Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Arun Ramadoss | 7271 | 32.81% | 63 | 30.43% |
Oleksij Rempel | 6857 | 30.95% | 49 | 23.67% |
Woojung Huh | 1752 | 7.91% | 1 | 0.48% |
Romain Naour | 1601 | 7.23% | 3 | 1.45% |
Tristram Ha | 1509 | 6.81% | 12 | 5.80% |
Lukasz Majewski | 574 | 2.59% | 3 | 1.45% |
Michael Grzeschik | 557 | 2.51% | 6 | 2.90% |
Russell King | 383 | 1.73% | 4 | 1.93% |
Vladimir Oltean | 283 | 1.28% | 12 | 5.80% |
Philippe Schenker | 229 | 1.03% | 1 | 0.48% |
Rakesh Sankaranarayanan | 184 | 0.83% | 3 | 1.45% |
Helmut Grohne | 148 | 0.67% | 2 | 0.97% |
Robert Hancock | 122 | 0.55% | 4 | 1.93% |
Christian Eggers | 117 | 0.53% | 7 | 3.38% |
Svenning Sörensen | 98 | 0.44% | 1 | 0.48% |
Marek Vašut | 78 | 0.35% | 8 | 3.86% |
Codrin Ciubotariu | 52 | 0.23% | 2 | 0.97% |
Lad Prabhakar | 50 | 0.23% | 1 | 0.48% |
Vivien Didelot | 45 | 0.20% | 4 | 1.93% |
Enguerrand de Ribaucourt | 42 | 0.19% | 1 | 0.48% |
Andrew Lunn | 36 | 0.16% | 2 | 0.97% |
Prasanna Vengateshan | 34 | 0.15% | 1 | 0.48% |
Sean Nyekjaer | 27 | 0.12% | 2 | 0.97% |
Florian Fainelli | 22 | 0.10% | 2 | 0.97% |
George McCollister | 21 | 0.09% | 3 | 1.45% |
Arkadi Sharshevsky | 16 | 0.07% | 2 | 0.97% |
kbuild test robot | 16 | 0.07% | 1 | 0.48% |
Paul Barker | 13 | 0.06% | 2 | 0.97% |
Liang He | 12 | 0.05% | 1 | 0.48% |
Gustavo A. R. Silva | 3 | 0.01% | 1 | 0.48% |
Rasmus Villemoes | 2 | 0.01% | 1 | 0.48% |
Rob Herring | 2 | 0.01% | 1 | 0.48% |
Heiner Kallweit | 2 | 0.01% | 1 | 0.48% |
Total | 22158 | 207 |
// SPDX-License-Identifier: GPL-2.0 /* * Microchip switch driver main logic * * Copyright (C) 2017-2019 Microchip Technology Inc. */ #include <linux/delay.h> #include <linux/dsa/ksz_common.h> #include <linux/export.h> #include <linux/gpio/consumer.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_data/microchip-ksz.h> #include <linux/phy.h> #include <linux/etherdevice.h> #include <linux/if_bridge.h> #include <linux/if_vlan.h> #include <linux/if_hsr.h> #include <linux/irq.h> #include <linux/irqdomain.h> #include <linux/of.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include <linux/micrel_phy.h> #include <net/dsa.h> #include <net/ieee8021q.h> #include <net/pkt_cls.h> #include <net/switchdev.h> #include "ksz_common.h" #include "ksz_dcb.h" #include "ksz_ptp.h" #include "ksz8.h" #include "ksz9477.h" #include "lan937x.h" #define MIB_COUNTER_NUM 0x20 struct ksz_stats_raw { u64 rx_hi; u64 rx_undersize; u64 rx_fragments; u64 rx_oversize; u64 rx_jabbers; u64 rx_symbol_err; u64 rx_crc_err; u64 rx_align_err; u64 rx_mac_ctrl; u64 rx_pause; u64 rx_bcast; u64 rx_mcast; u64 rx_ucast; u64 rx_64_or_less; u64 rx_65_127; u64 rx_128_255; u64 rx_256_511; u64 rx_512_1023; u64 rx_1024_1522; u64 rx_1523_2000; u64 rx_2001; u64 tx_hi; u64 tx_late_col; u64 tx_pause; u64 tx_bcast; u64 tx_mcast; u64 tx_ucast; u64 tx_deferred; u64 tx_total_col; u64 tx_exc_col; u64 tx_single_col; u64 tx_mult_col; u64 rx_total; u64 tx_total; u64 rx_discards; u64 tx_discards; }; struct ksz88xx_stats_raw { u64 rx; u64 rx_hi; u64 rx_undersize; u64 rx_fragments; u64 rx_oversize; u64 rx_jabbers; u64 rx_symbol_err; u64 rx_crc_err; u64 rx_align_err; u64 rx_mac_ctrl; u64 rx_pause; u64 rx_bcast; u64 rx_mcast; u64 rx_ucast; u64 rx_64_or_less; u64 rx_65_127; u64 rx_128_255; u64 rx_256_511; u64 rx_512_1023; u64 rx_1024_1522; u64 tx; u64 tx_hi; u64 tx_late_col; u64 tx_pause; u64 tx_bcast; u64 tx_mcast; u64 tx_ucast; u64 tx_deferred; u64 tx_total_col; u64 tx_exc_col; u64 tx_single_col; u64 tx_mult_col; u64 rx_discards; u64 tx_discards; }; static const struct ksz_mib_names ksz88xx_mib_names[] = { { 0x00, "rx" }, { 0x01, "rx_hi" }, { 0x02, "rx_undersize" }, { 0x03, "rx_fragments" }, { 0x04, "rx_oversize" }, { 0x05, "rx_jabbers" }, { 0x06, "rx_symbol_err" }, { 0x07, "rx_crc_err" }, { 0x08, "rx_align_err" }, { 0x09, "rx_mac_ctrl" }, { 0x0a, "rx_pause" }, { 0x0b, "rx_bcast" }, { 0x0c, "rx_mcast" }, { 0x0d, "rx_ucast" }, { 0x0e, "rx_64_or_less" }, { 0x0f, "rx_65_127" }, { 0x10, "rx_128_255" }, { 0x11, "rx_256_511" }, { 0x12, "rx_512_1023" }, { 0x13, "rx_1024_1522" }, { 0x14, "tx" }, { 0x15, "tx_hi" }, { 0x16, "tx_late_col" }, { 0x17, "tx_pause" }, { 0x18, "tx_bcast" }, { 0x19, "tx_mcast" }, { 0x1a, "tx_ucast" }, { 0x1b, "tx_deferred" }, { 0x1c, "tx_total_col" }, { 0x1d, "tx_exc_col" }, { 0x1e, "tx_single_col" }, { 0x1f, "tx_mult_col" }, { 0x100, "rx_discards" }, { 0x101, "tx_discards" }, }; static const struct ksz_mib_names ksz9477_mib_names[] = { { 0x00, "rx_hi" }, { 0x01, "rx_undersize" }, { 0x02, "rx_fragments" }, { 0x03, "rx_oversize" }, { 0x04, "rx_jabbers" }, { 0x05, "rx_symbol_err" }, { 0x06, "rx_crc_err" }, { 0x07, "rx_align_err" }, { 0x08, "rx_mac_ctrl" }, { 0x09, "rx_pause" }, { 0x0A, "rx_bcast" }, { 0x0B, "rx_mcast" }, { 0x0C, "rx_ucast" }, { 0x0D, "rx_64_or_less" }, { 0x0E, "rx_65_127" }, { 0x0F, "rx_128_255" }, { 0x10, "rx_256_511" }, { 0x11, "rx_512_1023" }, { 0x12, "rx_1024_1522" }, { 0x13, "rx_1523_2000" }, { 0x14, "rx_2001" }, { 0x15, "tx_hi" }, { 0x16, "tx_late_col" }, { 0x17, "tx_pause" }, { 0x18, "tx_bcast" }, { 0x19, "tx_mcast" }, { 0x1A, "tx_ucast" }, { 0x1B, "tx_deferred" }, { 0x1C, "tx_total_col" }, { 0x1D, "tx_exc_col" }, { 0x1E, "tx_single_col" }, { 0x1F, "tx_mult_col" }, { 0x80, "rx_total" }, { 0x81, "tx_total" }, { 0x82, "rx_discards" }, { 0x83, "tx_discards" }, }; struct ksz_driver_strength_prop { const char *name; int offset; int value; }; enum ksz_driver_strength_type { KSZ_DRIVER_STRENGTH_HI, KSZ_DRIVER_STRENGTH_LO, KSZ_DRIVER_STRENGTH_IO, }; /** * struct ksz_drive_strength - drive strength mapping * @reg_val: register value * @microamp: microamp value */ struct ksz_drive_strength { u32 reg_val; u32 microamp; }; /* ksz9477_drive_strengths - Drive strength mapping for KSZ9477 variants * * This values are not documented in KSZ9477 variants but confirmed by * Microchip that KSZ9477, KSZ9567, KSZ8567, KSZ9897, KSZ9896, KSZ9563, KSZ9893 * and KSZ8563 are using same register (drive strength) settings like KSZ8795. * * Documentation in KSZ8795CLX provides more information with some * recommendations: * - for high speed signals * 1. 4 mA or 8 mA is often used for MII, RMII, and SPI interface with using * 2.5V or 3.3V VDDIO. * 2. 12 mA or 16 mA is often used for MII, RMII, and SPI interface with * using 1.8V VDDIO. * 3. 20 mA or 24 mA is often used for GMII/RGMII interface with using 2.5V * or 3.3V VDDIO. * 4. 28 mA is often used for GMII/RGMII interface with using 1.8V VDDIO. * 5. In same interface, the heavy loading should use higher one of the * drive current strength. * - for low speed signals * 1. 3.3V VDDIO, use either 4 mA or 8 mA. * 2. 2.5V VDDIO, use either 8 mA or 12 mA. * 3. 1.8V VDDIO, use either 12 mA or 16 mA. * 4. If it is heavy loading, can use higher drive current strength. */ static const struct ksz_drive_strength ksz9477_drive_strengths[] = { { SW_DRIVE_STRENGTH_2MA, 2000 }, { SW_DRIVE_STRENGTH_4MA, 4000 }, { SW_DRIVE_STRENGTH_8MA, 8000 }, { SW_DRIVE_STRENGTH_12MA, 12000 }, { SW_DRIVE_STRENGTH_16MA, 16000 }, { SW_DRIVE_STRENGTH_20MA, 20000 }, { SW_DRIVE_STRENGTH_24MA, 24000 }, { SW_DRIVE_STRENGTH_28MA, 28000 }, }; /* ksz8830_drive_strengths - Drive strength mapping for KSZ8830, KSZ8873, .. * variants. * This values are documented in KSZ8873 and KSZ8863 datasheets. */ static const struct ksz_drive_strength ksz8830_drive_strengths[] = { { 0, 8000 }, { KSZ8873_DRIVE_STRENGTH_16MA, 16000 }, }; static void ksz8830_phylink_mac_config(struct phylink_config *config, unsigned int mode, const struct phylink_link_state *state); static void ksz_phylink_mac_config(struct phylink_config *config, unsigned int mode, const struct phylink_link_state *state); static void ksz_phylink_mac_link_down(struct phylink_config *config, unsigned int mode, phy_interface_t interface); static const struct phylink_mac_ops ksz8830_phylink_mac_ops = { .mac_config = ksz8830_phylink_mac_config, .mac_link_down = ksz_phylink_mac_link_down, .mac_link_up = ksz8_phylink_mac_link_up, }; static const struct phylink_mac_ops ksz8_phylink_mac_ops = { .mac_config = ksz_phylink_mac_config, .mac_link_down = ksz_phylink_mac_link_down, .mac_link_up = ksz8_phylink_mac_link_up, }; static const struct ksz_dev_ops ksz8_dev_ops = { .setup = ksz8_setup, .get_port_addr = ksz8_get_port_addr, .cfg_port_member = ksz8_cfg_port_member, .flush_dyn_mac_table = ksz8_flush_dyn_mac_table, .port_setup = ksz8_port_setup, .r_phy = ksz8_r_phy, .w_phy = ksz8_w_phy, .r_mib_cnt = ksz8_r_mib_cnt, .r_mib_pkt = ksz8_r_mib_pkt, .r_mib_stat64 = ksz88xx_r_mib_stats64, .freeze_mib = ksz8_freeze_mib, .port_init_cnt = ksz8_port_init_cnt, .fdb_dump = ksz8_fdb_dump, .fdb_add = ksz8_fdb_add, .fdb_del = ksz8_fdb_del, .mdb_add = ksz8_mdb_add, .mdb_del = ksz8_mdb_del, .vlan_filtering = ksz8_port_vlan_filtering, .vlan_add = ksz8_port_vlan_add, .vlan_del = ksz8_port_vlan_del, .mirror_add = ksz8_port_mirror_add, .mirror_del = ksz8_port_mirror_del, .get_caps = ksz8_get_caps, .config_cpu_port = ksz8_config_cpu_port, .enable_stp_addr = ksz8_enable_stp_addr, .reset = ksz8_reset_switch, .init = ksz8_switch_init, .exit = ksz8_switch_exit, .change_mtu = ksz8_change_mtu, }; static void ksz9477_phylink_mac_link_up(struct phylink_config *config, struct phy_device *phydev, unsigned int mode, phy_interface_t interface, int speed, int duplex, bool tx_pause, bool rx_pause); static const struct phylink_mac_ops ksz9477_phylink_mac_ops = { .mac_config = ksz_phylink_mac_config, .mac_link_down = ksz_phylink_mac_link_down, .mac_link_up = ksz9477_phylink_mac_link_up, }; static const struct ksz_dev_ops ksz9477_dev_ops = { .setup = ksz9477_setup, .get_port_addr = ksz9477_get_port_addr, .cfg_port_member = ksz9477_cfg_port_member, .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table, .port_setup = ksz9477_port_setup, .set_ageing_time = ksz9477_set_ageing_time, .r_phy = ksz9477_r_phy, .w_phy = ksz9477_w_phy, .r_mib_cnt = ksz9477_r_mib_cnt, .r_mib_pkt = ksz9477_r_mib_pkt, .r_mib_stat64 = ksz_r_mib_stats64, .freeze_mib = ksz9477_freeze_mib, .port_init_cnt = ksz9477_port_init_cnt, .vlan_filtering = ksz9477_port_vlan_filtering, .vlan_add = ksz9477_port_vlan_add, .vlan_del = ksz9477_port_vlan_del, .mirror_add = ksz9477_port_mirror_add, .mirror_del = ksz9477_port_mirror_del, .get_caps = ksz9477_get_caps, .fdb_dump = ksz9477_fdb_dump, .fdb_add = ksz9477_fdb_add, .fdb_del = ksz9477_fdb_del, .mdb_add = ksz9477_mdb_add, .mdb_del = ksz9477_mdb_del, .change_mtu = ksz9477_change_mtu, .get_wol = ksz9477_get_wol, .set_wol = ksz9477_set_wol, .wol_pre_shutdown = ksz9477_wol_pre_shutdown, .config_cpu_port = ksz9477_config_cpu_port, .tc_cbs_set_cinc = ksz9477_tc_cbs_set_cinc, .enable_stp_addr = ksz9477_enable_stp_addr, .reset = ksz9477_reset_switch, .init = ksz9477_switch_init, .exit = ksz9477_switch_exit, }; static const struct phylink_mac_ops lan937x_phylink_mac_ops = { .mac_config = ksz_phylink_mac_config, .mac_link_down = ksz_phylink_mac_link_down, .mac_link_up = ksz9477_phylink_mac_link_up, }; static const struct ksz_dev_ops lan937x_dev_ops = { .setup = lan937x_setup, .teardown = lan937x_teardown, .get_port_addr = ksz9477_get_port_addr, .cfg_port_member = ksz9477_cfg_port_member, .flush_dyn_mac_table = ksz9477_flush_dyn_mac_table, .port_setup = lan937x_port_setup, .set_ageing_time = lan937x_set_ageing_time, .r_phy = lan937x_r_phy, .w_phy = lan937x_w_phy, .r_mib_cnt = ksz9477_r_mib_cnt, .r_mib_pkt = ksz9477_r_mib_pkt, .r_mib_stat64 = ksz_r_mib_stats64, .freeze_mib = ksz9477_freeze_mib, .port_init_cnt = ksz9477_port_init_cnt, .vlan_filtering = ksz9477_port_vlan_filtering, .vlan_add = ksz9477_port_vlan_add, .vlan_del = ksz9477_port_vlan_del, .mirror_add = ksz9477_port_mirror_add, .mirror_del = ksz9477_port_mirror_del, .get_caps = lan937x_phylink_get_caps, .setup_rgmii_delay = lan937x_setup_rgmii_delay, .fdb_dump = ksz9477_fdb_dump, .fdb_add = ksz9477_fdb_add, .fdb_del = ksz9477_fdb_del, .mdb_add = ksz9477_mdb_add, .mdb_del = ksz9477_mdb_del, .change_mtu = lan937x_change_mtu, .config_cpu_port = lan937x_config_cpu_port, .tc_cbs_set_cinc = lan937x_tc_cbs_set_cinc, .enable_stp_addr = ksz9477_enable_stp_addr, .reset = lan937x_reset_switch, .init = lan937x_switch_init, .exit = lan937x_switch_exit, }; static const u16 ksz8795_regs[] = { [REG_SW_MAC_ADDR] = 0x68, [REG_IND_CTRL_0] = 0x6E, [REG_IND_DATA_8] = 0x70, [REG_IND_DATA_CHECK] = 0x72, [REG_IND_DATA_HI] = 0x71, [REG_IND_DATA_LO] = 0x75, [REG_IND_MIB_CHECK] = 0x74, [REG_IND_BYTE] = 0xA0, [P_FORCE_CTRL] = 0x0C, [P_LINK_STATUS] = 0x0E, [P_LOCAL_CTRL] = 0x07, [P_NEG_RESTART_CTRL] = 0x0D, [P_REMOTE_STATUS] = 0x08, [P_SPEED_STATUS] = 0x09, [S_TAIL_TAG_CTRL] = 0x0C, [P_STP_CTRL] = 0x02, [S_START_CTRL] = 0x01, [S_BROADCAST_CTRL] = 0x06, [S_MULTICAST_CTRL] = 0x04, [P_XMII_CTRL_0] = 0x06, [P_XMII_CTRL_1] = 0x06, }; static const u32 ksz8795_masks[] = { [PORT_802_1P_REMAPPING] = BIT(7), [SW_TAIL_TAG_ENABLE] = BIT(1), [MIB_COUNTER_OVERFLOW] = BIT(6), [MIB_COUNTER_VALID] = BIT(5), [VLAN_TABLE_FID] = GENMASK(6, 0), [VLAN_TABLE_MEMBERSHIP] = GENMASK(11, 7), [VLAN_TABLE_VALID] = BIT(12), [STATIC_MAC_TABLE_VALID] = BIT(21), [STATIC_MAC_TABLE_USE_FID] = BIT(23), [STATIC_MAC_TABLE_FID] = GENMASK(30, 24), [STATIC_MAC_TABLE_OVERRIDE] = BIT(22), [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(20, 16), [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(6, 0), [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(7), [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 29), [DYNAMIC_MAC_TABLE_FID] = GENMASK(22, 16), [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(26, 24), [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(28, 27), [P_MII_TX_FLOW_CTRL] = BIT(5), [P_MII_RX_FLOW_CTRL] = BIT(5), }; static const u8 ksz8795_xmii_ctrl0[] = { [P_MII_100MBIT] = 0, [P_MII_10MBIT] = 1, [P_MII_FULL_DUPLEX] = 0, [P_MII_HALF_DUPLEX] = 1, }; static const u8 ksz8795_xmii_ctrl1[] = { [P_RGMII_SEL] = 3, [P_GMII_SEL] = 2, [P_RMII_SEL] = 1, [P_MII_SEL] = 0, [P_GMII_1GBIT] = 1, [P_GMII_NOT_1GBIT] = 0, }; static const u8 ksz8795_shifts[] = { [VLAN_TABLE_MEMBERSHIP_S] = 7, [VLAN_TABLE] = 16, [STATIC_MAC_FWD_PORTS] = 16, [STATIC_MAC_FID] = 24, [DYNAMIC_MAC_ENTRIES_H] = 3, [DYNAMIC_MAC_ENTRIES] = 29, [DYNAMIC_MAC_FID] = 16, [DYNAMIC_MAC_TIMESTAMP] = 27, [DYNAMIC_MAC_SRC_PORT] = 24, }; static const u16 ksz8863_regs[] = { [REG_SW_MAC_ADDR] = 0x70, [REG_IND_CTRL_0] = 0x79, [REG_IND_DATA_8] = 0x7B, [REG_IND_DATA_CHECK] = 0x7B, [REG_IND_DATA_HI] = 0x7C, [REG_IND_DATA_LO] = 0x80, [REG_IND_MIB_CHECK] = 0x80, [P_FORCE_CTRL] = 0x0C, [P_LINK_STATUS] = 0x0E, [P_LOCAL_CTRL] = 0x0C, [P_NEG_RESTART_CTRL] = 0x0D, [P_REMOTE_STATUS] = 0x0E, [P_SPEED_STATUS] = 0x0F, [S_TAIL_TAG_CTRL] = 0x03, [P_STP_CTRL] = 0x02, [S_START_CTRL] = 0x01, [S_BROADCAST_CTRL] = 0x06, [S_MULTICAST_CTRL] = 0x04, }; static const u32 ksz8863_masks[] = { [PORT_802_1P_REMAPPING] = BIT(3), [SW_TAIL_TAG_ENABLE] = BIT(6), [MIB_COUNTER_OVERFLOW] = BIT(7), [MIB_COUNTER_VALID] = BIT(6), [VLAN_TABLE_FID] = GENMASK(15, 12), [VLAN_TABLE_MEMBERSHIP] = GENMASK(18, 16), [VLAN_TABLE_VALID] = BIT(19), [STATIC_MAC_TABLE_VALID] = BIT(19), [STATIC_MAC_TABLE_USE_FID] = BIT(21), [STATIC_MAC_TABLE_FID] = GENMASK(25, 22), [STATIC_MAC_TABLE_OVERRIDE] = BIT(20), [STATIC_MAC_TABLE_FWD_PORTS] = GENMASK(18, 16), [DYNAMIC_MAC_TABLE_ENTRIES_H] = GENMASK(1, 0), [DYNAMIC_MAC_TABLE_MAC_EMPTY] = BIT(2), [DYNAMIC_MAC_TABLE_NOT_READY] = BIT(7), [DYNAMIC_MAC_TABLE_ENTRIES] = GENMASK(31, 24), [DYNAMIC_MAC_TABLE_FID] = GENMASK(19, 16), [DYNAMIC_MAC_TABLE_SRC_PORT] = GENMASK(21, 20), [DYNAMIC_MAC_TABLE_TIMESTAMP] = GENMASK(23, 22), }; static u8 ksz8863_shifts[] = { [VLAN_TABLE_MEMBERSHIP_S] = 16, [STATIC_MAC_FWD_PORTS] = 16, [STATIC_MAC_FID] = 22, [DYNAMIC_MAC_ENTRIES_H] = 8, [DYNAMIC_MAC_ENTRIES] = 24, [DYNAMIC_MAC_FID] = 16, [DYNAMIC_MAC_TIMESTAMP] = 22, [DYNAMIC_MAC_SRC_PORT] = 20, }; static const u16 ksz9477_regs[] = { [REG_SW_MAC_ADDR] = 0x0302, [P_STP_CTRL] = 0x0B04, [S_START_CTRL] = 0x0300, [S_BROADCAST_CTRL] = 0x0332, [S_MULTICAST_CTRL] = 0x0331, [P_XMII_CTRL_0] = 0x0300, [P_XMII_CTRL_1] = 0x0301, }; static const u32 ksz9477_masks[] = { [ALU_STAT_WRITE] = 0, [ALU_STAT_READ] = 1, [P_MII_TX_FLOW_CTRL] = BIT(5), [P_MII_RX_FLOW_CTRL] = BIT(3), }; static const u8 ksz9477_shifts[] = { [ALU_STAT_INDEX] = 16, }; static const u8 ksz9477_xmii_ctrl0[] = { [P_MII_100MBIT] = 1, [P_MII_10MBIT] = 0, [P_MII_FULL_DUPLEX] = 1, [P_MII_HALF_DUPLEX] = 0, }; static const u8 ksz9477_xmii_ctrl1[] = { [P_RGMII_SEL] = 0, [P_RMII_SEL] = 1, [P_GMII_SEL] = 2, [P_MII_SEL] = 3, [P_GMII_1GBIT] = 0, [P_GMII_NOT_1GBIT] = 1, }; static const u32 lan937x_masks[] = { [ALU_STAT_WRITE] = 1, [ALU_STAT_READ] = 2, [P_MII_TX_FLOW_CTRL] = BIT(5), [P_MII_RX_FLOW_CTRL] = BIT(3), }; static const u8 lan937x_shifts[] = { [ALU_STAT_INDEX] = 8, }; static const struct regmap_range ksz8563_valid_regs[] = { regmap_reg_range(0x0000, 0x0003), regmap_reg_range(0x0006, 0x0006), regmap_reg_range(0x000f, 0x001f), regmap_reg_range(0x0100, 0x0100), regmap_reg_range(0x0104, 0x0107), regmap_reg_range(0x010d, 0x010d), regmap_reg_range(0x0110, 0x0113), regmap_reg_range(0x0120, 0x012b), regmap_reg_range(0x0201, 0x0201), regmap_reg_range(0x0210, 0x0213), regmap_reg_range(0x0300, 0x0300), regmap_reg_range(0x0302, 0x031b), regmap_reg_range(0x0320, 0x032b), regmap_reg_range(0x0330, 0x0336), regmap_reg_range(0x0338, 0x033e), regmap_reg_range(0x0340, 0x035f), regmap_reg_range(0x0370, 0x0370), regmap_reg_range(0x0378, 0x0378), regmap_reg_range(0x037c, 0x037d), regmap_reg_range(0x0390, 0x0393), regmap_reg_range(0x0400, 0x040e), regmap_reg_range(0x0410, 0x042f), regmap_reg_range(0x0500, 0x0519), regmap_reg_range(0x0520, 0x054b), regmap_reg_range(0x0550, 0x05b3), /* port 1 */ regmap_reg_range(0x1000, 0x1001), regmap_reg_range(0x1004, 0x100b), regmap_reg_range(0x1013, 0x1013), regmap_reg_range(0x1017, 0x1017), regmap_reg_range(0x101b, 0x101b), regmap_reg_range(0x101f, 0x1021), regmap_reg_range(0x1030, 0x1030), regmap_reg_range(0x1100, 0x1111), regmap_reg_range(0x111a, 0x111d), regmap_reg_range(0x1122, 0x1127), regmap_reg_range(0x112a, 0x112b), regmap_reg_range(0x1136, 0x1139), regmap_reg_range(0x113e, 0x113f), regmap_reg_range(0x1400, 0x1401), regmap_reg_range(0x1403, 0x1403), regmap_reg_range(0x1410, 0x1417), regmap_reg_range(0x1420, 0x1423), regmap_reg_range(0x1500, 0x1507), regmap_reg_range(0x1600, 0x1612), regmap_reg_range(0x1800, 0x180f), regmap_reg_range(0x1900, 0x1907), regmap_reg_range(0x1914, 0x191b), regmap_reg_range(0x1a00, 0x1a03), regmap_reg_range(0x1a04, 0x1a08), regmap_reg_range(0x1b00, 0x1b01), regmap_reg_range(0x1b04, 0x1b04), regmap_reg_range(0x1c00, 0x1c05), regmap_reg_range(0x1c08, 0x1c1b), /* port 2 */ regmap_reg_range(0x2000, 0x2001), regmap_reg_range(0x2004, 0x200b), regmap_reg_range(0x2013, 0x2013), regmap_reg_range(0x2017, 0x2017), regmap_reg_range(0x201b, 0x201b), regmap_reg_range(0x201f, 0x2021), regmap_reg_range(0x2030, 0x2030), regmap_reg_range(0x2100, 0x2111), regmap_reg_range(0x211a, 0x211d), regmap_reg_range(0x2122, 0x2127), regmap_reg_range(0x212a, 0x212b), regmap_reg_range(0x2136, 0x2139), regmap_reg_range(0x213e, 0x213f), regmap_reg_range(0x2400, 0x2401), regmap_reg_range(0x2403, 0x2403), regmap_reg_range(0x2410, 0x2417), regmap_reg_range(0x2420, 0x2423), regmap_reg_range(0x2500, 0x2507), regmap_reg_range(0x2600, 0x2612), regmap_reg_range(0x2800, 0x280f), regmap_reg_range(0x2900, 0x2907), regmap_reg_range(0x2914, 0x291b), regmap_reg_range(0x2a00, 0x2a03), regmap_reg_range(0x2a04, 0x2a08), regmap_reg_range(0x2b00, 0x2b01), regmap_reg_range(0x2b04, 0x2b04), regmap_reg_range(0x2c00, 0x2c05), regmap_reg_range(0x2c08, 0x2c1b), /* port 3 */ regmap_reg_range(0x3000, 0x3001), regmap_reg_range(0x3004, 0x300b), regmap_reg_range(0x3013, 0x3013), regmap_reg_range(0x3017, 0x3017), regmap_reg_range(0x301b, 0x301b), regmap_reg_range(0x301f, 0x3021), regmap_reg_range(0x3030, 0x3030), regmap_reg_range(0x3300, 0x3301), regmap_reg_range(0x3303, 0x3303), regmap_reg_range(0x3400, 0x3401), regmap_reg_range(0x3403, 0x3403), regmap_reg_range(0x3410, 0x3417), regmap_reg_range(0x3420, 0x3423), regmap_reg_range(0x3500, 0x3507), regmap_reg_range(0x3600, 0x3612), regmap_reg_range(0x3800, 0x380f), regmap_reg_range(0x3900, 0x3907), regmap_reg_range(0x3914, 0x391b), regmap_reg_range(0x3a00, 0x3a03), regmap_reg_range(0x3a04, 0x3a08), regmap_reg_range(0x3b00, 0x3b01), regmap_reg_range(0x3b04, 0x3b04), regmap_reg_range(0x3c00, 0x3c05), regmap_reg_range(0x3c08, 0x3c1b), }; static const struct regmap_access_table ksz8563_register_set = { .yes_ranges = ksz8563_valid_regs, .n_yes_ranges = ARRAY_SIZE(ksz8563_valid_regs), }; static const struct regmap_range ksz9477_valid_regs[] = { regmap_reg_range(0x0000, 0x0003), regmap_reg_range(0x0006, 0x0006), regmap_reg_range(0x0010, 0x001f), regmap_reg_range(0x0100, 0x0100), regmap_reg_range(0x0103, 0x0107), regmap_reg_range(0x010d, 0x010d), regmap_reg_range(0x0110, 0x0113), regmap_reg_range(0x0120, 0x012b), regmap_reg_range(0x0201, 0x0201), regmap_reg_range(0x0210, 0x0213), regmap_reg_range(0x0300, 0x0300), regmap_reg_range(0x0302, 0x031b), regmap_reg_range(0x0320, 0x032b), regmap_reg_range(0x0330, 0x0336), regmap_reg_range(0x0338, 0x033b), regmap_reg_range(0x033e, 0x033e), regmap_reg_range(0x0340, 0x035f), regmap_reg_range(0x0370, 0x0370), regmap_reg_range(0x0378, 0x0378), regmap_reg_range(0x037c, 0x037d), regmap_reg_range(0x0390, 0x0393), regmap_reg_range(0x0400, 0x040e), regmap_reg_range(0x0410, 0x042f), regmap_reg_range(0x0444, 0x044b), regmap_reg_range(0x0450, 0x046f), regmap_reg_range(0x0500, 0x0519), regmap_reg_range(0x0520, 0x054b), regmap_reg_range(0x0550, 0x05b3), regmap_reg_range(0x0604, 0x060b), regmap_reg_range(0x0610, 0x0612), regmap_reg_range(0x0614, 0x062c), regmap_reg_range(0x0640, 0x0645), regmap_reg_range(0x0648, 0x064d), /* port 1 */ regmap_reg_range(0x1000, 0x1001), regmap_reg_range(0x1013, 0x1013), regmap_reg_range(0x1017, 0x1017), regmap_reg_range(0x101b, 0x101b), regmap_reg_range(0x101f, 0x1020), regmap_reg_range(0x1030, 0x1030), regmap_reg_range(0x1100, 0x1115), regmap_reg_range(0x111a, 0x111f), regmap_reg_range(0x1120, 0x112b), regmap_reg_range(0x1134, 0x113b), regmap_reg_range(0x113c, 0x113f), regmap_reg_range(0x1400, 0x1401), regmap_reg_range(0x1403, 0x1403), regmap_reg_range(0x1410, 0x1417), regmap_reg_range(0x1420, 0x1423), regmap_reg_range(0x1500, 0x1507), regmap_reg_range(0x1600, 0x1613), regmap_reg_range(0x1800, 0x180f), regmap_reg_range(0x1820, 0x1827), regmap_reg_range(0x1830, 0x1837), regmap_reg_range(0x1840, 0x184b), regmap_reg_range(0x1900, 0x1907), regmap_reg_range(0x1914, 0x191b), regmap_reg_range(0x1920, 0x1920), regmap_reg_range(0x1923, 0x1927), regmap_reg_range(0x1a00, 0x1a03), regmap_reg_range(0x1a04, 0x1a07), regmap_reg_range(0x1b00, 0x1b01), regmap_reg_range(0x1b04, 0x1b04), regmap_reg_range(0x1c00, 0x1c05), regmap_reg_range(0x1c08, 0x1c1b), /* port 2 */ regmap_reg_range(0x2000, 0x2001), regmap_reg_range(0x2013, 0x2013), regmap_reg_range(0x2017, 0x2017), regmap_reg_range(0x201b, 0x201b), regmap_reg_range(0x201f, 0x2020), regmap_reg_range(0x2030, 0x2030), regmap_reg_range(0x2100, 0x2115), regmap_reg_range(0x211a, 0x211f), regmap_reg_range(0x2120, 0x212b), regmap_reg_range(0x2134, 0x213b), regmap_reg_range(0x213c, 0x213f), regmap_reg_range(0x2400, 0x2401), regmap_reg_range(0x2403, 0x2403), regmap_reg_range(0x2410, 0x2417), regmap_reg_range(0x2420, 0x2423), regmap_reg_range(0x2500, 0x2507), regmap_reg_range(0x2600, 0x2613), regmap_reg_range(0x2800, 0x280f), regmap_reg_range(0x2820, 0x2827), regmap_reg_range(0x2830, 0x2837), regmap_reg_range(0x2840, 0x284b), regmap_reg_range(0x2900, 0x2907), regmap_reg_range(0x2914, 0x291b), regmap_reg_range(0x2920, 0x2920), regmap_reg_range(0x2923, 0x2927), regmap_reg_range(0x2a00, 0x2a03), regmap_reg_range(0x2a04, 0x2a07), regmap_reg_range(0x2b00, 0x2b01), regmap_reg_range(0x2b04, 0x2b04), regmap_reg_range(0x2c00, 0x2c05), regmap_reg_range(0x2c08, 0x2c1b), /* port 3 */ regmap_reg_range(0x3000, 0x3001), regmap_reg_range(0x3013, 0x3013), regmap_reg_range(0x3017, 0x3017), regmap_reg_range(0x301b, 0x301b), regmap_reg_range(0x301f, 0x3020), regmap_reg_range(0x3030, 0x3030), regmap_reg_range(0x3100, 0x3115), regmap_reg_range(0x311a, 0x311f), regmap_reg_range(0x3120, 0x312b), regmap_reg_range(0x3134, 0x313b), regmap_reg_range(0x313c, 0x313f), regmap_reg_range(0x3400, 0x3401), regmap_reg_range(0x3403, 0x3403), regmap_reg_range(0x3410, 0x3417), regmap_reg_range(0x3420, 0x3423), regmap_reg_range(0x3500, 0x3507), regmap_reg_range(0x3600, 0x3613), regmap_reg_range(0x3800, 0x380f), regmap_reg_range(0x3820, 0x3827), regmap_reg_range(0x3830, 0x3837), regmap_reg_range(0x3840, 0x384b), regmap_reg_range(0x3900, 0x3907), regmap_reg_range(0x3914, 0x391b), regmap_reg_range(0x3920, 0x3920), regmap_reg_range(0x3923, 0x3927), regmap_reg_range(0x3a00, 0x3a03), regmap_reg_range(0x3a04, 0x3a07), regmap_reg_range(0x3b00, 0x3b01), regmap_reg_range(0x3b04, 0x3b04), regmap_reg_range(0x3c00, 0x3c05), regmap_reg_range(0x3c08, 0x3c1b), /* port 4 */ regmap_reg_range(0x4000, 0x4001), regmap_reg_range(0x4013, 0x4013), regmap_reg_range(0x4017, 0x4017), regmap_reg_range(0x401b, 0x401b), regmap_reg_range(0x401f, 0x4020), regmap_reg_range(0x4030, 0x4030), regmap_reg_range(0x4100, 0x4115), regmap_reg_range(0x411a, 0x411f), regmap_reg_range(0x4120, 0x412b), regmap_reg_range(0x4134, 0x413b), regmap_reg_range(0x413c, 0x413f), regmap_reg_range(0x4400, 0x4401), regmap_reg_range(0x4403, 0x4403), regmap_reg_range(0x4410, 0x4417), regmap_reg_range(0x4420, 0x4423), regmap_reg_range(0x4500, 0x4507), regmap_reg_range(0x4600, 0x4613), regmap_reg_range(0x4800, 0x480f), regmap_reg_range(0x4820, 0x4827), regmap_reg_range(0x4830, 0x4837), regmap_reg_range(0x4840, 0x484b), regmap_reg_range(0x4900, 0x4907), regmap_reg_range(0x4914, 0x491b), regmap_reg_range(0x4920, 0x4920), regmap_reg_range(0x4923, 0x4927), regmap_reg_range(0x4a00, 0x4a03), regmap_reg_range(0x4a04, 0x4a07), regmap_reg_range(0x4b00, 0x4b01), regmap_reg_range(0x4b04, 0x4b04), regmap_reg_range(0x4c00, 0x4c05), regmap_reg_range(0x4c08, 0x4c1b), /* port 5 */ regmap_reg_range(0x5000, 0x5001), regmap_reg_range(0x5013, 0x5013), regmap_reg_range(0x5017, 0x5017), regmap_reg_range(0x501b, 0x501b), regmap_reg_range(0x501f, 0x5020), regmap_reg_range(0x5030, 0x5030), regmap_reg_range(0x5100, 0x5115), regmap_reg_range(0x511a, 0x511f), regmap_reg_range(0x5120, 0x512b), regmap_reg_range(0x5134, 0x513b), regmap_reg_range(0x513c, 0x513f), regmap_reg_range(0x5400, 0x5401), regmap_reg_range(0x5403, 0x5403), regmap_reg_range(0x5410, 0x5417), regmap_reg_range(0x5420, 0x5423), regmap_reg_range(0x5500, 0x5507), regmap_reg_range(0x5600, 0x5613), regmap_reg_range(0x5800, 0x580f), regmap_reg_range(0x5820, 0x5827), regmap_reg_range(0x5830, 0x5837), regmap_reg_range(0x5840, 0x584b), regmap_reg_range(0x5900, 0x5907), regmap_reg_range(0x5914, 0x591b), regmap_reg_range(0x5920, 0x5920), regmap_reg_range(0x5923, 0x5927), regmap_reg_range(0x5a00, 0x5a03), regmap_reg_range(0x5a04, 0x5a07), regmap_reg_range(0x5b00, 0x5b01), regmap_reg_range(0x5b04, 0x5b04), regmap_reg_range(0x5c00, 0x5c05), regmap_reg_range(0x5c08, 0x5c1b), /* port 6 */ regmap_reg_range(0x6000, 0x6001), regmap_reg_range(0x6013, 0x6013), regmap_reg_range(0x6017, 0x6017), regmap_reg_range(0x601b, 0x601b), regmap_reg_range(0x601f, 0x6020), regmap_reg_range(0x6030, 0x6030), regmap_reg_range(0x6300, 0x6301), regmap_reg_range(0x6400, 0x6401), regmap_reg_range(0x6403, 0x6403), regmap_reg_range(0x6410, 0x6417), regmap_reg_range(0x6420, 0x6423), regmap_reg_range(0x6500, 0x6507), regmap_reg_range(0x6600, 0x6613), regmap_reg_range(0x6800, 0x680f), regmap_reg_range(0x6820, 0x6827), regmap_reg_range(0x6830, 0x6837), regmap_reg_range(0x6840, 0x684b), regmap_reg_range(0x6900, 0x6907), regmap_reg_range(0x6914, 0x691b), regmap_reg_range(0x6920, 0x6920), regmap_reg_range(0x6923, 0x6927), regmap_reg_range(0x6a00, 0x6a03), regmap_reg_range(0x6a04, 0x6a07), regmap_reg_range(0x6b00, 0x6b01), regmap_reg_range(0x6b04, 0x6b04), regmap_reg_range(0x6c00, 0x6c05), regmap_reg_range(0x6c08, 0x6c1b), /* port 7 */ regmap_reg_range(0x7000, 0x7001), regmap_reg_range(0x7013, 0x7013), regmap_reg_range(0x7017, 0x7017), regmap_reg_range(0x701b, 0x701b), regmap_reg_range(0x701f, 0x7020), regmap_reg_range(0x7030, 0x7030), regmap_reg_range(0x7200, 0x7203), regmap_reg_range(0x7206, 0x7207), regmap_reg_range(0x7300, 0x7301), regmap_reg_range(0x7400, 0x7401), regmap_reg_range(0x7403, 0x7403), regmap_reg_range(0x7410, 0x7417), regmap_reg_range(0x7420, 0x7423), regmap_reg_range(0x7500, 0x7507), regmap_reg_range(0x7600, 0x7613), regmap_reg_range(0x7800, 0x780f), regmap_reg_range(0x7820, 0x7827), regmap_reg_range(0x7830, 0x7837), regmap_reg_range(0x7840, 0x784b), regmap_reg_range(0x7900, 0x7907), regmap_reg_range(0x7914, 0x791b), regmap_reg_range(0x7920, 0x7920), regmap_reg_range(0x7923, 0x7927), regmap_reg_range(0x7a00, 0x7a03), regmap_reg_range(0x7a04, 0x7a07), regmap_reg_range(0x7b00, 0x7b01), regmap_reg_range(0x7b04, 0x7b04), regmap_reg_range(0x7c00, 0x7c05), regmap_reg_range(0x7c08, 0x7c1b), }; static const struct regmap_access_table ksz9477_register_set = { .yes_ranges = ksz9477_valid_regs, .n_yes_ranges = ARRAY_SIZE(ksz9477_valid_regs), }; static const struct regmap_range ksz9896_valid_regs[] = { regmap_reg_range(0x0000, 0x0003), regmap_reg_range(0x0006, 0x0006), regmap_reg_range(0x0010, 0x001f), regmap_reg_range(0x0100, 0x0100), regmap_reg_range(0x0103, 0x0107), regmap_reg_range(0x010d, 0x010d), regmap_reg_range(0x0110, 0x0113), regmap_reg_range(0x0120, 0x0127), regmap_reg_range(0x0201, 0x0201), regmap_reg_range(0x0210, 0x0213), regmap_reg_range(0x0300, 0x0300), regmap_reg_range(0x0302, 0x030b), regmap_reg_range(0x0310, 0x031b), regmap_reg_range(0x0320, 0x032b), regmap_reg_range(0x0330, 0x0336), regmap_reg_range(0x0338, 0x033b), regmap_reg_range(0x033e, 0x033e), regmap_reg_range(0x0340, 0x035f), regmap_reg_range(0x0370, 0x0370), regmap_reg_range(0x0378, 0x0378), regmap_reg_range(0x037c, 0x037d), regmap_reg_range(0x0390, 0x0393), regmap_reg_range(0x0400, 0x040e), regmap_reg_range(0x0410, 0x042f), /* port 1 */ regmap_reg_range(0x1000, 0x1001), regmap_reg_range(0x1013, 0x1013), regmap_reg_range(0x1017, 0x1017), regmap_reg_range(0x101b, 0x101b), regmap_reg_range(0x101f, 0x1020), regmap_reg_range(0x1030, 0x1030), regmap_reg_range(0x1100, 0x1115), regmap_reg_range(0x111a, 0x111f), regmap_reg_range(0x1122, 0x1127), regmap_reg_range(0x112a, 0x112b), regmap_reg_range(0x1136, 0x1139), regmap_reg_range(0x113e, 0x113f), regmap_reg_range(0x1400, 0x1401), regmap_reg_range(0x1403, 0x1403), regmap_reg_range(0x1410, 0x1417), regmap_reg_range(0x1420, 0x1423), regmap_reg_range(0x1500, 0x1507), regmap_reg_range(0x1600, 0x1612), regmap_reg_range(0x1800, 0x180f), regmap_reg_range(0x1820, 0x1827), regmap_reg_range(0x1830, 0x1837), regmap_reg_range(0x1840, 0x184b), regmap_reg_range(0x1900, 0x1907), regmap_reg_range(0x1914, 0x1915), regmap_reg_range(0x1a00, 0x1a03), regmap_reg_range(0x1a04, 0x1a07), regmap_reg_range(0x1b00, 0x1b01), regmap_reg_range(0x1b04, 0x1b04), /* port 2 */ regmap_reg_range(0x2000, 0x2001), regmap_reg_range(0x2013, 0x2013), regmap_reg_range(0x2017, 0x2017), regmap_reg_range(0x201b, 0x201b), regmap_reg_range(0x201f, 0x2020), regmap_reg_range(0x2030, 0x2030), regmap_reg_range(0x2100, 0x2115), regmap_reg_range(0x211a, 0x211f), regmap_reg_range(0x2122, 0x2127), regmap_reg_range(0x212a, 0x212b), regmap_reg_range(0x2136, 0x2139), regmap_reg_range(0x213e, 0x213f), regmap_reg_range(0x2400, 0x2401), regmap_reg_range(0x2403, 0x2403), regmap_reg_range(0x2410, 0x2417), regmap_reg_range(0x2420, 0x2423), regmap_reg_range(0x2500, 0x2507), regmap_reg_range(0x2600, 0x2612), regmap_reg_range(0x2800, 0x280f), regmap_reg_range(0x2820, 0x2827), regmap_reg_range(0x2830, 0x2837), regmap_reg_range(0x2840, 0x284b), regmap_reg_range(0x2900, 0x2907), regmap_reg_range(0x2914, 0x2915), regmap_reg_range(0x2a00, 0x2a03), regmap_reg_range(0x2a04, 0x2a07), regmap_reg_range(0x2b00, 0x2b01), regmap_reg_range(0x2b04, 0x2b04), /* port 3 */ regmap_reg_range(0x3000, 0x3001), regmap_reg_range(0x3013, 0x3013), regmap_reg_range(0x3017, 0x3017), regmap_reg_range(0x301b, 0x301b), regmap_reg_range(0x301f, 0x3020), regmap_reg_range(0x3030, 0x3030), regmap_reg_range(0x3100, 0x3115), regmap_reg_range(0x311a, 0x311f), regmap_reg_range(0x3122, 0x3127), regmap_reg_range(0x312a, 0x312b), regmap_reg_range(0x3136, 0x3139), regmap_reg_range(0x313e, 0x313f), regmap_reg_range(0x3400, 0x3401), regmap_reg_range(0x3403, 0x3403), regmap_reg_range(0x3410, 0x3417), regmap_reg_range(0x3420, 0x3423), regmap_reg_range(0x3500, 0x3507), regmap_reg_range(0x3600, 0x3612), regmap_reg_range(0x3800, 0x380f), regmap_reg_range(0x3820, 0x3827), regmap_reg_range(0x3830, 0x3837), regmap_reg_range(0x3840, 0x384b), regmap_reg_range(0x3900, 0x3907), regmap_reg_range(0x3914, 0x3915), regmap_reg_range(0x3a00, 0x3a03), regmap_reg_range(0x3a04, 0x3a07), regmap_reg_range(0x3b00, 0x3b01), regmap_reg_range(0x3b04, 0x3b04), /* port 4 */ regmap_reg_range(0x4000, 0x4001), regmap_reg_range(0x4013, 0x4013), regmap_reg_range(0x4017, 0x4017), regmap_reg_range(0x401b, 0x401b), regmap_reg_range(0x401f, 0x4020), regmap_reg_range(0x4030, 0x4030), regmap_reg_range(0x4100, 0x4115), regmap_reg_range(0x411a, 0x411f), regmap_reg_range(0x4122, 0x4127), regmap_reg_range(0x412a, 0x412b), regmap_reg_range(0x4136, 0x4139), regmap_reg_range(0x413e, 0x413f), regmap_reg_range(0x4400, 0x4401), regmap_reg_range(0x4403, 0x4403), regmap_reg_range(0x4410, 0x4417), regmap_reg_range(0x4420, 0x4423), regmap_reg_range(0x4500, 0x4507), regmap_reg_range(0x4600, 0x4612), regmap_reg_range(0x4800, 0x480f), regmap_reg_range(0x4820, 0x4827), regmap_reg_range(0x4830, 0x4837), regmap_reg_range(0x4840, 0x484b), regmap_reg_range(0x4900, 0x4907), regmap_reg_range(0x4914, 0x4915), regmap_reg_range(0x4a00, 0x4a03), regmap_reg_range(0x4a04, 0x4a07), regmap_reg_range(0x4b00, 0x4b01), regmap_reg_range(0x4b04, 0x4b04), /* port 5 */ regmap_reg_range(0x5000, 0x5001), regmap_reg_range(0x5013, 0x5013), regmap_reg_range(0x5017, 0x5017), regmap_reg_range(0x501b, 0x501b), regmap_reg_range(0x501f, 0x5020), regmap_reg_range(0x5030, 0x5030), regmap_reg_range(0x5100, 0x5115), regmap_reg_range(0x511a, 0x511f), regmap_reg_range(0x5122, 0x5127), regmap_reg_range(0x512a, 0x512b), regmap_reg_range(0x5136, 0x5139), regmap_reg_range(0x513e, 0x513f), regmap_reg_range(0x5400, 0x5401), regmap_reg_range(0x5403, 0x5403), regmap_reg_range(0x5410, 0x5417), regmap_reg_range(0x5420, 0x5423), regmap_reg_range(0x5500, 0x5507), regmap_reg_range(0x5600, 0x5612), regmap_reg_range(0x5800, 0x580f), regmap_reg_range(0x5820, 0x5827), regmap_reg_range(0x5830, 0x5837), regmap_reg_range(0x5840, 0x584b), regmap_reg_range(0x5900, 0x5907), regmap_reg_range(0x5914, 0x5915), regmap_reg_range(0x5a00, 0x5a03), regmap_reg_range(0x5a04, 0x5a07), regmap_reg_range(0x5b00, 0x5b01), regmap_reg_range(0x5b04, 0x5b04), /* port 6 */ regmap_reg_range(0x6000, 0x6001), regmap_reg_range(0x6013, 0x6013), regmap_reg_range(0x6017, 0x6017), regmap_reg_range(0x601b, 0x601b), regmap_reg_range(0x601f, 0x6020), regmap_reg_range(0x6030, 0x6030), regmap_reg_range(0x6100, 0x6115), regmap_reg_range(0x611a, 0x611f), regmap_reg_range(0x6122, 0x6127), regmap_reg_range(0x612a, 0x612b), regmap_reg_range(0x6136, 0x6139), regmap_reg_range(0x613e, 0x613f), regmap_reg_range(0x6300, 0x6301), regmap_reg_range(0x6400, 0x6401), regmap_reg_range(0x6403, 0x6403), regmap_reg_range(0x6410, 0x6417), regmap_reg_range(0x6420, 0x6423), regmap_reg_range(0x6500, 0x6507), regmap_reg_range(0x6600, 0x6612), regmap_reg_range(0x6800, 0x680f), regmap_reg_range(0x6820, 0x6827), regmap_reg_range(0x6830, 0x6837), regmap_reg_range(0x6840, 0x684b), regmap_reg_range(0x6900, 0x6907), regmap_reg_range(0x6914, 0x6915), regmap_reg_range(0x6a00, 0x6a03), regmap_reg_range(0x6a04, 0x6a07), regmap_reg_range(0x6b00, 0x6b01), regmap_reg_range(0x6b04, 0x6b04), }; static const struct regmap_access_table ksz9896_register_set = { .yes_ranges = ksz9896_valid_regs, .n_yes_ranges = ARRAY_SIZE(ksz9896_valid_regs), }; static const struct regmap_range ksz8873_valid_regs[] = { regmap_reg_range(0x00, 0x01), /* global control register */ regmap_reg_range(0x02, 0x0f), /* port registers */ regmap_reg_range(0x10, 0x1d), regmap_reg_range(0x1e, 0x1f), regmap_reg_range(0x20, 0x2d), regmap_reg_range(0x2e, 0x2f), regmap_reg_range(0x30, 0x39), regmap_reg_range(0x3f, 0x3f), /* advanced control registers */ regmap_reg_range(0x60, 0x6f), regmap_reg_range(0x70, 0x75), regmap_reg_range(0x76, 0x78), regmap_reg_range(0x79, 0x7a), regmap_reg_range(0x7b, 0x83), regmap_reg_range(0x8e, 0x99), regmap_reg_range(0x9a, 0xa5), regmap_reg_range(0xa6, 0xa6), regmap_reg_range(0xa7, 0xaa), regmap_reg_range(0xab, 0xae), regmap_reg_range(0xaf, 0xba), regmap_reg_range(0xbb, 0xbc), regmap_reg_range(0xbd, 0xbd), regmap_reg_range(0xc0, 0xc0), regmap_reg_range(0xc2, 0xc2), regmap_reg_range(0xc3, 0xc3), regmap_reg_range(0xc4, 0xc4), regmap_reg_range(0xc6, 0xc6), }; static const struct regmap_access_table ksz8873_register_set = { .yes_ranges = ksz8873_valid_regs, .n_yes_ranges = ARRAY_SIZE(ksz8873_valid_regs), }; const struct ksz_chip_data ksz_switch_chips[] = { [KSZ8563] = { .chip_id = KSZ8563_CHIP_ID, .dev_name = "KSZ8563", .num_vlans = 4096, .num_alus = 4096, .num_statics = 16, .cpu_ports = 0x07, /* can be configured as cpu port */ .port_cnt = 3, /* total port count */ .port_nirqs = 3, .num_tx_queues = 4, .num_ipms = 8, .tc_cbs_supported = true, .ops = &ksz9477_dev_ops, .phylink_mac_ops = &ksz9477_phylink_mac_ops, .mib_names = ksz9477_mib_names, .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), .reg_mib_cnt = MIB_COUNTER_NUM, .regs = ksz9477_regs, .masks = ksz9477_masks, .shifts = ksz9477_shifts, .xmii_ctrl0 = ksz9477_xmii_ctrl0, .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ .supports_mii = {false, false, true}, .supports_rmii = {false, false, true}, .supports_rgmii = {false, false, true}, .internal_phy = {true, true, false}, .gbit_capable = {false, false, true}, .wr_table = &ksz8563_register_set, .rd_table = &ksz8563_register_set, }, [KSZ8795] = { .chip_id = KSZ8795_CHIP_ID, .dev_name = "KSZ8795", .num_vlans = 4096, .num_alus = 0, .num_statics = 8, .cpu_ports = 0x10, /* can be configured as cpu port */ .port_cnt = 5, /* total cpu and user ports */ .num_tx_queues = 4, .num_ipms = 4, .ops = &ksz8_dev_ops, .phylink_mac_ops = &ksz8_phylink_mac_ops, .ksz87xx_eee_link_erratum = true, .mib_names = ksz9477_mib_names, .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), .reg_mib_cnt = MIB_COUNTER_NUM, .regs = ksz8795_regs, .masks = ksz8795_masks, .shifts = ksz8795_shifts, .xmii_ctrl0 = ksz8795_xmii_ctrl0, .xmii_ctrl1 = ksz8795_xmii_ctrl1, .supports_mii = {false, false, false, false, true}, .supports_rmii = {false, false, false, false, true}, .supports_rgmii = {false, false, false, false, true}, .internal_phy = {true, true, true, true, false}, }, [KSZ8794] = { /* WARNING * ======= * KSZ8794 is similar to KSZ8795, except the port map * contains a gap between external and CPU ports, the * port map is NOT continuous. The per-port register * map is shifted accordingly too, i.e. registers at * offset 0x40 are NOT used on KSZ8794 and they ARE * used on KSZ8795 for external port 3. * external cpu * KSZ8794 0,1,2 4 * KSZ8795 0,1,2,3 4 * KSZ8765 0,1,2,3 4 * port_cnt is configured as 5, even though it is 4 */ .chip_id = KSZ8794_CHIP_ID, .dev_name = "KSZ8794", .num_vlans = 4096, .num_alus = 0, .num_statics = 8, .cpu_ports = 0x10, /* can be configured as cpu port */ .port_cnt = 5, /* total cpu and user ports */ .num_tx_queues = 4, .num_ipms = 4, .ops = &ksz8_dev_ops, .phylink_mac_ops = &ksz8_phylink_mac_ops, .ksz87xx_eee_link_erratum = true, .mib_names = ksz9477_mib_names, .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), .reg_mib_cnt = MIB_COUNTER_NUM, .regs = ksz8795_regs, .masks = ksz8795_masks, .shifts = ksz8795_shifts, .xmii_ctrl0 = ksz8795_xmii_ctrl0, .xmii_ctrl1 = ksz8795_xmii_ctrl1, .supports_mii = {false, false, false, false, true}, .supports_rmii = {false, false, false, false, true}, .supports_rgmii = {false, false, false, false, true}, .internal_phy = {true, true, true, false, false}, }, [KSZ8765] = { .chip_id = KSZ8765_CHIP_ID, .dev_name = "KSZ8765", .num_vlans = 4096, .num_alus = 0, .num_statics = 8, .cpu_ports = 0x10, /* can be configured as cpu port */ .port_cnt = 5, /* total cpu and user ports */ .num_tx_queues = 4, .num_ipms = 4, .ops = &ksz8_dev_ops, .phylink_mac_ops = &ksz8_phylink_mac_ops, .ksz87xx_eee_link_erratum = true, .mib_names = ksz9477_mib_names, .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), .reg_mib_cnt = MIB_COUNTER_NUM, .regs = ksz8795_regs, .masks = ksz8795_masks, .shifts = ksz8795_shifts, .xmii_ctrl0 = ksz8795_xmii_ctrl0, .xmii_ctrl1 = ksz8795_xmii_ctrl1, .supports_mii = {false, false, false, false, true}, .supports_rmii = {false, false, false, false, true}, .supports_rgmii = {false, false, false, false, true}, .internal_phy = {true, true, true, true, false}, }, [KSZ8830] = { .chip_id = KSZ8830_CHIP_ID, .dev_name = "KSZ8863/KSZ8873", .num_vlans = 16, .num_alus = 0, .num_statics = 8, .cpu_ports = 0x4, /* can be configured as cpu port */ .port_cnt = 3, .num_tx_queues = 4, .num_ipms = 4, .ops = &ksz8_dev_ops, .phylink_mac_ops = &ksz8830_phylink_mac_ops, .mib_names = ksz88xx_mib_names, .mib_cnt = ARRAY_SIZE(ksz88xx_mib_names), .reg_mib_cnt = MIB_COUNTER_NUM, .regs = ksz8863_regs, .masks = ksz8863_masks, .shifts = ksz8863_shifts, .supports_mii = {false, false, true}, .supports_rmii = {false, false, true}, .internal_phy = {true, true, false}, .wr_table = &ksz8873_register_set, .rd_table = &ksz8873_register_set, }, [KSZ9477] = { .chip_id = KSZ9477_CHIP_ID, .dev_name = "KSZ9477", .num_vlans = 4096, .num_alus = 4096, .num_statics = 16, .cpu_ports = 0x7F, /* can be configured as cpu port */ .port_cnt = 7, /* total physical port count */ .port_nirqs = 4, .num_tx_queues = 4, .num_ipms = 8, .tc_cbs_supported = true, .ops = &ksz9477_dev_ops, .phylink_mac_ops = &ksz9477_phylink_mac_ops, .phy_errata_9477 = true, .mib_names = ksz9477_mib_names, .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), .reg_mib_cnt = MIB_COUNTER_NUM, .regs = ksz9477_regs, .masks = ksz9477_masks, .shifts = ksz9477_shifts, .xmii_ctrl0 = ksz9477_xmii_ctrl0, .xmii_ctrl1 = ksz9477_xmii_ctrl1, .supports_mii = {false, false, false, false, false, true, false}, .supports_rmii = {false, false, false, false, false, true, false}, .supports_rgmii = {false, false, false, false, false, true, false}, .internal_phy = {true, true, true, true, true, false, false}, .gbit_capable = {true, true, true, true, true, true, true}, .wr_table = &ksz9477_register_set, .rd_table = &ksz9477_register_set, }, [KSZ9896] = { .chip_id = KSZ9896_CHIP_ID, .dev_name = "KSZ9896", .num_vlans = 4096, .num_alus = 4096, .num_statics = 16, .cpu_ports = 0x3F, /* can be configured as cpu port */ .port_cnt = 6, /* total physical port count */ .port_nirqs = 2, .num_tx_queues = 4, .num_ipms = 8, .ops = &ksz9477_dev_ops, .phylink_mac_ops = &ksz9477_phylink_mac_ops, .phy_errata_9477 = true, .mib_names = ksz9477_mib_names, .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), .reg_mib_cnt = MIB_COUNTER_NUM, .regs = ksz9477_regs, .masks = ksz9477_masks, .shifts = ksz9477_shifts, .xmii_ctrl0 = ksz9477_xmii_ctrl0, .xmii_ctrl1 = ksz9477_xmii_ctrl1, .supports_mii = {false, false, false, false, false, true}, .supports_rmii = {false, false, false, false, false, true}, .supports_rgmii = {false, false, false, false, false, true}, .internal_phy = {true, true, true, true, true, false}, .gbit_capable = {true, true, true, true, true, true}, .wr_table = &ksz9896_register_set, .rd_table = &ksz9896_register_set, }, [KSZ9897] = { .chip_id = KSZ9897_CHIP_ID, .dev_name = "KSZ9897", .num_vlans = 4096, .num_alus = 4096, .num_statics = 16, .cpu_ports = 0x7F, /* can be configured as cpu port */ .port_cnt = 7, /* total physical port count */ .port_nirqs = 2, .num_tx_queues = 4, .num_ipms = 8, .ops = &ksz9477_dev_ops, .phylink_mac_ops = &ksz9477_phylink_mac_ops, .phy_errata_9477 = true, .mib_names = ksz9477_mib_names, .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), .reg_mib_cnt = MIB_COUNTER_NUM, .regs = ksz9477_regs, .masks = ksz9477_masks, .shifts = ksz9477_shifts, .xmii_ctrl0 = ksz9477_xmii_ctrl0, .xmii_ctrl1 = ksz9477_xmii_ctrl1, .supports_mii = {false, false, false, false, false, true, true}, .supports_rmii = {false, false, false, false, false, true, true}, .supports_rgmii = {false, false, false, false, false, true, true}, .internal_phy = {true, true, true, true, true, false, false}, .gbit_capable = {true, true, true, true, true, true, true}, }, [KSZ9893] = { .chip_id = KSZ9893_CHIP_ID, .dev_name = "KSZ9893", .num_vlans = 4096, .num_alus = 4096, .num_statics = 16, .cpu_ports = 0x07, /* can be configured as cpu port */ .port_cnt = 3, /* total port count */ .port_nirqs = 2, .num_tx_queues = 4, .num_ipms = 8, .ops = &ksz9477_dev_ops, .phylink_mac_ops = &ksz9477_phylink_mac_ops, .mib_names = ksz9477_mib_names, .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), .reg_mib_cnt = MIB_COUNTER_NUM, .regs = ksz9477_regs, .masks = ksz9477_masks, .shifts = ksz9477_shifts, .xmii_ctrl0 = ksz9477_xmii_ctrl0, .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ .supports_mii = {false, false, true}, .supports_rmii = {false, false, true}, .supports_rgmii = {false, false, true}, .internal_phy = {true, true, false}, .gbit_capable = {true, true, true}, }, [KSZ9563] = { .chip_id = KSZ9563_CHIP_ID, .dev_name = "KSZ9563", .num_vlans = 4096, .num_alus = 4096, .num_statics = 16, .cpu_ports = 0x07, /* can be configured as cpu port */ .port_cnt = 3, /* total port count */ .port_nirqs = 3, .num_tx_queues = 4, .num_ipms = 8, .tc_cbs_supported = true, .ops = &ksz9477_dev_ops, .phylink_mac_ops = &ksz9477_phylink_mac_ops, .mib_names = ksz9477_mib_names, .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), .reg_mib_cnt = MIB_COUNTER_NUM, .regs = ksz9477_regs, .masks = ksz9477_masks, .shifts = ksz9477_shifts, .xmii_ctrl0 = ksz9477_xmii_ctrl0, .xmii_ctrl1 = ksz8795_xmii_ctrl1, /* Same as ksz8795 */ .supports_mii = {false, false, true}, .supports_rmii = {false, false, true}, .supports_rgmii = {false, false, true}, .internal_phy = {true, true, false}, .gbit_capable = {true, true, true}, }, [KSZ8567] = { .chip_id = KSZ8567_CHIP_ID, .dev_name = "KSZ8567", .num_vlans = 4096, .num_alus = 4096, .num_statics = 16, .cpu_ports = 0x7F, /* can be configured as cpu port */ .port_cnt = 7, /* total port count */ .port_nirqs = 3, .num_tx_queues = 4, .num_ipms = 8, .tc_cbs_supported = true, .ops = &ksz9477_dev_ops, .phylink_mac_ops = &ksz9477_phylink_mac_ops, .phy_errata_9477 = true, .mib_names = ksz9477_mib_names, .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), .reg_mib_cnt = MIB_COUNTER_NUM, .regs = ksz9477_regs, .masks = ksz9477_masks, .shifts = ksz9477_shifts, .xmii_ctrl0 = ksz9477_xmii_ctrl0, .xmii_ctrl1 = ksz9477_xmii_ctrl1, .supports_mii = {false, false, false, false, false, true, true}, .supports_rmii = {false, false, false, false, false, true, true}, .supports_rgmii = {false, false, false, false, false, true, true}, .internal_phy = {true, true, true, true, true, false, false}, .gbit_capable = {false, false, false, false, false, true, true}, }, [KSZ9567] = { .chip_id = KSZ9567_CHIP_ID, .dev_name = "KSZ9567", .num_vlans = 4096, .num_alus = 4096, .num_statics = 16, .cpu_ports = 0x7F, /* can be configured as cpu port */ .port_cnt = 7, /* total physical port count */ .port_nirqs = 3, .num_tx_queues = 4, .num_ipms = 8, .tc_cbs_supported = true, .ops = &ksz9477_dev_ops, .mib_names = ksz9477_mib_names, .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), .reg_mib_cnt = MIB_COUNTER_NUM, .regs = ksz9477_regs, .masks = ksz9477_masks, .shifts = ksz9477_shifts, .xmii_ctrl0 = ksz9477_xmii_ctrl0, .xmii_ctrl1 = ksz9477_xmii_ctrl1, .supports_mii = {false, false, false, false, false, true, true}, .supports_rmii = {false, false, false, false, false, true, true}, .supports_rgmii = {false, false, false, false, false, true, true}, .internal_phy = {true, true, true, true, true, false, false}, .gbit_capable = {true, true, true, true, true, true, true}, }, [LAN9370] = { .chip_id = LAN9370_CHIP_ID, .dev_name = "LAN9370", .num_vlans = 4096, .num_alus = 1024, .num_statics = 256, .cpu_ports = 0x10, /* can be configured as cpu port */ .port_cnt = 5, /* total physical port count */ .port_nirqs = 6, .num_tx_queues = 8, .num_ipms = 8, .tc_cbs_supported = true, .ops = &lan937x_dev_ops, .phylink_mac_ops = &lan937x_phylink_mac_ops, .mib_names = ksz9477_mib_names, .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), .reg_mib_cnt = MIB_COUNTER_NUM, .regs = ksz9477_regs, .masks = lan937x_masks, .shifts = lan937x_shifts, .xmii_ctrl0 = ksz9477_xmii_ctrl0, .xmii_ctrl1 = ksz9477_xmii_ctrl1, .supports_mii = {false, false, false, false, true}, .supports_rmii = {false, false, false, false, true}, .supports_rgmii = {false, false, false, false, true}, .internal_phy = {true, true, true, true, false}, }, [LAN9371] = { .chip_id = LAN9371_CHIP_ID, .dev_name = "LAN9371", .num_vlans = 4096, .num_alus = 1024, .num_statics = 256, .cpu_ports = 0x30, /* can be configured as cpu port */ .port_cnt = 6, /* total physical port count */ .port_nirqs = 6, .num_tx_queues = 8, .num_ipms = 8, .tc_cbs_supported = true, .ops = &lan937x_dev_ops, .phylink_mac_ops = &lan937x_phylink_mac_ops, .mib_names = ksz9477_mib_names, .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), .reg_mib_cnt = MIB_COUNTER_NUM, .regs = ksz9477_regs, .masks = lan937x_masks, .shifts = lan937x_shifts, .xmii_ctrl0 = ksz9477_xmii_ctrl0, .xmii_ctrl1 = ksz9477_xmii_ctrl1, .supports_mii = {false, false, false, false, true, true}, .supports_rmii = {false, false, false, false, true, true}, .supports_rgmii = {false, false, false, false, true, true}, .internal_phy = {true, true, true, true, false, false}, }, [LAN9372] = { .chip_id = LAN9372_CHIP_ID, .dev_name = "LAN9372", .num_vlans = 4096, .num_alus = 1024, .num_statics = 256, .cpu_ports = 0x30, /* can be configured as cpu port */ .port_cnt = 8, /* total physical port count */ .port_nirqs = 6, .num_tx_queues = 8, .num_ipms = 8, .tc_cbs_supported = true, .ops = &lan937x_dev_ops, .phylink_mac_ops = &lan937x_phylink_mac_ops, .mib_names = ksz9477_mib_names, .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), .reg_mib_cnt = MIB_COUNTER_NUM, .regs = ksz9477_regs, .masks = lan937x_masks, .shifts = lan937x_shifts, .xmii_ctrl0 = ksz9477_xmii_ctrl0, .xmii_ctrl1 = ksz9477_xmii_ctrl1, .supports_mii = {false, false, false, false, true, true, false, false}, .supports_rmii = {false, false, false, false, true, true, false, false}, .supports_rgmii = {false, false, false, false, true, true, false, false}, .internal_phy = {true, true, true, true, false, false, true, true}, }, [LAN9373] = { .chip_id = LAN9373_CHIP_ID, .dev_name = "LAN9373", .num_vlans = 4096, .num_alus = 1024, .num_statics = 256, .cpu_ports = 0x38, /* can be configured as cpu port */ .port_cnt = 5, /* total physical port count */ .port_nirqs = 6, .num_tx_queues = 8, .num_ipms = 8, .tc_cbs_supported = true, .ops = &lan937x_dev_ops, .phylink_mac_ops = &lan937x_phylink_mac_ops, .mib_names = ksz9477_mib_names, .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), .reg_mib_cnt = MIB_COUNTER_NUM, .regs = ksz9477_regs, .masks = lan937x_masks, .shifts = lan937x_shifts, .xmii_ctrl0 = ksz9477_xmii_ctrl0, .xmii_ctrl1 = ksz9477_xmii_ctrl1, .supports_mii = {false, false, false, false, true, true, false, false}, .supports_rmii = {false, false, false, false, true, true, false, false}, .supports_rgmii = {false, false, false, false, true, true, false, false}, .internal_phy = {true, true, true, false, false, false, true, true}, }, [LAN9374] = { .chip_id = LAN9374_CHIP_ID, .dev_name = "LAN9374", .num_vlans = 4096, .num_alus = 1024, .num_statics = 256, .cpu_ports = 0x30, /* can be configured as cpu port */ .port_cnt = 8, /* total physical port count */ .port_nirqs = 6, .num_tx_queues = 8, .num_ipms = 8, .tc_cbs_supported = true, .ops = &lan937x_dev_ops, .phylink_mac_ops = &lan937x_phylink_mac_ops, .mib_names = ksz9477_mib_names, .mib_cnt = ARRAY_SIZE(ksz9477_mib_names), .reg_mib_cnt = MIB_COUNTER_NUM, .regs = ksz9477_regs, .masks = lan937x_masks, .shifts = lan937x_shifts, .xmii_ctrl0 = ksz9477_xmii_ctrl0, .xmii_ctrl1 = ksz9477_xmii_ctrl1, .supports_mii = {false, false, false, false, true, true, false, false}, .supports_rmii = {false, false, false, false, true, true, false, false}, .supports_rgmii = {false, false, false, false, true, true, false, false}, .internal_phy = {true, true, true, true, false, false, true, true}, }, }; EXPORT_SYMBOL_GPL(ksz_switch_chips); static const struct ksz_chip_data *ksz_lookup_info(unsigned int prod_num) { int i; for (i = 0; i < ARRAY_SIZE(ksz_switch_chips); i++) { const struct ksz_chip_data *chip = &ksz_switch_chips[i]; if (chip->chip_id == prod_num) return chip; } return NULL; } static int ksz_check_device_id(struct ksz_device *dev) { const struct ksz_chip_data *expected_chip_data; u32 expected_chip_id; if (dev->pdata) { expected_chip_id = dev->pdata->chip_id; expected_chip_data = ksz_lookup_info(expected_chip_id); if (WARN_ON(!expected_chip_data)) return -ENODEV; } else { expected_chip_data = of_device_get_match_data(dev->dev); expected_chip_id = expected_chip_data->chip_id; } if (expected_chip_id != dev->chip_id) { dev_err(dev->dev, "Device tree specifies chip %s but found %s, please fix it!\n", expected_chip_data->dev_name, dev->info->dev_name); return -ENODEV; } return 0; } static void ksz_phylink_get_caps(struct dsa_switch *ds, int port, struct phylink_config *config) { struct ksz_device *dev = ds->priv; if (dev->info->supports_mii[port]) __set_bit(PHY_INTERFACE_MODE_MII, config->supported_interfaces); if (dev->info->supports_rmii[port]) __set_bit(PHY_INTERFACE_MODE_RMII, config->supported_interfaces); if (dev->info->supports_rgmii[port]) phy_interface_set_rgmii(config->supported_interfaces); if (dev->info->internal_phy[port]) { __set_bit(PHY_INTERFACE_MODE_INTERNAL, config->supported_interfaces); /* Compatibility for phylib's default interface type when the * phy-mode property is absent */ __set_bit(PHY_INTERFACE_MODE_GMII, config->supported_interfaces); } if (dev->dev_ops->get_caps) dev->dev_ops->get_caps(dev, port, config); } void ksz_r_mib_stats64(struct ksz_device *dev, int port) { struct ethtool_pause_stats *pstats; struct rtnl_link_stats64 *stats; struct ksz_stats_raw *raw; struct ksz_port_mib *mib; int ret; mib = &dev->ports[port].mib; stats = &mib->stats64; pstats = &mib->pause_stats; raw = (struct ksz_stats_raw *)mib->counters; spin_lock(&mib->stats64_lock); stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast + raw->rx_pause; stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast + raw->tx_pause; /* HW counters are counting bytes + FCS which is not acceptable * for rtnl_link_stats64 interface */ stats->rx_bytes = raw->rx_total - stats->rx_packets * ETH_FCS_LEN; stats->tx_bytes = raw->tx_total - stats->tx_packets * ETH_FCS_LEN; stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments + raw->rx_oversize; stats->rx_crc_errors = raw->rx_crc_err; stats->rx_frame_errors = raw->rx_align_err; stats->rx_dropped = raw->rx_discards; stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors + stats->rx_frame_errors + stats->rx_dropped; stats->tx_window_errors = raw->tx_late_col; stats->tx_fifo_errors = raw->tx_discards; stats->tx_aborted_errors = raw->tx_exc_col; stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors + stats->tx_aborted_errors; stats->multicast = raw->rx_mcast; stats->collisions = raw->tx_total_col; pstats->tx_pause_frames = raw->tx_pause; pstats->rx_pause_frames = raw->rx_pause; spin_unlock(&mib->stats64_lock); if (dev->info->phy_errata_9477) { ret = ksz9477_errata_monitor(dev, port, raw->tx_late_col); if (ret) dev_err(dev->dev, "Failed to monitor transmission halt\n"); } } void ksz88xx_r_mib_stats64(struct ksz_device *dev, int port) { struct ethtool_pause_stats *pstats; struct rtnl_link_stats64 *stats; struct ksz88xx_stats_raw *raw; struct ksz_port_mib *mib; mib = &dev->ports[port].mib; stats = &mib->stats64; pstats = &mib->pause_stats; raw = (struct ksz88xx_stats_raw *)mib->counters; spin_lock(&mib->stats64_lock); stats->rx_packets = raw->rx_bcast + raw->rx_mcast + raw->rx_ucast + raw->rx_pause; stats->tx_packets = raw->tx_bcast + raw->tx_mcast + raw->tx_ucast + raw->tx_pause; /* HW counters are counting bytes + FCS which is not acceptable * for rtnl_link_stats64 interface */ stats->rx_bytes = raw->rx + raw->rx_hi - stats->rx_packets * ETH_FCS_LEN; stats->tx_bytes = raw->tx + raw->tx_hi - stats->tx_packets * ETH_FCS_LEN; stats->rx_length_errors = raw->rx_undersize + raw->rx_fragments + raw->rx_oversize; stats->rx_crc_errors = raw->rx_crc_err; stats->rx_frame_errors = raw->rx_align_err; stats->rx_dropped = raw->rx_discards; stats->rx_errors = stats->rx_length_errors + stats->rx_crc_errors + stats->rx_frame_errors + stats->rx_dropped; stats->tx_window_errors = raw->tx_late_col; stats->tx_fifo_errors = raw->tx_discards; stats->tx_aborted_errors = raw->tx_exc_col; stats->tx_errors = stats->tx_window_errors + stats->tx_fifo_errors + stats->tx_aborted_errors; stats->multicast = raw->rx_mcast; stats->collisions = raw->tx_total_col; pstats->tx_pause_frames = raw->tx_pause; pstats->rx_pause_frames = raw->rx_pause; spin_unlock(&mib->stats64_lock); } static void ksz_get_stats64(struct dsa_switch *ds, int port, struct rtnl_link_stats64 *s) { struct ksz_device *dev = ds->priv; struct ksz_port_mib *mib; mib = &dev->ports[port].mib; spin_lock(&mib->stats64_lock); memcpy(s, &mib->stats64, sizeof(*s)); spin_unlock(&mib->stats64_lock); } static void ksz_get_pause_stats(struct dsa_switch *ds, int port, struct ethtool_pause_stats *pause_stats) { struct ksz_device *dev = ds->priv; struct ksz_port_mib *mib; mib = &dev->ports[port].mib; spin_lock(&mib->stats64_lock); memcpy(pause_stats, &mib->pause_stats, sizeof(*pause_stats)); spin_unlock(&mib->stats64_lock); } static void ksz_get_strings(struct dsa_switch *ds, int port, u32 stringset, uint8_t *buf) { struct ksz_device *dev = ds->priv; int i; if (stringset != ETH_SS_STATS) return; for (i = 0; i < dev->info->mib_cnt; i++) { memcpy(buf + i * ETH_GSTRING_LEN, dev->info->mib_names[i].string, ETH_GSTRING_LEN); } } /** * ksz_update_port_member - Adjust port forwarding rules based on STP state and * isolation settings. * @dev: A pointer to the struct ksz_device representing the device. * @port: The port number to adjust. * * This function dynamically adjusts the port membership configuration for a * specified port and other device ports, based on Spanning Tree Protocol (STP) * states and port isolation settings. Each port, including the CPU port, has a * membership register, represented as a bitfield, where each bit corresponds * to a port number. A set bit indicates permission to forward frames to that * port. This function iterates over all ports, updating the membership register * to reflect current forwarding permissions: * * 1. Forwards frames only to ports that are part of the same bridge group and * in the BR_STATE_FORWARDING state. * 2. Takes into account the isolation status of ports; ports in the * BR_STATE_FORWARDING state with BR_ISOLATED configuration will not forward * frames to each other, even if they are in the same bridge group. * 3. Ensures that the CPU port is included in the membership based on its * upstream port configuration, allowing for management and control traffic * to flow as required. */ static void ksz_update_port_member(struct ksz_device *dev, int port) { struct ksz_port *p = &dev->ports[port]; struct dsa_switch *ds = dev->ds; u8 port_member = 0, cpu_port; const struct dsa_port *dp; int i, j; if (!dsa_is_user_port(ds, port)) return; dp = dsa_to_port(ds, port); cpu_port = BIT(dsa_upstream_port(ds, port)); for (i = 0; i < ds->num_ports; i++) { const struct dsa_port *other_dp = dsa_to_port(ds, i); struct ksz_port *other_p = &dev->ports[i]; u8 val = 0; if (!dsa_is_user_port(ds, i)) continue; if (port == i) continue; if (!dsa_port_bridge_same(dp, other_dp)) continue; if (other_p->stp_state != BR_STATE_FORWARDING) continue; /* At this point we know that "port" and "other" port [i] are in * the same bridge group and that "other" port [i] is in * forwarding stp state. If "port" is also in forwarding stp * state, we can allow forwarding from port [port] to port [i]. * Except if both ports are isolated. */ if (p->stp_state == BR_STATE_FORWARDING && !(p->isolated && other_p->isolated)) { val |= BIT(port); port_member |= BIT(i); } /* Retain port [i]'s relationship to other ports than [port] */ for (j = 0; j < ds->num_ports; j++) { const struct dsa_port *third_dp; struct ksz_port *third_p; if (j == i) continue; if (j == port) continue; if (!dsa_is_user_port(ds, j)) continue; third_p = &dev->ports[j]; if (third_p->stp_state != BR_STATE_FORWARDING) continue; third_dp = dsa_to_port(ds, j); /* Now we updating relation of the "other" port [i] to * the "third" port [j]. We already know that "other" * port [i] is in forwarding stp state and that "third" * port [j] is in forwarding stp state too. * We need to check if "other" port [i] and "third" port * [j] are in the same bridge group and not isolated * before allowing forwarding from port [i] to port [j]. */ if (dsa_port_bridge_same(other_dp, third_dp) && !(other_p->isolated && third_p->isolated)) val |= BIT(j); } dev->dev_ops->cfg_port_member(dev, i, val | cpu_port); } dev->dev_ops->cfg_port_member(dev, port, port_member | cpu_port); } static int ksz_sw_mdio_read(struct mii_bus *bus, int addr, int regnum) { struct ksz_device *dev = bus->priv; u16 val; int ret; ret = dev->dev_ops->r_phy(dev, addr, regnum, &val); if (ret < 0) return ret; return val; } static int ksz_sw_mdio_write(struct mii_bus *bus, int addr, int regnum, u16 val) { struct ksz_device *dev = bus->priv; return dev->dev_ops->w_phy(dev, addr, regnum, val); } static int ksz_irq_phy_setup(struct ksz_device *dev) { struct dsa_switch *ds = dev->ds; int phy; int irq; int ret; for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++) { if (BIT(phy) & ds->phys_mii_mask) { irq = irq_find_mapping(dev->ports[phy].pirq.domain, PORT_SRC_PHY_INT); if (irq < 0) { ret = irq; goto out; } ds->user_mii_bus->irq[phy] = irq; } } return 0; out: while (phy--) if (BIT(phy) & ds->phys_mii_mask) irq_dispose_mapping(ds->user_mii_bus->irq[phy]); return ret; } static void ksz_irq_phy_free(struct ksz_device *dev) { struct dsa_switch *ds = dev->ds; int phy; for (phy = 0; phy < KSZ_MAX_NUM_PORTS; phy++) if (BIT(phy) & ds->phys_mii_mask) irq_dispose_mapping(ds->user_mii_bus->irq[phy]); } static int ksz_mdio_register(struct ksz_device *dev) { struct dsa_switch *ds = dev->ds; struct device_node *mdio_np; struct mii_bus *bus; int ret; mdio_np = of_get_child_by_name(dev->dev->of_node, "mdio"); if (!mdio_np) return 0; bus = devm_mdiobus_alloc(ds->dev); if (!bus) { of_node_put(mdio_np); return -ENOMEM; } bus->priv = dev; bus->read = ksz_sw_mdio_read; bus->write = ksz_sw_mdio_write; bus->name = "ksz user smi"; snprintf(bus->id, MII_BUS_ID_SIZE, "SMI-%d", ds->index); bus->parent = ds->dev; bus->phy_mask = ~ds->phys_mii_mask; ds->user_mii_bus = bus; if (dev->irq > 0) { ret = ksz_irq_phy_setup(dev); if (ret) { of_node_put(mdio_np); return ret; } } ret = devm_of_mdiobus_register(ds->dev, bus, mdio_np); if (ret) { dev_err(ds->dev, "unable to register MDIO bus %s\n", bus->id); if (dev->irq > 0) ksz_irq_phy_free(dev); } of_node_put(mdio_np); return ret; } static void ksz_irq_mask(struct irq_data *d) { struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); kirq->masked |= BIT(d->hwirq); } static void ksz_irq_unmask(struct irq_data *d) { struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); kirq->masked &= ~BIT(d->hwirq); } static void ksz_irq_bus_lock(struct irq_data *d) { struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); mutex_lock(&kirq->dev->lock_irq); } static void ksz_irq_bus_sync_unlock(struct irq_data *d) { struct ksz_irq *kirq = irq_data_get_irq_chip_data(d); struct ksz_device *dev = kirq->dev; int ret; ret = ksz_write8(dev, kirq->reg_mask, kirq->masked); if (ret) dev_err(dev->dev, "failed to change IRQ mask\n"); mutex_unlock(&dev->lock_irq); } static const struct irq_chip ksz_irq_chip = { .name = "ksz-irq", .irq_mask = ksz_irq_mask, .irq_unmask = ksz_irq_unmask, .irq_bus_lock = ksz_irq_bus_lock, .irq_bus_sync_unlock = ksz_irq_bus_sync_unlock, }; static int ksz_irq_domain_map(struct irq_domain *d, unsigned int irq, irq_hw_number_t hwirq) { irq_set_chip_data(irq, d->host_data); irq_set_chip_and_handler(irq, &ksz_irq_chip, handle_level_irq); irq_set_noprobe(irq); return 0; } static const struct irq_domain_ops ksz_irq_domain_ops = { .map = ksz_irq_domain_map, .xlate = irq_domain_xlate_twocell, }; static void ksz_irq_free(struct ksz_irq *kirq) { int irq, virq; free_irq(kirq->irq_num, kirq); for (irq = 0; irq < kirq->nirqs; irq++) { virq = irq_find_mapping(kirq->domain, irq); irq_dispose_mapping(virq); } irq_domain_remove(kirq->domain); } static irqreturn_t ksz_irq_thread_fn(int irq, void *dev_id) { struct ksz_irq *kirq = dev_id; unsigned int nhandled = 0; struct ksz_device *dev; unsigned int sub_irq; u8 data; int ret; u8 n; dev = kirq->dev; /* Read interrupt status register */ ret = ksz_read8(dev, kirq->reg_status, &data); if (ret) goto out; for (n = 0; n < kirq->nirqs; ++n) { if (data & BIT(n)) { sub_irq = irq_find_mapping(kirq->domain, n); handle_nested_irq(sub_irq); ++nhandled; } } out: return (nhandled > 0 ? IRQ_HANDLED : IRQ_NONE); } static int ksz_irq_common_setup(struct ksz_device *dev, struct ksz_irq *kirq) { int ret, n; kirq->dev = dev; kirq->masked = ~0; kirq->domain = irq_domain_add_simple(dev->dev->of_node, kirq->nirqs, 0, &ksz_irq_domain_ops, kirq); if (!kirq->domain) return -ENOMEM; for (n = 0; n < kirq->nirqs; n++) irq_create_mapping(kirq->domain, n); ret = request_threaded_irq(kirq->irq_num, NULL, ksz_irq_thread_fn, IRQF_ONESHOT, kirq->name, kirq); if (ret) goto out; return 0; out: ksz_irq_free(kirq); return ret; } static int ksz_girq_setup(struct ksz_device *dev) { struct ksz_irq *girq = &dev->girq; girq->nirqs = dev->info->port_cnt; girq->reg_mask = REG_SW_PORT_INT_MASK__1; girq->reg_status = REG_SW_PORT_INT_STATUS__1; snprintf(girq->name, sizeof(girq->name), "global_port_irq"); girq->irq_num = dev->irq; return ksz_irq_common_setup(dev, girq); } static int ksz_pirq_setup(struct ksz_device *dev, u8 p) { struct ksz_irq *pirq = &dev->ports[p].pirq; pirq->nirqs = dev->info->port_nirqs; pirq->reg_mask = dev->dev_ops->get_port_addr(p, REG_PORT_INT_MASK); pirq->reg_status = dev->dev_ops->get_port_addr(p, REG_PORT_INT_STATUS); snprintf(pirq->name, sizeof(pirq->name), "port_irq-%d", p); pirq->irq_num = irq_find_mapping(dev->girq.domain, p); if (pirq->irq_num < 0) return pirq->irq_num; return ksz_irq_common_setup(dev, pirq); } static int ksz_parse_drive_strength(struct ksz_device *dev); static int ksz_setup(struct dsa_switch *ds) { struct ksz_device *dev = ds->priv; struct dsa_port *dp; struct ksz_port *p; const u16 *regs; int ret; regs = dev->info->regs; dev->vlan_cache = devm_kcalloc(dev->dev, sizeof(struct vlan_table), dev->info->num_vlans, GFP_KERNEL); if (!dev->vlan_cache) return -ENOMEM; ret = dev->dev_ops->reset(dev); if (ret) { dev_err(ds->dev, "failed to reset switch\n"); return ret; } ret = ksz_parse_drive_strength(dev); if (ret) return ret; /* set broadcast storm protection 10% rate */ regmap_update_bits(ksz_regmap_16(dev), regs[S_BROADCAST_CTRL], BROADCAST_STORM_RATE, (BROADCAST_STORM_VALUE * BROADCAST_STORM_PROT_RATE) / 100); dev->dev_ops->config_cpu_port(ds); dev->dev_ops->enable_stp_addr(dev); ds->num_tx_queues = dev->info->num_tx_queues; regmap_update_bits(ksz_regmap_8(dev), regs[S_MULTICAST_CTRL], MULTICAST_STORM_DISABLE, MULTICAST_STORM_DISABLE); ksz_init_mib_timer(dev); ds->configure_vlan_while_not_filtering = false; ds->dscp_prio_mapping_is_global = true; if (dev->dev_ops->setup) { ret = dev->dev_ops->setup(ds); if (ret) return ret; } /* Start with learning disabled on standalone user ports, and enabled * on the CPU port. In lack of other finer mechanisms, learning on the * CPU port will avoid flooding bridge local addresses on the network * in some cases. */ p = &dev->ports[dev->cpu_port]; p->learning = true; if (dev->irq > 0) { ret = ksz_girq_setup(dev); if (ret) return ret; dsa_switch_for_each_user_port(dp, dev->ds) { ret = ksz_pirq_setup(dev, dp->index); if (ret) goto out_girq; ret = ksz_ptp_irq_setup(ds, dp->index); if (ret) goto out_pirq; } } ret = ksz_ptp_clock_register(ds); if (ret) { dev_err(dev->dev, "Failed to register PTP clock: %d\n", ret); goto out_ptpirq; } ret = ksz_mdio_register(dev); if (ret < 0) { dev_err(dev->dev, "failed to register the mdio"); goto out_ptp_clock_unregister; } ret = ksz_dcb_init(dev); if (ret) goto out_ptp_clock_unregister; /* start switch */ regmap_update_bits(ksz_regmap_8(dev), regs[S_START_CTRL], SW_START, SW_START); return 0; out_ptp_clock_unregister: ksz_ptp_clock_unregister(ds); out_ptpirq: if (dev->irq > 0) dsa_switch_for_each_user_port(dp, dev->ds) ksz_ptp_irq_free(ds, dp->index); out_pirq: if (dev->irq > 0) dsa_switch_for_each_user_port(dp, dev->ds) ksz_irq_free(&dev->ports[dp->index].pirq); out_girq: if (dev->irq > 0) ksz_irq_free(&dev->girq); return ret; } static void ksz_teardown(struct dsa_switch *ds) { struct ksz_device *dev = ds->priv; struct dsa_port *dp; ksz_ptp_clock_unregister(ds); if (dev->irq > 0) { dsa_switch_for_each_user_port(dp, dev->ds) { ksz_ptp_irq_free(ds, dp->index); ksz_irq_free(&dev->ports[dp->index].pirq); } ksz_irq_free(&dev->girq); } if (dev->dev_ops->teardown) dev->dev_ops->teardown(ds); } static void port_r_cnt(struct ksz_device *dev, int port) { struct ksz_port_mib *mib = &dev->ports[port].mib; u64 *dropped; /* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */ while (mib->cnt_ptr < dev->info->reg_mib_cnt) { dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr, &mib->counters[mib->cnt_ptr]); ++mib->cnt_ptr; } /* last one in storage */ dropped = &mib->counters[dev->info->mib_cnt]; /* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */ while (mib->cnt_ptr < dev->info->mib_cnt) { dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr, dropped, &mib->counters[mib->cnt_ptr]); ++mib->cnt_ptr; } mib->cnt_ptr = 0; } static void ksz_mib_read_work(struct work_struct *work) { struct ksz_device *dev = container_of(work, struct ksz_device, mib_read.work); struct ksz_port_mib *mib; struct ksz_port *p; int i; for (i = 0; i < dev->info->port_cnt; i++) { if (dsa_is_unused_port(dev->ds, i)) continue; p = &dev->ports[i]; mib = &p->mib; mutex_lock(&mib->cnt_mutex); /* Only read MIB counters when the port is told to do. * If not, read only dropped counters when link is not up. */ if (!p->read) { const struct dsa_port *dp = dsa_to_port(dev->ds, i); if (!netif_carrier_ok(dp->user)) mib->cnt_ptr = dev->info->reg_mib_cnt; } port_r_cnt(dev, i); p->read = false; if (dev->dev_ops->r_mib_stat64) dev->dev_ops->r_mib_stat64(dev, i); mutex_unlock(&mib->cnt_mutex); } schedule_delayed_work(&dev->mib_read, dev->mib_read_interval); } void ksz_init_mib_timer(struct ksz_device *dev) { int i; INIT_DELAYED_WORK(&dev->mib_read, ksz_mib_read_work); for (i = 0; i < dev->info->port_cnt; i++) { struct ksz_port_mib *mib = &dev->ports[i].mib; dev->dev_ops->port_init_cnt(dev, i); mib->cnt_ptr = 0; memset(mib->counters, 0, dev->info->mib_cnt * sizeof(u64)); } } static int ksz_phy_read16(struct dsa_switch *ds, int addr, int reg) { struct ksz_device *dev = ds->priv; u16 val = 0xffff; int ret; ret = dev->dev_ops->r_phy(dev, addr, reg, &val); if (ret) return ret; return val; } static int ksz_phy_write16(struct dsa_switch *ds, int addr, int reg, u16 val) { struct ksz_device *dev = ds->priv; int ret; ret = dev->dev_ops->w_phy(dev, addr, reg, val); if (ret) return ret; return 0; } static u32 ksz_get_phy_flags(struct dsa_switch *ds, int port) { struct ksz_device *dev = ds->priv; switch (dev->chip_id) { case KSZ8830_CHIP_ID: /* Silicon Errata Sheet (DS80000830A): * Port 1 does not work with LinkMD Cable-Testing. * Port 1 does not respond to received PAUSE control frames. */ if (!port) return MICREL_KSZ8_P1_ERRATA; break; case KSZ9477_CHIP_ID: /* KSZ9477 Errata DS80000754C * * Module 4: Energy Efficient Ethernet (EEE) feature select must * be manually disabled * The EEE feature is enabled by default, but it is not fully * operational. It must be manually disabled through register * controls. If not disabled, the PHY ports can auto-negotiate * to enable EEE, and this feature can cause link drops when * linked to another device supporting EEE. */ return MICREL_NO_EEE; } return 0; } static void ksz_phylink_mac_link_down(struct phylink_config *config, unsigned int mode, phy_interface_t interface) { struct dsa_port *dp = dsa_phylink_to_port(config); struct ksz_device *dev = dp->ds->priv; /* Read all MIB counters when the link is going down. */ dev->ports[dp->index].read = true; /* timer started */ if (dev->mib_read_interval) schedule_delayed_work(&dev->mib_read, 0); } static int ksz_sset_count(struct dsa_switch *ds, int port, int sset) { struct ksz_device *dev = ds->priv; if (sset != ETH_SS_STATS) return 0; return dev->info->mib_cnt; } static void ksz_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *buf) { const struct dsa_port *dp = dsa_to_port(ds, port); struct ksz_device *dev = ds->priv; struct ksz_port_mib *mib; mib = &dev->ports[port].mib; mutex_lock(&mib->cnt_mutex); /* Only read dropped counters if no link. */ if (!netif_carrier_ok(dp->user)) mib->cnt_ptr = dev->info->reg_mib_cnt; port_r_cnt(dev, port); memcpy(buf, mib->counters, dev->info->mib_cnt * sizeof(u64)); mutex_unlock(&mib->cnt_mutex); } static int ksz_port_bridge_join(struct dsa_switch *ds, int port, struct dsa_bridge bridge, bool *tx_fwd_offload, struct netlink_ext_ack *extack) { /* port_stp_state_set() will be called after to put the port in * appropriate state so there is no need to do anything. */ return 0; } static void ksz_port_bridge_leave(struct dsa_switch *ds, int port, struct dsa_bridge bridge) { /* port_stp_state_set() will be called after to put the port in * forwarding state so there is no need to do anything. */ } static void ksz_port_fast_age(struct dsa_switch *ds, int port) { struct ksz_device *dev = ds->priv; dev->dev_ops->flush_dyn_mac_table(dev, port); } static int ksz_set_ageing_time(struct dsa_switch *ds, unsigned int msecs) { struct ksz_device *dev = ds->priv; if (!dev->dev_ops->set_ageing_time) return -EOPNOTSUPP; return dev->dev_ops->set_ageing_time(dev, msecs); } static int ksz_port_fdb_add(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid, struct dsa_db db) { struct ksz_device *dev = ds->priv; if (!dev->dev_ops->fdb_add) return -EOPNOTSUPP; return dev->dev_ops->fdb_add(dev, port, addr, vid, db); } static int ksz_port_fdb_del(struct dsa_switch *ds, int port, const unsigned char *addr, u16 vid, struct dsa_db db) { struct ksz_device *dev = ds->priv; if (!dev->dev_ops->fdb_del) return -EOPNOTSUPP; return dev->dev_ops->fdb_del(dev, port, addr, vid, db); } static int ksz_port_fdb_dump(struct dsa_switch *ds, int port, dsa_fdb_dump_cb_t *cb, void *data) { struct ksz_device *dev = ds->priv; if (!dev->dev_ops->fdb_dump) return -EOPNOTSUPP; return dev->dev_ops->fdb_dump(dev, port, cb, data); } static int ksz_port_mdb_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_mdb *mdb, struct dsa_db db) { struct ksz_device *dev = ds->priv; if (!dev->dev_ops->mdb_add) return -EOPNOTSUPP; return dev->dev_ops->mdb_add(dev, port, mdb, db); } static int ksz_port_mdb_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_mdb *mdb, struct dsa_db db) { struct ksz_device *dev = ds->priv; if (!dev->dev_ops->mdb_del) return -EOPNOTSUPP; return dev->dev_ops->mdb_del(dev, port, mdb, db); } static int ksz9477_set_default_prio_queue_mapping(struct ksz_device *dev, int port) { u32 queue_map = 0; int ipm; for (ipm = 0; ipm < dev->info->num_ipms; ipm++) { int queue; /* Traffic Type (TT) is corresponding to the Internal Priority * Map (IPM) in the switch. Traffic Class (TC) is * corresponding to the queue in the switch. */ queue = ieee8021q_tt_to_tc(ipm, dev->info->num_tx_queues); if (queue < 0) return queue; queue_map |= queue << (ipm * KSZ9477_PORT_TC_MAP_S); } return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map); } static int ksz_port_setup(struct dsa_switch *ds, int port) { struct ksz_device *dev = ds->priv; int ret; if (!dsa_is_user_port(ds, port)) return 0; /* setup user port */ dev->dev_ops->port_setup(dev, port, false); if (!is_ksz8(dev)) { ret = ksz9477_set_default_prio_queue_mapping(dev, port); if (ret) return ret; } /* port_stp_state_set() will be called after to enable the port so * there is no need to do anything. */ return ksz_dcb_init_port(dev, port); } void ksz_port_stp_state_set(struct dsa_switch *ds, int port, u8 state) { struct ksz_device *dev = ds->priv; struct ksz_port *p; const u16 *regs; u8 data; regs = dev->info->regs; ksz_pread8(dev, port, regs[P_STP_CTRL], &data); data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE | PORT_LEARN_DISABLE); p = &dev->ports[port]; switch (state) { case BR_STATE_DISABLED: data |= PORT_LEARN_DISABLE; break; case BR_STATE_LISTENING: data |= (PORT_RX_ENABLE | PORT_LEARN_DISABLE); break; case BR_STATE_LEARNING: data |= PORT_RX_ENABLE; if (!p->learning) data |= PORT_LEARN_DISABLE; break; case BR_STATE_FORWARDING: data |= (PORT_TX_ENABLE | PORT_RX_ENABLE); if (!p->learning) data |= PORT_LEARN_DISABLE; break; case BR_STATE_BLOCKING: data |= PORT_LEARN_DISABLE; break; default: dev_err(ds->dev, "invalid STP state: %d\n", state); return; } ksz_pwrite8(dev, port, regs[P_STP_CTRL], data); p->stp_state = state; ksz_update_port_member(dev, port); } static void ksz_port_teardown(struct dsa_switch *ds, int port) { struct ksz_device *dev = ds->priv; switch (dev->chip_id) { case KSZ8563_CHIP_ID: case KSZ8567_CHIP_ID: case KSZ9477_CHIP_ID: case KSZ9563_CHIP_ID: case KSZ9567_CHIP_ID: case KSZ9893_CHIP_ID: case KSZ9896_CHIP_ID: case KSZ9897_CHIP_ID: if (dsa_is_user_port(ds, port)) ksz9477_port_acl_free(dev, port); } } static int ksz_port_pre_bridge_flags(struct dsa_switch *ds, int port, struct switchdev_brport_flags flags, struct netlink_ext_ack *extack) { if (flags.mask & ~(BR_LEARNING | BR_ISOLATED)) return -EINVAL; return 0; } static int ksz_port_bridge_flags(struct dsa_switch *ds, int port, struct switchdev_brport_flags flags, struct netlink_ext_ack *extack) { struct ksz_device *dev = ds->priv; struct ksz_port *p = &dev->ports[port]; if (flags.mask & (BR_LEARNING | BR_ISOLATED)) { if (flags.mask & BR_LEARNING) p->learning = !!(flags.val & BR_LEARNING); if (flags.mask & BR_ISOLATED) p->isolated = !!(flags.val & BR_ISOLATED); /* Make the change take effect immediately */ ksz_port_stp_state_set(ds, port, p->stp_state); } return 0; } static enum dsa_tag_protocol ksz_get_tag_protocol(struct dsa_switch *ds, int port, enum dsa_tag_protocol mp) { struct ksz_device *dev = ds->priv; enum dsa_tag_protocol proto = DSA_TAG_PROTO_NONE; if (dev->chip_id == KSZ8795_CHIP_ID || dev->chip_id == KSZ8794_CHIP_ID || dev->chip_id == KSZ8765_CHIP_ID) proto = DSA_TAG_PROTO_KSZ8795; if (dev->chip_id == KSZ8830_CHIP_ID || dev->chip_id == KSZ8563_CHIP_ID || dev->chip_id == KSZ9893_CHIP_ID || dev->chip_id == KSZ9563_CHIP_ID) proto = DSA_TAG_PROTO_KSZ9893; if (dev->chip_id == KSZ8567_CHIP_ID || dev->chip_id == KSZ9477_CHIP_ID || dev->chip_id == KSZ9896_CHIP_ID || dev->chip_id == KSZ9897_CHIP_ID || dev->chip_id == KSZ9567_CHIP_ID) proto = DSA_TAG_PROTO_KSZ9477; if (is_lan937x(dev)) proto = DSA_TAG_PROTO_LAN937X; return proto; } static int ksz_connect_tag_protocol(struct dsa_switch *ds, enum dsa_tag_protocol proto) { struct ksz_tagger_data *tagger_data; switch (proto) { case DSA_TAG_PROTO_KSZ8795: return 0; case DSA_TAG_PROTO_KSZ9893: case DSA_TAG_PROTO_KSZ9477: case DSA_TAG_PROTO_LAN937X: tagger_data = ksz_tagger_data(ds); tagger_data->xmit_work_fn = ksz_port_deferred_xmit; return 0; default: return -EPROTONOSUPPORT; } } static int ksz_port_vlan_filtering(struct dsa_switch *ds, int port, bool flag, struct netlink_ext_ack *extack) { struct ksz_device *dev = ds->priv; if (!dev->dev_ops->vlan_filtering) return -EOPNOTSUPP; return dev->dev_ops->vlan_filtering(dev, port, flag, extack); } static int ksz_port_vlan_add(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan, struct netlink_ext_ack *extack) { struct ksz_device *dev = ds->priv; if (!dev->dev_ops->vlan_add) return -EOPNOTSUPP; return dev->dev_ops->vlan_add(dev, port, vlan, extack); } static int ksz_port_vlan_del(struct dsa_switch *ds, int port, const struct switchdev_obj_port_vlan *vlan) { struct ksz_device *dev = ds->priv; if (!dev->dev_ops->vlan_del) return -EOPNOTSUPP; return dev->dev_ops->vlan_del(dev, port, vlan); } static int ksz_port_mirror_add(struct dsa_switch *ds, int port, struct dsa_mall_mirror_tc_entry *mirror, bool ingress, struct netlink_ext_ack *extack) { struct ksz_device *dev = ds->priv; if (!dev->dev_ops->mirror_add) return -EOPNOTSUPP; return dev->dev_ops->mirror_add(dev, port, mirror, ingress, extack); } static void ksz_port_mirror_del(struct dsa_switch *ds, int port, struct dsa_mall_mirror_tc_entry *mirror) { struct ksz_device *dev = ds->priv; if (dev->dev_ops->mirror_del) dev->dev_ops->mirror_del(dev, port, mirror); } static int ksz_change_mtu(struct dsa_switch *ds, int port, int mtu) { struct ksz_device *dev = ds->priv; if (!dev->dev_ops->change_mtu) return -EOPNOTSUPP; return dev->dev_ops->change_mtu(dev, port, mtu); } static int ksz_max_mtu(struct dsa_switch *ds, int port) { struct ksz_device *dev = ds->priv; switch (dev->chip_id) { case KSZ8795_CHIP_ID: case KSZ8794_CHIP_ID: case KSZ8765_CHIP_ID: return KSZ8795_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; case KSZ8830_CHIP_ID: return KSZ8863_HUGE_PACKET_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; case KSZ8563_CHIP_ID: case KSZ8567_CHIP_ID: case KSZ9477_CHIP_ID: case KSZ9563_CHIP_ID: case KSZ9567_CHIP_ID: case KSZ9893_CHIP_ID: case KSZ9896_CHIP_ID: case KSZ9897_CHIP_ID: case LAN9370_CHIP_ID: case LAN9371_CHIP_ID: case LAN9372_CHIP_ID: case LAN9373_CHIP_ID: case LAN9374_CHIP_ID: return KSZ9477_MAX_FRAME_SIZE - VLAN_ETH_HLEN - ETH_FCS_LEN; } return -EOPNOTSUPP; } static int ksz_validate_eee(struct dsa_switch *ds, int port) { struct ksz_device *dev = ds->priv; if (!dev->info->internal_phy[port]) return -EOPNOTSUPP; switch (dev->chip_id) { case KSZ8563_CHIP_ID: case KSZ8567_CHIP_ID: case KSZ9477_CHIP_ID: case KSZ9563_CHIP_ID: case KSZ9567_CHIP_ID: case KSZ9893_CHIP_ID: case KSZ9896_CHIP_ID: case KSZ9897_CHIP_ID: return 0; } return -EOPNOTSUPP; } static int ksz_get_mac_eee(struct dsa_switch *ds, int port, struct ethtool_keee *e) { int ret; ret = ksz_validate_eee(ds, port); if (ret) return ret; /* There is no documented control of Tx LPI configuration. */ e->tx_lpi_enabled = true; /* There is no documented control of Tx LPI timer. According to tests * Tx LPI timer seems to be set by default to minimal value. */ e->tx_lpi_timer = 0; return 0; } static int ksz_set_mac_eee(struct dsa_switch *ds, int port, struct ethtool_keee *e) { struct ksz_device *dev = ds->priv; int ret; ret = ksz_validate_eee(ds, port); if (ret) return ret; if (!e->tx_lpi_enabled) { dev_err(dev->dev, "Disabling EEE Tx LPI is not supported\n"); return -EINVAL; } if (e->tx_lpi_timer) { dev_err(dev->dev, "Setting EEE Tx LPI timer is not supported\n"); return -EINVAL; } return 0; } static void ksz_set_xmii(struct ksz_device *dev, int port, phy_interface_t interface) { const u8 *bitval = dev->info->xmii_ctrl1; struct ksz_port *p = &dev->ports[port]; const u16 *regs = dev->info->regs; u8 data8; ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); data8 &= ~(P_MII_SEL_M | P_RGMII_ID_IG_ENABLE | P_RGMII_ID_EG_ENABLE); switch (interface) { case PHY_INTERFACE_MODE_MII: data8 |= bitval[P_MII_SEL]; break; case PHY_INTERFACE_MODE_RMII: data8 |= bitval[P_RMII_SEL]; break; case PHY_INTERFACE_MODE_GMII: data8 |= bitval[P_GMII_SEL]; break; case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII_TXID: case PHY_INTERFACE_MODE_RGMII_RXID: data8 |= bitval[P_RGMII_SEL]; /* On KSZ9893, disable RGMII in-band status support */ if (dev->chip_id == KSZ9893_CHIP_ID || dev->chip_id == KSZ8563_CHIP_ID || dev->chip_id == KSZ9563_CHIP_ID) data8 &= ~P_MII_MAC_MODE; break; default: dev_err(dev->dev, "Unsupported interface '%s' for port %d\n", phy_modes(interface), port); return; } if (p->rgmii_tx_val) data8 |= P_RGMII_ID_EG_ENABLE; if (p->rgmii_rx_val) data8 |= P_RGMII_ID_IG_ENABLE; /* Write the updated value */ ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8); } phy_interface_t ksz_get_xmii(struct ksz_device *dev, int port, bool gbit) { const u8 *bitval = dev->info->xmii_ctrl1; const u16 *regs = dev->info->regs; phy_interface_t interface; u8 data8; u8 val; ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); val = FIELD_GET(P_MII_SEL_M, data8); if (val == bitval[P_MII_SEL]) { if (gbit) interface = PHY_INTERFACE_MODE_GMII; else interface = PHY_INTERFACE_MODE_MII; } else if (val == bitval[P_RMII_SEL]) { interface = PHY_INTERFACE_MODE_RMII; } else { interface = PHY_INTERFACE_MODE_RGMII; if (data8 & P_RGMII_ID_EG_ENABLE) interface = PHY_INTERFACE_MODE_RGMII_TXID; if (data8 & P_RGMII_ID_IG_ENABLE) { interface = PHY_INTERFACE_MODE_RGMII_RXID; if (data8 & P_RGMII_ID_EG_ENABLE) interface = PHY_INTERFACE_MODE_RGMII_ID; } } return interface; } static void ksz8830_phylink_mac_config(struct phylink_config *config, unsigned int mode, const struct phylink_link_state *state) { struct dsa_port *dp = dsa_phylink_to_port(config); struct ksz_device *dev = dp->ds->priv; dev->ports[dp->index].manual_flow = !(state->pause & MLO_PAUSE_AN); } static void ksz_phylink_mac_config(struct phylink_config *config, unsigned int mode, const struct phylink_link_state *state) { struct dsa_port *dp = dsa_phylink_to_port(config); struct ksz_device *dev = dp->ds->priv; int port = dp->index; /* Internal PHYs */ if (dev->info->internal_phy[port]) return; if (phylink_autoneg_inband(mode)) { dev_err(dev->dev, "In-band AN not supported!\n"); return; } ksz_set_xmii(dev, port, state->interface); if (dev->dev_ops->setup_rgmii_delay) dev->dev_ops->setup_rgmii_delay(dev, port); } bool ksz_get_gbit(struct ksz_device *dev, int port) { const u8 *bitval = dev->info->xmii_ctrl1; const u16 *regs = dev->info->regs; bool gbit = false; u8 data8; bool val; ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); val = FIELD_GET(P_GMII_1GBIT_M, data8); if (val == bitval[P_GMII_1GBIT]) gbit = true; return gbit; } static void ksz_set_gbit(struct ksz_device *dev, int port, bool gbit) { const u8 *bitval = dev->info->xmii_ctrl1; const u16 *regs = dev->info->regs; u8 data8; ksz_pread8(dev, port, regs[P_XMII_CTRL_1], &data8); data8 &= ~P_GMII_1GBIT_M; if (gbit) data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_1GBIT]); else data8 |= FIELD_PREP(P_GMII_1GBIT_M, bitval[P_GMII_NOT_1GBIT]); /* Write the updated value */ ksz_pwrite8(dev, port, regs[P_XMII_CTRL_1], data8); } static void ksz_set_100_10mbit(struct ksz_device *dev, int port, int speed) { const u8 *bitval = dev->info->xmii_ctrl0; const u16 *regs = dev->info->regs; u8 data8; ksz_pread8(dev, port, regs[P_XMII_CTRL_0], &data8); data8 &= ~P_MII_100MBIT_M; if (speed == SPEED_100) data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_100MBIT]); else data8 |= FIELD_PREP(P_MII_100MBIT_M, bitval[P_MII_10MBIT]); /* Write the updated value */ ksz_pwrite8(dev, port, regs[P_XMII_CTRL_0], data8); } static void ksz_port_set_xmii_speed(struct ksz_device *dev, int port, int speed) { if (speed == SPEED_1000) ksz_set_gbit(dev, port, true); else ksz_set_gbit(dev, port, false); if (speed == SPEED_100 || speed == SPEED_10) ksz_set_100_10mbit(dev, port, speed); } static void ksz_duplex_flowctrl(struct ksz_device *dev, int port, int duplex, bool tx_pause, bool rx_pause) { const u8 *bitval = dev->info->xmii_ctrl0; const u32 *masks = dev->info->masks; const u16 *regs = dev->info->regs; u8 mask; u8 val; mask = P_MII_DUPLEX_M | masks[P_MII_TX_FLOW_CTRL] | masks[P_MII_RX_FLOW_CTRL]; if (duplex == DUPLEX_FULL) val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_FULL_DUPLEX]); else val = FIELD_PREP(P_MII_DUPLEX_M, bitval[P_MII_HALF_DUPLEX]); if (tx_pause) val |= masks[P_MII_TX_FLOW_CTRL]; if (rx_pause) val |= masks[P_MII_RX_FLOW_CTRL]; ksz_prmw8(dev, port, regs[P_XMII_CTRL_0], mask, val); } static void ksz9477_phylink_mac_link_up(struct phylink_config *config, struct phy_device *phydev, unsigned int mode, phy_interface_t interface, int speed, int duplex, bool tx_pause, bool rx_pause) { struct dsa_port *dp = dsa_phylink_to_port(config); struct ksz_device *dev = dp->ds->priv; int port = dp->index; struct ksz_port *p; p = &dev->ports[port]; /* Internal PHYs */ if (dev->info->internal_phy[port]) return; p->phydev.speed = speed; ksz_port_set_xmii_speed(dev, port, speed); ksz_duplex_flowctrl(dev, port, duplex, tx_pause, rx_pause); } static int ksz_switch_detect(struct ksz_device *dev) { u8 id1, id2, id4; u16 id16; u32 id32; int ret; /* read chip id */ ret = ksz_read16(dev, REG_CHIP_ID0, &id16); if (ret) return ret; id1 = FIELD_GET(SW_FAMILY_ID_M, id16); id2 = FIELD_GET(SW_CHIP_ID_M, id16); switch (id1) { case KSZ87_FAMILY_ID: if (id2 == KSZ87_CHIP_ID_95) { u8 val; dev->chip_id = KSZ8795_CHIP_ID; ksz_read8(dev, KSZ8_PORT_STATUS_0, &val); if (val & KSZ8_PORT_FIBER_MODE) dev->chip_id = KSZ8765_CHIP_ID; } else if (id2 == KSZ87_CHIP_ID_94) { dev->chip_id = KSZ8794_CHIP_ID; } else { return -ENODEV; } break; case KSZ88_FAMILY_ID: if (id2 == KSZ88_CHIP_ID_63) dev->chip_id = KSZ8830_CHIP_ID; else return -ENODEV; break; default: ret = ksz_read32(dev, REG_CHIP_ID0, &id32); if (ret) return ret; dev->chip_rev = FIELD_GET(SW_REV_ID_M, id32); id32 &= ~0xFF; switch (id32) { case KSZ9477_CHIP_ID: case KSZ9896_CHIP_ID: case KSZ9897_CHIP_ID: case KSZ9567_CHIP_ID: case KSZ8567_CHIP_ID: case LAN9370_CHIP_ID: case LAN9371_CHIP_ID: case LAN9372_CHIP_ID: case LAN9373_CHIP_ID: case LAN9374_CHIP_ID: dev->chip_id = id32; break; case KSZ9893_CHIP_ID: ret = ksz_read8(dev, REG_CHIP_ID4, &id4); if (ret) return ret; if (id4 == SKU_ID_KSZ8563) dev->chip_id = KSZ8563_CHIP_ID; else if (id4 == SKU_ID_KSZ9563) dev->chip_id = KSZ9563_CHIP_ID; else dev->chip_id = KSZ9893_CHIP_ID; break; default: dev_err(dev->dev, "unsupported switch detected %x)\n", id32); return -ENODEV; } } return 0; } static int ksz_cls_flower_add(struct dsa_switch *ds, int port, struct flow_cls_offload *cls, bool ingress) { struct ksz_device *dev = ds->priv; switch (dev->chip_id) { case KSZ8563_CHIP_ID: case KSZ8567_CHIP_ID: case KSZ9477_CHIP_ID: case KSZ9563_CHIP_ID: case KSZ9567_CHIP_ID: case KSZ9893_CHIP_ID: case KSZ9896_CHIP_ID: case KSZ9897_CHIP_ID: return ksz9477_cls_flower_add(ds, port, cls, ingress); } return -EOPNOTSUPP; } static int ksz_cls_flower_del(struct dsa_switch *ds, int port, struct flow_cls_offload *cls, bool ingress) { struct ksz_device *dev = ds->priv; switch (dev->chip_id) { case KSZ8563_CHIP_ID: case KSZ8567_CHIP_ID: case KSZ9477_CHIP_ID: case KSZ9563_CHIP_ID: case KSZ9567_CHIP_ID: case KSZ9893_CHIP_ID: case KSZ9896_CHIP_ID: case KSZ9897_CHIP_ID: return ksz9477_cls_flower_del(ds, port, cls, ingress); } return -EOPNOTSUPP; } /* Bandwidth is calculated by idle slope/transmission speed. Then the Bandwidth * is converted to Hex-decimal using the successive multiplication method. On * every step, integer part is taken and decimal part is carry forwarded. */ static int cinc_cal(s32 idle_slope, s32 send_slope, u32 *bw) { u32 cinc = 0; u32 txrate; u32 rate; u8 temp; u8 i; txrate = idle_slope - send_slope; if (!txrate) return -EINVAL; rate = idle_slope; /* 24 bit register */ for (i = 0; i < 6; i++) { rate = rate * 16; temp = rate / txrate; rate %= txrate; cinc = ((cinc << 4) | temp); } *bw = cinc; return 0; } static int ksz_setup_tc_mode(struct ksz_device *dev, int port, u8 scheduler, u8 shaper) { return ksz_pwrite8(dev, port, REG_PORT_MTI_QUEUE_CTRL_0, FIELD_PREP(MTI_SCHEDULE_MODE_M, scheduler) | FIELD_PREP(MTI_SHAPING_M, shaper)); } static int ksz_setup_tc_cbs(struct dsa_switch *ds, int port, struct tc_cbs_qopt_offload *qopt) { struct ksz_device *dev = ds->priv; int ret; u32 bw; if (!dev->info->tc_cbs_supported) return -EOPNOTSUPP; if (qopt->queue > dev->info->num_tx_queues) return -EINVAL; /* Queue Selection */ ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, qopt->queue); if (ret) return ret; if (!qopt->enable) return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR, MTI_SHAPING_OFF); /* High Credit */ ret = ksz_pwrite16(dev, port, REG_PORT_MTI_HI_WATER_MARK, qopt->hicredit); if (ret) return ret; /* Low Credit */ ret = ksz_pwrite16(dev, port, REG_PORT_MTI_LO_WATER_MARK, qopt->locredit); if (ret) return ret; /* Credit Increment Register */ ret = cinc_cal(qopt->idleslope, qopt->sendslope, &bw); if (ret) return ret; if (dev->dev_ops->tc_cbs_set_cinc) { ret = dev->dev_ops->tc_cbs_set_cinc(dev, port, bw); if (ret) return ret; } return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO, MTI_SHAPING_SRP); } static int ksz_disable_egress_rate_limit(struct ksz_device *dev, int port) { int queue, ret; /* Configuration will not take effect until the last Port Queue X * Egress Limit Control Register is written. */ for (queue = 0; queue < dev->info->num_tx_queues; queue++) { ret = ksz_pwrite8(dev, port, KSZ9477_REG_PORT_OUT_RATE_0 + queue, KSZ9477_OUT_RATE_NO_LIMIT); if (ret) return ret; } return 0; } static int ksz_ets_band_to_queue(struct tc_ets_qopt_offload_replace_params *p, int band) { /* Compared to queues, bands prioritize packets differently. In strict * priority mode, the lowest priority is assigned to Queue 0 while the * highest priority is given to Band 0. */ return p->bands - 1 - band; } static int ksz_queue_set_strict(struct ksz_device *dev, int port, int queue) { int ret; ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue); if (ret) return ret; return ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_STRICT_PRIO, MTI_SHAPING_OFF); } static int ksz_queue_set_wrr(struct ksz_device *dev, int port, int queue, int weight) { int ret; ret = ksz_pwrite32(dev, port, REG_PORT_MTI_QUEUE_INDEX__4, queue); if (ret) return ret; ret = ksz_setup_tc_mode(dev, port, MTI_SCHEDULE_WRR, MTI_SHAPING_OFF); if (ret) return ret; return ksz_pwrite8(dev, port, KSZ9477_PORT_MTI_QUEUE_CTRL_1, weight); } static int ksz_tc_ets_add(struct ksz_device *dev, int port, struct tc_ets_qopt_offload_replace_params *p) { int ret, band, tc_prio; u32 queue_map = 0; /* In order to ensure proper prioritization, it is necessary to set the * rate limit for the related queue to zero. Otherwise strict priority * or WRR mode will not work. This is a hardware limitation. */ ret = ksz_disable_egress_rate_limit(dev, port); if (ret) return ret; /* Configure queue scheduling mode for all bands. Currently only strict * prio mode is supported. */ for (band = 0; band < p->bands; band++) { int queue = ksz_ets_band_to_queue(p, band); ret = ksz_queue_set_strict(dev, port, queue); if (ret) return ret; } /* Configure the mapping between traffic classes and queues. Note: * priomap variable support 16 traffic classes, but the chip can handle * only 8 classes. */ for (tc_prio = 0; tc_prio < ARRAY_SIZE(p->priomap); tc_prio++) { int queue; if (tc_prio >= dev->info->num_ipms) break; queue = ksz_ets_band_to_queue(p, p->priomap[tc_prio]); queue_map |= queue << (tc_prio * KSZ9477_PORT_TC_MAP_S); } return ksz_pwrite32(dev, port, KSZ9477_PORT_MRI_TC_MAP__4, queue_map); } static int ksz_tc_ets_del(struct ksz_device *dev, int port) { int ret, queue; /* To restore the default chip configuration, set all queues to use the * WRR scheduler with a weight of 1. */ for (queue = 0; queue < dev->info->num_tx_queues; queue++) { ret = ksz_queue_set_wrr(dev, port, queue, KSZ9477_DEFAULT_WRR_WEIGHT); if (ret) return ret; } /* Revert the queue mapping for TC-priority to its default setting on * the chip. */ return ksz9477_set_default_prio_queue_mapping(dev, port); } static int ksz_tc_ets_validate(struct ksz_device *dev, int port, struct tc_ets_qopt_offload_replace_params *p) { int band; /* Since it is not feasible to share one port among multiple qdisc, * the user must configure all available queues appropriately. */ if (p->bands != dev->info->num_tx_queues) { dev_err(dev->dev, "Not supported amount of bands. It should be %d\n", dev->info->num_tx_queues); return -EOPNOTSUPP; } for (band = 0; band < p->bands; ++band) { /* The KSZ switches utilize a weighted round robin configuration * where a certain number of packets can be transmitted from a * queue before the next queue is serviced. For more information * on this, refer to section 5.2.8.4 of the KSZ8565R * documentation on the Port Transmit Queue Control 1 Register. * However, the current ETS Qdisc implementation (as of February * 2023) assigns a weight to each queue based on the number of * bytes or extrapolated bandwidth in percentages. Since this * differs from the KSZ switches' method and we don't want to * fake support by converting bytes to packets, it is better to * return an error instead. */ if (p->quanta[band]) { dev_err(dev->dev, "Quanta/weights configuration is not supported.\n"); return -EOPNOTSUPP; } } return 0; } static int ksz_tc_setup_qdisc_ets(struct dsa_switch *ds, int port, struct tc_ets_qopt_offload *qopt) { struct ksz_device *dev = ds->priv; int ret; if (is_ksz8(dev)) return -EOPNOTSUPP; if (qopt->parent != TC_H_ROOT) { dev_err(dev->dev, "Parent should be \"root\"\n"); return -EOPNOTSUPP; } switch (qopt->command) { case TC_ETS_REPLACE: ret = ksz_tc_ets_validate(dev, port, &qopt->replace_params); if (ret) return ret; return ksz_tc_ets_add(dev, port, &qopt->replace_params); case TC_ETS_DESTROY: return ksz_tc_ets_del(dev, port); case TC_ETS_STATS: case TC_ETS_GRAFT: return -EOPNOTSUPP; } return -EOPNOTSUPP; } static int ksz_setup_tc(struct dsa_switch *ds, int port, enum tc_setup_type type, void *type_data) { switch (type) { case TC_SETUP_QDISC_CBS: return ksz_setup_tc_cbs(ds, port, type_data); case TC_SETUP_QDISC_ETS: return ksz_tc_setup_qdisc_ets(ds, port, type_data); default: return -EOPNOTSUPP; } } static void ksz_get_wol(struct dsa_switch *ds, int port, struct ethtool_wolinfo *wol) { struct ksz_device *dev = ds->priv; if (dev->dev_ops->get_wol) dev->dev_ops->get_wol(dev, port, wol); } static int ksz_set_wol(struct dsa_switch *ds, int port, struct ethtool_wolinfo *wol) { struct ksz_device *dev = ds->priv; if (dev->dev_ops->set_wol) return dev->dev_ops->set_wol(dev, port, wol); return -EOPNOTSUPP; } static int ksz_port_set_mac_address(struct dsa_switch *ds, int port, const unsigned char *addr) { struct dsa_port *dp = dsa_to_port(ds, port); struct ethtool_wolinfo wol; if (dp->hsr_dev) { dev_err(ds->dev, "Cannot change MAC address on port %d with active HSR offload\n", port); return -EBUSY; } ksz_get_wol(ds, dp->index, &wol); if (wol.wolopts & WAKE_MAGIC) { dev_err(ds->dev, "Cannot change MAC address on port %d with active Wake on Magic Packet\n", port); return -EBUSY; } return 0; } /** * ksz_is_port_mac_global_usable - Check if the MAC address on a given port * can be used as a global address. * @ds: Pointer to the DSA switch structure. * @port: The port number on which the MAC address is to be checked. * * This function examines the MAC address set on the specified port and * determines if it can be used as a global address for the switch. * * Return: true if the port's MAC address can be used as a global address, false * otherwise. */ bool ksz_is_port_mac_global_usable(struct dsa_switch *ds, int port) { struct net_device *user = dsa_to_port(ds, port)->user; const unsigned char *addr = user->dev_addr; struct ksz_switch_macaddr *switch_macaddr; struct ksz_device *dev = ds->priv; ASSERT_RTNL(); switch_macaddr = dev->switch_macaddr; if (switch_macaddr && !ether_addr_equal(switch_macaddr->addr, addr)) return false; return true; } /** * ksz_switch_macaddr_get - Program the switch's MAC address register. * @ds: DSA switch instance. * @port: Port number. * @extack: Netlink extended acknowledgment. * * This function programs the switch's MAC address register with the MAC address * of the requesting user port. This single address is used by the switch for * multiple features like HSR self-address filtering and WoL. Other user ports * can share ownership of this address as long as their MAC address is the same. * The MAC addresses of user ports must not change while they have ownership of * the switch MAC address. * * Return: 0 on success, or other error codes on failure. */ int ksz_switch_macaddr_get(struct dsa_switch *ds, int port, struct netlink_ext_ack *extack) { struct net_device *user = dsa_to_port(ds, port)->user; const unsigned char *addr = user->dev_addr; struct ksz_switch_macaddr *switch_macaddr; struct ksz_device *dev = ds->priv; const u16 *regs = dev->info->regs; int i, ret; /* Make sure concurrent MAC address changes are blocked */ ASSERT_RTNL(); switch_macaddr = dev->switch_macaddr; if (switch_macaddr) { if (!ether_addr_equal(switch_macaddr->addr, addr)) { NL_SET_ERR_MSG_FMT_MOD(extack, "Switch already configured for MAC address %pM", switch_macaddr->addr); return -EBUSY; } refcount_inc(&switch_macaddr->refcount); return 0; } switch_macaddr = kzalloc(sizeof(*switch_macaddr), GFP_KERNEL); if (!switch_macaddr) return -ENOMEM; ether_addr_copy(switch_macaddr->addr, addr); refcount_set(&switch_macaddr->refcount, 1); dev->switch_macaddr = switch_macaddr; /* Program the switch MAC address to hardware */ for (i = 0; i < ETH_ALEN; i++) { ret = ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, addr[i]); if (ret) goto macaddr_drop; } return 0; macaddr_drop: dev->switch_macaddr = NULL; refcount_set(&switch_macaddr->refcount, 0); kfree(switch_macaddr); return ret; } void ksz_switch_macaddr_put(struct dsa_switch *ds) { struct ksz_switch_macaddr *switch_macaddr; struct ksz_device *dev = ds->priv; const u16 *regs = dev->info->regs; int i; /* Make sure concurrent MAC address changes are blocked */ ASSERT_RTNL(); switch_macaddr = dev->switch_macaddr; if (!refcount_dec_and_test(&switch_macaddr->refcount)) return; for (i = 0; i < ETH_ALEN; i++) ksz_write8(dev, regs[REG_SW_MAC_ADDR] + i, 0); dev->switch_macaddr = NULL; kfree(switch_macaddr); } static int ksz_hsr_join(struct dsa_switch *ds, int port, struct net_device *hsr, struct netlink_ext_ack *extack) { struct ksz_device *dev = ds->priv; enum hsr_version ver; int ret; ret = hsr_get_version(hsr, &ver); if (ret) return ret; if (dev->chip_id != KSZ9477_CHIP_ID) { NL_SET_ERR_MSG_MOD(extack, "Chip does not support HSR offload"); return -EOPNOTSUPP; } /* KSZ9477 can support HW offloading of only 1 HSR device */ if (dev->hsr_dev && hsr != dev->hsr_dev) { NL_SET_ERR_MSG_MOD(extack, "Offload supported for a single HSR"); return -EOPNOTSUPP; } /* KSZ9477 only supports HSR v0 and v1 */ if (!(ver == HSR_V0 || ver == HSR_V1)) { NL_SET_ERR_MSG_MOD(extack, "Only HSR v0 and v1 supported"); return -EOPNOTSUPP; } /* Self MAC address filtering, to avoid frames traversing * the HSR ring more than once. */ ret = ksz_switch_macaddr_get(ds, port, extack); if (ret) return ret; ksz9477_hsr_join(ds, port, hsr); dev->hsr_dev = hsr; dev->hsr_ports |= BIT(port); return 0; } static int ksz_hsr_leave(struct dsa_switch *ds, int port, struct net_device *hsr) { struct ksz_device *dev = ds->priv; WARN_ON(dev->chip_id != KSZ9477_CHIP_ID); ksz9477_hsr_leave(ds, port, hsr); dev->hsr_ports &= ~BIT(port); if (!dev->hsr_ports) dev->hsr_dev = NULL; ksz_switch_macaddr_put(ds); return 0; } static const struct dsa_switch_ops ksz_switch_ops = { .get_tag_protocol = ksz_get_tag_protocol, .connect_tag_protocol = ksz_connect_tag_protocol, .get_phy_flags = ksz_get_phy_flags, .setup = ksz_setup, .teardown = ksz_teardown, .phy_read = ksz_phy_read16, .phy_write = ksz_phy_write16, .phylink_get_caps = ksz_phylink_get_caps, .port_setup = ksz_port_setup, .set_ageing_time = ksz_set_ageing_time, .get_strings = ksz_get_strings, .get_ethtool_stats = ksz_get_ethtool_stats, .get_sset_count = ksz_sset_count, .port_bridge_join = ksz_port_bridge_join, .port_bridge_leave = ksz_port_bridge_leave, .port_hsr_join = ksz_hsr_join, .port_hsr_leave = ksz_hsr_leave, .port_set_mac_address = ksz_port_set_mac_address, .port_stp_state_set = ksz_port_stp_state_set, .port_teardown = ksz_port_teardown, .port_pre_bridge_flags = ksz_port_pre_bridge_flags, .port_bridge_flags = ksz_port_bridge_flags, .port_fast_age = ksz_port_fast_age, .port_vlan_filtering = ksz_port_vlan_filtering, .port_vlan_add = ksz_port_vlan_add, .port_vlan_del = ksz_port_vlan_del, .port_fdb_dump = ksz_port_fdb_dump, .port_fdb_add = ksz_port_fdb_add, .port_fdb_del = ksz_port_fdb_del, .port_mdb_add = ksz_port_mdb_add, .port_mdb_del = ksz_port_mdb_del, .port_mirror_add = ksz_port_mirror_add, .port_mirror_del = ksz_port_mirror_del, .get_stats64 = ksz_get_stats64, .get_pause_stats = ksz_get_pause_stats, .port_change_mtu = ksz_change_mtu, .port_max_mtu = ksz_max_mtu, .get_wol = ksz_get_wol, .set_wol = ksz_set_wol, .get_ts_info = ksz_get_ts_info, .port_hwtstamp_get = ksz_hwtstamp_get, .port_hwtstamp_set = ksz_hwtstamp_set, .port_txtstamp = ksz_port_txtstamp, .port_rxtstamp = ksz_port_rxtstamp, .cls_flower_add = ksz_cls_flower_add, .cls_flower_del = ksz_cls_flower_del, .port_setup_tc = ksz_setup_tc, .get_mac_eee = ksz_get_mac_eee, .set_mac_eee = ksz_set_mac_eee, .port_get_default_prio = ksz_port_get_default_prio, .port_set_default_prio = ksz_port_set_default_prio, .port_get_dscp_prio = ksz_port_get_dscp_prio, .port_add_dscp_prio = ksz_port_add_dscp_prio, .port_del_dscp_prio = ksz_port_del_dscp_prio, .port_get_apptrust = ksz_port_get_apptrust, .port_set_apptrust = ksz_port_set_apptrust, }; struct ksz_device *ksz_switch_alloc(struct device *base, void *priv) { struct dsa_switch *ds; struct ksz_device *swdev; ds = devm_kzalloc(base, sizeof(*ds), GFP_KERNEL); if (!ds) return NULL; ds->dev = base; ds->num_ports = DSA_MAX_PORTS; ds->ops = &ksz_switch_ops; swdev = devm_kzalloc(base, sizeof(*swdev), GFP_KERNEL); if (!swdev) return NULL; ds->priv = swdev; swdev->dev = base; swdev->ds = ds; swdev->priv = priv; return swdev; } EXPORT_SYMBOL(ksz_switch_alloc); /** * ksz_switch_shutdown - Shutdown routine for the switch device. * @dev: The switch device structure. * * This function is responsible for initiating a shutdown sequence for the * switch device. It invokes the reset operation defined in the device * operations, if available, to reset the switch. Subsequently, it calls the * DSA framework's shutdown function to ensure a proper shutdown of the DSA * switch. */ void ksz_switch_shutdown(struct ksz_device *dev) { bool wol_enabled = false; if (dev->dev_ops->wol_pre_shutdown) dev->dev_ops->wol_pre_shutdown(dev, &wol_enabled); if (dev->dev_ops->reset && !wol_enabled) dev->dev_ops->reset(dev); dsa_switch_shutdown(dev->ds); } EXPORT_SYMBOL(ksz_switch_shutdown); static void ksz_parse_rgmii_delay(struct ksz_device *dev, int port_num, struct device_node *port_dn) { phy_interface_t phy_mode = dev->ports[port_num].interface; int rx_delay = -1, tx_delay = -1; if (!phy_interface_mode_is_rgmii(phy_mode)) return; of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay); of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay); if (rx_delay == -1 && tx_delay == -1) { dev_warn(dev->dev, "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, " "please update device tree to specify \"rx-internal-delay-ps\" and " "\"tx-internal-delay-ps\"", port_num); if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID || phy_mode == PHY_INTERFACE_MODE_RGMII_ID) rx_delay = 2000; if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID || phy_mode == PHY_INTERFACE_MODE_RGMII_ID) tx_delay = 2000; } if (rx_delay < 0) rx_delay = 0; if (tx_delay < 0) tx_delay = 0; dev->ports[port_num].rgmii_rx_val = rx_delay; dev->ports[port_num].rgmii_tx_val = tx_delay; } /** * ksz_drive_strength_to_reg() - Convert drive strength value to corresponding * register value. * @array: The array of drive strength values to search. * @array_size: The size of the array. * @microamp: The drive strength value in microamp to be converted. * * This function searches the array of drive strength values for the given * microamp value and returns the corresponding register value for that drive. * * Returns: If found, the corresponding register value for that drive strength * is returned. Otherwise, -EINVAL is returned indicating an invalid value. */ static int ksz_drive_strength_to_reg(const struct ksz_drive_strength *array, size_t array_size, int microamp) { int i; for (i = 0; i < array_size; i++) { if (array[i].microamp == microamp) return array[i].reg_val; } return -EINVAL; } /** * ksz_drive_strength_error() - Report invalid drive strength value * @dev: ksz device * @array: The array of drive strength values to search. * @array_size: The size of the array. * @microamp: Invalid drive strength value in microamp * * This function logs an error message when an unsupported drive strength value * is detected. It lists out all the supported drive strength values for * reference in the error message. */ static void ksz_drive_strength_error(struct ksz_device *dev, const struct ksz_drive_strength *array, size_t array_size, int microamp) { char supported_values[100]; size_t remaining_size; int added_len; char *ptr; int i; remaining_size = sizeof(supported_values); ptr = supported_values; for (i = 0; i < array_size; i++) { added_len = snprintf(ptr, remaining_size, i == 0 ? "%d" : ", %d", array[i].microamp); if (added_len >= remaining_size) break; ptr += added_len; remaining_size -= added_len; } dev_err(dev->dev, "Invalid drive strength %d, supported values are %s\n", microamp, supported_values); } /** * ksz9477_drive_strength_write() - Set the drive strength for specific KSZ9477 * chip variants. * @dev: ksz device * @props: Array of drive strength properties to be applied * @num_props: Number of properties in the array * * This function configures the drive strength for various KSZ9477 chip variants * based on the provided properties. It handles chip-specific nuances and * ensures only valid drive strengths are written to the respective chip. * * Return: 0 on successful configuration, a negative error code on failure. */ static int ksz9477_drive_strength_write(struct ksz_device *dev, struct ksz_driver_strength_prop *props, int num_props) { size_t array_size = ARRAY_SIZE(ksz9477_drive_strengths); int i, ret, reg; u8 mask = 0; u8 val = 0; if (props[KSZ_DRIVER_STRENGTH_IO].value != -1) dev_warn(dev->dev, "%s is not supported by this chip variant\n", props[KSZ_DRIVER_STRENGTH_IO].name); if (dev->chip_id == KSZ8795_CHIP_ID || dev->chip_id == KSZ8794_CHIP_ID || dev->chip_id == KSZ8765_CHIP_ID) reg = KSZ8795_REG_SW_CTRL_20; else reg = KSZ9477_REG_SW_IO_STRENGTH; for (i = 0; i < num_props; i++) { if (props[i].value == -1) continue; ret = ksz_drive_strength_to_reg(ksz9477_drive_strengths, array_size, props[i].value); if (ret < 0) { ksz_drive_strength_error(dev, ksz9477_drive_strengths, array_size, props[i].value); return ret; } mask |= SW_DRIVE_STRENGTH_M << props[i].offset; val |= ret << props[i].offset; } return ksz_rmw8(dev, reg, mask, val); } /** * ksz8830_drive_strength_write() - Set the drive strength configuration for * KSZ8830 compatible chip variants. * @dev: ksz device * @props: Array of drive strength properties to be set * @num_props: Number of properties in the array * * This function applies the specified drive strength settings to KSZ8830 chip * variants (KSZ8873, KSZ8863). * It ensures the configurations align with what the chip variant supports and * warns or errors out on unsupported settings. * * Return: 0 on success, error code otherwise */ static int ksz8830_drive_strength_write(struct ksz_device *dev, struct ksz_driver_strength_prop *props, int num_props) { size_t array_size = ARRAY_SIZE(ksz8830_drive_strengths); int microamp; int i, ret; for (i = 0; i < num_props; i++) { if (props[i].value == -1 || i == KSZ_DRIVER_STRENGTH_IO) continue; dev_warn(dev->dev, "%s is not supported by this chip variant\n", props[i].name); } microamp = props[KSZ_DRIVER_STRENGTH_IO].value; ret = ksz_drive_strength_to_reg(ksz8830_drive_strengths, array_size, microamp); if (ret < 0) { ksz_drive_strength_error(dev, ksz8830_drive_strengths, array_size, microamp); return ret; } return ksz_rmw8(dev, KSZ8873_REG_GLOBAL_CTRL_12, KSZ8873_DRIVE_STRENGTH_16MA, ret); } /** * ksz_parse_drive_strength() - Extract and apply drive strength configurations * from device tree properties. * @dev: ksz device * * This function reads the specified drive strength properties from the * device tree, validates against the supported chip variants, and sets * them accordingly. An error should be critical here, as the drive strength * settings are crucial for EMI compliance. * * Return: 0 on success, error code otherwise */ static int ksz_parse_drive_strength(struct ksz_device *dev) { struct ksz_driver_strength_prop of_props[] = { [KSZ_DRIVER_STRENGTH_HI] = { .name = "microchip,hi-drive-strength-microamp", .offset = SW_HI_SPEED_DRIVE_STRENGTH_S, .value = -1, }, [KSZ_DRIVER_STRENGTH_LO] = { .name = "microchip,lo-drive-strength-microamp", .offset = SW_LO_SPEED_DRIVE_STRENGTH_S, .value = -1, }, [KSZ_DRIVER_STRENGTH_IO] = { .name = "microchip,io-drive-strength-microamp", .offset = 0, /* don't care */ .value = -1, }, }; struct device_node *np = dev->dev->of_node; bool have_any_prop = false; int i, ret; for (i = 0; i < ARRAY_SIZE(of_props); i++) { ret = of_property_read_u32(np, of_props[i].name, &of_props[i].value); if (ret && ret != -EINVAL) dev_warn(dev->dev, "Failed to read %s\n", of_props[i].name); if (ret) continue; have_any_prop = true; } if (!have_any_prop) return 0; switch (dev->chip_id) { case KSZ8830_CHIP_ID: return ksz8830_drive_strength_write(dev, of_props, ARRAY_SIZE(of_props)); case KSZ8795_CHIP_ID: case KSZ8794_CHIP_ID: case KSZ8765_CHIP_ID: case KSZ8563_CHIP_ID: case KSZ8567_CHIP_ID: case KSZ9477_CHIP_ID: case KSZ9563_CHIP_ID: case KSZ9567_CHIP_ID: case KSZ9893_CHIP_ID: case KSZ9896_CHIP_ID: case KSZ9897_CHIP_ID: return ksz9477_drive_strength_write(dev, of_props, ARRAY_SIZE(of_props)); default: for (i = 0; i < ARRAY_SIZE(of_props); i++) { if (of_props[i].value == -1) continue; dev_warn(dev->dev, "%s is not supported by this chip variant\n", of_props[i].name); } } return 0; } int ksz_switch_register(struct ksz_device *dev) { const struct ksz_chip_data *info; struct device_node *port, *ports; phy_interface_t interface; unsigned int port_num; int ret; int i; dev->reset_gpio = devm_gpiod_get_optional(dev->dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(dev->reset_gpio)) return PTR_ERR(dev->reset_gpio); if (dev->reset_gpio) { gpiod_set_value_cansleep(dev->reset_gpio, 1); usleep_range(10000, 12000); gpiod_set_value_cansleep(dev->reset_gpio, 0); msleep(100); } mutex_init(&dev->dev_mutex); mutex_init(&dev->regmap_mutex); mutex_init(&dev->alu_mutex); mutex_init(&dev->vlan_mutex); ret = ksz_switch_detect(dev); if (ret) return ret; info = ksz_lookup_info(dev->chip_id); if (!info) return -ENODEV; /* Update the compatible info with the probed one */ dev->info = info; dev_info(dev->dev, "found switch: %s, rev %i\n", dev->info->dev_name, dev->chip_rev); ret = ksz_check_device_id(dev); if (ret) return ret; dev->dev_ops = dev->info->ops; ret = dev->dev_ops->init(dev); if (ret) return ret; dev->ports = devm_kzalloc(dev->dev, dev->info->port_cnt * sizeof(struct ksz_port), GFP_KERNEL); if (!dev->ports) return -ENOMEM; for (i = 0; i < dev->info->port_cnt; i++) { spin_lock_init(&dev->ports[i].mib.stats64_lock); mutex_init(&dev->ports[i].mib.cnt_mutex); dev->ports[i].mib.counters = devm_kzalloc(dev->dev, sizeof(u64) * (dev->info->mib_cnt + 1), GFP_KERNEL); if (!dev->ports[i].mib.counters) return -ENOMEM; dev->ports[i].ksz_dev = dev; dev->ports[i].num = i; } /* set the real number of ports */ dev->ds->num_ports = dev->info->port_cnt; /* set the phylink ops */ dev->ds->phylink_mac_ops = dev->info->phylink_mac_ops; /* Host port interface will be self detected, or specifically set in * device tree. */ for (port_num = 0; port_num < dev->info->port_cnt; ++port_num) dev->ports[port_num].interface = PHY_INTERFACE_MODE_NA; if (dev->dev->of_node) { ret = of_get_phy_mode(dev->dev->of_node, &interface); if (ret == 0) dev->compat_interface = interface; ports = of_get_child_by_name(dev->dev->of_node, "ethernet-ports"); if (!ports) ports = of_get_child_by_name(dev->dev->of_node, "ports"); if (ports) { for_each_available_child_of_node(ports, port) { if (of_property_read_u32(port, "reg", &port_num)) continue; if (!(dev->port_mask & BIT(port_num))) { of_node_put(port); of_node_put(ports); return -EINVAL; } of_get_phy_mode(port, &dev->ports[port_num].interface); ksz_parse_rgmii_delay(dev, port_num, port); } of_node_put(ports); } dev->synclko_125 = of_property_read_bool(dev->dev->of_node, "microchip,synclko-125"); dev->synclko_disable = of_property_read_bool(dev->dev->of_node, "microchip,synclko-disable"); if (dev->synclko_125 && dev->synclko_disable) { dev_err(dev->dev, "inconsistent synclko settings\n"); return -EINVAL; } dev->wakeup_source = of_property_read_bool(dev->dev->of_node, "wakeup-source"); } ret = dsa_register_switch(dev->ds); if (ret) { dev->dev_ops->exit(dev); return ret; } /* Read MIB counters every 30 seconds to avoid overflow. */ dev->mib_read_interval = msecs_to_jiffies(5000); /* Start the MIB timer. */ schedule_delayed_work(&dev->mib_read, 0); return ret; } EXPORT_SYMBOL(ksz_switch_register); void ksz_switch_remove(struct ksz_device *dev) { /* timer started */ if (dev->mib_read_interval) { dev->mib_read_interval = 0; cancel_delayed_work_sync(&dev->mib_read); } dev->dev_ops->exit(dev); dsa_unregister_switch(dev->ds); if (dev->reset_gpio) gpiod_set_value_cansleep(dev->reset_gpio, 1); } EXPORT_SYMBOL(ksz_switch_remove); MODULE_AUTHOR("Woojung Huh <Woojung.Huh@microchip.com>"); MODULE_DESCRIPTION("Microchip KSZ Series Switch DSA Driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1