Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sunil Goutham | 6399 | 75.26% | 17 | 30.36% |
Vadim Lomovtsev | 825 | 9.70% | 6 | 10.71% |
David Daney | 454 | 5.34% | 5 | 8.93% |
Thanneeru Srinivasulu | 393 | 4.62% | 4 | 7.14% |
Tim Harvey | 250 | 2.94% | 2 | 3.57% |
Robert Richter | 103 | 1.21% | 3 | 5.36% |
Colin Ian King | 11 | 0.13% | 1 | 1.79% |
Julia Lawall | 9 | 0.11% | 1 | 1.79% |
Michael Zhivich | 8 | 0.09% | 1 | 1.79% |
Rafael J. Wysocki | 8 | 0.09% | 1 | 1.79% |
Heinrich Schuchardt | 6 | 0.07% | 1 | 1.79% |
Saurav Girepunje | 6 | 0.07% | 1 | 1.79% |
Andy Shevchenko | 5 | 0.06% | 1 | 1.79% |
Aleksey Makarov | 5 | 0.06% | 2 | 3.57% |
caihuoqing | 4 | 0.05% | 1 | 1.79% |
Jakub Kiciński | 4 | 0.05% | 1 | 1.79% |
George Cherian | 3 | 0.04% | 1 | 1.79% |
Yu Liao | 2 | 0.02% | 1 | 1.79% |
Thomas Gleixner | 2 | 0.02% | 1 | 1.79% |
Arnd Bergmann | 1 | 0.01% | 1 | 1.79% |
Tejun Heo | 1 | 0.01% | 1 | 1.79% |
Mian Yousaf Kaukab | 1 | 0.01% | 1 | 1.79% |
Radha Mohan Chintakuntla | 1 | 0.01% | 1 | 1.79% |
Michael Walle | 1 | 0.01% | 1 | 1.79% |
Total | 8502 | 56 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2015 Cavium, Inc. */ #include <linux/acpi.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/phy.h> #include <linux/of.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include "nic_reg.h" #include "nic.h" #include "thunder_bgx.h" #define DRV_NAME "thunder_bgx" #define DRV_VERSION "1.0" /* RX_DMAC_CTL configuration */ enum MCAST_MODE { MCAST_MODE_REJECT = 0x0, MCAST_MODE_ACCEPT = 0x1, MCAST_MODE_CAM_FILTER = 0x2, RSVD = 0x3 }; #define BCAST_ACCEPT BIT(0) #define CAM_ACCEPT BIT(3) #define MCAST_MODE_MASK 0x3 #define BGX_MCAST_MODE(x) (x << 1) struct dmac_map { u64 vf_map; u64 dmac; }; struct lmac { struct bgx *bgx; /* actual number of DMACs configured */ u8 dmacs_cfg; /* overal number of possible DMACs could be configured per LMAC */ u8 dmacs_count; struct dmac_map *dmacs; /* DMAC:VFs tracking filter array */ u8 mac[ETH_ALEN]; u8 lmac_type; u8 lane_to_sds; bool use_training; bool autoneg; bool link_up; int lmacid; /* ID within BGX */ int lmacid_bd; /* ID on board */ struct net_device netdev; struct phy_device *phydev; unsigned int last_duplex; unsigned int last_link; unsigned int last_speed; bool is_sgmii; struct delayed_work dwork; struct workqueue_struct *check_link; }; struct bgx { u8 bgx_id; struct lmac lmac[MAX_LMAC_PER_BGX]; u8 lmac_count; u8 max_lmac; u8 acpi_lmac_idx; void __iomem *reg_base; struct pci_dev *pdev; bool is_dlm; bool is_rgx; }; static struct bgx *bgx_vnic[MAX_BGX_THUNDER]; static int lmac_count; /* Total no of LMACs in system */ static int bgx_xaui_check_link(struct lmac *lmac); /* Supported devices */ static const struct pci_device_id bgx_id_table[] = { { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_BGX) }, { PCI_DEVICE(PCI_VENDOR_ID_CAVIUM, PCI_DEVICE_ID_THUNDER_RGX) }, { 0, } /* end of table */ }; MODULE_AUTHOR("Cavium Inc"); MODULE_DESCRIPTION("Cavium Thunder BGX/MAC Driver"); MODULE_LICENSE("GPL v2"); MODULE_VERSION(DRV_VERSION); MODULE_DEVICE_TABLE(pci, bgx_id_table); /* The Cavium ThunderX network controller can *only* be found in SoCs * containing the ThunderX ARM64 CPU implementation. All accesses to the device * registers on this platform are implicitly strongly ordered with respect * to memory accesses. So writeq_relaxed() and readq_relaxed() are safe to use * with no memory barriers in this driver. The readq()/writeq() functions add * explicit ordering operation which in this case are redundant, and only * add overhead. */ /* Register read/write APIs */ static u64 bgx_reg_read(struct bgx *bgx, u8 lmac, u64 offset) { void __iomem *addr = bgx->reg_base + ((u32)lmac << 20) + offset; return readq_relaxed(addr); } static void bgx_reg_write(struct bgx *bgx, u8 lmac, u64 offset, u64 val) { void __iomem *addr = bgx->reg_base + ((u32)lmac << 20) + offset; writeq_relaxed(val, addr); } static void bgx_reg_modify(struct bgx *bgx, u8 lmac, u64 offset, u64 val) { void __iomem *addr = bgx->reg_base + ((u32)lmac << 20) + offset; writeq_relaxed(val | readq_relaxed(addr), addr); } static int bgx_poll_reg(struct bgx *bgx, u8 lmac, u64 reg, u64 mask, bool zero) { int timeout = 100; u64 reg_val; while (timeout) { reg_val = bgx_reg_read(bgx, lmac, reg); if (zero && !(reg_val & mask)) return 0; if (!zero && (reg_val & mask)) return 0; usleep_range(1000, 2000); timeout--; } return 1; } static int max_bgx_per_node; static void set_max_bgx_per_node(struct pci_dev *pdev) { u16 sdevid; if (max_bgx_per_node) return; pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &sdevid); switch (sdevid) { case PCI_SUBSYS_DEVID_81XX_BGX: case PCI_SUBSYS_DEVID_81XX_RGX: max_bgx_per_node = MAX_BGX_PER_CN81XX; break; case PCI_SUBSYS_DEVID_83XX_BGX: max_bgx_per_node = MAX_BGX_PER_CN83XX; break; case PCI_SUBSYS_DEVID_88XX_BGX: default: max_bgx_per_node = MAX_BGX_PER_CN88XX; break; } } static struct bgx *get_bgx(int node, int bgx_idx) { int idx = (node * max_bgx_per_node) + bgx_idx; return bgx_vnic[idx]; } /* Return number of BGX present in HW */ unsigned bgx_get_map(int node) { int i; unsigned map = 0; for (i = 0; i < max_bgx_per_node; i++) { if (bgx_vnic[(node * max_bgx_per_node) + i]) map |= (1 << i); } return map; } EXPORT_SYMBOL(bgx_get_map); /* Return number of LMAC configured for this BGX */ int bgx_get_lmac_count(int node, int bgx_idx) { struct bgx *bgx; bgx = get_bgx(node, bgx_idx); if (bgx) return bgx->lmac_count; return 0; } EXPORT_SYMBOL(bgx_get_lmac_count); /* Returns the current link status of LMAC */ void bgx_get_lmac_link_state(int node, int bgx_idx, int lmacid, void *status) { struct bgx_link_status *link = (struct bgx_link_status *)status; struct bgx *bgx; struct lmac *lmac; bgx = get_bgx(node, bgx_idx); if (!bgx) return; lmac = &bgx->lmac[lmacid]; link->mac_type = lmac->lmac_type; link->link_up = lmac->link_up; link->duplex = lmac->last_duplex; link->speed = lmac->last_speed; } EXPORT_SYMBOL(bgx_get_lmac_link_state); const u8 *bgx_get_lmac_mac(int node, int bgx_idx, int lmacid) { struct bgx *bgx = get_bgx(node, bgx_idx); if (bgx) return bgx->lmac[lmacid].mac; return NULL; } EXPORT_SYMBOL(bgx_get_lmac_mac); void bgx_set_lmac_mac(int node, int bgx_idx, int lmacid, const u8 *mac) { struct bgx *bgx = get_bgx(node, bgx_idx); if (!bgx) return; ether_addr_copy(bgx->lmac[lmacid].mac, mac); } EXPORT_SYMBOL(bgx_set_lmac_mac); static void bgx_flush_dmac_cam_filter(struct bgx *bgx, int lmacid) { struct lmac *lmac = NULL; u8 idx = 0; lmac = &bgx->lmac[lmacid]; /* reset CAM filters */ for (idx = 0; idx < lmac->dmacs_count; idx++) bgx_reg_write(bgx, 0, BGX_CMR_RX_DMACX_CAM + ((lmacid * lmac->dmacs_count) + idx) * sizeof(u64), 0); } static void bgx_lmac_remove_filters(struct lmac *lmac, u8 vf_id) { int i = 0; if (!lmac) return; /* We've got reset filters request from some of attached VF, while the * others might want to keep their configuration. So in this case lets * iterate over all of configured filters and decrease number of * referencies. if some addresses get zero refs remove them from list */ for (i = lmac->dmacs_cfg - 1; i >= 0; i--) { lmac->dmacs[i].vf_map &= ~BIT_ULL(vf_id); if (!lmac->dmacs[i].vf_map) { lmac->dmacs_cfg--; lmac->dmacs[i].dmac = 0; lmac->dmacs[i].vf_map = 0; } } } static int bgx_lmac_save_filter(struct lmac *lmac, u64 dmac, u8 vf_id) { u8 i = 0; if (!lmac) return -1; /* At the same time we could have several VFs 'attached' to some * particular LMAC, and each VF is represented as network interface * for kernel. So from user perspective it should be possible to * manipulate with its' (VF) receive modes. However from PF * driver perspective we need to keep track of filter configurations * for different VFs to prevent filter values dupes */ for (i = 0; i < lmac->dmacs_cfg; i++) { if (lmac->dmacs[i].dmac == dmac) { lmac->dmacs[i].vf_map |= BIT_ULL(vf_id); return -1; } } if (!(lmac->dmacs_cfg < lmac->dmacs_count)) return -1; /* keep it for further tracking */ lmac->dmacs[lmac->dmacs_cfg].dmac = dmac; lmac->dmacs[lmac->dmacs_cfg].vf_map = BIT_ULL(vf_id); lmac->dmacs_cfg++; return 0; } static int bgx_set_dmac_cam_filter_mac(struct bgx *bgx, int lmacid, u64 cam_dmac, u8 idx) { struct lmac *lmac = NULL; u64 cfg = 0; /* skip zero addresses as meaningless */ if (!cam_dmac || !bgx) return -1; lmac = &bgx->lmac[lmacid]; /* configure DCAM filtering for designated LMAC */ cfg = RX_DMACX_CAM_LMACID(lmacid & LMAC_ID_MASK) | RX_DMACX_CAM_EN | cam_dmac; bgx_reg_write(bgx, 0, BGX_CMR_RX_DMACX_CAM + ((lmacid * lmac->dmacs_count) + idx) * sizeof(u64), cfg); return 0; } void bgx_set_dmac_cam_filter(int node, int bgx_idx, int lmacid, u64 cam_dmac, u8 vf_id) { struct bgx *bgx = get_bgx(node, bgx_idx); struct lmac *lmac = NULL; if (!bgx) return; lmac = &bgx->lmac[lmacid]; if (!cam_dmac) cam_dmac = ether_addr_to_u64(lmac->mac); /* since we might have several VFs attached to particular LMAC * and kernel could call mcast config for each of them with the * same MAC, check if requested MAC is already in filtering list and * updare/prepare list of MACs to be applied later to HW filters */ bgx_lmac_save_filter(lmac, cam_dmac, vf_id); } EXPORT_SYMBOL(bgx_set_dmac_cam_filter); void bgx_set_xcast_mode(int node, int bgx_idx, int lmacid, u8 mode) { struct bgx *bgx = get_bgx(node, bgx_idx); struct lmac *lmac = NULL; u64 cfg = 0; u8 i = 0; if (!bgx) return; lmac = &bgx->lmac[lmacid]; cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_RX_DMAC_CTL); if (mode & BGX_XCAST_BCAST_ACCEPT) cfg |= BCAST_ACCEPT; else cfg &= ~BCAST_ACCEPT; /* disable all MCASTs and DMAC filtering */ cfg &= ~(CAM_ACCEPT | BGX_MCAST_MODE(MCAST_MODE_MASK)); /* check requested bits and set filtergin mode appropriately */ if (mode & (BGX_XCAST_MCAST_ACCEPT)) { cfg |= (BGX_MCAST_MODE(MCAST_MODE_ACCEPT)); } else if (mode & BGX_XCAST_MCAST_FILTER) { cfg |= (BGX_MCAST_MODE(MCAST_MODE_CAM_FILTER) | CAM_ACCEPT); for (i = 0; i < lmac->dmacs_cfg; i++) bgx_set_dmac_cam_filter_mac(bgx, lmacid, lmac->dmacs[i].dmac, i); } bgx_reg_write(bgx, lmacid, BGX_CMRX_RX_DMAC_CTL, cfg); } EXPORT_SYMBOL(bgx_set_xcast_mode); void bgx_reset_xcast_mode(int node, int bgx_idx, int lmacid, u8 vf_id) { struct bgx *bgx = get_bgx(node, bgx_idx); if (!bgx) return; bgx_lmac_remove_filters(&bgx->lmac[lmacid], vf_id); bgx_flush_dmac_cam_filter(bgx, lmacid); bgx_set_xcast_mode(node, bgx_idx, lmacid, (BGX_XCAST_BCAST_ACCEPT | BGX_XCAST_MCAST_ACCEPT)); } EXPORT_SYMBOL(bgx_reset_xcast_mode); void bgx_lmac_rx_tx_enable(int node, int bgx_idx, int lmacid, bool enable) { struct bgx *bgx = get_bgx(node, bgx_idx); struct lmac *lmac; u64 cfg; if (!bgx) return; lmac = &bgx->lmac[lmacid]; cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG); if (enable) { cfg |= CMR_PKT_RX_EN | CMR_PKT_TX_EN; /* enable TX FIFO Underflow interrupt */ bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_TXX_INT_ENA_W1S, GMI_TXX_INT_UNDFLW); } else { cfg &= ~(CMR_PKT_RX_EN | CMR_PKT_TX_EN); /* Disable TX FIFO Underflow interrupt */ bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_TXX_INT_ENA_W1C, GMI_TXX_INT_UNDFLW); } bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cfg); if (bgx->is_rgx) xcv_setup_link(enable ? lmac->link_up : 0, lmac->last_speed); } EXPORT_SYMBOL(bgx_lmac_rx_tx_enable); /* Enables or disables timestamp insertion by BGX for Rx packets */ void bgx_config_timestamping(int node, int bgx_idx, int lmacid, bool enable) { struct bgx *bgx = get_bgx(node, bgx_idx); struct lmac *lmac; u64 csr_offset, cfg; if (!bgx) return; lmac = &bgx->lmac[lmacid]; if (lmac->lmac_type == BGX_MODE_SGMII || lmac->lmac_type == BGX_MODE_QSGMII || lmac->lmac_type == BGX_MODE_RGMII) csr_offset = BGX_GMP_GMI_RXX_FRM_CTL; else csr_offset = BGX_SMUX_RX_FRM_CTL; cfg = bgx_reg_read(bgx, lmacid, csr_offset); if (enable) cfg |= BGX_PKT_RX_PTP_EN; else cfg &= ~BGX_PKT_RX_PTP_EN; bgx_reg_write(bgx, lmacid, csr_offset, cfg); } EXPORT_SYMBOL(bgx_config_timestamping); void bgx_lmac_get_pfc(int node, int bgx_idx, int lmacid, void *pause) { struct pfc *pfc = (struct pfc *)pause; struct bgx *bgx = get_bgx(node, bgx_idx); struct lmac *lmac; u64 cfg; if (!bgx) return; lmac = &bgx->lmac[lmacid]; if (lmac->is_sgmii) return; cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_CBFC_CTL); pfc->fc_rx = cfg & RX_EN; pfc->fc_tx = cfg & TX_EN; pfc->autoneg = 0; } EXPORT_SYMBOL(bgx_lmac_get_pfc); void bgx_lmac_set_pfc(int node, int bgx_idx, int lmacid, void *pause) { struct pfc *pfc = (struct pfc *)pause; struct bgx *bgx = get_bgx(node, bgx_idx); struct lmac *lmac; u64 cfg; if (!bgx) return; lmac = &bgx->lmac[lmacid]; if (lmac->is_sgmii) return; cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_CBFC_CTL); cfg &= ~(RX_EN | TX_EN); cfg |= (pfc->fc_rx ? RX_EN : 0x00); cfg |= (pfc->fc_tx ? TX_EN : 0x00); bgx_reg_write(bgx, lmacid, BGX_SMUX_CBFC_CTL, cfg); } EXPORT_SYMBOL(bgx_lmac_set_pfc); static void bgx_sgmii_change_link_state(struct lmac *lmac) { struct bgx *bgx = lmac->bgx; u64 cmr_cfg; u64 port_cfg = 0; u64 misc_ctl = 0; bool tx_en, rx_en; cmr_cfg = bgx_reg_read(bgx, lmac->lmacid, BGX_CMRX_CFG); tx_en = cmr_cfg & CMR_PKT_TX_EN; rx_en = cmr_cfg & CMR_PKT_RX_EN; cmr_cfg &= ~(CMR_PKT_RX_EN | CMR_PKT_TX_EN); bgx_reg_write(bgx, lmac->lmacid, BGX_CMRX_CFG, cmr_cfg); /* Wait for BGX RX to be idle */ if (bgx_poll_reg(bgx, lmac->lmacid, BGX_GMP_GMI_PRTX_CFG, GMI_PORT_CFG_RX_IDLE, false)) { dev_err(&bgx->pdev->dev, "BGX%d LMAC%d GMI RX not idle\n", bgx->bgx_id, lmac->lmacid); return; } /* Wait for BGX TX to be idle */ if (bgx_poll_reg(bgx, lmac->lmacid, BGX_GMP_GMI_PRTX_CFG, GMI_PORT_CFG_TX_IDLE, false)) { dev_err(&bgx->pdev->dev, "BGX%d LMAC%d GMI TX not idle\n", bgx->bgx_id, lmac->lmacid); return; } port_cfg = bgx_reg_read(bgx, lmac->lmacid, BGX_GMP_GMI_PRTX_CFG); misc_ctl = bgx_reg_read(bgx, lmac->lmacid, BGX_GMP_PCS_MISCX_CTL); if (lmac->link_up) { misc_ctl &= ~PCS_MISC_CTL_GMX_ENO; port_cfg &= ~GMI_PORT_CFG_DUPLEX; port_cfg |= (lmac->last_duplex << 2); } else { misc_ctl |= PCS_MISC_CTL_GMX_ENO; } switch (lmac->last_speed) { case 10: port_cfg &= ~GMI_PORT_CFG_SPEED; /* speed 0 */ port_cfg |= GMI_PORT_CFG_SPEED_MSB; /* speed_msb 1 */ port_cfg &= ~GMI_PORT_CFG_SLOT_TIME; /* slottime 0 */ misc_ctl &= ~PCS_MISC_CTL_SAMP_PT_MASK; misc_ctl |= 50; /* samp_pt */ bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_SLOT, 64); bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_BURST, 0); break; case 100: port_cfg &= ~GMI_PORT_CFG_SPEED; /* speed 0 */ port_cfg &= ~GMI_PORT_CFG_SPEED_MSB; /* speed_msb 0 */ port_cfg &= ~GMI_PORT_CFG_SLOT_TIME; /* slottime 0 */ misc_ctl &= ~PCS_MISC_CTL_SAMP_PT_MASK; misc_ctl |= 5; /* samp_pt */ bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_SLOT, 64); bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_BURST, 0); break; case 1000: port_cfg |= GMI_PORT_CFG_SPEED; /* speed 1 */ port_cfg &= ~GMI_PORT_CFG_SPEED_MSB; /* speed_msb 0 */ port_cfg |= GMI_PORT_CFG_SLOT_TIME; /* slottime 1 */ misc_ctl &= ~PCS_MISC_CTL_SAMP_PT_MASK; misc_ctl |= 1; /* samp_pt */ bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_SLOT, 512); if (lmac->last_duplex) bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_BURST, 0); else bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_TXX_BURST, 8192); break; default: break; } bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_PCS_MISCX_CTL, misc_ctl); bgx_reg_write(bgx, lmac->lmacid, BGX_GMP_GMI_PRTX_CFG, port_cfg); /* Restore CMR config settings */ cmr_cfg |= (rx_en ? CMR_PKT_RX_EN : 0) | (tx_en ? CMR_PKT_TX_EN : 0); bgx_reg_write(bgx, lmac->lmacid, BGX_CMRX_CFG, cmr_cfg); if (bgx->is_rgx && (cmr_cfg & (CMR_PKT_RX_EN | CMR_PKT_TX_EN))) xcv_setup_link(lmac->link_up, lmac->last_speed); } static void bgx_lmac_handler(struct net_device *netdev) { struct lmac *lmac = container_of(netdev, struct lmac, netdev); struct phy_device *phydev; int link_changed = 0; phydev = lmac->phydev; if (!phydev->link && lmac->last_link) link_changed = -1; if (phydev->link && (lmac->last_duplex != phydev->duplex || lmac->last_link != phydev->link || lmac->last_speed != phydev->speed)) { link_changed = 1; } lmac->last_link = phydev->link; lmac->last_speed = phydev->speed; lmac->last_duplex = phydev->duplex; if (!link_changed) return; if (link_changed > 0) lmac->link_up = true; else lmac->link_up = false; if (lmac->is_sgmii) bgx_sgmii_change_link_state(lmac); else bgx_xaui_check_link(lmac); } u64 bgx_get_rx_stats(int node, int bgx_idx, int lmac, int idx) { struct bgx *bgx; bgx = get_bgx(node, bgx_idx); if (!bgx) return 0; if (idx > 8) lmac = 0; return bgx_reg_read(bgx, lmac, BGX_CMRX_RX_STAT0 + (idx * 8)); } EXPORT_SYMBOL(bgx_get_rx_stats); u64 bgx_get_tx_stats(int node, int bgx_idx, int lmac, int idx) { struct bgx *bgx; bgx = get_bgx(node, bgx_idx); if (!bgx) return 0; return bgx_reg_read(bgx, lmac, BGX_CMRX_TX_STAT0 + (idx * 8)); } EXPORT_SYMBOL(bgx_get_tx_stats); /* Configure BGX LMAC in internal loopback mode */ void bgx_lmac_internal_loopback(int node, int bgx_idx, int lmac_idx, bool enable) { struct bgx *bgx; struct lmac *lmac; u64 cfg; bgx = get_bgx(node, bgx_idx); if (!bgx) return; lmac = &bgx->lmac[lmac_idx]; if (lmac->is_sgmii) { cfg = bgx_reg_read(bgx, lmac_idx, BGX_GMP_PCS_MRX_CTL); if (enable) cfg |= PCS_MRX_CTL_LOOPBACK1; else cfg &= ~PCS_MRX_CTL_LOOPBACK1; bgx_reg_write(bgx, lmac_idx, BGX_GMP_PCS_MRX_CTL, cfg); } else { cfg = bgx_reg_read(bgx, lmac_idx, BGX_SPUX_CONTROL1); if (enable) cfg |= SPU_CTL_LOOPBACK; else cfg &= ~SPU_CTL_LOOPBACK; bgx_reg_write(bgx, lmac_idx, BGX_SPUX_CONTROL1, cfg); } } EXPORT_SYMBOL(bgx_lmac_internal_loopback); static int bgx_lmac_sgmii_init(struct bgx *bgx, struct lmac *lmac) { int lmacid = lmac->lmacid; u64 cfg; bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_TXX_THRESH, 0x30); /* max packet size */ bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_RXX_JABBER, MAX_FRAME_SIZE); /* Disable frame alignment if using preamble */ cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_GMI_TXX_APPEND); if (cfg & 1) bgx_reg_write(bgx, lmacid, BGX_GMP_GMI_TXX_SGMII_CTL, 0); /* Enable lmac */ bgx_reg_modify(bgx, lmacid, BGX_CMRX_CFG, CMR_EN); /* PCS reset */ bgx_reg_modify(bgx, lmacid, BGX_GMP_PCS_MRX_CTL, PCS_MRX_CTL_RESET); if (bgx_poll_reg(bgx, lmacid, BGX_GMP_PCS_MRX_CTL, PCS_MRX_CTL_RESET, true)) { dev_err(&bgx->pdev->dev, "BGX PCS reset not completed\n"); return -1; } /* power down, reset autoneg, autoneg enable */ cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_PCS_MRX_CTL); cfg &= ~PCS_MRX_CTL_PWR_DN; cfg |= PCS_MRX_CTL_RST_AN; if (lmac->phydev) { cfg |= PCS_MRX_CTL_AN_EN; } else { /* In scenarios where PHY driver is not present or it's a * non-standard PHY, FW sets AN_EN to inform Linux driver * to do auto-neg and link polling or not. */ if (cfg & PCS_MRX_CTL_AN_EN) lmac->autoneg = true; } bgx_reg_write(bgx, lmacid, BGX_GMP_PCS_MRX_CTL, cfg); if (lmac->lmac_type == BGX_MODE_QSGMII) { /* Disable disparity check for QSGMII */ cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_PCS_MISCX_CTL); cfg &= ~PCS_MISC_CTL_DISP_EN; bgx_reg_write(bgx, lmacid, BGX_GMP_PCS_MISCX_CTL, cfg); return 0; } if ((lmac->lmac_type == BGX_MODE_SGMII) && lmac->phydev) { if (bgx_poll_reg(bgx, lmacid, BGX_GMP_PCS_MRX_STATUS, PCS_MRX_STATUS_AN_CPT, false)) { dev_err(&bgx->pdev->dev, "BGX AN_CPT not completed\n"); return -1; } } return 0; } static int bgx_lmac_xaui_init(struct bgx *bgx, struct lmac *lmac) { u64 cfg; int lmacid = lmac->lmacid; /* Reset SPU */ bgx_reg_modify(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_RESET); if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_RESET, true)) { dev_err(&bgx->pdev->dev, "BGX SPU reset not completed\n"); return -1; } /* Disable LMAC */ cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG); cfg &= ~CMR_EN; bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cfg); bgx_reg_modify(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_LOW_POWER); /* Set interleaved running disparity for RXAUI */ if (lmac->lmac_type == BGX_MODE_RXAUI) bgx_reg_modify(bgx, lmacid, BGX_SPUX_MISC_CONTROL, SPU_MISC_CTL_INTLV_RDISP); /* Clear receive packet disable */ cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_MISC_CONTROL); cfg &= ~SPU_MISC_CTL_RX_DIS; bgx_reg_write(bgx, lmacid, BGX_SPUX_MISC_CONTROL, cfg); /* clear all interrupts */ cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_RX_INT); bgx_reg_write(bgx, lmacid, BGX_SMUX_RX_INT, cfg); cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_TX_INT); bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_INT, cfg); cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_INT); bgx_reg_write(bgx, lmacid, BGX_SPUX_INT, cfg); if (lmac->use_training) { bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_LP_CUP, 0x00); bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_LD_CUP, 0x00); bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_LD_REP, 0x00); /* training enable */ bgx_reg_modify(bgx, lmacid, BGX_SPUX_BR_PMD_CRTL, SPU_PMD_CRTL_TRAIN_EN); } /* Append FCS to each packet */ bgx_reg_modify(bgx, lmacid, BGX_SMUX_TX_APPEND, SMU_TX_APPEND_FCS_D); /* Disable forward error correction */ cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_FEC_CONTROL); cfg &= ~SPU_FEC_CTL_FEC_EN; bgx_reg_write(bgx, lmacid, BGX_SPUX_FEC_CONTROL, cfg); /* Disable autoneg */ cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_AN_CONTROL); cfg = cfg & ~(SPU_AN_CTL_AN_EN | SPU_AN_CTL_XNP_EN); bgx_reg_write(bgx, lmacid, BGX_SPUX_AN_CONTROL, cfg); cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_AN_ADV); if (lmac->lmac_type == BGX_MODE_10G_KR) cfg |= (1 << 23); else if (lmac->lmac_type == BGX_MODE_40G_KR) cfg |= (1 << 24); else cfg &= ~((1 << 23) | (1 << 24)); cfg = cfg & (~((1ULL << 25) | (1ULL << 22) | (1ULL << 12))); bgx_reg_write(bgx, lmacid, BGX_SPUX_AN_ADV, cfg); cfg = bgx_reg_read(bgx, 0, BGX_SPU_DBG_CONTROL); cfg &= ~SPU_DBG_CTL_AN_ARB_LINK_CHK_EN; bgx_reg_write(bgx, 0, BGX_SPU_DBG_CONTROL, cfg); /* Enable lmac */ bgx_reg_modify(bgx, lmacid, BGX_CMRX_CFG, CMR_EN); cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_CONTROL1); cfg &= ~SPU_CTL_LOW_POWER; bgx_reg_write(bgx, lmacid, BGX_SPUX_CONTROL1, cfg); cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_TX_CTL); cfg &= ~SMU_TX_CTL_UNI_EN; cfg |= SMU_TX_CTL_DIC_EN; bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_CTL, cfg); /* Enable receive and transmission of pause frames */ bgx_reg_write(bgx, lmacid, BGX_SMUX_CBFC_CTL, ((0xffffULL << 32) | BCK_EN | DRP_EN | TX_EN | RX_EN)); /* Configure pause time and interval */ bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_PAUSE_PKT_TIME, DEFAULT_PAUSE_TIME); cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_TX_PAUSE_PKT_INTERVAL); cfg &= ~0xFFFFull; bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_PAUSE_PKT_INTERVAL, cfg | (DEFAULT_PAUSE_TIME - 0x1000)); bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_PAUSE_ZERO, 0x01); /* take lmac_count into account */ bgx_reg_modify(bgx, lmacid, BGX_SMUX_TX_THRESH, (0x100 - 1)); /* max packet size */ bgx_reg_modify(bgx, lmacid, BGX_SMUX_RX_JABBER, MAX_FRAME_SIZE); return 0; } static int bgx_xaui_check_link(struct lmac *lmac) { struct bgx *bgx = lmac->bgx; int lmacid = lmac->lmacid; int lmac_type = lmac->lmac_type; u64 cfg; if (lmac->use_training) { cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_INT); if (!(cfg & (1ull << 13))) { cfg = (1ull << 13) | (1ull << 14); bgx_reg_write(bgx, lmacid, BGX_SPUX_INT, cfg); cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_BR_PMD_CRTL); cfg |= (1ull << 0); bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_CRTL, cfg); return -1; } } /* wait for PCS to come out of reset */ if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_RESET, true)) { dev_err(&bgx->pdev->dev, "BGX SPU reset not completed\n"); return -1; } if ((lmac_type == BGX_MODE_10G_KR) || (lmac_type == BGX_MODE_XFI) || (lmac_type == BGX_MODE_40G_KR) || (lmac_type == BGX_MODE_XLAUI)) { if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_BR_STATUS1, SPU_BR_STATUS_BLK_LOCK, false)) { dev_err(&bgx->pdev->dev, "SPU_BR_STATUS_BLK_LOCK not completed\n"); return -1; } } else { if (bgx_poll_reg(bgx, lmacid, BGX_SPUX_BX_STATUS, SPU_BX_STATUS_RX_ALIGN, false)) { dev_err(&bgx->pdev->dev, "SPU_BX_STATUS_RX_ALIGN not completed\n"); return -1; } } /* Clear rcvflt bit (latching high) and read it back */ if (bgx_reg_read(bgx, lmacid, BGX_SPUX_STATUS2) & SPU_STATUS2_RCVFLT) bgx_reg_modify(bgx, lmacid, BGX_SPUX_STATUS2, SPU_STATUS2_RCVFLT); if (bgx_reg_read(bgx, lmacid, BGX_SPUX_STATUS2) & SPU_STATUS2_RCVFLT) { dev_err(&bgx->pdev->dev, "Receive fault, retry training\n"); if (lmac->use_training) { cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_INT); if (!(cfg & (1ull << 13))) { cfg = (1ull << 13) | (1ull << 14); bgx_reg_write(bgx, lmacid, BGX_SPUX_INT, cfg); cfg = bgx_reg_read(bgx, lmacid, BGX_SPUX_BR_PMD_CRTL); cfg |= (1ull << 0); bgx_reg_write(bgx, lmacid, BGX_SPUX_BR_PMD_CRTL, cfg); return -1; } } return -1; } /* Wait for BGX RX to be idle */ if (bgx_poll_reg(bgx, lmacid, BGX_SMUX_CTL, SMU_CTL_RX_IDLE, false)) { dev_err(&bgx->pdev->dev, "SMU RX not idle\n"); return -1; } /* Wait for BGX TX to be idle */ if (bgx_poll_reg(bgx, lmacid, BGX_SMUX_CTL, SMU_CTL_TX_IDLE, false)) { dev_err(&bgx->pdev->dev, "SMU TX not idle\n"); return -1; } /* Check for MAC RX faults */ cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_RX_CTL); /* 0 - Link is okay, 1 - Local fault, 2 - Remote fault */ cfg &= SMU_RX_CTL_STATUS; if (!cfg) return 0; /* Rx local/remote fault seen. * Do lmac reinit to see if condition recovers */ bgx_lmac_xaui_init(bgx, lmac); return -1; } static void bgx_poll_for_sgmii_link(struct lmac *lmac) { u64 pcs_link, an_result; u8 speed; pcs_link = bgx_reg_read(lmac->bgx, lmac->lmacid, BGX_GMP_PCS_MRX_STATUS); /*Link state bit is sticky, read it again*/ if (!(pcs_link & PCS_MRX_STATUS_LINK)) pcs_link = bgx_reg_read(lmac->bgx, lmac->lmacid, BGX_GMP_PCS_MRX_STATUS); if (bgx_poll_reg(lmac->bgx, lmac->lmacid, BGX_GMP_PCS_MRX_STATUS, PCS_MRX_STATUS_AN_CPT, false)) { lmac->link_up = false; lmac->last_speed = SPEED_UNKNOWN; lmac->last_duplex = DUPLEX_UNKNOWN; goto next_poll; } lmac->link_up = ((pcs_link & PCS_MRX_STATUS_LINK) != 0) ? true : false; an_result = bgx_reg_read(lmac->bgx, lmac->lmacid, BGX_GMP_PCS_ANX_AN_RESULTS); speed = (an_result >> 3) & 0x3; lmac->last_duplex = (an_result >> 1) & 0x1; switch (speed) { case 0: lmac->last_speed = SPEED_10; break; case 1: lmac->last_speed = SPEED_100; break; case 2: lmac->last_speed = SPEED_1000; break; default: lmac->link_up = false; lmac->last_speed = SPEED_UNKNOWN; lmac->last_duplex = DUPLEX_UNKNOWN; break; } next_poll: if (lmac->last_link != lmac->link_up) { if (lmac->link_up) bgx_sgmii_change_link_state(lmac); lmac->last_link = lmac->link_up; } queue_delayed_work(lmac->check_link, &lmac->dwork, HZ * 3); } static void bgx_poll_for_link(struct work_struct *work) { struct lmac *lmac; u64 spu_link, smu_link; lmac = container_of(work, struct lmac, dwork.work); if (lmac->is_sgmii) { bgx_poll_for_sgmii_link(lmac); return; } /* Receive link is latching low. Force it high and verify it */ bgx_reg_modify(lmac->bgx, lmac->lmacid, BGX_SPUX_STATUS1, SPU_STATUS1_RCV_LNK); bgx_poll_reg(lmac->bgx, lmac->lmacid, BGX_SPUX_STATUS1, SPU_STATUS1_RCV_LNK, false); spu_link = bgx_reg_read(lmac->bgx, lmac->lmacid, BGX_SPUX_STATUS1); smu_link = bgx_reg_read(lmac->bgx, lmac->lmacid, BGX_SMUX_RX_CTL); if ((spu_link & SPU_STATUS1_RCV_LNK) && !(smu_link & SMU_RX_CTL_STATUS)) { lmac->link_up = true; if (lmac->lmac_type == BGX_MODE_XLAUI) lmac->last_speed = SPEED_40000; else lmac->last_speed = SPEED_10000; lmac->last_duplex = DUPLEX_FULL; } else { lmac->link_up = false; lmac->last_speed = SPEED_UNKNOWN; lmac->last_duplex = DUPLEX_UNKNOWN; } if (lmac->last_link != lmac->link_up) { if (lmac->link_up) { if (bgx_xaui_check_link(lmac)) { /* Errors, clear link_up state */ lmac->link_up = false; lmac->last_speed = SPEED_UNKNOWN; lmac->last_duplex = DUPLEX_UNKNOWN; } } lmac->last_link = lmac->link_up; } queue_delayed_work(lmac->check_link, &lmac->dwork, HZ * 2); } static int phy_interface_mode(u8 lmac_type) { if (lmac_type == BGX_MODE_QSGMII) return PHY_INTERFACE_MODE_QSGMII; if (lmac_type == BGX_MODE_RGMII) return PHY_INTERFACE_MODE_RGMII_RXID; return PHY_INTERFACE_MODE_SGMII; } static int bgx_lmac_enable(struct bgx *bgx, u8 lmacid) { struct lmac *lmac; u64 cfg; lmac = &bgx->lmac[lmacid]; lmac->bgx = bgx; if ((lmac->lmac_type == BGX_MODE_SGMII) || (lmac->lmac_type == BGX_MODE_QSGMII) || (lmac->lmac_type == BGX_MODE_RGMII)) { lmac->is_sgmii = true; if (bgx_lmac_sgmii_init(bgx, lmac)) return -1; } else { lmac->is_sgmii = false; if (bgx_lmac_xaui_init(bgx, lmac)) return -1; } if (lmac->is_sgmii) { cfg = bgx_reg_read(bgx, lmacid, BGX_GMP_GMI_TXX_APPEND); cfg |= ((1ull << 2) | (1ull << 1)); /* FCS and PAD */ bgx_reg_modify(bgx, lmacid, BGX_GMP_GMI_TXX_APPEND, cfg); bgx_reg_write(bgx, lmacid, BGX_GMP_GMI_TXX_MIN_PKT, 60 - 1); } else { cfg = bgx_reg_read(bgx, lmacid, BGX_SMUX_TX_APPEND); cfg |= ((1ull << 2) | (1ull << 1)); /* FCS and PAD */ bgx_reg_modify(bgx, lmacid, BGX_SMUX_TX_APPEND, cfg); bgx_reg_write(bgx, lmacid, BGX_SMUX_TX_MIN_PKT, 60 + 4); } /* actual number of filters available to exact LMAC */ lmac->dmacs_count = (RX_DMAC_COUNT / bgx->lmac_count); lmac->dmacs = kcalloc(lmac->dmacs_count, sizeof(*lmac->dmacs), GFP_KERNEL); if (!lmac->dmacs) return -ENOMEM; /* Enable lmac */ bgx_reg_modify(bgx, lmacid, BGX_CMRX_CFG, CMR_EN); /* Restore default cfg, incase low level firmware changed it */ bgx_reg_write(bgx, lmacid, BGX_CMRX_RX_DMAC_CTL, 0x03); if ((lmac->lmac_type != BGX_MODE_XFI) && (lmac->lmac_type != BGX_MODE_XLAUI) && (lmac->lmac_type != BGX_MODE_40G_KR) && (lmac->lmac_type != BGX_MODE_10G_KR)) { if (!lmac->phydev) { if (lmac->autoneg) { bgx_reg_write(bgx, lmacid, BGX_GMP_PCS_LINKX_TIMER, PCS_LINKX_TIMER_COUNT); goto poll; } else { /* Default to below link speed and duplex */ lmac->link_up = true; lmac->last_speed = SPEED_1000; lmac->last_duplex = DUPLEX_FULL; bgx_sgmii_change_link_state(lmac); return 0; } } lmac->phydev->dev_flags = 0; if (phy_connect_direct(&lmac->netdev, lmac->phydev, bgx_lmac_handler, phy_interface_mode(lmac->lmac_type))) return -ENODEV; phy_start(lmac->phydev); return 0; } poll: lmac->check_link = alloc_ordered_workqueue("check_link", WQ_MEM_RECLAIM); if (!lmac->check_link) return -ENOMEM; INIT_DELAYED_WORK(&lmac->dwork, bgx_poll_for_link); queue_delayed_work(lmac->check_link, &lmac->dwork, 0); return 0; } static void bgx_lmac_disable(struct bgx *bgx, u8 lmacid) { struct lmac *lmac; u64 cfg; lmac = &bgx->lmac[lmacid]; if (lmac->check_link) { /* Destroy work queue */ cancel_delayed_work_sync(&lmac->dwork); destroy_workqueue(lmac->check_link); } /* Disable packet reception */ cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG); cfg &= ~CMR_PKT_RX_EN; bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cfg); /* Give chance for Rx/Tx FIFO to get drained */ bgx_poll_reg(bgx, lmacid, BGX_CMRX_RX_FIFO_LEN, (u64)0x1FFF, true); bgx_poll_reg(bgx, lmacid, BGX_CMRX_TX_FIFO_LEN, (u64)0x3FFF, true); /* Disable packet transmission */ cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG); cfg &= ~CMR_PKT_TX_EN; bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cfg); /* Disable serdes lanes */ if (!lmac->is_sgmii) bgx_reg_modify(bgx, lmacid, BGX_SPUX_CONTROL1, SPU_CTL_LOW_POWER); else bgx_reg_modify(bgx, lmacid, BGX_GMP_PCS_MRX_CTL, PCS_MRX_CTL_PWR_DN); /* Disable LMAC */ cfg = bgx_reg_read(bgx, lmacid, BGX_CMRX_CFG); cfg &= ~CMR_EN; bgx_reg_write(bgx, lmacid, BGX_CMRX_CFG, cfg); bgx_flush_dmac_cam_filter(bgx, lmacid); kfree(lmac->dmacs); if ((lmac->lmac_type != BGX_MODE_XFI) && (lmac->lmac_type != BGX_MODE_XLAUI) && (lmac->lmac_type != BGX_MODE_40G_KR) && (lmac->lmac_type != BGX_MODE_10G_KR) && lmac->phydev) phy_disconnect(lmac->phydev); lmac->phydev = NULL; } static void bgx_init_hw(struct bgx *bgx) { int i; struct lmac *lmac; bgx_reg_modify(bgx, 0, BGX_CMR_GLOBAL_CFG, CMR_GLOBAL_CFG_FCS_STRIP); if (bgx_reg_read(bgx, 0, BGX_CMR_BIST_STATUS)) dev_err(&bgx->pdev->dev, "BGX%d BIST failed\n", bgx->bgx_id); /* Set lmac type and lane2serdes mapping */ for (i = 0; i < bgx->lmac_count; i++) { lmac = &bgx->lmac[i]; bgx_reg_write(bgx, i, BGX_CMRX_CFG, (lmac->lmac_type << 8) | lmac->lane_to_sds); bgx->lmac[i].lmacid_bd = lmac_count; lmac_count++; } bgx_reg_write(bgx, 0, BGX_CMR_TX_LMACS, bgx->lmac_count); bgx_reg_write(bgx, 0, BGX_CMR_RX_LMACS, bgx->lmac_count); /* Set the backpressure AND mask */ for (i = 0; i < bgx->lmac_count; i++) bgx_reg_modify(bgx, 0, BGX_CMR_CHAN_MSK_AND, ((1ULL << MAX_BGX_CHANS_PER_LMAC) - 1) << (i * MAX_BGX_CHANS_PER_LMAC)); /* Disable all MAC filtering */ for (i = 0; i < RX_DMAC_COUNT; i++) bgx_reg_write(bgx, 0, BGX_CMR_RX_DMACX_CAM + (i * 8), 0x00); /* Disable MAC steering (NCSI traffic) */ for (i = 0; i < RX_TRAFFIC_STEER_RULE_COUNT; i++) bgx_reg_write(bgx, 0, BGX_CMR_RX_STEERING + (i * 8), 0x00); } static u8 bgx_get_lane2sds_cfg(struct bgx *bgx, struct lmac *lmac) { return (u8)(bgx_reg_read(bgx, lmac->lmacid, BGX_CMRX_CFG) & 0xFF); } static void bgx_print_qlm_mode(struct bgx *bgx, u8 lmacid) { struct device *dev = &bgx->pdev->dev; struct lmac *lmac; char str[27]; if (!bgx->is_dlm && lmacid) return; lmac = &bgx->lmac[lmacid]; if (!bgx->is_dlm) sprintf(str, "BGX%d QLM mode", bgx->bgx_id); else sprintf(str, "BGX%d LMAC%d mode", bgx->bgx_id, lmacid); switch (lmac->lmac_type) { case BGX_MODE_SGMII: dev_info(dev, "%s: SGMII\n", (char *)str); break; case BGX_MODE_XAUI: dev_info(dev, "%s: XAUI\n", (char *)str); break; case BGX_MODE_RXAUI: dev_info(dev, "%s: RXAUI\n", (char *)str); break; case BGX_MODE_XFI: if (!lmac->use_training) dev_info(dev, "%s: XFI\n", (char *)str); else dev_info(dev, "%s: 10G_KR\n", (char *)str); break; case BGX_MODE_XLAUI: if (!lmac->use_training) dev_info(dev, "%s: XLAUI\n", (char *)str); else dev_info(dev, "%s: 40G_KR4\n", (char *)str); break; case BGX_MODE_QSGMII: dev_info(dev, "%s: QSGMII\n", (char *)str); break; case BGX_MODE_RGMII: dev_info(dev, "%s: RGMII\n", (char *)str); break; case BGX_MODE_INVALID: /* Nothing to do */ break; } } static void lmac_set_lane2sds(struct bgx *bgx, struct lmac *lmac) { switch (lmac->lmac_type) { case BGX_MODE_SGMII: case BGX_MODE_XFI: lmac->lane_to_sds = lmac->lmacid; break; case BGX_MODE_XAUI: case BGX_MODE_XLAUI: case BGX_MODE_RGMII: lmac->lane_to_sds = 0xE4; break; case BGX_MODE_RXAUI: lmac->lane_to_sds = (lmac->lmacid) ? 0xE : 0x4; break; case BGX_MODE_QSGMII: /* There is no way to determine if DLM0/2 is QSGMII or * DLM1/3 is configured to QSGMII as bootloader will * configure all LMACs, so take whatever is configured * by low level firmware. */ lmac->lane_to_sds = bgx_get_lane2sds_cfg(bgx, lmac); break; default: lmac->lane_to_sds = 0; break; } } static void lmac_set_training(struct bgx *bgx, struct lmac *lmac, int lmacid) { if ((lmac->lmac_type != BGX_MODE_10G_KR) && (lmac->lmac_type != BGX_MODE_40G_KR)) { lmac->use_training = false; return; } lmac->use_training = bgx_reg_read(bgx, lmacid, BGX_SPUX_BR_PMD_CRTL) & SPU_PMD_CRTL_TRAIN_EN; } static void bgx_set_lmac_config(struct bgx *bgx, u8 idx) { struct lmac *lmac; u64 cmr_cfg; u8 lmac_type; u8 lane_to_sds; lmac = &bgx->lmac[idx]; if (!bgx->is_dlm || bgx->is_rgx) { /* Read LMAC0 type to figure out QLM mode * This is configured by low level firmware */ cmr_cfg = bgx_reg_read(bgx, 0, BGX_CMRX_CFG); lmac->lmac_type = (cmr_cfg >> 8) & 0x07; if (bgx->is_rgx) lmac->lmac_type = BGX_MODE_RGMII; lmac_set_training(bgx, lmac, 0); lmac_set_lane2sds(bgx, lmac); return; } /* For DLMs or SLMs on 80/81/83xx so many lane configurations * are possible and vary across boards. Also Kernel doesn't have * any way to identify board type/info and since firmware does, * just take lmac type and serdes lane config as is. */ cmr_cfg = bgx_reg_read(bgx, idx, BGX_CMRX_CFG); lmac_type = (u8)((cmr_cfg >> 8) & 0x07); lane_to_sds = (u8)(cmr_cfg & 0xFF); /* Check if config is reset value */ if ((lmac_type == 0) && (lane_to_sds == 0xE4)) lmac->lmac_type = BGX_MODE_INVALID; else lmac->lmac_type = lmac_type; lmac->lane_to_sds = lane_to_sds; lmac_set_training(bgx, lmac, lmac->lmacid); } static void bgx_get_qlm_mode(struct bgx *bgx) { struct lmac *lmac; u8 idx; /* Init all LMAC's type to invalid */ for (idx = 0; idx < bgx->max_lmac; idx++) { lmac = &bgx->lmac[idx]; lmac->lmacid = idx; lmac->lmac_type = BGX_MODE_INVALID; lmac->use_training = false; } /* It is assumed that low level firmware sets this value */ bgx->lmac_count = bgx_reg_read(bgx, 0, BGX_CMR_RX_LMACS) & 0x7; if (bgx->lmac_count > bgx->max_lmac) bgx->lmac_count = bgx->max_lmac; for (idx = 0; idx < bgx->lmac_count; idx++) { bgx_set_lmac_config(bgx, idx); bgx_print_qlm_mode(bgx, idx); } } #ifdef CONFIG_ACPI static int acpi_get_mac_address(struct device *dev, struct acpi_device *adev, u8 *dst) { u8 mac[ETH_ALEN]; int ret; ret = fwnode_get_mac_address(acpi_fwnode_handle(adev), mac); if (ret) { dev_err(dev, "MAC address invalid: %pM\n", mac); return -EINVAL; } dev_info(dev, "MAC address set to: %pM\n", mac); ether_addr_copy(dst, mac); return 0; } /* Currently only sets the MAC address. */ static acpi_status bgx_acpi_register_phy(acpi_handle handle, u32 lvl, void *context, void **rv) { struct bgx *bgx = context; struct device *dev = &bgx->pdev->dev; struct acpi_device *adev; adev = acpi_fetch_acpi_dev(handle); if (!adev) goto out; acpi_get_mac_address(dev, adev, bgx->lmac[bgx->acpi_lmac_idx].mac); SET_NETDEV_DEV(&bgx->lmac[bgx->acpi_lmac_idx].netdev, dev); bgx->lmac[bgx->acpi_lmac_idx].lmacid = bgx->acpi_lmac_idx; bgx->acpi_lmac_idx++; /* move to next LMAC */ out: return AE_OK; } static acpi_status bgx_acpi_match_id(acpi_handle handle, u32 lvl, void *context, void **ret_val) { struct acpi_buffer string = { ACPI_ALLOCATE_BUFFER, NULL }; struct bgx *bgx = context; char bgx_sel[5]; snprintf(bgx_sel, 5, "BGX%d", bgx->bgx_id); if (ACPI_FAILURE(acpi_get_name(handle, ACPI_SINGLE_NAME, &string))) { pr_warn("Invalid link device\n"); return AE_OK; } if (strncmp(string.pointer, bgx_sel, 4)) { kfree(string.pointer); return AE_OK; } acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1, bgx_acpi_register_phy, NULL, bgx, NULL); kfree(string.pointer); return AE_CTRL_TERMINATE; } static int bgx_init_acpi_phy(struct bgx *bgx) { acpi_get_devices(NULL, bgx_acpi_match_id, bgx, (void **)NULL); return 0; } #else static int bgx_init_acpi_phy(struct bgx *bgx) { return -ENODEV; } #endif /* CONFIG_ACPI */ #if IS_ENABLED(CONFIG_OF_MDIO) static int bgx_init_of_phy(struct bgx *bgx) { struct fwnode_handle *fwn; struct device_node *node = NULL; u8 lmac = 0; device_for_each_child_node(&bgx->pdev->dev, fwn) { struct phy_device *pd; struct device_node *phy_np; /* Should always be an OF node. But if it is not, we * cannot handle it, so exit the loop. */ node = to_of_node(fwn); if (!node) break; of_get_mac_address(node, bgx->lmac[lmac].mac); SET_NETDEV_DEV(&bgx->lmac[lmac].netdev, &bgx->pdev->dev); bgx->lmac[lmac].lmacid = lmac; phy_np = of_parse_phandle(node, "phy-handle", 0); /* If there is no phy or defective firmware presents * this cortina phy, for which there is no driver * support, ignore it. */ if (phy_np && !of_device_is_compatible(phy_np, "cortina,cs4223-slice")) { /* Wait until the phy drivers are available */ pd = of_phy_find_device(phy_np); if (!pd) goto defer; bgx->lmac[lmac].phydev = pd; } lmac++; if (lmac == bgx->max_lmac) { of_node_put(node); break; } } return 0; defer: /* We are bailing out, try not to leak device reference counts * for phy devices we may have already found. */ while (lmac) { if (bgx->lmac[lmac].phydev) { put_device(&bgx->lmac[lmac].phydev->mdio.dev); bgx->lmac[lmac].phydev = NULL; } lmac--; } of_node_put(node); return -EPROBE_DEFER; } #else static int bgx_init_of_phy(struct bgx *bgx) { return -ENODEV; } #endif /* CONFIG_OF_MDIO */ static int bgx_init_phy(struct bgx *bgx) { if (!acpi_disabled) return bgx_init_acpi_phy(bgx); return bgx_init_of_phy(bgx); } static irqreturn_t bgx_intr_handler(int irq, void *data) { struct bgx *bgx = (struct bgx *)data; u64 status, val; int lmac; for (lmac = 0; lmac < bgx->lmac_count; lmac++) { status = bgx_reg_read(bgx, lmac, BGX_GMP_GMI_TXX_INT); if (status & GMI_TXX_INT_UNDFLW) { pci_err(bgx->pdev, "BGX%d lmac%d UNDFLW\n", bgx->bgx_id, lmac); val = bgx_reg_read(bgx, lmac, BGX_CMRX_CFG); val &= ~CMR_EN; bgx_reg_write(bgx, lmac, BGX_CMRX_CFG, val); val |= CMR_EN; bgx_reg_write(bgx, lmac, BGX_CMRX_CFG, val); } /* clear interrupts */ bgx_reg_write(bgx, lmac, BGX_GMP_GMI_TXX_INT, status); } return IRQ_HANDLED; } static void bgx_register_intr(struct pci_dev *pdev) { struct bgx *bgx = pci_get_drvdata(pdev); int ret; ret = pci_alloc_irq_vectors(pdev, BGX_LMAC_VEC_OFFSET, BGX_LMAC_VEC_OFFSET, PCI_IRQ_ALL_TYPES); if (ret < 0) { pci_err(pdev, "Req for #%d msix vectors failed\n", BGX_LMAC_VEC_OFFSET); return; } ret = pci_request_irq(pdev, GMPX_GMI_TX_INT, bgx_intr_handler, NULL, bgx, "BGX%d", bgx->bgx_id); if (ret) pci_free_irq(pdev, GMPX_GMI_TX_INT, bgx); } static int bgx_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int err; struct device *dev = &pdev->dev; struct bgx *bgx = NULL; u8 lmac; u16 sdevid; bgx = devm_kzalloc(dev, sizeof(*bgx), GFP_KERNEL); if (!bgx) return -ENOMEM; bgx->pdev = pdev; pci_set_drvdata(pdev, bgx); err = pcim_enable_device(pdev); if (err) { pci_set_drvdata(pdev, NULL); return dev_err_probe(dev, err, "Failed to enable PCI device\n"); } err = pci_request_regions(pdev, DRV_NAME); if (err) { dev_err(dev, "PCI request regions failed 0x%x\n", err); goto err_disable_device; } /* MAP configuration registers */ bgx->reg_base = pcim_iomap(pdev, PCI_CFG_REG_BAR_NUM, 0); if (!bgx->reg_base) { dev_err(dev, "BGX: Cannot map CSR memory space, aborting\n"); err = -ENOMEM; goto err_release_regions; } set_max_bgx_per_node(pdev); pci_read_config_word(pdev, PCI_DEVICE_ID, &sdevid); if (sdevid != PCI_DEVICE_ID_THUNDER_RGX) { bgx->bgx_id = (pci_resource_start(pdev, PCI_CFG_REG_BAR_NUM) >> 24) & BGX_ID_MASK; bgx->bgx_id += nic_get_node_id(pdev) * max_bgx_per_node; bgx->max_lmac = MAX_LMAC_PER_BGX; bgx_vnic[bgx->bgx_id] = bgx; } else { bgx->is_rgx = true; bgx->max_lmac = 1; bgx->bgx_id = MAX_BGX_PER_CN81XX - 1; bgx_vnic[bgx->bgx_id] = bgx; xcv_init_hw(); } /* On 81xx all are DLMs and on 83xx there are 3 BGX QLMs and one * BGX i.e BGX2 can be split across 2 DLMs. */ pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &sdevid); if ((sdevid == PCI_SUBSYS_DEVID_81XX_BGX) || ((sdevid == PCI_SUBSYS_DEVID_83XX_BGX) && (bgx->bgx_id == 2))) bgx->is_dlm = true; bgx_get_qlm_mode(bgx); err = bgx_init_phy(bgx); if (err) goto err_enable; bgx_init_hw(bgx); bgx_register_intr(pdev); /* Enable all LMACs */ for (lmac = 0; lmac < bgx->lmac_count; lmac++) { err = bgx_lmac_enable(bgx, lmac); if (err) { dev_err(dev, "BGX%d failed to enable lmac%d\n", bgx->bgx_id, lmac); while (lmac) bgx_lmac_disable(bgx, --lmac); goto err_enable; } } return 0; err_enable: bgx_vnic[bgx->bgx_id] = NULL; pci_free_irq(pdev, GMPX_GMI_TX_INT, bgx); err_release_regions: pci_release_regions(pdev); err_disable_device: pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); return err; } static void bgx_remove(struct pci_dev *pdev) { struct bgx *bgx = pci_get_drvdata(pdev); u8 lmac; /* Disable all LMACs */ for (lmac = 0; lmac < bgx->lmac_count; lmac++) bgx_lmac_disable(bgx, lmac); pci_free_irq(pdev, GMPX_GMI_TX_INT, bgx); bgx_vnic[bgx->bgx_id] = NULL; pci_release_regions(pdev); pci_disable_device(pdev); pci_set_drvdata(pdev, NULL); } static struct pci_driver bgx_driver = { .name = DRV_NAME, .id_table = bgx_id_table, .probe = bgx_probe, .remove = bgx_remove, }; static int __init bgx_init_module(void) { pr_info("%s, ver %s\n", DRV_NAME, DRV_VERSION); return pci_register_driver(&bgx_driver); } static void __exit bgx_cleanup_module(void) { pci_unregister_driver(&bgx_driver); } module_init(bgx_init_module); module_exit(bgx_cleanup_module);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1