eremin-Solenikov | 3 | 0.06% | 1 | 0.82% |
Zeng Zhaoxiu | 3 | 0.06% | 1 | 0.82% |
Uwe Kleine-König | 3 | 0.06% | 1 | 0.82% |
Alan Cox | 3 | 0.06% | 1 | 0.82% |
H Hartley Sweeten | 3 | 0.06% | 1 | 0.82% |
Randy Dunlap | 2 | 0.04% | 1 | 0.82% |
Vasily Khoruzhick | 2 | 0.04% | 1 | 0.82% |
Adam Buchbinder | 1 | 0.02% | 1 | 0.82% |
Krzysztof Kozlowski | 1 | 0.02% | 1 | 0.82% |
Arnd Bergmann | 1 | 0.02% | 1 | 0.82% |
Arnaud Patard | 1 | 0.02% | 1 | 0.82% |
Rafał Miłecki | 1 | 0.02% | 1 | 0.82% |
Joe Perches | 1 | 0.02% | 1 | 0.82% |
Total | 4944 | 122 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright © 2004-2008 Simtec Electronics * http://armlinux.simtec.co.uk/ * Ben Dooks <ben@simtec.co.uk> * * Samsung S3C2410/S3C2440/S3C2412 NAND driver */ #define pr_fmt(fmt) "nand-s3c2410: " fmt #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG #define DEBUG #endif #include <linux/module.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/string.h> #include <linux/io.h> #include <linux/ioport.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/slab.h> #include <linux/clk.h> #include <linux/cpufreq.h> #include <linux/of.h> #include <linux/mtd/mtd.h> #include <linux/mtd/rawnand.h> #include <linux/mtd/partitions.h> #include <linux/platform_data/mtd-nand-s3c2410.h> #define S3C2410_NFREG(x) (x) #define S3C2410_NFCONF S3C2410_NFREG(0x00) #define S3C2410_NFCMD S3C2410_NFREG(0x04) #define S3C2410_NFADDR S3C2410_NFREG(0x08) #define S3C2410_NFDATA S3C2410_NFREG(0x0C) #define S3C2410_NFSTAT S3C2410_NFREG(0x10) #define S3C2410_NFECC S3C2410_NFREG(0x14) #define S3C2440_NFCONT S3C2410_NFREG(0x04) #define S3C2440_NFCMD S3C2410_NFREG(0x08) #define S3C2440_NFADDR S3C2410_NFREG(0x0C) #define S3C2440_NFDATA S3C2410_NFREG(0x10) #define S3C2440_NFSTAT S3C2410_NFREG(0x20) #define S3C2440_NFMECC0 S3C2410_NFREG(0x2C) #define S3C2412_NFSTAT S3C2410_NFREG(0x28) #define S3C2412_NFMECC0 S3C2410_NFREG(0x34) #define S3C2410_NFCONF_EN (1<<15) #define S3C2410_NFCONF_INITECC (1<<12) #define S3C2410_NFCONF_nFCE (1<<11) #define S3C2410_NFCONF_TACLS(x) ((x)<<8) #define S3C2410_NFCONF_TWRPH0(x) ((x)<<4) #define S3C2410_NFCONF_TWRPH1(x) ((x)<<0) #define S3C2410_NFSTAT_BUSY (1<<0) #define S3C2440_NFCONF_TACLS(x) ((x)<<12) #define S3C2440_NFCONF_TWRPH0(x) ((x)<<8) #define S3C2440_NFCONF_TWRPH1(x) ((x)<<4) #define S3C2440_NFCONT_INITECC (1<<4) #define S3C2440_NFCONT_nFCE (1<<1) #define S3C2440_NFCONT_ENABLE (1<<0) #define S3C2440_NFSTAT_READY (1<<0) #define S3C2412_NFCONF_NANDBOOT (1<<31) #define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5) #define S3C2412_NFCONT_nFCE0 (1<<1) #define S3C2412_NFSTAT_READY (1<<0) /* new oob placement block for use with hardware ecc generation */ static int s3c2410_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section) return -ERANGE; oobregion->offset = 0; oobregion->length = 3; return 0; } static int s3c2410_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section) return -ERANGE; oobregion->offset = 8; oobregion->length = 8; return 0; } static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops = { .ecc = s3c2410_ooblayout_ecc, .free = s3c2410_ooblayout_free, }; /* controller and mtd information */ struct s3c2410_nand_info; /** * struct s3c2410_nand_mtd - driver MTD structure * @chip: The NAND chip information. * @set: The platform information supplied for this set of NAND chips. * @info: Link back to the hardware information. */ struct s3c2410_nand_mtd { struct nand_chip chip; struct s3c2410_nand_set *set; struct s3c2410_nand_info *info; }; enum s3c_cpu_type { TYPE_S3C2410, TYPE_S3C2412, TYPE_S3C2440, }; enum s3c_nand_clk_state { CLOCK_DISABLE = 0, CLOCK_ENABLE, CLOCK_SUSPEND, }; /* overview of the s3c2410 nand state */ /** * struct s3c2410_nand_info - NAND controller state. * @controller: Base controller structure. * @mtds: An array of MTD instances on this controller. * @platform: The platform data for this board. * @device: The platform device we bound to. * @clk: The clock resource for this controller. * @regs: The area mapped for the hardware registers. * @sel_reg: Pointer to the register controlling the NAND selection. * @sel_bit: The bit in @sel_reg to select the NAND chip. * @mtd_count: The number of MTDs created from this controller. * @save_sel: The contents of @sel_reg to be saved over suspend. * @clk_rate: The clock rate from @clk. * @clk_state: The current clock state. * @cpu_type: The exact type of this controller. */ struct s3c2410_nand_info { /* mtd info */ struct nand_controller controller; struct s3c2410_nand_mtd *mtds; struct s3c2410_platform_nand *platform; /* device info */ struct device *device; struct clk *clk; void __iomem *regs; void __iomem *sel_reg; int sel_bit; int mtd_count; unsigned long save_sel; unsigned long clk_rate; enum s3c_nand_clk_state clk_state; enum s3c_cpu_type cpu_type; }; struct s3c24XX_nand_devtype_data { enum s3c_cpu_type type; }; static const struct s3c24XX_nand_devtype_data s3c2410_nand_devtype_data = { .type = TYPE_S3C2410, }; static const struct s3c24XX_nand_devtype_data s3c2412_nand_devtype_data = { .type = TYPE_S3C2412, }; static const struct s3c24XX_nand_devtype_data s3c2440_nand_devtype_data = { .type = TYPE_S3C2440, }; /* conversion functions */ static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd) { return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd, chip); } static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd) { return s3c2410_nand_mtd_toours(mtd)->info; } static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev) { return platform_get_drvdata(dev); } static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev) { return dev_get_platdata(&dev->dev); } static inline int allow_clk_suspend(struct s3c2410_nand_info *info) { #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP return 1; #else return 0; #endif } /** * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock. * @info: The controller instance. * @new_state: State to which clock should be set. */ static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info, enum s3c_nand_clk_state new_state) { if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND) return; if (info->clk_state == CLOCK_ENABLE) { if (new_state != CLOCK_ENABLE) clk_disable_unprepare(info->clk); } else { if (new_state == CLOCK_ENABLE) clk_prepare_enable(info->clk); } info->clk_state = new_state; } /* timing calculations */ #define NS_IN_KHZ 1000000 /** * s3c_nand_calc_rate - calculate timing data. * @wanted: The cycle time in nanoseconds. * @clk: The clock rate in kHz. * @max: The maximum divider value. * * Calculate the timing value from the given parameters. */ static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max) { int result; result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ); pr_debug("result %d from %ld, %d\n", result, clk, wanted); if (result > max) { pr_err("%d ns is too big for current clock rate %ld\n", wanted, clk); return -1; } if (result < 1) result = 1; return result; } #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk)) /* controller setup */ /** * s3c2410_nand_setrate - setup controller timing information. * @info: The controller instance. * * Given the information supplied by the platform, calculate and set * the necessary timing registers in the hardware to generate the * necessary timing cycles to the hardware. */ static int s3c2410_nand_setrate(struct s3c2410_nand_info *info) { struct s3c2410_platform_nand *plat = info->platform; int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4; int tacls, twrph0, twrph1; unsigned long clkrate = clk_get_rate(info->clk); unsigned long set, cfg, mask; unsigned long flags; /* calculate the timing information for the controller */ info->clk_rate = clkrate; clkrate /= 1000; /* turn clock into kHz for ease of use */ if (plat != NULL) { tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max); twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8); twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8); } else { /* default timings */ tacls = tacls_max; twrph0 = 8; twrph1 = 8; } if (tacls < 0 || twrph0 < 0 || twrph1 < 0) { dev_err(info->device, "cannot get suitable timings\n"); return -EINVAL; } dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n", tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate)); switch (info->cpu_type) { case TYPE_S3C2410: mask = (S3C2410_NFCONF_TACLS(3) | S3C2410_NFCONF_TWRPH0(7) | S3C2410_NFCONF_TWRPH1(7)); set = S3C2410_NFCONF_EN; set |= S3C2410_NFCONF_TACLS(tacls - 1); set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1); set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1); break; case TYPE_S3C2440: case TYPE_S3C2412: mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) | S3C2440_NFCONF_TWRPH0(7) | S3C2440_NFCONF_TWRPH1(7)); set = S3C2440_NFCONF_TACLS(tacls - 1); set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1); set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1); break; default: BUG(); } local_irq_save(flags); cfg = readl(info->regs + S3C2410_NFCONF); cfg &= ~mask; cfg |= set; writel(cfg, info->regs + S3C2410_NFCONF); local_irq_restore(flags); dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg); return 0; } /** * s3c2410_nand_inithw - basic hardware initialisation * @info: The hardware state. * * Do the basic initialisation of the hardware, using s3c2410_nand_setrate() * to setup the hardware access speeds and set the controller to be enabled. */ static int s3c2410_nand_inithw(struct s3c2410_nand_info *info) { int ret; ret = s3c2410_nand_setrate(info); if (ret < 0) return ret; switch (info->cpu_type) { case TYPE_S3C2410: default: break; case TYPE_S3C2440: case TYPE_S3C2412: /* enable the controller and de-assert nFCE */ writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT); } return 0; } /** * s3c2410_nand_select_chip - select the given nand chip * @this: NAND chip object. * @chip: The chip number. * * This is called by the MTD layer to either select a given chip for the * @mtd instance, or to indicate that the access has finished and the * chip can be de-selected. * * The routine ensures that the nFCE line is correctly setup, and any * platform specific selection code is called to route nFCE to the specific * chip. */ static void s3c2410_nand_select_chip(struct nand_chip *this, int chip) { struct s3c2410_nand_info *info; struct s3c2410_nand_mtd *nmtd; unsigned long cur; nmtd = nand_get_controller_data(this); info = nmtd->info; if (chip != -1) s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); cur = readl(info->sel_reg); if (chip == -1) { cur |= info->sel_bit; } else { if (nmtd->set != NULL && chip > nmtd->set->nr_chips) { dev_err(info->device, "invalid chip %d\n", chip); return; } if (info->platform != NULL) { if (info->platform->select_chip != NULL) (info->platform->select_chip) (nmtd->set, chip); } cur &= ~info->sel_bit; } writel(cur, info->sel_reg); if (chip == -1) s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); } /* s3c2410_nand_hwcontrol * * Issue command and address cycles to the chip */ static void s3c2410_nand_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl) { struct mtd_info *mtd = nand_to_mtd(chip); struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); if (cmd == NAND_CMD_NONE) return; if (ctrl & NAND_CLE) writeb(cmd, info->regs + S3C2410_NFCMD); else writeb(cmd, info->regs + S3C2410_NFADDR); } /* command and control functions */ static void s3c2440_nand_hwcontrol(struct nand_chip *chip, int cmd, unsigned int ctrl) { struct mtd_info *mtd = nand_to_mtd(chip); struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); if (cmd == NAND_CMD_NONE) return; if (ctrl & NAND_CLE) writeb(cmd, info->regs + S3C2440_NFCMD); else writeb(cmd, info->regs + S3C2440_NFADDR); } /* s3c2410_nand_devready() * * returns 0 if the nand is busy, 1 if it is ready */ static int s3c2410_nand_devready(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY; } static int s3c2440_nand_devready(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY; } static int s3c2412_nand_devready(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY; } /* ECC handling functions */ static int s3c2410_nand_correct_data(struct nand_chip *chip, u_char *dat, u_char *read_ecc, u_char *calc_ecc) { struct mtd_info *mtd = nand_to_mtd(chip); struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); unsigned int diff0, diff1, diff2; unsigned int bit, byte; pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc); diff0 = read_ecc[0] ^ calc_ecc[0]; diff1 = read_ecc[1] ^ calc_ecc[1]; diff2 = read_ecc[2] ^ calc_ecc[2]; pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n", __func__, 3, read_ecc, 3, calc_ecc, diff0, diff1, diff2); if (diff0 == 0 && diff1 == 0 && diff2 == 0) return 0; /* ECC is ok */ /* sometimes people do not think about using the ECC, so check * to see if we have an 0xff,0xff,0xff read ECC and then ignore * the error, on the assumption that this is an un-eccd page. */ if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff && info->platform->ignore_unset_ecc) return 0; /* Can we correct this ECC (ie, one row and column change). * Note, this is similar to the 256 error code on smartmedia */ if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 && ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 && ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) { /* calculate the bit position of the error */ bit = ((diff2 >> 3) & 1) | ((diff2 >> 4) & 2) | ((diff2 >> 5) & 4); /* calculate the byte position of the error */ byte = ((diff2 << 7) & 0x100) | ((diff1 << 0) & 0x80) | ((diff1 << 1) & 0x40) | ((diff1 << 2) & 0x20) | ((diff1 << 3) & 0x10) | ((diff0 >> 4) & 0x08) | ((diff0 >> 3) & 0x04) | ((diff0 >> 2) & 0x02) | ((diff0 >> 1) & 0x01); dev_dbg(info->device, "correcting error bit %d, byte %d\n", bit, byte); dat[byte] ^= (1 << bit); return 1; } /* if there is only one bit difference in the ECC, then * one of only a row or column parity has changed, which * means the error is most probably in the ECC itself */ diff0 |= (diff1 << 8); diff0 |= (diff2 << 16); /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */ if ((diff0 & (diff0 - 1)) == 0) return 1; return -1; } /* ECC functions * * These allow the s3c2410 and s3c2440 to use the controller's ECC * generator block to ECC the data as it passes through] */ static void s3c2410_nand_enable_hwecc(struct nand_chip *chip, int mode) { struct s3c2410_nand_info *info; unsigned long ctrl; info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip)); ctrl = readl(info->regs + S3C2410_NFCONF); ctrl |= S3C2410_NFCONF_INITECC; writel(ctrl, info->regs + S3C2410_NFCONF); } static void s3c2412_nand_enable_hwecc(struct nand_chip *chip, int mode) { struct s3c2410_nand_info *info; unsigned long ctrl; info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip)); ctrl = readl(info->regs + S3C2440_NFCONT); writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT); } static void s3c2440_nand_enable_hwecc(struct nand_chip *chip, int mode) { struct s3c2410_nand_info *info; unsigned long ctrl; info = s3c2410_nand_mtd_toinfo(nand_to_mtd(chip)); ctrl = readl(info->regs + S3C2440_NFCONT); writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT); } static int s3c2410_nand_calculate_ecc(struct nand_chip *chip, const u_char *dat, u_char *ecc_code) { struct mtd_info *mtd = nand_to_mtd(chip); struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0); ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1); ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2); pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code); return 0; } static int s3c2412_nand_calculate_ecc(struct nand_chip *chip, const u_char *dat, u_char *ecc_code) { struct mtd_info *mtd = nand_to_mtd(chip); struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); unsigned long ecc = readl(info->regs + S3C2412_NFMECC0); ecc_code[0] = ecc; ecc_code[1] = ecc >> 8; ecc_code[2] = ecc >> 16; pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code); return 0; } static int s3c2440_nand_calculate_ecc(struct nand_chip *chip, const u_char *dat, u_char *ecc_code) { struct mtd_info *mtd = nand_to_mtd(chip); struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); unsigned long ecc = readl(info->regs + S3C2440_NFMECC0); ecc_code[0] = ecc; ecc_code[1] = ecc >> 8; ecc_code[2] = ecc >> 16; pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff); return 0; } /* over-ride the standard functions for a little more speed. We can * use read/write block to move the data buffers to/from the controller */ static void s3c2410_nand_read_buf(struct nand_chip *this, u_char *buf, int len) { readsb(this->legacy.IO_ADDR_R, buf, len); } static void s3c2440_nand_read_buf(struct nand_chip *this, u_char *buf, int len) { struct mtd_info *mtd = nand_to_mtd(this); struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); readsl(info->regs + S3C2440_NFDATA, buf, len >> 2); /* cleanup if we've got less than a word to do */ if (len & 3) { buf += len & ~3; for (; len & 3; len--) *buf++ = readb(info->regs + S3C2440_NFDATA); } } static void s3c2410_nand_write_buf(struct nand_chip *this, const u_char *buf, int len) { writesb(this->legacy.IO_ADDR_W, buf, len); } static void s3c2440_nand_write_buf(struct nand_chip *this, const u_char *buf, int len) { struct mtd_info *mtd = nand_to_mtd(this); struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); writesl(info->regs + S3C2440_NFDATA, buf, len >> 2); /* cleanup any fractional write */ if (len & 3) { buf += len & ~3; for (; len & 3; len--, buf++) writeb(*buf, info->regs + S3C2440_NFDATA); } } /* device management functions */ static void s3c24xx_nand_remove(struct platform_device *pdev) { struct s3c2410_nand_info *info = to_nand_info(pdev); if (info == NULL) return; /* Release all our mtds and their partitions, then go through * freeing the resources used */ if (info->mtds != NULL) { struct s3c2410_nand_mtd *ptr = info->mtds; int mtdno; for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) { pr_debug("releasing mtd %d (%p)\n", mtdno, ptr); WARN_ON(mtd_device_unregister(nand_to_mtd(&ptr->chip))); nand_cleanup(&ptr->chip); } } /* free the common resources */ if (!IS_ERR(info->clk)) s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); } static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info, struct s3c2410_nand_mtd *mtd, struct s3c2410_nand_set *set) { if (set) { struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip); mtdinfo->name = set->name; return mtd_device_register(mtdinfo, set->partitions, set->nr_partitions); } return -ENODEV; } static int s3c2410_nand_setup_interface(struct nand_chip *chip, int csline, const struct nand_interface_config *conf) { struct mtd_info *mtd = nand_to_mtd(chip); struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); struct s3c2410_platform_nand *pdata = info->platform; const struct nand_sdr_timings *timings; int tacls; timings = nand_get_sdr_timings(conf); if (IS_ERR(timings)) return -ENOTSUPP; tacls = timings->tCLS_min - timings->tWP_min; if (tacls < 0) tacls = 0; pdata->tacls = DIV_ROUND_UP(tacls, 1000); pdata->twrph0 = DIV_ROUND_UP(timings->tWP_min, 1000); pdata->twrph1 = DIV_ROUND_UP(timings->tCLH_min, 1000); return s3c2410_nand_setrate(info); } /** * s3c2410_nand_init_chip - initialise a single instance of an chip * @info: The base NAND controller the chip is on. * @nmtd: The new controller MTD instance to fill in. * @set: The information passed from the board specific platform data. * * Initialise the given @nmtd from the information in @info and @set. This * readies the structure for use with the MTD layer functions by ensuring * all pointers are setup and the necessary control routines selected. */ static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info, struct s3c2410_nand_mtd *nmtd, struct s3c2410_nand_set *set) { struct device_node *np = info->device->of_node; struct nand_chip *chip = &nmtd->chip; void __iomem *regs = info->regs; nand_set_flash_node(chip, set->of_node); chip->legacy.write_buf = s3c2410_nand_write_buf; chip->legacy.read_buf = s3c2410_nand_read_buf; chip->legacy.select_chip = s3c2410_nand_select_chip; chip->legacy.chip_delay = 50; nand_set_controller_data(chip, nmtd); chip->options = set->options; chip->controller = &info->controller; /* * let's keep behavior unchanged for legacy boards booting via pdata and * auto-detect timings only when booting with a device tree. */ if (!np) chip->options |= NAND_KEEP_TIMINGS; switch (info->cpu_type) { case TYPE_S3C2410: chip->legacy.IO_ADDR_W = regs + S3C2410_NFDATA; info->sel_reg = regs + S3C2410_NFCONF; info->sel_bit = S3C2410_NFCONF_nFCE; chip->legacy.cmd_ctrl = s3c2410_nand_hwcontrol; chip->legacy.dev_ready = s3c2410_nand_devready; break; case TYPE_S3C2440: chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA; info->sel_reg = regs + S3C2440_NFCONT; info->sel_bit = S3C2440_NFCONT_nFCE; chip->legacy.cmd_ctrl = s3c2440_nand_hwcontrol; chip->legacy.dev_ready = s3c2440_nand_devready; chip->legacy.read_buf = s3c2440_nand_read_buf; chip->legacy.write_buf = s3c2440_nand_write_buf; break; case TYPE_S3C2412: chip->legacy.IO_ADDR_W = regs + S3C2440_NFDATA; info->sel_reg = regs + S3C2440_NFCONT; info->sel_bit = S3C2412_NFCONT_nFCE0; chip->legacy.cmd_ctrl = s3c2440_nand_hwcontrol; chip->legacy.dev_ready = s3c2412_nand_devready; if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT) dev_info(info->device, "System booted from NAND\n"); break; } chip->legacy.IO_ADDR_R = chip->legacy.IO_ADDR_W; nmtd->info = info; nmtd->set = set; chip->ecc.engine_type = info->platform->engine_type; /* * If you use u-boot BBT creation code, specifying this flag will * let the kernel fish out the BBT from the NAND. */ if (set->flash_bbt) chip->bbt_options |= NAND_BBT_USE_FLASH; } /** * s3c2410_nand_attach_chip - Init the ECC engine after NAND scan * @chip: The NAND chip * * This hook is called by the core after the identification of the NAND chip, * once the relevant per-chip information is up to date.. This call ensure that * we update the internal state accordingly. * * The internal state is currently limited to the ECC state information. */ static int s3c2410_nand_attach_chip(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd); switch (chip->ecc.engine_type) { case NAND_ECC_ENGINE_TYPE_NONE: dev_info(info->device, "ECC disabled\n"); break; case NAND_ECC_ENGINE_TYPE_SOFT: /* * This driver expects Hamming based ECC when engine_type is set * to NAND_ECC_ENGINE_TYPE_SOFT. Force ecc.algo to * NAND_ECC_ALGO_HAMMING to avoid adding an extra ecc_algo field * to s3c2410_platform_nand. */ chip->ecc.algo = NAND_ECC_ALGO_HAMMING; dev_info(info->device, "soft ECC\n"); break; case NAND_ECC_ENGINE_TYPE_ON_HOST: chip->ecc.calculate = s3c2410_nand_calculate_ecc; chip->ecc.correct = s3c2410_nand_correct_data; chip->ecc.strength = 1; switch (info->cpu_type) { case TYPE_S3C2410: chip->ecc.hwctl = s3c2410_nand_enable_hwecc; chip->ecc.calculate = s3c2410_nand_calculate_ecc; break; case TYPE_S3C2412: chip->ecc.hwctl = s3c2412_nand_enable_hwecc; chip->ecc.calculate = s3c2412_nand_calculate_ecc; break; case TYPE_S3C2440: chip->ecc.hwctl = s3c2440_nand_enable_hwecc; chip->ecc.calculate = s3c2440_nand_calculate_ecc; break; } dev_dbg(info->device, "chip %p => page shift %d\n", chip, chip->page_shift); /* change the behaviour depending on whether we are using * the large or small page nand device */ if (chip->page_shift > 10) { chip->ecc.size = 256; chip->ecc.bytes = 3; } else { chip->ecc.size = 512; chip->ecc.bytes = 3; mtd_set_ooblayout(nand_to_mtd(chip), &s3c2410_ooblayout_ops); } dev_info(info->device, "hardware ECC\n"); break; default: dev_err(info->device, "invalid ECC mode!\n"); return -EINVAL; } if (chip->bbt_options & NAND_BBT_USE_FLASH) chip->options |= NAND_SKIP_BBTSCAN; return 0; } static const struct nand_controller_ops s3c24xx_nand_controller_ops = { .attach_chip = s3c2410_nand_attach_chip, .setup_interface = s3c2410_nand_setup_interface, }; static const struct of_device_id s3c24xx_nand_dt_ids[] = { { .compatible = "samsung,s3c2410-nand", .data = &s3c2410_nand_devtype_data, }, { /* also compatible with s3c6400 */ .compatible = "samsung,s3c2412-nand", .data = &s3c2412_nand_devtype_data, }, { .compatible = "samsung,s3c2440-nand", .data = &s3c2440_nand_devtype_data, }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, s3c24xx_nand_dt_ids); static int s3c24xx_nand_probe_dt(struct platform_device *pdev) { const struct s3c24XX_nand_devtype_data *devtype_data; struct s3c2410_platform_nand *pdata; struct s3c2410_nand_info *info = platform_get_drvdata(pdev); struct device_node *np = pdev->dev.of_node, *child; struct s3c2410_nand_set *sets; devtype_data = of_device_get_match_data(&pdev->dev); if (!devtype_data) return -ENODEV; info->cpu_type = devtype_data->type; pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return -ENOMEM; pdev->dev.platform_data = pdata; pdata->nr_sets = of_get_child_count(np); if (!pdata->nr_sets) return 0; sets = devm_kcalloc(&pdev->dev, pdata->nr_sets, sizeof(*sets), GFP_KERNEL); if (!sets) return -ENOMEM; pdata->sets = sets; for_each_available_child_of_node(np, child) { sets->name = (char *)child->name; sets->of_node = child; sets->nr_chips = 1; of_node_get(child); sets++; } return 0; } static int s3c24xx_nand_probe_pdata(struct platform_device *pdev) { struct s3c2410_nand_info *info = platform_get_drvdata(pdev); info->cpu_type = platform_get_device_id(pdev)->driver_data; return 0; } /* s3c24xx_nand_probe * * called by device layer when it finds a device matching * one our driver can handled. This code checks to see if * it can allocate all necessary resources then calls the * nand layer to look for devices */ static int s3c24xx_nand_probe(struct platform_device *pdev) { struct s3c2410_platform_nand *plat; struct s3c2410_nand_info *info; struct s3c2410_nand_mtd *nmtd; struct s3c2410_nand_set *sets; struct resource *res; int err = 0; int size; int nr_sets; int setno; info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL); if (info == NULL) { err = -ENOMEM; goto exit_error; } platform_set_drvdata(pdev, info); nand_controller_init(&info->controller); info->controller.ops = &s3c24xx_nand_controller_ops; /* get the clock source and enable it */ info->clk = devm_clk_get(&pdev->dev, "nand"); if (IS_ERR(info->clk)) { dev_err(&pdev->dev, "failed to get clock\n"); err = -ENOENT; goto exit_error; } s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); if (pdev->dev.of_node) err = s3c24xx_nand_probe_dt(pdev); else err = s3c24xx_nand_probe_pdata(pdev); if (err) goto exit_error; plat = to_nand_plat(pdev); /* allocate and map the resource */ /* currently we assume we have the one resource */ res = pdev->resource; size = resource_size(res); info->device = &pdev->dev; info->platform = plat; info->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(info->regs)) { err = PTR_ERR(info->regs); goto exit_error; } dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs); if (!plat->sets || plat->nr_sets < 1) { err = -EINVAL; goto exit_error; } sets = plat->sets; nr_sets = plat->nr_sets; info->mtd_count = nr_sets; /* allocate our information */ size = nr_sets * sizeof(*info->mtds); info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL); if (info->mtds == NULL) { err = -ENOMEM; goto exit_error; } /* initialise all possible chips */ nmtd = info->mtds; for (setno = 0; setno < nr_sets; setno++, nmtd++, sets++) { struct mtd_info *mtd = nand_to_mtd(&nmtd->chip); pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info); mtd->dev.parent = &pdev->dev; s3c2410_nand_init_chip(info, nmtd, sets); err = nand_scan(&nmtd->chip, sets ? sets->nr_chips : 1); if (err) goto exit_error; s3c2410_nand_add_partition(info, nmtd, sets); } /* initialise the hardware */ err = s3c2410_nand_inithw(info); if (err != 0) goto exit_error; if (allow_clk_suspend(info)) { dev_info(&pdev->dev, "clock idle support enabled\n"); s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); } return 0; exit_error: s3c24xx_nand_remove(pdev); if (err == 0) err = -EINVAL; return err; } /* PM Support */ #ifdef CONFIG_PM static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm) { struct s3c2410_nand_info *info = platform_get_drvdata(dev); if (info) { info->save_sel = readl(info->sel_reg); /* For the moment, we must ensure nFCE is high during * the time we are suspended. This really should be * handled by suspending the MTDs we are using, but * that is currently not the case. */ writel(info->save_sel | info->sel_bit, info->sel_reg); s3c2410_nand_clk_set_state(info, CLOCK_DISABLE); } return 0; } static int s3c24xx_nand_resume(struct platform_device *dev) { struct s3c2410_nand_info *info = platform_get_drvdata(dev); unsigned long sel; if (info) { s3c2410_nand_clk_set_state(info, CLOCK_ENABLE); s3c2410_nand_inithw(info); /* Restore the state of the nFCE line. */ sel = readl(info->sel_reg); sel &= ~info->sel_bit; sel |= info->save_sel & info->sel_bit; writel(sel, info->sel_reg); s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND); } return 0; } #else #define s3c24xx_nand_suspend NULL #define s3c24xx_nand_resume NULL #endif /* driver device registration */ static const struct platform_device_id s3c24xx_driver_ids[] = { { .name = "s3c2410-nand", .driver_data = TYPE_S3C2410, }, { .name = "s3c2440-nand", .driver_data = TYPE_S3C2440, }, { .name = "s3c2412-nand", .driver_data = TYPE_S3C2412, }, { .name = "s3c6400-nand", .driver_data = TYPE_S3C2412, /* compatible with 2412 */ }, { } }; MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids); static struct platform_driver s3c24xx_nand_driver = { .probe = s3c24xx_nand_probe, .remove_new = s3c24xx_nand_remove, .suspend = s3c24xx_nand_suspend, .resume = s3c24xx_nand_resume, .id_table = s3c24xx_driver_ids, .driver = { .name = "s3c24xx-nand", .of_match_table = s3c24xx_nand_dt_ids, }, }; module_platform_driver(s3c24xx_nand_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); MODULE_DESCRIPTION("S3C24XX MTD NAND driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1