Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Yoshihiro Shimoda | 3517 | 58.88% | 3 | 3.57% |
Bastian Hecht | 1637 | 27.41% | 18 | 21.43% |
Boris Brezillon | 327 | 5.47% | 21 | 25.00% |
Magnus Damm | 158 | 2.65% | 2 | 2.38% |
Miquel Raynal | 127 | 2.13% | 7 | 8.33% |
Brian Norris | 53 | 0.89% | 3 | 3.57% |
Laurent Pinchart | 34 | 0.57% | 2 | 2.38% |
Miaoqian Lin | 17 | 0.28% | 1 | 1.19% |
Arnd Bergmann | 15 | 0.25% | 1 | 1.19% |
Mike Dunn | 11 | 0.18% | 1 | 1.19% |
Frans Klaver | 9 | 0.15% | 1 | 1.19% |
Frieder Schrempf | 8 | 0.13% | 2 | 2.38% |
Jingoo Han | 8 | 0.13% | 1 | 1.19% |
Uwe Kleine-König | 8 | 0.13% | 2 | 2.38% |
Rafał Miłecki | 7 | 0.12% | 1 | 1.19% |
Geert Uytterhoeven | 4 | 0.07% | 1 | 1.19% |
Yangtao Li | 4 | 0.07% | 1 | 1.19% |
Josh Wu | 4 | 0.07% | 1 | 1.19% |
Sneha Narnakaje | 3 | 0.05% | 1 | 1.19% |
Kuninori Morimoto | 3 | 0.05% | 1 | 1.19% |
Marc Gonzalez | 3 | 0.05% | 1 | 1.19% |
Pan Bian | 3 | 0.05% | 1 | 1.19% |
Rafael J. Wysocki | 2 | 0.03% | 2 | 2.38% |
Linus Torvalds (pre-git) | 2 | 0.03% | 1 | 1.19% |
Linus Torvalds | 2 | 0.03% | 2 | 2.38% |
Nathan Chancellor | 2 | 0.03% | 1 | 1.19% |
Shreeya Patel | 1 | 0.02% | 1 | 1.19% |
Gustavo A. R. Silva | 1 | 0.02% | 1 | 1.19% |
Vinod Koul | 1 | 0.02% | 1 | 1.19% |
Lucas De Marchi | 1 | 0.02% | 1 | 1.19% |
H Hartley Sweeten | 1 | 0.02% | 1 | 1.19% |
Total | 5973 | 84 |
// SPDX-License-Identifier: GPL-2.0 /* * SuperH FLCTL nand controller * * Copyright (c) 2008 Renesas Solutions Corp. * Copyright (c) 2008 Atom Create Engineering Co., Ltd. * * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/of.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/sh_dma.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/mtd/mtd.h> #include <linux/mtd/rawnand.h> #include <linux/mtd/partitions.h> #include <linux/mtd/sh_flctl.h> static int flctl_4secc_ooblayout_sp_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); if (section) return -ERANGE; oobregion->offset = 0; oobregion->length = chip->ecc.bytes; return 0; } static int flctl_4secc_ooblayout_sp_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section) return -ERANGE; oobregion->offset = 12; oobregion->length = 4; return 0; } static const struct mtd_ooblayout_ops flctl_4secc_oob_smallpage_ops = { .ecc = flctl_4secc_ooblayout_sp_ecc, .free = flctl_4secc_ooblayout_sp_free, }; static int flctl_4secc_ooblayout_lp_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); if (section >= chip->ecc.steps) return -ERANGE; oobregion->offset = (section * 16) + 6; oobregion->length = chip->ecc.bytes; return 0; } static int flctl_4secc_ooblayout_lp_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); if (section >= chip->ecc.steps) return -ERANGE; oobregion->offset = section * 16; oobregion->length = 6; if (!section) { oobregion->offset += 2; oobregion->length -= 2; } return 0; } static const struct mtd_ooblayout_ops flctl_4secc_oob_largepage_ops = { .ecc = flctl_4secc_ooblayout_lp_ecc, .free = flctl_4secc_ooblayout_lp_free, }; static uint8_t scan_ff_pattern[] = { 0xff, 0xff }; static struct nand_bbt_descr flctl_4secc_smallpage = { .offs = 11, .len = 1, .pattern = scan_ff_pattern, }; static struct nand_bbt_descr flctl_4secc_largepage = { .offs = 0, .len = 2, .pattern = scan_ff_pattern, }; static void empty_fifo(struct sh_flctl *flctl) { writel(flctl->flintdmacr_base | AC1CLR | AC0CLR, FLINTDMACR(flctl)); writel(flctl->flintdmacr_base, FLINTDMACR(flctl)); } static void start_translation(struct sh_flctl *flctl) { writeb(TRSTRT, FLTRCR(flctl)); } static void timeout_error(struct sh_flctl *flctl, const char *str) { dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str); } static void wait_completion(struct sh_flctl *flctl) { uint32_t timeout = LOOP_TIMEOUT_MAX; while (timeout--) { if (readb(FLTRCR(flctl)) & TREND) { writeb(0x0, FLTRCR(flctl)); return; } udelay(1); } timeout_error(flctl, __func__); writeb(0x0, FLTRCR(flctl)); } static void flctl_dma_complete(void *param) { struct sh_flctl *flctl = param; complete(&flctl->dma_complete); } static void flctl_release_dma(struct sh_flctl *flctl) { if (flctl->chan_fifo0_rx) { dma_release_channel(flctl->chan_fifo0_rx); flctl->chan_fifo0_rx = NULL; } if (flctl->chan_fifo0_tx) { dma_release_channel(flctl->chan_fifo0_tx); flctl->chan_fifo0_tx = NULL; } } static void flctl_setup_dma(struct sh_flctl *flctl) { dma_cap_mask_t mask; struct dma_slave_config cfg; struct platform_device *pdev = flctl->pdev; struct sh_flctl_platform_data *pdata = dev_get_platdata(&pdev->dev); int ret; if (!pdata) return; if (pdata->slave_id_fifo0_tx <= 0 || pdata->slave_id_fifo0_rx <= 0) return; /* We can only either use DMA for both Tx and Rx or not use it at all */ dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); flctl->chan_fifo0_tx = dma_request_channel(mask, shdma_chan_filter, (void *)(uintptr_t)pdata->slave_id_fifo0_tx); dev_dbg(&pdev->dev, "%s: TX: got channel %p\n", __func__, flctl->chan_fifo0_tx); if (!flctl->chan_fifo0_tx) return; memset(&cfg, 0, sizeof(cfg)); cfg.direction = DMA_MEM_TO_DEV; cfg.dst_addr = flctl->fifo; cfg.src_addr = 0; ret = dmaengine_slave_config(flctl->chan_fifo0_tx, &cfg); if (ret < 0) goto err; flctl->chan_fifo0_rx = dma_request_channel(mask, shdma_chan_filter, (void *)(uintptr_t)pdata->slave_id_fifo0_rx); dev_dbg(&pdev->dev, "%s: RX: got channel %p\n", __func__, flctl->chan_fifo0_rx); if (!flctl->chan_fifo0_rx) goto err; cfg.direction = DMA_DEV_TO_MEM; cfg.dst_addr = 0; cfg.src_addr = flctl->fifo; ret = dmaengine_slave_config(flctl->chan_fifo0_rx, &cfg); if (ret < 0) goto err; init_completion(&flctl->dma_complete); return; err: flctl_release_dma(flctl); } static void set_addr(struct mtd_info *mtd, int column, int page_addr) { struct sh_flctl *flctl = mtd_to_flctl(mtd); uint32_t addr = 0; if (column == -1) { addr = page_addr; /* ERASE1 */ } else if (page_addr != -1) { /* SEQIN, READ0, etc.. */ if (flctl->chip.options & NAND_BUSWIDTH_16) column >>= 1; if (flctl->page_size) { addr = column & 0x0FFF; addr |= (page_addr & 0xff) << 16; addr |= ((page_addr >> 8) & 0xff) << 24; /* big than 128MB */ if (flctl->rw_ADRCNT == ADRCNT2_E) { uint32_t addr2; addr2 = (page_addr >> 16) & 0xff; writel(addr2, FLADR2(flctl)); } } else { addr = column; addr |= (page_addr & 0xff) << 8; addr |= ((page_addr >> 8) & 0xff) << 16; addr |= ((page_addr >> 16) & 0xff) << 24; } } writel(addr, FLADR(flctl)); } static void wait_rfifo_ready(struct sh_flctl *flctl) { uint32_t timeout = LOOP_TIMEOUT_MAX; while (timeout--) { uint32_t val; /* check FIFO */ val = readl(FLDTCNTR(flctl)) >> 16; if (val & 0xFF) return; udelay(1); } timeout_error(flctl, __func__); } static void wait_wfifo_ready(struct sh_flctl *flctl) { uint32_t len, timeout = LOOP_TIMEOUT_MAX; while (timeout--) { /* check FIFO */ len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF; if (len >= 4) return; udelay(1); } timeout_error(flctl, __func__); } static enum flctl_ecc_res_t wait_recfifo_ready (struct sh_flctl *flctl, int sector_number) { uint32_t timeout = LOOP_TIMEOUT_MAX; void __iomem *ecc_reg[4]; int i; int state = FL_SUCCESS; uint32_t data, size; /* * First this loops checks in FLDTCNTR if we are ready to read out the * oob data. This is the case if either all went fine without errors or * if the bottom part of the loop corrected the errors or marked them as * uncorrectable and the controller is given time to push the data into * the FIFO. */ while (timeout--) { /* check if all is ok and we can read out the OOB */ size = readl(FLDTCNTR(flctl)) >> 24; if ((size & 0xFF) == 4) return state; /* check if a correction code has been calculated */ if (!(readl(FL4ECCCR(flctl)) & _4ECCEND)) { /* * either we wait for the fifo to be filled or a * correction pattern is being generated */ udelay(1); continue; } /* check for an uncorrectable error */ if (readl(FL4ECCCR(flctl)) & _4ECCFA) { /* check if we face a non-empty page */ for (i = 0; i < 512; i++) { if (flctl->done_buff[i] != 0xff) { state = FL_ERROR; /* can't correct */ break; } } if (state == FL_SUCCESS) dev_dbg(&flctl->pdev->dev, "reading empty sector %d, ecc error ignored\n", sector_number); writel(0, FL4ECCCR(flctl)); continue; } /* start error correction */ ecc_reg[0] = FL4ECCRESULT0(flctl); ecc_reg[1] = FL4ECCRESULT1(flctl); ecc_reg[2] = FL4ECCRESULT2(flctl); ecc_reg[3] = FL4ECCRESULT3(flctl); for (i = 0; i < 3; i++) { uint8_t org; unsigned int index; data = readl(ecc_reg[i]); if (flctl->page_size) index = (512 * sector_number) + (data >> 16); else index = data >> 16; org = flctl->done_buff[index]; flctl->done_buff[index] = org ^ (data & 0xFF); } state = FL_REPAIRABLE; writel(0, FL4ECCCR(flctl)); } timeout_error(flctl, __func__); return FL_TIMEOUT; /* timeout */ } static void wait_wecfifo_ready(struct sh_flctl *flctl) { uint32_t timeout = LOOP_TIMEOUT_MAX; uint32_t len; while (timeout--) { /* check FLECFIFO */ len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF; if (len >= 4) return; udelay(1); } timeout_error(flctl, __func__); } static int flctl_dma_fifo0_transfer(struct sh_flctl *flctl, unsigned long *buf, int len, enum dma_data_direction dir) { struct dma_async_tx_descriptor *desc = NULL; struct dma_chan *chan; enum dma_transfer_direction tr_dir; dma_addr_t dma_addr; dma_cookie_t cookie; uint32_t reg; int ret = 0; unsigned long time_left; if (dir == DMA_FROM_DEVICE) { chan = flctl->chan_fifo0_rx; tr_dir = DMA_DEV_TO_MEM; } else { chan = flctl->chan_fifo0_tx; tr_dir = DMA_MEM_TO_DEV; } dma_addr = dma_map_single(chan->device->dev, buf, len, dir); if (!dma_mapping_error(chan->device->dev, dma_addr)) desc = dmaengine_prep_slave_single(chan, dma_addr, len, tr_dir, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (desc) { reg = readl(FLINTDMACR(flctl)); reg |= DREQ0EN; writel(reg, FLINTDMACR(flctl)); desc->callback = flctl_dma_complete; desc->callback_param = flctl; cookie = dmaengine_submit(desc); if (dma_submit_error(cookie)) { ret = dma_submit_error(cookie); dev_warn(&flctl->pdev->dev, "DMA submit failed, falling back to PIO\n"); goto out; } dma_async_issue_pending(chan); } else { /* DMA failed, fall back to PIO */ flctl_release_dma(flctl); dev_warn(&flctl->pdev->dev, "DMA failed, falling back to PIO\n"); ret = -EIO; goto out; } time_left = wait_for_completion_timeout(&flctl->dma_complete, msecs_to_jiffies(3000)); if (time_left == 0) { dmaengine_terminate_all(chan); dev_err(&flctl->pdev->dev, "wait_for_completion_timeout\n"); ret = -ETIMEDOUT; } out: reg = readl(FLINTDMACR(flctl)); reg &= ~DREQ0EN; writel(reg, FLINTDMACR(flctl)); dma_unmap_single(chan->device->dev, dma_addr, len, dir); /* ret == 0 is success */ return ret; } static void read_datareg(struct sh_flctl *flctl, int offset) { unsigned long data; unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; wait_completion(flctl); data = readl(FLDATAR(flctl)); *buf = le32_to_cpu(data); } static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset) { int i, len_4align; unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; len_4align = (rlen + 3) / 4; /* initiate DMA transfer */ if (flctl->chan_fifo0_rx && rlen >= 32 && !flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_FROM_DEVICE)) goto convert; /* DMA success */ /* do polling transfer */ for (i = 0; i < len_4align; i++) { wait_rfifo_ready(flctl); buf[i] = readl(FLDTFIFO(flctl)); } convert: for (i = 0; i < len_4align; i++) buf[i] = be32_to_cpu(buf[i]); } static enum flctl_ecc_res_t read_ecfiforeg (struct sh_flctl *flctl, uint8_t *buff, int sector) { int i; enum flctl_ecc_res_t res; unsigned long *ecc_buf = (unsigned long *)buff; res = wait_recfifo_ready(flctl , sector); if (res != FL_ERROR) { for (i = 0; i < 4; i++) { ecc_buf[i] = readl(FLECFIFO(flctl)); ecc_buf[i] = be32_to_cpu(ecc_buf[i]); } } return res; } static void write_fiforeg(struct sh_flctl *flctl, int rlen, unsigned int offset) { int i, len_4align; unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; len_4align = (rlen + 3) / 4; for (i = 0; i < len_4align; i++) { wait_wfifo_ready(flctl); writel(cpu_to_be32(buf[i]), FLDTFIFO(flctl)); } } static void write_ec_fiforeg(struct sh_flctl *flctl, int rlen, unsigned int offset) { int i, len_4align; unsigned long *buf = (unsigned long *)&flctl->done_buff[offset]; len_4align = (rlen + 3) / 4; for (i = 0; i < len_4align; i++) buf[i] = cpu_to_be32(buf[i]); /* initiate DMA transfer */ if (flctl->chan_fifo0_tx && rlen >= 32 && !flctl_dma_fifo0_transfer(flctl, buf, rlen, DMA_TO_DEVICE)) return; /* DMA success */ /* do polling transfer */ for (i = 0; i < len_4align; i++) { wait_wecfifo_ready(flctl); writel(buf[i], FLECFIFO(flctl)); } } static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val) { struct sh_flctl *flctl = mtd_to_flctl(mtd); uint32_t flcmncr_val = flctl->flcmncr_base & ~SEL_16BIT; uint32_t flcmdcr_val, addr_len_bytes = 0; /* Set SNAND bit if page size is 2048byte */ if (flctl->page_size) flcmncr_val |= SNAND_E; else flcmncr_val &= ~SNAND_E; /* default FLCMDCR val */ flcmdcr_val = DOCMD1_E | DOADR_E; /* Set for FLCMDCR */ switch (cmd) { case NAND_CMD_ERASE1: addr_len_bytes = flctl->erase_ADRCNT; flcmdcr_val |= DOCMD2_E; break; case NAND_CMD_READ0: case NAND_CMD_READOOB: case NAND_CMD_RNDOUT: addr_len_bytes = flctl->rw_ADRCNT; flcmdcr_val |= CDSRC_E; if (flctl->chip.options & NAND_BUSWIDTH_16) flcmncr_val |= SEL_16BIT; break; case NAND_CMD_SEQIN: /* This case is that cmd is READ0 or READ1 or READ00 */ flcmdcr_val &= ~DOADR_E; /* ONLY execute 1st cmd */ break; case NAND_CMD_PAGEPROG: addr_len_bytes = flctl->rw_ADRCNT; flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW; if (flctl->chip.options & NAND_BUSWIDTH_16) flcmncr_val |= SEL_16BIT; break; case NAND_CMD_READID: flcmncr_val &= ~SNAND_E; flcmdcr_val |= CDSRC_E; addr_len_bytes = ADRCNT_1; break; case NAND_CMD_STATUS: case NAND_CMD_RESET: flcmncr_val &= ~SNAND_E; flcmdcr_val &= ~(DOADR_E | DOSR_E); break; default: break; } /* Set address bytes parameter */ flcmdcr_val |= addr_len_bytes; /* Now actually write */ writel(flcmncr_val, FLCMNCR(flctl)); writel(flcmdcr_val, FLCMDCR(flctl)); writel(flcmcdr_val, FLCMCDR(flctl)); } static int flctl_read_page_hwecc(struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); nand_read_page_op(chip, page, 0, buf, mtd->writesize); if (oob_required) chip->legacy.read_buf(chip, chip->oob_poi, mtd->oobsize); return 0; } static int flctl_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize); chip->legacy.write_buf(chip, chip->oob_poi, mtd->oobsize); return nand_prog_page_end_op(chip); } static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr) { struct sh_flctl *flctl = mtd_to_flctl(mtd); int sector, page_sectors; enum flctl_ecc_res_t ecc_result; page_sectors = flctl->page_size ? 4 : 1; set_cmd_regs(mtd, NAND_CMD_READ0, (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT, FLCMNCR(flctl)); writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl)); writel(page_addr << 2, FLADR(flctl)); empty_fifo(flctl); start_translation(flctl); for (sector = 0; sector < page_sectors; sector++) { read_fiforeg(flctl, 512, 512 * sector); ecc_result = read_ecfiforeg(flctl, &flctl->done_buff[mtd->writesize + 16 * sector], sector); switch (ecc_result) { case FL_REPAIRABLE: dev_info(&flctl->pdev->dev, "applied ecc on page 0x%x", page_addr); mtd->ecc_stats.corrected++; break; case FL_ERROR: dev_warn(&flctl->pdev->dev, "page 0x%x contains corrupted data\n", page_addr); mtd->ecc_stats.failed++; break; default: ; } } wait_completion(flctl); writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT), FLCMNCR(flctl)); } static void execmd_read_oob(struct mtd_info *mtd, int page_addr) { struct sh_flctl *flctl = mtd_to_flctl(mtd); int page_sectors = flctl->page_size ? 4 : 1; int i; set_cmd_regs(mtd, NAND_CMD_READ0, (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); empty_fifo(flctl); for (i = 0; i < page_sectors; i++) { set_addr(mtd, (512 + 16) * i + 512 , page_addr); writel(16, FLDTCNTR(flctl)); start_translation(flctl); read_fiforeg(flctl, 16, 16 * i); wait_completion(flctl); } } static void execmd_write_page_sector(struct mtd_info *mtd) { struct sh_flctl *flctl = mtd_to_flctl(mtd); int page_addr = flctl->seqin_page_addr; int sector, page_sectors; page_sectors = flctl->page_size ? 4 : 1; set_cmd_regs(mtd, NAND_CMD_PAGEPROG, (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); empty_fifo(flctl); writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl)); writel(readl(FLCMDCR(flctl)) | page_sectors, FLCMDCR(flctl)); writel(page_addr << 2, FLADR(flctl)); start_translation(flctl); for (sector = 0; sector < page_sectors; sector++) { write_fiforeg(flctl, 512, 512 * sector); write_ec_fiforeg(flctl, 16, mtd->writesize + 16 * sector); } wait_completion(flctl); writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl)); } static void execmd_write_oob(struct mtd_info *mtd) { struct sh_flctl *flctl = mtd_to_flctl(mtd); int page_addr = flctl->seqin_page_addr; int sector, page_sectors; page_sectors = flctl->page_size ? 4 : 1; set_cmd_regs(mtd, NAND_CMD_PAGEPROG, (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN); for (sector = 0; sector < page_sectors; sector++) { empty_fifo(flctl); set_addr(mtd, sector * 528 + 512, page_addr); writel(16, FLDTCNTR(flctl)); /* set read size */ start_translation(flctl); write_fiforeg(flctl, 16, 16 * sector); wait_completion(flctl); } } static void flctl_cmdfunc(struct nand_chip *chip, unsigned int command, int column, int page_addr) { struct mtd_info *mtd = nand_to_mtd(chip); struct sh_flctl *flctl = mtd_to_flctl(mtd); uint32_t read_cmd = 0; pm_runtime_get_sync(&flctl->pdev->dev); flctl->read_bytes = 0; if (command != NAND_CMD_PAGEPROG) flctl->index = 0; switch (command) { case NAND_CMD_READ1: case NAND_CMD_READ0: if (flctl->hwecc) { /* read page with hwecc */ execmd_read_page_sector(mtd, page_addr); break; } if (flctl->page_size) set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) | command); else set_cmd_regs(mtd, command, command); set_addr(mtd, 0, page_addr); flctl->read_bytes = mtd->writesize + mtd->oobsize; if (flctl->chip.options & NAND_BUSWIDTH_16) column >>= 1; flctl->index += column; goto read_normal_exit; case NAND_CMD_READOOB: if (flctl->hwecc) { /* read page with hwecc */ execmd_read_oob(mtd, page_addr); break; } if (flctl->page_size) { set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8) | NAND_CMD_READ0); set_addr(mtd, mtd->writesize, page_addr); } else { set_cmd_regs(mtd, command, command); set_addr(mtd, 0, page_addr); } flctl->read_bytes = mtd->oobsize; goto read_normal_exit; case NAND_CMD_RNDOUT: if (flctl->hwecc) break; if (flctl->page_size) set_cmd_regs(mtd, command, (NAND_CMD_RNDOUTSTART << 8) | command); else set_cmd_regs(mtd, command, command); set_addr(mtd, column, 0); flctl->read_bytes = mtd->writesize + mtd->oobsize - column; goto read_normal_exit; case NAND_CMD_READID: set_cmd_regs(mtd, command, command); /* READID is always performed using an 8-bit bus */ if (flctl->chip.options & NAND_BUSWIDTH_16) column <<= 1; set_addr(mtd, column, 0); flctl->read_bytes = 8; writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ empty_fifo(flctl); start_translation(flctl); read_fiforeg(flctl, flctl->read_bytes, 0); wait_completion(flctl); break; case NAND_CMD_ERASE1: flctl->erase1_page_addr = page_addr; break; case NAND_CMD_ERASE2: set_cmd_regs(mtd, NAND_CMD_ERASE1, (command << 8) | NAND_CMD_ERASE1); set_addr(mtd, -1, flctl->erase1_page_addr); start_translation(flctl); wait_completion(flctl); break; case NAND_CMD_SEQIN: if (!flctl->page_size) { /* output read command */ if (column >= mtd->writesize) { column -= mtd->writesize; read_cmd = NAND_CMD_READOOB; } else if (column < 256) { read_cmd = NAND_CMD_READ0; } else { column -= 256; read_cmd = NAND_CMD_READ1; } } flctl->seqin_column = column; flctl->seqin_page_addr = page_addr; flctl->seqin_read_cmd = read_cmd; break; case NAND_CMD_PAGEPROG: empty_fifo(flctl); if (!flctl->page_size) { set_cmd_regs(mtd, NAND_CMD_SEQIN, flctl->seqin_read_cmd); set_addr(mtd, -1, -1); writel(0, FLDTCNTR(flctl)); /* set 0 size */ start_translation(flctl); wait_completion(flctl); } if (flctl->hwecc) { /* write page with hwecc */ if (flctl->seqin_column == mtd->writesize) execmd_write_oob(mtd); else if (!flctl->seqin_column) execmd_write_page_sector(mtd); else pr_err("Invalid address !?\n"); break; } set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN); set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr); writel(flctl->index, FLDTCNTR(flctl)); /* set write size */ start_translation(flctl); write_fiforeg(flctl, flctl->index, 0); wait_completion(flctl); break; case NAND_CMD_STATUS: set_cmd_regs(mtd, command, command); set_addr(mtd, -1, -1); flctl->read_bytes = 1; writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ start_translation(flctl); read_datareg(flctl, 0); /* read and end */ break; case NAND_CMD_RESET: set_cmd_regs(mtd, command, command); set_addr(mtd, -1, -1); writel(0, FLDTCNTR(flctl)); /* set 0 size */ start_translation(flctl); wait_completion(flctl); break; default: break; } goto runtime_exit; read_normal_exit: writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */ empty_fifo(flctl); start_translation(flctl); read_fiforeg(flctl, flctl->read_bytes, 0); wait_completion(flctl); runtime_exit: pm_runtime_put_sync(&flctl->pdev->dev); return; } static void flctl_select_chip(struct nand_chip *chip, int chipnr) { struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip)); int ret; switch (chipnr) { case -1: flctl->flcmncr_base &= ~CE0_ENABLE; pm_runtime_get_sync(&flctl->pdev->dev); writel(flctl->flcmncr_base, FLCMNCR(flctl)); if (flctl->qos_request) { dev_pm_qos_remove_request(&flctl->pm_qos); flctl->qos_request = 0; } pm_runtime_put_sync(&flctl->pdev->dev); break; case 0: flctl->flcmncr_base |= CE0_ENABLE; if (!flctl->qos_request) { ret = dev_pm_qos_add_request(&flctl->pdev->dev, &flctl->pm_qos, DEV_PM_QOS_RESUME_LATENCY, 100); if (ret < 0) dev_err(&flctl->pdev->dev, "PM QoS request failed: %d\n", ret); flctl->qos_request = 1; } if (flctl->holden) { pm_runtime_get_sync(&flctl->pdev->dev); writel(HOLDEN, FLHOLDCR(flctl)); pm_runtime_put_sync(&flctl->pdev->dev); } break; default: BUG(); } } static void flctl_write_buf(struct nand_chip *chip, const uint8_t *buf, int len) { struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip)); memcpy(&flctl->done_buff[flctl->index], buf, len); flctl->index += len; } static uint8_t flctl_read_byte(struct nand_chip *chip) { struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip)); uint8_t data; data = flctl->done_buff[flctl->index]; flctl->index++; return data; } static void flctl_read_buf(struct nand_chip *chip, uint8_t *buf, int len) { struct sh_flctl *flctl = mtd_to_flctl(nand_to_mtd(chip)); memcpy(buf, &flctl->done_buff[flctl->index], len); flctl->index += len; } static int flctl_chip_attach_chip(struct nand_chip *chip) { u64 targetsize = nanddev_target_size(&chip->base); struct mtd_info *mtd = nand_to_mtd(chip); struct sh_flctl *flctl = mtd_to_flctl(mtd); /* * NAND_BUSWIDTH_16 may have been set by nand_scan_ident(). * Add the SEL_16BIT flag in flctl->flcmncr_base. */ if (chip->options & NAND_BUSWIDTH_16) flctl->flcmncr_base |= SEL_16BIT; if (mtd->writesize == 512) { flctl->page_size = 0; if (targetsize > (32 << 20)) { /* big than 32MB */ flctl->rw_ADRCNT = ADRCNT_4; flctl->erase_ADRCNT = ADRCNT_3; } else if (targetsize > (2 << 16)) { /* big than 128KB */ flctl->rw_ADRCNT = ADRCNT_3; flctl->erase_ADRCNT = ADRCNT_2; } else { flctl->rw_ADRCNT = ADRCNT_2; flctl->erase_ADRCNT = ADRCNT_1; } } else { flctl->page_size = 1; if (targetsize > (128 << 20)) { /* big than 128MB */ flctl->rw_ADRCNT = ADRCNT2_E; flctl->erase_ADRCNT = ADRCNT_3; } else if (targetsize > (8 << 16)) { /* big than 512KB */ flctl->rw_ADRCNT = ADRCNT_4; flctl->erase_ADRCNT = ADRCNT_2; } else { flctl->rw_ADRCNT = ADRCNT_3; flctl->erase_ADRCNT = ADRCNT_1; } } if (flctl->hwecc) { if (mtd->writesize == 512) { mtd_set_ooblayout(mtd, &flctl_4secc_oob_smallpage_ops); chip->badblock_pattern = &flctl_4secc_smallpage; } else { mtd_set_ooblayout(mtd, &flctl_4secc_oob_largepage_ops); chip->badblock_pattern = &flctl_4secc_largepage; } chip->ecc.size = 512; chip->ecc.bytes = 10; chip->ecc.strength = 4; chip->ecc.read_page = flctl_read_page_hwecc; chip->ecc.write_page = flctl_write_page_hwecc; chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; /* 4 symbols ECC enabled */ flctl->flcmncr_base |= _4ECCEN; } else { chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT; chip->ecc.algo = NAND_ECC_ALGO_HAMMING; } return 0; } static const struct nand_controller_ops flctl_nand_controller_ops = { .attach_chip = flctl_chip_attach_chip, }; static irqreturn_t flctl_handle_flste(int irq, void *dev_id) { struct sh_flctl *flctl = dev_id; dev_err(&flctl->pdev->dev, "flste irq: %x\n", readl(FLINTDMACR(flctl))); writel(flctl->flintdmacr_base, FLINTDMACR(flctl)); return IRQ_HANDLED; } struct flctl_soc_config { unsigned long flcmncr_val; unsigned has_hwecc:1; unsigned use_holden:1; }; static struct flctl_soc_config flctl_sh7372_config = { .flcmncr_val = CLK_16B_12L_4H | TYPESEL_SET | SHBUSSEL, .has_hwecc = 1, .use_holden = 1, }; static const struct of_device_id of_flctl_match[] = { { .compatible = "renesas,shmobile-flctl-sh7372", .data = &flctl_sh7372_config }, {}, }; MODULE_DEVICE_TABLE(of, of_flctl_match); static struct sh_flctl_platform_data *flctl_parse_dt(struct device *dev) { const struct flctl_soc_config *config; struct sh_flctl_platform_data *pdata; config = of_device_get_match_data(dev); if (!config) { dev_err(dev, "%s: no OF configuration attached\n", __func__); return NULL; } pdata = devm_kzalloc(dev, sizeof(struct sh_flctl_platform_data), GFP_KERNEL); if (!pdata) return NULL; /* set SoC specific options */ pdata->flcmncr_val = config->flcmncr_val; pdata->has_hwecc = config->has_hwecc; pdata->use_holden = config->use_holden; return pdata; } static int flctl_probe(struct platform_device *pdev) { struct resource *res; struct sh_flctl *flctl; struct mtd_info *flctl_mtd; struct nand_chip *nand; struct sh_flctl_platform_data *pdata; int ret; int irq; flctl = devm_kzalloc(&pdev->dev, sizeof(struct sh_flctl), GFP_KERNEL); if (!flctl) return -ENOMEM; flctl->reg = devm_platform_get_and_ioremap_resource(pdev, 0, &res); if (IS_ERR(flctl->reg)) return PTR_ERR(flctl->reg); flctl->fifo = res->start + 0x24; /* FLDTFIFO */ irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_irq(&pdev->dev, irq, flctl_handle_flste, IRQF_SHARED, "flste", flctl); if (ret) { dev_err(&pdev->dev, "request interrupt failed.\n"); return ret; } if (pdev->dev.of_node) pdata = flctl_parse_dt(&pdev->dev); else pdata = dev_get_platdata(&pdev->dev); if (!pdata) { dev_err(&pdev->dev, "no setup data defined\n"); return -EINVAL; } platform_set_drvdata(pdev, flctl); nand = &flctl->chip; flctl_mtd = nand_to_mtd(nand); nand_set_flash_node(nand, pdev->dev.of_node); flctl_mtd->dev.parent = &pdev->dev; flctl->pdev = pdev; flctl->hwecc = pdata->has_hwecc; flctl->holden = pdata->use_holden; flctl->flcmncr_base = pdata->flcmncr_val; flctl->flintdmacr_base = flctl->hwecc ? (STERINTE | ECERB) : STERINTE; /* Set address of hardware control function */ /* 20 us command delay time */ nand->legacy.chip_delay = 20; nand->legacy.read_byte = flctl_read_byte; nand->legacy.write_buf = flctl_write_buf; nand->legacy.read_buf = flctl_read_buf; nand->legacy.select_chip = flctl_select_chip; nand->legacy.cmdfunc = flctl_cmdfunc; nand->legacy.set_features = nand_get_set_features_notsupp; nand->legacy.get_features = nand_get_set_features_notsupp; if (pdata->flcmncr_val & SEL_16BIT) nand->options |= NAND_BUSWIDTH_16; nand->options |= NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE; pm_runtime_enable(&pdev->dev); pm_runtime_resume(&pdev->dev); flctl_setup_dma(flctl); nand->legacy.dummy_controller.ops = &flctl_nand_controller_ops; ret = nand_scan(nand, 1); if (ret) goto err_chip; ret = mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts); if (ret) goto cleanup_nand; return 0; cleanup_nand: nand_cleanup(nand); err_chip: flctl_release_dma(flctl); pm_runtime_disable(&pdev->dev); return ret; } static void flctl_remove(struct platform_device *pdev) { struct sh_flctl *flctl = platform_get_drvdata(pdev); struct nand_chip *chip = &flctl->chip; int ret; flctl_release_dma(flctl); ret = mtd_device_unregister(nand_to_mtd(chip)); WARN_ON(ret); nand_cleanup(chip); pm_runtime_disable(&pdev->dev); } static struct platform_driver flctl_driver = { .probe = flctl_probe, .remove_new = flctl_remove, .driver = { .name = "sh_flctl", .of_match_table = of_flctl_match, }, }; module_platform_driver(flctl_driver); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Yoshihiro Shimoda"); MODULE_DESCRIPTION("SuperH FLCTL driver"); MODULE_ALIAS("platform:sh_flctl");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1