Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Edwin Peer | 2708 | 90.24% | 11 | 44.00% |
Sathya Perla | 122 | 4.07% | 2 | 8.00% |
Michael Chan | 98 | 3.27% | 4 | 16.00% |
Venkat Duvvuru | 41 | 1.37% | 3 | 12.00% |
Vasundhara Volam | 14 | 0.47% | 1 | 4.00% |
Jakub Kiciński | 6 | 0.20% | 2 | 8.00% |
Aleksandr Mishin | 6 | 0.20% | 1 | 4.00% |
Vikas Gupta | 6 | 0.20% | 1 | 4.00% |
Total | 3001 | 25 |
/* Broadcom NetXtreme-C/E network driver. * * Copyright (c) 2020 Broadcom Limited * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. */ #include <asm/byteorder.h> #include <linux/dma-mapping.h> #include <linux/dmapool.h> #include <linux/errno.h> #include <linux/ethtool.h> #include <linux/if_ether.h> #include <linux/io.h> #include <linux/irq.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/netdevice.h> #include <linux/pci.h> #include <linux/skbuff.h> #include "bnxt_hsi.h" #include "bnxt.h" #include "bnxt_hwrm.h" static u64 hwrm_calc_sentinel(struct bnxt_hwrm_ctx *ctx, u16 req_type) { return (((uintptr_t)ctx) + req_type) ^ BNXT_HWRM_SENTINEL; } /** * __hwrm_req_init() - Initialize an HWRM request. * @bp: The driver context. * @req: A pointer to the request pointer to initialize. * @req_type: The request type. This will be converted to the little endian * before being written to the req_type field of the returned request. * @req_len: The length of the request to be allocated. * * Allocate DMA resources and initialize a new HWRM request object of the * given type. The response address field in the request is configured with * the DMA bus address that has been mapped for the response and the passed * request is pointed to kernel virtual memory mapped for the request (such * that short_input indirection can be accomplished without copying). The * request’s target and completion ring are initialized to default values and * can be overridden by writing to the returned request object directly. * * The initialized request can be further customized by writing to its fields * directly, taking care to covert such fields to little endian. The request * object will be consumed (and all its associated resources release) upon * passing it to hwrm_req_send() unless ownership of the request has been * claimed by the caller via a call to hwrm_req_hold(). If the request is not * consumed, either because it is never sent or because ownership has been * claimed, then it must be released by a call to hwrm_req_drop(). * * Return: zero on success, negative error code otherwise: * E2BIG: the type of request pointer is too large to fit. * ENOMEM: an allocation failure occurred. */ int __hwrm_req_init(struct bnxt *bp, void **req, u16 req_type, u32 req_len) { struct bnxt_hwrm_ctx *ctx; dma_addr_t dma_handle; u8 *req_addr; if (req_len > BNXT_HWRM_CTX_OFFSET) return -E2BIG; req_addr = dma_pool_alloc(bp->hwrm_dma_pool, GFP_KERNEL | __GFP_ZERO, &dma_handle); if (!req_addr) return -ENOMEM; ctx = (struct bnxt_hwrm_ctx *)(req_addr + BNXT_HWRM_CTX_OFFSET); /* safety first, sentinel used to check for invalid requests */ ctx->sentinel = hwrm_calc_sentinel(ctx, req_type); ctx->req_len = req_len; ctx->req = (struct input *)req_addr; ctx->resp = (struct output *)(req_addr + BNXT_HWRM_RESP_OFFSET); ctx->dma_handle = dma_handle; ctx->flags = 0; /* __GFP_ZERO, but be explicit regarding ownership */ ctx->timeout = bp->hwrm_cmd_timeout ?: DFLT_HWRM_CMD_TIMEOUT; ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET; ctx->gfp = GFP_KERNEL; ctx->slice_addr = NULL; /* initialize common request fields */ ctx->req->req_type = cpu_to_le16(req_type); ctx->req->resp_addr = cpu_to_le64(dma_handle + BNXT_HWRM_RESP_OFFSET); ctx->req->cmpl_ring = cpu_to_le16(BNXT_HWRM_NO_CMPL_RING); ctx->req->target_id = cpu_to_le16(BNXT_HWRM_TARGET); *req = ctx->req; return 0; } static struct bnxt_hwrm_ctx *__hwrm_ctx(struct bnxt *bp, u8 *req_addr) { void *ctx_addr = req_addr + BNXT_HWRM_CTX_OFFSET; struct input *req = (struct input *)req_addr; struct bnxt_hwrm_ctx *ctx = ctx_addr; u64 sentinel; if (!req) { /* can only be due to software bug, be loud */ netdev_err(bp->dev, "null HWRM request"); dump_stack(); return NULL; } /* HWRM API has no type safety, verify sentinel to validate address */ sentinel = hwrm_calc_sentinel(ctx, le16_to_cpu(req->req_type)); if (ctx->sentinel != sentinel) { /* can only be due to software bug, be loud */ netdev_err(bp->dev, "HWRM sentinel mismatch, req_type = %u\n", (u32)le16_to_cpu(req->req_type)); dump_stack(); return NULL; } return ctx; } /** * hwrm_req_timeout() - Set the completion timeout for the request. * @bp: The driver context. * @req: The request to set the timeout. * @timeout: The timeout in milliseconds. * * Set the timeout associated with the request for subsequent calls to * hwrm_req_send(). Some requests are long running and require a different * timeout than the default. */ void hwrm_req_timeout(struct bnxt *bp, void *req, unsigned int timeout) { struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); if (ctx) ctx->timeout = timeout; } /** * hwrm_req_alloc_flags() - Sets GFP allocation flags for slices. * @bp: The driver context. * @req: The request for which calls to hwrm_req_dma_slice() will have altered * allocation flags. * @gfp: A bitmask of GFP flags. These flags are passed to dma_alloc_coherent() * whenever it is used to allocate backing memory for slices. Note that * calls to hwrm_req_dma_slice() will not always result in new allocations, * however, memory suballocated from the request buffer is already * __GFP_ZERO. * * Sets the GFP allocation flags associated with the request for subsequent * calls to hwrm_req_dma_slice(). This can be useful for specifying __GFP_ZERO * for slice allocations. */ void hwrm_req_alloc_flags(struct bnxt *bp, void *req, gfp_t gfp) { struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); if (ctx) ctx->gfp = gfp; } /** * hwrm_req_replace() - Replace request data. * @bp: The driver context. * @req: The request to modify. A call to hwrm_req_replace() is conceptually * an assignment of new_req to req. Subsequent calls to HWRM API functions, * such as hwrm_req_send(), should thus use req and not new_req (in fact, * calls to HWRM API functions will fail if non-managed request objects * are passed). * @len: The length of new_req. * @new_req: The pre-built request to copy or reference. * * Replaces the request data in req with that of new_req. This is useful in * scenarios where a request object has already been constructed by a third * party prior to creating a resource managed request using hwrm_req_init(). * Depending on the length, hwrm_req_replace() will either copy the new * request data into the DMA memory allocated for req, or it will simply * reference the new request and use it in lieu of req during subsequent * calls to hwrm_req_send(). The resource management is associated with * req and is independent of and does not apply to new_req. The caller must * ensure that the lifetime of new_req is least as long as req. Any slices * that may have been associated with the original request are released. * * Return: zero on success, negative error code otherwise: * E2BIG: Request is too large. * EINVAL: Invalid request to modify. */ int hwrm_req_replace(struct bnxt *bp, void *req, void *new_req, u32 len) { struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); struct input *internal_req = req; u16 req_type; if (!ctx) return -EINVAL; if (len > BNXT_HWRM_CTX_OFFSET) return -E2BIG; /* free any existing slices */ ctx->allocated = BNXT_HWRM_DMA_SIZE - BNXT_HWRM_CTX_OFFSET; if (ctx->slice_addr) { dma_free_coherent(&bp->pdev->dev, ctx->slice_size, ctx->slice_addr, ctx->slice_handle); ctx->slice_addr = NULL; } ctx->gfp = GFP_KERNEL; if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || len > BNXT_HWRM_MAX_REQ_LEN) { memcpy(internal_req, new_req, len); } else { internal_req->req_type = ((struct input *)new_req)->req_type; ctx->req = new_req; } ctx->req_len = len; ctx->req->resp_addr = cpu_to_le64(ctx->dma_handle + BNXT_HWRM_RESP_OFFSET); /* update sentinel for potentially new request type */ req_type = le16_to_cpu(internal_req->req_type); ctx->sentinel = hwrm_calc_sentinel(ctx, req_type); return 0; } /** * hwrm_req_flags() - Set non internal flags of the ctx * @bp: The driver context. * @req: The request containing the HWRM command * @flags: ctx flags that don't have BNXT_HWRM_INTERNAL_FLAG set * * ctx flags can be used by the callers to instruct how the subsequent * hwrm_req_send() should behave. Example: callers can use hwrm_req_flags * with BNXT_HWRM_CTX_SILENT to omit kernel prints of errors of hwrm_req_send() * or with BNXT_HWRM_FULL_WAIT enforce hwrm_req_send() to wait for full timeout * even if FW is not responding. * This generic function can be used to set any flag that is not an internal flag * of the HWRM module. */ void hwrm_req_flags(struct bnxt *bp, void *req, enum bnxt_hwrm_ctx_flags flags) { struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); if (ctx) ctx->flags |= (flags & HWRM_API_FLAGS); } /** * hwrm_req_hold() - Claim ownership of the request's resources. * @bp: The driver context. * @req: A pointer to the request to own. The request will no longer be * consumed by calls to hwrm_req_send(). * * Take ownership of the request. Ownership places responsibility on the * caller to free the resources associated with the request via a call to * hwrm_req_drop(). The caller taking ownership implies that a subsequent * call to hwrm_req_send() will not consume the request (ie. sending will * not free the associated resources if the request is owned by the caller). * Taking ownership returns a reference to the response. Retaining and * accessing the response data is the most common reason to take ownership * of the request. Ownership can also be acquired in order to reuse the same * request object across multiple invocations of hwrm_req_send(). * * Return: A pointer to the response object. * * The resources associated with the response will remain available to the * caller until ownership of the request is relinquished via a call to * hwrm_req_drop(). It is not possible for hwrm_req_hold() to return NULL if * a valid request is provided. A returned NULL value would imply a driver * bug and the implementation will complain loudly in the logs to aid in * detection. It should not be necessary to check the result for NULL. */ void *hwrm_req_hold(struct bnxt *bp, void *req) { struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); struct input *input = (struct input *)req; if (!ctx) return NULL; if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED) { /* can only be due to software bug, be loud */ netdev_err(bp->dev, "HWRM context already owned, req_type = %u\n", (u32)le16_to_cpu(input->req_type)); dump_stack(); return NULL; } ctx->flags |= BNXT_HWRM_INTERNAL_CTX_OWNED; return ((u8 *)req) + BNXT_HWRM_RESP_OFFSET; } static void __hwrm_ctx_drop(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx) { void *addr = ((u8 *)ctx) - BNXT_HWRM_CTX_OFFSET; dma_addr_t dma_handle = ctx->dma_handle; /* save before invalidate */ /* unmap any auxiliary DMA slice */ if (ctx->slice_addr) dma_free_coherent(&bp->pdev->dev, ctx->slice_size, ctx->slice_addr, ctx->slice_handle); /* invalidate, ensure ownership, sentinel and dma_handle are cleared */ memset(ctx, 0, sizeof(struct bnxt_hwrm_ctx)); /* return the buffer to the DMA pool */ if (dma_handle) dma_pool_free(bp->hwrm_dma_pool, addr, dma_handle); } /** * hwrm_req_drop() - Release all resources associated with the request. * @bp: The driver context. * @req: The request to consume, releasing the associated resources. The * request object, any slices, and its associated response are no * longer valid. * * It is legal to call hwrm_req_drop() on an unowned request, provided it * has not already been consumed by hwrm_req_send() (for example, to release * an aborted request). A given request should not be dropped more than once, * nor should it be dropped after having been consumed by hwrm_req_send(). To * do so is an error (the context will not be found and a stack trace will be * rendered in the kernel log). */ void hwrm_req_drop(struct bnxt *bp, void *req) { struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); if (ctx) __hwrm_ctx_drop(bp, ctx); } static int __hwrm_to_stderr(u32 hwrm_err) { switch (hwrm_err) { case HWRM_ERR_CODE_SUCCESS: return 0; case HWRM_ERR_CODE_RESOURCE_LOCKED: return -EROFS; case HWRM_ERR_CODE_RESOURCE_ACCESS_DENIED: return -EACCES; case HWRM_ERR_CODE_RESOURCE_ALLOC_ERROR: return -ENOSPC; case HWRM_ERR_CODE_INVALID_PARAMS: case HWRM_ERR_CODE_INVALID_FLAGS: case HWRM_ERR_CODE_INVALID_ENABLES: case HWRM_ERR_CODE_UNSUPPORTED_TLV: case HWRM_ERR_CODE_UNSUPPORTED_OPTION_ERR: return -EINVAL; case HWRM_ERR_CODE_NO_BUFFER: return -ENOMEM; case HWRM_ERR_CODE_HOT_RESET_PROGRESS: case HWRM_ERR_CODE_BUSY: return -EAGAIN; case HWRM_ERR_CODE_CMD_NOT_SUPPORTED: return -EOPNOTSUPP; case HWRM_ERR_CODE_PF_UNAVAILABLE: return -ENODEV; default: return -EIO; } } static struct bnxt_hwrm_wait_token * __hwrm_acquire_token(struct bnxt *bp, enum bnxt_hwrm_chnl dst) { struct bnxt_hwrm_wait_token *token; token = kzalloc(sizeof(*token), GFP_KERNEL); if (!token) return NULL; mutex_lock(&bp->hwrm_cmd_lock); token->dst = dst; token->state = BNXT_HWRM_PENDING; if (dst == BNXT_HWRM_CHNL_CHIMP) { token->seq_id = bp->hwrm_cmd_seq++; hlist_add_head_rcu(&token->node, &bp->hwrm_pending_list); } else { token->seq_id = bp->hwrm_cmd_kong_seq++; } return token; } static void __hwrm_release_token(struct bnxt *bp, struct bnxt_hwrm_wait_token *token) { if (token->dst == BNXT_HWRM_CHNL_CHIMP) { hlist_del_rcu(&token->node); kfree_rcu(token, rcu); } else { kfree(token); } mutex_unlock(&bp->hwrm_cmd_lock); } void hwrm_update_token(struct bnxt *bp, u16 seq_id, enum bnxt_hwrm_wait_state state) { struct bnxt_hwrm_wait_token *token; rcu_read_lock(); hlist_for_each_entry_rcu(token, &bp->hwrm_pending_list, node) { if (token->seq_id == seq_id) { WRITE_ONCE(token->state, state); rcu_read_unlock(); return; } } rcu_read_unlock(); netdev_err(bp->dev, "Invalid hwrm seq id %d\n", seq_id); } static void hwrm_req_dbg(struct bnxt *bp, struct input *req) { u32 ring = le16_to_cpu(req->cmpl_ring); u32 type = le16_to_cpu(req->req_type); u32 tgt = le16_to_cpu(req->target_id); u32 seq = le16_to_cpu(req->seq_id); char opt[32] = "\n"; if (unlikely(ring != (u16)BNXT_HWRM_NO_CMPL_RING)) snprintf(opt, 16, " ring %d\n", ring); if (unlikely(tgt != BNXT_HWRM_TARGET)) snprintf(opt + strlen(opt) - 1, 16, " tgt 0x%x\n", tgt); netdev_dbg(bp->dev, "sent hwrm req_type 0x%x seq id 0x%x%s", type, seq, opt); } #define hwrm_err(bp, ctx, fmt, ...) \ do { \ if ((ctx)->flags & BNXT_HWRM_CTX_SILENT) \ netdev_dbg((bp)->dev, fmt, __VA_ARGS__); \ else \ netdev_err((bp)->dev, fmt, __VA_ARGS__); \ } while (0) static bool hwrm_wait_must_abort(struct bnxt *bp, u32 req_type, u32 *fw_status) { if (req_type == HWRM_VER_GET) return false; if (!bp->fw_health || !bp->fw_health->status_reliable) return false; *fw_status = bnxt_fw_health_readl(bp, BNXT_FW_HEALTH_REG); return *fw_status && !BNXT_FW_IS_HEALTHY(*fw_status); } static int __hwrm_send(struct bnxt *bp, struct bnxt_hwrm_ctx *ctx) { u32 doorbell_offset = BNXT_GRCPF_REG_CHIMP_COMM_TRIGGER; enum bnxt_hwrm_chnl dst = BNXT_HWRM_CHNL_CHIMP; u32 bar_offset = BNXT_GRCPF_REG_CHIMP_COMM; struct bnxt_hwrm_wait_token *token = NULL; struct hwrm_short_input short_input = {0}; u16 max_req_len = BNXT_HWRM_MAX_REQ_LEN; unsigned int i, timeout, tmo_count; u32 *data = (u32 *)ctx->req; u32 msg_len = ctx->req_len; u32 req_type, sts; int rc = -EBUSY; u16 len = 0; u8 *valid; if (ctx->flags & BNXT_HWRM_INTERNAL_RESP_DIRTY) memset(ctx->resp, 0, PAGE_SIZE); req_type = le16_to_cpu(ctx->req->req_type); if (BNXT_NO_FW_ACCESS(bp) && (req_type != HWRM_FUNC_RESET && req_type != HWRM_VER_GET)) { netdev_dbg(bp->dev, "hwrm req_type 0x%x skipped, FW channel down\n", req_type); goto exit; } if (msg_len > BNXT_HWRM_MAX_REQ_LEN && msg_len > bp->hwrm_max_ext_req_len) { netdev_warn(bp->dev, "oversized hwrm request, req_type 0x%x", req_type); rc = -E2BIG; goto exit; } if (bnxt_kong_hwrm_message(bp, ctx->req)) { dst = BNXT_HWRM_CHNL_KONG; bar_offset = BNXT_GRCPF_REG_KONG_COMM; doorbell_offset = BNXT_GRCPF_REG_KONG_COMM_TRIGGER; if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) { netdev_err(bp->dev, "Ring completions not supported for KONG commands, req_type = %d\n", req_type); rc = -EINVAL; goto exit; } } token = __hwrm_acquire_token(bp, dst); if (!token) { rc = -ENOMEM; goto exit; } ctx->req->seq_id = cpu_to_le16(token->seq_id); if ((bp->fw_cap & BNXT_FW_CAP_SHORT_CMD) || msg_len > BNXT_HWRM_MAX_REQ_LEN) { short_input.req_type = ctx->req->req_type; short_input.signature = cpu_to_le16(SHORT_REQ_SIGNATURE_SHORT_CMD); short_input.size = cpu_to_le16(msg_len); short_input.req_addr = cpu_to_le64(ctx->dma_handle); data = (u32 *)&short_input; msg_len = sizeof(short_input); max_req_len = BNXT_HWRM_SHORT_REQ_LEN; } /* Ensure any associated DMA buffers are written before doorbell */ wmb(); /* Write request msg to hwrm channel */ __iowrite32_copy(bp->bar0 + bar_offset, data, msg_len / 4); for (i = msg_len; i < max_req_len; i += 4) writel(0, bp->bar0 + bar_offset + i); /* Ring channel doorbell */ writel(1, bp->bar0 + doorbell_offset); hwrm_req_dbg(bp, ctx->req); if (!pci_is_enabled(bp->pdev)) { rc = -ENODEV; goto exit; } /* Limit timeout to an upper limit */ timeout = min(ctx->timeout, bp->hwrm_cmd_max_timeout ?: HWRM_CMD_MAX_TIMEOUT); /* convert timeout to usec */ timeout *= 1000; i = 0; /* Short timeout for the first few iterations: * number of loops = number of loops for short timeout + * number of loops for standard timeout. */ tmo_count = HWRM_SHORT_TIMEOUT_COUNTER; timeout = timeout - HWRM_SHORT_MIN_TIMEOUT * HWRM_SHORT_TIMEOUT_COUNTER; tmo_count += DIV_ROUND_UP(timeout, HWRM_MIN_TIMEOUT); if (le16_to_cpu(ctx->req->cmpl_ring) != INVALID_HW_RING_ID) { /* Wait until hwrm response cmpl interrupt is processed */ while (READ_ONCE(token->state) < BNXT_HWRM_COMPLETE && i++ < tmo_count) { /* Abort the wait for completion if the FW health * check has failed. */ if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) goto exit; /* on first few passes, just barely sleep */ if (i < HWRM_SHORT_TIMEOUT_COUNTER) { usleep_range(HWRM_SHORT_MIN_TIMEOUT, HWRM_SHORT_MAX_TIMEOUT); } else { if (hwrm_wait_must_abort(bp, req_type, &sts)) { hwrm_err(bp, ctx, "Resp cmpl intr abandoning msg: 0x%x due to firmware status: 0x%x\n", req_type, sts); goto exit; } usleep_range(HWRM_MIN_TIMEOUT, HWRM_MAX_TIMEOUT); } } if (READ_ONCE(token->state) != BNXT_HWRM_COMPLETE) { hwrm_err(bp, ctx, "Resp cmpl intr err msg: 0x%x\n", req_type); goto exit; } len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len)); valid = ((u8 *)ctx->resp) + len - 1; } else { __le16 seen_out_of_seq = ctx->req->seq_id; /* will never see */ int j; /* Check if response len is updated */ for (i = 0; i < tmo_count; i++) { /* Abort the wait for completion if the FW health * check has failed. */ if (test_bit(BNXT_STATE_FW_FATAL_COND, &bp->state)) goto exit; if (token && READ_ONCE(token->state) == BNXT_HWRM_DEFERRED) { __hwrm_release_token(bp, token); token = NULL; } len = le16_to_cpu(READ_ONCE(ctx->resp->resp_len)); if (len) { __le16 resp_seq = READ_ONCE(ctx->resp->seq_id); if (resp_seq == ctx->req->seq_id) break; if (resp_seq != seen_out_of_seq) { netdev_warn(bp->dev, "Discarding out of seq response: 0x%x for msg {0x%x 0x%x}\n", le16_to_cpu(resp_seq), req_type, le16_to_cpu(ctx->req->seq_id)); seen_out_of_seq = resp_seq; } } /* on first few passes, just barely sleep */ if (i < HWRM_SHORT_TIMEOUT_COUNTER) { usleep_range(HWRM_SHORT_MIN_TIMEOUT, HWRM_SHORT_MAX_TIMEOUT); } else { if (hwrm_wait_must_abort(bp, req_type, &sts)) { hwrm_err(bp, ctx, "Abandoning msg {0x%x 0x%x} len: %d due to firmware status: 0x%x\n", req_type, le16_to_cpu(ctx->req->seq_id), len, sts); goto exit; } usleep_range(HWRM_MIN_TIMEOUT, HWRM_MAX_TIMEOUT); } } if (i >= tmo_count) { hwrm_err(bp, ctx, "Error (timeout: %u) msg {0x%x 0x%x} len:%d\n", hwrm_total_timeout(i), req_type, le16_to_cpu(ctx->req->seq_id), len); goto exit; } /* Last byte of resp contains valid bit */ valid = ((u8 *)ctx->resp) + len - 1; for (j = 0; j < HWRM_VALID_BIT_DELAY_USEC; ) { /* make sure we read from updated DMA memory */ dma_rmb(); if (*valid) break; if (j < 10) { udelay(1); j++; } else { usleep_range(20, 30); j += 20; } } if (j >= HWRM_VALID_BIT_DELAY_USEC) { hwrm_err(bp, ctx, "Error (timeout: %u) msg {0x%x 0x%x} len:%d v:%d\n", hwrm_total_timeout(i) + j, req_type, le16_to_cpu(ctx->req->seq_id), len, *valid); goto exit; } } /* Zero valid bit for compatibility. Valid bit in an older spec * may become a new field in a newer spec. We must make sure that * a new field not implemented by old spec will read zero. */ *valid = 0; rc = le16_to_cpu(ctx->resp->error_code); if (rc == HWRM_ERR_CODE_BUSY && !(ctx->flags & BNXT_HWRM_CTX_SILENT)) netdev_warn(bp->dev, "FW returned busy, hwrm req_type 0x%x\n", req_type); else if (rc && rc != HWRM_ERR_CODE_PF_UNAVAILABLE) hwrm_err(bp, ctx, "hwrm req_type 0x%x seq id 0x%x error 0x%x\n", req_type, le16_to_cpu(ctx->req->seq_id), rc); rc = __hwrm_to_stderr(rc); exit: if (token) __hwrm_release_token(bp, token); if (ctx->flags & BNXT_HWRM_INTERNAL_CTX_OWNED) ctx->flags |= BNXT_HWRM_INTERNAL_RESP_DIRTY; else __hwrm_ctx_drop(bp, ctx); return rc; } /** * hwrm_req_send() - Execute an HWRM command. * @bp: The driver context. * @req: A pointer to the request to send. The DMA resources associated with * the request will be released (ie. the request will be consumed) unless * ownership of the request has been assumed by the caller via a call to * hwrm_req_hold(). * * Send an HWRM request to the device and wait for a response. The request is * consumed if it is not owned by the caller. This function will block until * the request has either completed or times out due to an error. * * Return: A result code. * * The result is zero on success, otherwise the negative error code indicates * one of the following errors: * E2BIG: The request was too large. * EBUSY: The firmware is in a fatal state or the request timed out * EACCESS: HWRM access denied. * ENOSPC: HWRM resource allocation error. * EINVAL: Request parameters are invalid. * ENOMEM: HWRM has no buffers. * EAGAIN: HWRM busy or reset in progress. * EOPNOTSUPP: Invalid request type. * EIO: Any other error. * Error handling is orthogonal to request ownership. An unowned request will * still be consumed on error. If the caller owns the request, then the caller * is responsible for releasing the resources. Otherwise, hwrm_req_send() will * always consume the request. */ int hwrm_req_send(struct bnxt *bp, void *req) { struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); if (!ctx) return -EINVAL; return __hwrm_send(bp, ctx); } /** * hwrm_req_send_silent() - A silent version of hwrm_req_send(). * @bp: The driver context. * @req: The request to send without logging. * * The same as hwrm_req_send(), except that the request is silenced using * hwrm_req_silence() prior the call. This version of the function is * provided solely to preserve the legacy API’s flavor for this functionality. * * Return: A result code, see hwrm_req_send(). */ int hwrm_req_send_silent(struct bnxt *bp, void *req) { hwrm_req_flags(bp, req, BNXT_HWRM_CTX_SILENT); return hwrm_req_send(bp, req); } /** * hwrm_req_dma_slice() - Allocate a slice of DMA mapped memory. * @bp: The driver context. * @req: The request for which indirect data will be associated. * @size: The size of the allocation. * @dma_handle: The bus address associated with the allocation. The HWRM API has * no knowledge about the type of the request and so cannot infer how the * caller intends to use the indirect data. Thus, the caller is * responsible for configuring the request object appropriately to * point to the associated indirect memory. Note, DMA handle has the * same definition as it does in dma_alloc_coherent(), the caller is * responsible for endian conversions via cpu_to_le64() before assigning * this address. * * Allocates DMA mapped memory for indirect data related to a request. The * lifetime of the DMA resources will be bound to that of the request (ie. * they will be automatically released when the request is either consumed by * hwrm_req_send() or dropped by hwrm_req_drop()). Small allocations are * efficiently suballocated out of the request buffer space, hence the name * slice, while larger requests are satisfied via an underlying call to * dma_alloc_coherent(). Multiple suballocations are supported, however, only * one externally mapped region is. * * Return: The kernel virtual address of the DMA mapping. */ void * hwrm_req_dma_slice(struct bnxt *bp, void *req, u32 size, dma_addr_t *dma_handle) { struct bnxt_hwrm_ctx *ctx = __hwrm_ctx(bp, req); u8 *end = ((u8 *)req) + BNXT_HWRM_DMA_SIZE; struct input *input = req; u8 *addr, *req_addr = req; u32 max_offset, offset; if (!ctx) return NULL; max_offset = BNXT_HWRM_DMA_SIZE - ctx->allocated; offset = max_offset - size; offset = ALIGN_DOWN(offset, BNXT_HWRM_DMA_ALIGN); addr = req_addr + offset; if (addr < req_addr + max_offset && req_addr + ctx->req_len <= addr) { ctx->allocated = end - addr; *dma_handle = ctx->dma_handle + offset; return addr; } /* could not suballocate from ctx buffer, try create a new mapping */ if (ctx->slice_addr) { /* if one exists, can only be due to software bug, be loud */ netdev_err(bp->dev, "HWRM refusing to reallocate DMA slice, req_type = %u\n", (u32)le16_to_cpu(input->req_type)); dump_stack(); return NULL; } addr = dma_alloc_coherent(&bp->pdev->dev, size, dma_handle, ctx->gfp); if (!addr) return NULL; ctx->slice_addr = addr; ctx->slice_size = size; ctx->slice_handle = *dma_handle; return addr; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1