Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dimitris Michailidis | 2781 | 71.71% | 3 | 9.09% |
Hariprasad Shenai | 643 | 16.58% | 9 | 27.27% |
Kumar Sanghvi | 157 | 4.05% | 2 | 6.06% |
Vipul Pandya | 124 | 3.20% | 1 | 3.03% |
Rahul Lakkireddy | 58 | 1.50% | 2 | 6.06% |
Rohit Maheshwari | 29 | 0.75% | 1 | 3.03% |
Steve Wise | 25 | 0.64% | 1 | 3.03% |
Ganesh Goudar | 15 | 0.39% | 1 | 3.03% |
Santosh Rastapur | 12 | 0.31% | 1 | 3.03% |
Gustavo A. R. Silva | 7 | 0.18% | 3 | 9.09% |
Varun Prakash | 6 | 0.15% | 1 | 3.03% |
Kees Cook | 5 | 0.13% | 1 | 3.03% |
Michal Hocko | 3 | 0.08% | 1 | 3.03% |
Parav Pandit | 3 | 0.08% | 1 | 3.03% |
Dan Carpenter | 3 | 0.08% | 1 | 3.03% |
Alexey Dobriyan | 2 | 0.05% | 1 | 3.03% |
Christophe Jaillet | 2 | 0.05% | 1 | 3.03% |
Vasily Averin | 2 | 0.05% | 1 | 3.03% |
Anish Bhatt | 1 | 0.03% | 1 | 3.03% |
Total | 3878 | 33 |
/* * This file is part of the Chelsio T4 Ethernet driver for Linux. * * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/skbuff.h> #include <linux/netdevice.h> #include <linux/if.h> #include <linux/if_vlan.h> #include <linux/jhash.h> #include <linux/module.h> #include <linux/debugfs.h> #include <linux/seq_file.h> #include <net/neighbour.h> #include "cxgb4.h" #include "l2t.h" #include "t4_msg.h" #include "t4fw_api.h" #include "t4_regs.h" #include "t4_values.h" /* identifies sync vs async L2T_WRITE_REQs */ #define SYNC_WR_S 12 #define SYNC_WR_V(x) ((x) << SYNC_WR_S) #define SYNC_WR_F SYNC_WR_V(1) struct l2t_data { unsigned int l2t_start; /* start index of our piece of the L2T */ unsigned int l2t_size; /* number of entries in l2tab */ rwlock_t lock; atomic_t nfree; /* number of free entries */ struct l2t_entry *rover; /* starting point for next allocation */ struct l2t_entry l2tab[] __counted_by(l2t_size); /* MUST BE LAST */ }; static inline unsigned int vlan_prio(const struct l2t_entry *e) { return e->vlan >> VLAN_PRIO_SHIFT; } static inline void l2t_hold(struct l2t_data *d, struct l2t_entry *e) { if (atomic_add_return(1, &e->refcnt) == 1) /* 0 -> 1 transition */ atomic_dec(&d->nfree); } /* * To avoid having to check address families we do not allow v4 and v6 * neighbors to be on the same hash chain. We keep v4 entries in the first * half of available hash buckets and v6 in the second. We need at least two * entries in our L2T for this scheme to work. */ enum { L2T_MIN_HASH_BUCKETS = 2, }; static inline unsigned int arp_hash(struct l2t_data *d, const u32 *key, int ifindex) { unsigned int l2t_size_half = d->l2t_size / 2; return jhash_2words(*key, ifindex, 0) % l2t_size_half; } static inline unsigned int ipv6_hash(struct l2t_data *d, const u32 *key, int ifindex) { unsigned int l2t_size_half = d->l2t_size / 2; u32 xor = key[0] ^ key[1] ^ key[2] ^ key[3]; return (l2t_size_half + (jhash_2words(xor, ifindex, 0) % l2t_size_half)); } static unsigned int addr_hash(struct l2t_data *d, const u32 *addr, int addr_len, int ifindex) { return addr_len == 4 ? arp_hash(d, addr, ifindex) : ipv6_hash(d, addr, ifindex); } /* * Checks if an L2T entry is for the given IP/IPv6 address. It does not check * whether the L2T entry and the address are of the same address family. * Callers ensure an address is only checked against L2T entries of the same * family, something made trivial by the separation of IP and IPv6 hash chains * mentioned above. Returns 0 if there's a match, */ static int addreq(const struct l2t_entry *e, const u32 *addr) { if (e->v6) return (e->addr[0] ^ addr[0]) | (e->addr[1] ^ addr[1]) | (e->addr[2] ^ addr[2]) | (e->addr[3] ^ addr[3]); return e->addr[0] ^ addr[0]; } static void neigh_replace(struct l2t_entry *e, struct neighbour *n) { neigh_hold(n); if (e->neigh) neigh_release(e->neigh); e->neigh = n; } /* * Write an L2T entry. Must be called with the entry locked. * The write may be synchronous or asynchronous. */ static int write_l2e(struct adapter *adap, struct l2t_entry *e, int sync) { struct l2t_data *d = adap->l2t; unsigned int l2t_idx = e->idx + d->l2t_start; struct sk_buff *skb; struct cpl_l2t_write_req *req; skb = alloc_skb(sizeof(*req), GFP_ATOMIC); if (!skb) return -ENOMEM; req = __skb_put(skb, sizeof(*req)); INIT_TP_WR(req, 0); OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_L2T_WRITE_REQ, l2t_idx | (sync ? SYNC_WR_F : 0) | TID_QID_V(adap->sge.fw_evtq.abs_id))); req->params = htons(L2T_W_PORT_V(e->lport) | L2T_W_NOREPLY_V(!sync)); req->l2t_idx = htons(l2t_idx); req->vlan = htons(e->vlan); if (e->neigh && !(e->neigh->dev->flags & IFF_LOOPBACK)) memcpy(e->dmac, e->neigh->ha, sizeof(e->dmac)); memcpy(req->dst_mac, e->dmac, sizeof(req->dst_mac)); t4_mgmt_tx(adap, skb); if (sync && e->state != L2T_STATE_SWITCHING) e->state = L2T_STATE_SYNC_WRITE; return 0; } /* * Send packets waiting in an L2T entry's ARP queue. Must be called with the * entry locked. */ static void send_pending(struct adapter *adap, struct l2t_entry *e) { struct sk_buff *skb; while ((skb = __skb_dequeue(&e->arpq)) != NULL) t4_ofld_send(adap, skb); } /* * Process a CPL_L2T_WRITE_RPL. Wake up the ARP queue if it completes a * synchronous L2T_WRITE. Note that the TID in the reply is really the L2T * index it refers to. */ void do_l2t_write_rpl(struct adapter *adap, const struct cpl_l2t_write_rpl *rpl) { struct l2t_data *d = adap->l2t; unsigned int tid = GET_TID(rpl); unsigned int l2t_idx = tid % L2T_SIZE; if (unlikely(rpl->status != CPL_ERR_NONE)) { dev_err(adap->pdev_dev, "Unexpected L2T_WRITE_RPL status %u for entry %u\n", rpl->status, l2t_idx); return; } if (tid & SYNC_WR_F) { struct l2t_entry *e = &d->l2tab[l2t_idx - d->l2t_start]; spin_lock(&e->lock); if (e->state != L2T_STATE_SWITCHING) { send_pending(adap, e); e->state = (e->neigh->nud_state & NUD_STALE) ? L2T_STATE_STALE : L2T_STATE_VALID; } spin_unlock(&e->lock); } } /* * Add a packet to an L2T entry's queue of packets awaiting resolution. * Must be called with the entry's lock held. */ static inline void arpq_enqueue(struct l2t_entry *e, struct sk_buff *skb) { __skb_queue_tail(&e->arpq, skb); } int cxgb4_l2t_send(struct net_device *dev, struct sk_buff *skb, struct l2t_entry *e) { struct adapter *adap = netdev2adap(dev); again: switch (e->state) { case L2T_STATE_STALE: /* entry is stale, kick off revalidation */ neigh_event_send(e->neigh, NULL); spin_lock_bh(&e->lock); if (e->state == L2T_STATE_STALE) e->state = L2T_STATE_VALID; spin_unlock_bh(&e->lock); fallthrough; case L2T_STATE_VALID: /* fast-path, send the packet on */ return t4_ofld_send(adap, skb); case L2T_STATE_RESOLVING: case L2T_STATE_SYNC_WRITE: spin_lock_bh(&e->lock); if (e->state != L2T_STATE_SYNC_WRITE && e->state != L2T_STATE_RESOLVING) { spin_unlock_bh(&e->lock); goto again; } arpq_enqueue(e, skb); spin_unlock_bh(&e->lock); if (e->state == L2T_STATE_RESOLVING && !neigh_event_send(e->neigh, NULL)) { spin_lock_bh(&e->lock); if (e->state == L2T_STATE_RESOLVING && !skb_queue_empty(&e->arpq)) write_l2e(adap, e, 1); spin_unlock_bh(&e->lock); } } return 0; } EXPORT_SYMBOL(cxgb4_l2t_send); /* * Allocate a free L2T entry. Must be called with l2t_data.lock held. */ static struct l2t_entry *alloc_l2e(struct l2t_data *d) { struct l2t_entry *end, *e, **p; if (!atomic_read(&d->nfree)) return NULL; /* there's definitely a free entry */ for (e = d->rover, end = &d->l2tab[d->l2t_size]; e != end; ++e) if (atomic_read(&e->refcnt) == 0) goto found; for (e = d->l2tab; atomic_read(&e->refcnt); ++e) ; found: d->rover = e + 1; atomic_dec(&d->nfree); /* * The entry we found may be an inactive entry that is * presently in the hash table. We need to remove it. */ if (e->state < L2T_STATE_SWITCHING) for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) if (*p == e) { *p = e->next; e->next = NULL; break; } e->state = L2T_STATE_UNUSED; return e; } static struct l2t_entry *find_or_alloc_l2e(struct l2t_data *d, u16 vlan, u8 port, u8 *dmac) { struct l2t_entry *end, *e, **p; struct l2t_entry *first_free = NULL; for (e = &d->l2tab[0], end = &d->l2tab[d->l2t_size]; e != end; ++e) { if (atomic_read(&e->refcnt) == 0) { if (!first_free) first_free = e; } else { if (e->state == L2T_STATE_SWITCHING) { if (ether_addr_equal(e->dmac, dmac) && (e->vlan == vlan) && (e->lport == port)) goto exists; } } } if (first_free) { e = first_free; goto found; } return NULL; found: /* The entry we found may be an inactive entry that is * presently in the hash table. We need to remove it. */ if (e->state < L2T_STATE_SWITCHING) for (p = &d->l2tab[e->hash].first; *p; p = &(*p)->next) if (*p == e) { *p = e->next; e->next = NULL; break; } e->state = L2T_STATE_UNUSED; exists: return e; } /* Called when an L2T entry has no more users. The entry is left in the hash * table since it is likely to be reused but we also bump nfree to indicate * that the entry can be reallocated for a different neighbor. We also drop * the existing neighbor reference in case the neighbor is going away and is * waiting on our reference. * * Because entries can be reallocated to other neighbors once their ref count * drops to 0 we need to take the entry's lock to avoid races with a new * incarnation. */ static void _t4_l2e_free(struct l2t_entry *e) { struct l2t_data *d; if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ if (e->neigh) { neigh_release(e->neigh); e->neigh = NULL; } __skb_queue_purge(&e->arpq); } d = container_of(e, struct l2t_data, l2tab[e->idx]); atomic_inc(&d->nfree); } /* Locked version of _t4_l2e_free */ static void t4_l2e_free(struct l2t_entry *e) { struct l2t_data *d; spin_lock_bh(&e->lock); if (atomic_read(&e->refcnt) == 0) { /* hasn't been recycled */ if (e->neigh) { neigh_release(e->neigh); e->neigh = NULL; } __skb_queue_purge(&e->arpq); } spin_unlock_bh(&e->lock); d = container_of(e, struct l2t_data, l2tab[e->idx]); atomic_inc(&d->nfree); } void cxgb4_l2t_release(struct l2t_entry *e) { if (atomic_dec_and_test(&e->refcnt)) t4_l2e_free(e); } EXPORT_SYMBOL(cxgb4_l2t_release); /* * Update an L2T entry that was previously used for the same next hop as neigh. * Must be called with softirqs disabled. */ static void reuse_entry(struct l2t_entry *e, struct neighbour *neigh) { unsigned int nud_state; spin_lock(&e->lock); /* avoid race with t4_l2t_free */ if (neigh != e->neigh) neigh_replace(e, neigh); nud_state = neigh->nud_state; if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac)) || !(nud_state & NUD_VALID)) e->state = L2T_STATE_RESOLVING; else if (nud_state & NUD_CONNECTED) e->state = L2T_STATE_VALID; else e->state = L2T_STATE_STALE; spin_unlock(&e->lock); } struct l2t_entry *cxgb4_l2t_get(struct l2t_data *d, struct neighbour *neigh, const struct net_device *physdev, unsigned int priority) { u8 lport; u16 vlan; struct l2t_entry *e; unsigned int addr_len = neigh->tbl->key_len; u32 *addr = (u32 *)neigh->primary_key; int ifidx = neigh->dev->ifindex; int hash = addr_hash(d, addr, addr_len, ifidx); if (neigh->dev->flags & IFF_LOOPBACK) lport = netdev2pinfo(physdev)->tx_chan + 4; else lport = netdev2pinfo(physdev)->lport; if (is_vlan_dev(neigh->dev)) { vlan = vlan_dev_vlan_id(neigh->dev); vlan |= vlan_dev_get_egress_qos_mask(neigh->dev, priority); } else { vlan = VLAN_NONE; } write_lock_bh(&d->lock); for (e = d->l2tab[hash].first; e; e = e->next) if (!addreq(e, addr) && e->ifindex == ifidx && e->vlan == vlan && e->lport == lport) { l2t_hold(d, e); if (atomic_read(&e->refcnt) == 1) reuse_entry(e, neigh); goto done; } /* Need to allocate a new entry */ e = alloc_l2e(d); if (e) { spin_lock(&e->lock); /* avoid race with t4_l2t_free */ e->state = L2T_STATE_RESOLVING; if (neigh->dev->flags & IFF_LOOPBACK) memcpy(e->dmac, physdev->dev_addr, sizeof(e->dmac)); memcpy(e->addr, addr, addr_len); e->ifindex = ifidx; e->hash = hash; e->lport = lport; e->v6 = addr_len == 16; atomic_set(&e->refcnt, 1); neigh_replace(e, neigh); e->vlan = vlan; e->next = d->l2tab[hash].first; d->l2tab[hash].first = e; spin_unlock(&e->lock); } done: write_unlock_bh(&d->lock); return e; } EXPORT_SYMBOL(cxgb4_l2t_get); u64 cxgb4_select_ntuple(struct net_device *dev, const struct l2t_entry *l2t) { struct adapter *adap = netdev2adap(dev); struct tp_params *tp = &adap->params.tp; u64 ntuple = 0; /* Initialize each of the fields which we care about which are present * in the Compressed Filter Tuple. */ if (tp->vlan_shift >= 0 && l2t->vlan != VLAN_NONE) ntuple |= (u64)(FT_VLAN_VLD_F | l2t->vlan) << tp->vlan_shift; if (tp->port_shift >= 0) ntuple |= (u64)l2t->lport << tp->port_shift; if (tp->protocol_shift >= 0) ntuple |= (u64)IPPROTO_TCP << tp->protocol_shift; if (tp->vnic_shift >= 0 && (tp->ingress_config & VNIC_F)) { struct port_info *pi = (struct port_info *)netdev_priv(dev); ntuple |= (u64)(FT_VNID_ID_VF_V(pi->vin) | FT_VNID_ID_PF_V(adap->pf) | FT_VNID_ID_VLD_V(pi->vivld)) << tp->vnic_shift; } return ntuple; } EXPORT_SYMBOL(cxgb4_select_ntuple); /* * Called when the host's neighbor layer makes a change to some entry that is * loaded into the HW L2 table. */ void t4_l2t_update(struct adapter *adap, struct neighbour *neigh) { unsigned int addr_len = neigh->tbl->key_len; u32 *addr = (u32 *) neigh->primary_key; int hash, ifidx = neigh->dev->ifindex; struct sk_buff_head *arpq = NULL; struct l2t_data *d = adap->l2t; struct l2t_entry *e; hash = addr_hash(d, addr, addr_len, ifidx); read_lock_bh(&d->lock); for (e = d->l2tab[hash].first; e; e = e->next) if (!addreq(e, addr) && e->ifindex == ifidx) { spin_lock(&e->lock); if (atomic_read(&e->refcnt)) goto found; spin_unlock(&e->lock); break; } read_unlock_bh(&d->lock); return; found: read_unlock(&d->lock); if (neigh != e->neigh) neigh_replace(e, neigh); if (e->state == L2T_STATE_RESOLVING) { if (neigh->nud_state & NUD_FAILED) { arpq = &e->arpq; } else if ((neigh->nud_state & (NUD_CONNECTED | NUD_STALE)) && !skb_queue_empty(&e->arpq)) { write_l2e(adap, e, 1); } } else { e->state = neigh->nud_state & NUD_CONNECTED ? L2T_STATE_VALID : L2T_STATE_STALE; if (memcmp(e->dmac, neigh->ha, sizeof(e->dmac))) write_l2e(adap, e, 0); } if (arpq) { struct sk_buff *skb; /* Called when address resolution fails for an L2T * entry to handle packets on the arpq head. If a * packet specifies a failure handler it is invoked, * otherwise the packet is sent to the device. */ while ((skb = __skb_dequeue(&e->arpq)) != NULL) { const struct l2t_skb_cb *cb = L2T_SKB_CB(skb); spin_unlock(&e->lock); if (cb->arp_err_handler) cb->arp_err_handler(cb->handle, skb); else t4_ofld_send(adap, skb); spin_lock(&e->lock); } } spin_unlock_bh(&e->lock); } /* Allocate an L2T entry for use by a switching rule. Such need to be * explicitly freed and while busy they are not on any hash chain, so normal * address resolution updates do not see them. */ struct l2t_entry *t4_l2t_alloc_switching(struct adapter *adap, u16 vlan, u8 port, u8 *eth_addr) { struct l2t_data *d = adap->l2t; struct l2t_entry *e; int ret; write_lock_bh(&d->lock); e = find_or_alloc_l2e(d, vlan, port, eth_addr); if (e) { spin_lock(&e->lock); /* avoid race with t4_l2t_free */ if (!atomic_read(&e->refcnt)) { e->state = L2T_STATE_SWITCHING; e->vlan = vlan; e->lport = port; ether_addr_copy(e->dmac, eth_addr); atomic_set(&e->refcnt, 1); ret = write_l2e(adap, e, 0); if (ret < 0) { _t4_l2e_free(e); spin_unlock(&e->lock); write_unlock_bh(&d->lock); return NULL; } } else { atomic_inc(&e->refcnt); } spin_unlock(&e->lock); } write_unlock_bh(&d->lock); return e; } /** * cxgb4_l2t_alloc_switching - Allocates an L2T entry for switch filters * @dev: net_device pointer * @vlan: VLAN Id * @port: Associated port * @dmac: Destination MAC address to add to L2T * Returns pointer to the allocated l2t entry * * Allocates an L2T entry for use by switching rule of a filter */ struct l2t_entry *cxgb4_l2t_alloc_switching(struct net_device *dev, u16 vlan, u8 port, u8 *dmac) { struct adapter *adap = netdev2adap(dev); return t4_l2t_alloc_switching(adap, vlan, port, dmac); } EXPORT_SYMBOL(cxgb4_l2t_alloc_switching); struct l2t_data *t4_init_l2t(unsigned int l2t_start, unsigned int l2t_end) { unsigned int l2t_size; int i; struct l2t_data *d; if (l2t_start >= l2t_end || l2t_end >= L2T_SIZE) return NULL; l2t_size = l2t_end - l2t_start + 1; if (l2t_size < L2T_MIN_HASH_BUCKETS) return NULL; d = kvzalloc(struct_size(d, l2tab, l2t_size), GFP_KERNEL); if (!d) return NULL; d->l2t_start = l2t_start; d->l2t_size = l2t_size; d->rover = d->l2tab; atomic_set(&d->nfree, l2t_size); rwlock_init(&d->lock); for (i = 0; i < d->l2t_size; ++i) { d->l2tab[i].idx = i; d->l2tab[i].state = L2T_STATE_UNUSED; spin_lock_init(&d->l2tab[i].lock); atomic_set(&d->l2tab[i].refcnt, 0); skb_queue_head_init(&d->l2tab[i].arpq); } return d; } static inline void *l2t_get_idx(struct seq_file *seq, loff_t pos) { struct l2t_data *d = seq->private; return pos >= d->l2t_size ? NULL : &d->l2tab[pos]; } static void *l2t_seq_start(struct seq_file *seq, loff_t *pos) { return *pos ? l2t_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; } static void *l2t_seq_next(struct seq_file *seq, void *v, loff_t *pos) { v = l2t_get_idx(seq, *pos); ++(*pos); return v; } static void l2t_seq_stop(struct seq_file *seq, void *v) { } static char l2e_state(const struct l2t_entry *e) { switch (e->state) { case L2T_STATE_VALID: return 'V'; case L2T_STATE_STALE: return 'S'; case L2T_STATE_SYNC_WRITE: return 'W'; case L2T_STATE_RESOLVING: return skb_queue_empty(&e->arpq) ? 'R' : 'A'; case L2T_STATE_SWITCHING: return 'X'; default: return 'U'; } } bool cxgb4_check_l2t_valid(struct l2t_entry *e) { bool valid; spin_lock(&e->lock); valid = (e->state == L2T_STATE_VALID); spin_unlock(&e->lock); return valid; } EXPORT_SYMBOL(cxgb4_check_l2t_valid); static int l2t_seq_show(struct seq_file *seq, void *v) { if (v == SEQ_START_TOKEN) seq_puts(seq, " Idx IP address " "Ethernet address VLAN/P LP State Users Port\n"); else { char ip[60]; struct l2t_data *d = seq->private; struct l2t_entry *e = v; spin_lock_bh(&e->lock); if (e->state == L2T_STATE_SWITCHING) ip[0] = '\0'; else sprintf(ip, e->v6 ? "%pI6c" : "%pI4", e->addr); seq_printf(seq, "%4u %-25s %17pM %4d %u %2u %c %5u %s\n", e->idx + d->l2t_start, ip, e->dmac, e->vlan & VLAN_VID_MASK, vlan_prio(e), e->lport, l2e_state(e), atomic_read(&e->refcnt), e->neigh ? e->neigh->dev->name : ""); spin_unlock_bh(&e->lock); } return 0; } static const struct seq_operations l2t_seq_ops = { .start = l2t_seq_start, .next = l2t_seq_next, .stop = l2t_seq_stop, .show = l2t_seq_show }; static int l2t_seq_open(struct inode *inode, struct file *file) { int rc = seq_open(file, &l2t_seq_ops); if (!rc) { struct adapter *adap = inode->i_private; struct seq_file *seq = file->private_data; seq->private = adap->l2t; } return rc; } const struct file_operations t4_l2t_fops = { .owner = THIS_MODULE, .open = l2t_seq_open, .read = seq_read, .llseek = seq_lseek, .release = seq_release, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1