Contributors: 53
Author Tokens Token Proportion Commits Commit Proportion
Linus Torvalds 8699 80.71% 16 9.04%
Linus Torvalds (pre-git) 480 4.45% 75 42.37%
Jeff Garzik 283 2.63% 6 3.39%
Joe Perches 232 2.15% 6 3.39%
Ondrej Zary 199 1.85% 6 3.39%
Philippe Reynes 119 1.10% 1 0.56%
Christophe Jaillet 70 0.65% 1 0.56%
Stephen Hemminger 66 0.61% 4 2.26%
François Romieu 66 0.61% 3 1.69%
Wang Chen 66 0.61% 1 0.56%
Tobias Klauser 59 0.55% 1 0.56%
Risto Suominen 46 0.43% 2 1.13%
Vaibhav Gupta 41 0.38% 1 0.56%
Krzysztof Hałasa 39 0.36% 1 0.56%
Kees Cook 39 0.36% 1 0.56%
Jiri Pirko 32 0.30% 4 2.26%
Moritz Fischer 30 0.28% 2 1.13%
Jakub Kiciński 28 0.26% 1 0.56%
Eric Sesterhenn / Snakebyte 21 0.19% 3 1.69%
Andrew Morton 19 0.18% 2 1.13%
Al Viro 16 0.15% 4 2.26%
Rick Jones 14 0.13% 1 0.56%
Rusty Russell 11 0.10% 1 0.56%
Pradeep A. Dalvi 10 0.09% 1 0.56%
Grant Grundler 10 0.09% 1 0.56%
Valerie Henson 8 0.07% 1 0.56%
Benoit Taine 6 0.06% 1 0.56%
David Decotigny 6 0.06% 2 1.13%
Martin Langer 5 0.05% 1 0.56%
David S. Miller 5 0.05% 3 1.69%
Morten Holst Larsen 5 0.05% 1 0.56%
Ralf Baechle 5 0.05% 1 0.56%
Harvey Harrison 4 0.04% 1 0.56%
Michael S. Tsirkin 4 0.04% 1 0.56%
Arnaldo Carvalho de Melo 3 0.03% 1 0.56%
Alexey Dobriyan 3 0.03% 1 0.56%
Randy Dunlap 3 0.03% 1 0.56%
Alan Cox 3 0.03% 1 0.56%
Eric Dumazet 2 0.02% 1 0.56%
Greg Kroah-Hartman 2 0.02% 1 0.56%
Takuya Yoshikawa 2 0.02% 1 0.56%
Wolfram Sang 2 0.02% 1 0.56%
Patrick McHardy 2 0.02% 2 1.13%
Hannes Eder 2 0.02% 1 0.56%
Yuval Shaia 2 0.02% 1 0.56%
Wei Yongjun 2 0.02% 1 0.56%
Thomas Gleixner 1 0.01% 1 0.56%
Wei Yang 1 0.01% 1 0.56%
Nishanth Aravamudan 1 0.01% 1 0.56%
Roel Kluin 1 0.01% 1 0.56%
Lucy Yan 1 0.01% 1 0.56%
Christoph Hellwig 1 0.01% 1 0.56%
Marc Zyngier 1 0.01% 1 0.56%
Total 10778 177


/* de2104x.c: A Linux PCI Ethernet driver for Intel/Digital 21040/1 chips. */
/*
	Copyright 2001,2003 Jeff Garzik <jgarzik@pobox.com>

	Copyright 1994, 1995 Digital Equipment Corporation.	    [de4x5.c]
	Written/copyright 1994-2001 by Donald Becker.		    [tulip.c]

	This software may be used and distributed according to the terms of
	the GNU General Public License (GPL), incorporated herein by reference.
	Drivers based on or derived from this code fall under the GPL and must
	retain the authorship, copyright and license notice.  This file is not
	a complete program and may only be used when the entire operating
	system is licensed under the GPL.

	See the file COPYING in this distribution for more information.

	TODO, in rough priority order:
	* Support forcing media type with a module parameter,
	  like dl2k.c/sundance.c
	* Constants (module parms?) for Rx work limit
	* Complete reset on PciErr
	* Jumbo frames / dev->change_mtu
	* Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
	* Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
	* Implement Tx software interrupt mitigation via
	  Tx descriptor bit

 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#define DRV_NAME		"de2104x"
#define DRV_RELDATE		"Mar 17, 2004"

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/ethtool.h>
#include <linux/compiler.h>
#include <linux/rtnetlink.h>
#include <linux/crc32.h>
#include <linux/slab.h>

#include <asm/io.h>
#include <asm/irq.h>
#include <linux/uaccess.h>
#include <asm/unaligned.h>

MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
MODULE_DESCRIPTION("Intel/Digital 21040/1 series PCI Ethernet driver");
MODULE_LICENSE("GPL");

static int debug = -1;
module_param (debug, int, 0);
MODULE_PARM_DESC (debug, "de2104x bitmapped message enable number");

/* Set the copy breakpoint for the copy-only-tiny-buffer Rx structure. */
#if defined(__alpha__) || defined(__arm__) || defined(__hppa__) || \
        defined(CONFIG_SPARC) || defined(__ia64__) ||		   \
        defined(__sh__) || defined(__mips__)
static int rx_copybreak = 1518;
#else
static int rx_copybreak = 100;
#endif
module_param (rx_copybreak, int, 0);
MODULE_PARM_DESC (rx_copybreak, "de2104x Breakpoint at which Rx packets are copied");

#define DE_DEF_MSG_ENABLE	(NETIF_MSG_DRV		| \
				 NETIF_MSG_PROBE 	| \
				 NETIF_MSG_LINK		| \
				 NETIF_MSG_IFDOWN	| \
				 NETIF_MSG_IFUP		| \
				 NETIF_MSG_RX_ERR	| \
				 NETIF_MSG_TX_ERR)

/* Descriptor skip length in 32 bit longwords. */
#ifndef CONFIG_DE2104X_DSL
#define DSL			0
#else
#define DSL			CONFIG_DE2104X_DSL
#endif

#define DE_RX_RING_SIZE		128
#define DE_TX_RING_SIZE		64
#define DE_RING_BYTES		\
		((sizeof(struct de_desc) * DE_RX_RING_SIZE) +	\
		(sizeof(struct de_desc) * DE_TX_RING_SIZE))
#define NEXT_TX(N)		(((N) + 1) & (DE_TX_RING_SIZE - 1))
#define NEXT_RX(N)		(((N) + 1) & (DE_RX_RING_SIZE - 1))
#define TX_BUFFS_AVAIL(CP)					\
	(((CP)->tx_tail <= (CP)->tx_head) ?			\
	  (CP)->tx_tail + (DE_TX_RING_SIZE - 1) - (CP)->tx_head :	\
	  (CP)->tx_tail - (CP)->tx_head - 1)

#define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
#define RX_OFFSET		2

#define DE_SETUP_SKB		((struct sk_buff *) 1)
#define DE_DUMMY_SKB		((struct sk_buff *) 2)
#define DE_SETUP_FRAME_WORDS	96
#define DE_EEPROM_WORDS		256
#define DE_EEPROM_SIZE		(DE_EEPROM_WORDS * sizeof(u16))
#define DE_MAX_MEDIA		5

#define DE_MEDIA_TP_AUTO	0
#define DE_MEDIA_BNC		1
#define DE_MEDIA_AUI		2
#define DE_MEDIA_TP		3
#define DE_MEDIA_TP_FD		4
#define DE_MEDIA_INVALID	DE_MAX_MEDIA
#define DE_MEDIA_FIRST		0
#define DE_MEDIA_LAST		(DE_MAX_MEDIA - 1)
#define DE_AUI_BNC		(SUPPORTED_AUI | SUPPORTED_BNC)

#define DE_TIMER_LINK		(60 * HZ)
#define DE_TIMER_NO_LINK	(5 * HZ)

#define DE_NUM_REGS		16
#define DE_REGS_SIZE		(DE_NUM_REGS * sizeof(u32))
#define DE_REGS_VER		1

/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT		(6*HZ)

/* This is a mysterious value that can be written to CSR11 in the 21040 (only)
   to support a pre-NWay full-duplex signaling mechanism using short frames.
   No one knows what it should be, but if left at its default value some
   10base2(!) packets trigger a full-duplex-request interrupt. */
#define FULL_DUPLEX_MAGIC	0x6969

enum {
	/* NIC registers */
	BusMode			= 0x00,
	TxPoll			= 0x08,
	RxPoll			= 0x10,
	RxRingAddr		= 0x18,
	TxRingAddr		= 0x20,
	MacStatus		= 0x28,
	MacMode			= 0x30,
	IntrMask		= 0x38,
	RxMissed		= 0x40,
	ROMCmd			= 0x48,
	CSR11			= 0x58,
	SIAStatus		= 0x60,
	CSR13			= 0x68,
	CSR14			= 0x70,
	CSR15			= 0x78,
	PCIPM			= 0x40,

	/* BusMode bits */
	CmdReset		= (1 << 0),
	CacheAlign16		= 0x00008000,
	BurstLen4		= 0x00000400,
	DescSkipLen		= (DSL << 2),

	/* Rx/TxPoll bits */
	NormalTxPoll		= (1 << 0),
	NormalRxPoll		= (1 << 0),

	/* Tx/Rx descriptor status bits */
	DescOwn			= (1 << 31),
	RxError			= (1 << 15),
	RxErrLong		= (1 << 7),
	RxErrCRC		= (1 << 1),
	RxErrFIFO		= (1 << 0),
	RxErrRunt		= (1 << 11),
	RxErrFrame		= (1 << 14),
	RingEnd			= (1 << 25),
	FirstFrag		= (1 << 29),
	LastFrag		= (1 << 30),
	TxError			= (1 << 15),
	TxFIFOUnder		= (1 << 1),
	TxLinkFail		= (1 << 2) | (1 << 10) | (1 << 11),
	TxMaxCol		= (1 << 8),
	TxOWC			= (1 << 9),
	TxJabber		= (1 << 14),
	SetupFrame		= (1 << 27),
	TxSwInt			= (1 << 31),

	/* MacStatus bits */
	IntrOK			= (1 << 16),
	IntrErr			= (1 << 15),
	RxIntr			= (1 << 6),
	RxEmpty			= (1 << 7),
	TxIntr			= (1 << 0),
	TxEmpty			= (1 << 2),
	PciErr			= (1 << 13),
	TxState			= (1 << 22) | (1 << 21) | (1 << 20),
	RxState			= (1 << 19) | (1 << 18) | (1 << 17),
	LinkFail		= (1 << 12),
	LinkPass		= (1 << 4),
	RxStopped		= (1 << 8),
	TxStopped		= (1 << 1),

	/* MacMode bits */
	TxEnable		= (1 << 13),
	RxEnable		= (1 << 1),
	RxTx			= TxEnable | RxEnable,
	FullDuplex		= (1 << 9),
	AcceptAllMulticast	= (1 << 7),
	AcceptAllPhys		= (1 << 6),
	BOCnt			= (1 << 5),
	MacModeClear		= (1<<12) | (1<<11) | (1<<10) | (1<<8) | (1<<3) |
				  RxTx | BOCnt | AcceptAllPhys | AcceptAllMulticast,

	/* ROMCmd bits */
	EE_SHIFT_CLK		= 0x02,	/* EEPROM shift clock. */
	EE_CS			= 0x01,	/* EEPROM chip select. */
	EE_DATA_WRITE		= 0x04,	/* Data from the Tulip to EEPROM. */
	EE_WRITE_0		= 0x01,
	EE_WRITE_1		= 0x05,
	EE_DATA_READ		= 0x08,	/* Data from the EEPROM chip. */
	EE_ENB			= (0x4800 | EE_CS),

	/* The EEPROM commands include the alway-set leading bit. */
	EE_READ_CMD		= 6,

	/* RxMissed bits */
	RxMissedOver		= (1 << 16),
	RxMissedMask		= 0xffff,

	/* SROM-related bits */
	SROMC0InfoLeaf		= 27,
	MediaBlockMask		= 0x3f,
	MediaCustomCSRs		= (1 << 6),

	/* PCIPM bits */
	PM_Sleep		= (1 << 31),
	PM_Snooze		= (1 << 30),
	PM_Mask			= PM_Sleep | PM_Snooze,

	/* SIAStatus bits */
	NWayState		= (1 << 14) | (1 << 13) | (1 << 12),
	NWayRestart		= (1 << 12),
	NonselPortActive	= (1 << 9),
	SelPortActive		= (1 << 8),
	LinkFailStatus		= (1 << 2),
	NetCxnErr		= (1 << 1),
};

static const u32 de_intr_mask =
	IntrOK | IntrErr | RxIntr | RxEmpty | TxIntr | TxEmpty |
	LinkPass | LinkFail | PciErr;

/*
 * Set the programmable burst length to 4 longwords for all:
 * DMA errors result without these values. Cache align 16 long.
 */
static const u32 de_bus_mode = CacheAlign16 | BurstLen4 | DescSkipLen;

struct de_srom_media_block {
	u8			opts;
	u16			csr13;
	u16			csr14;
	u16			csr15;
} __packed;

struct de_srom_info_leaf {
	u16			default_media;
	u8			n_blocks;
	u8			unused;
} __packed;

struct de_desc {
	__le32			opts1;
	__le32			opts2;
	__le32			addr1;
	__le32			addr2;
#if DSL
	__le32			skip[DSL];
#endif
};

struct media_info {
	u16			type;	/* DE_MEDIA_xxx */
	u16			csr13;
	u16			csr14;
	u16			csr15;
};

struct ring_info {
	struct sk_buff		*skb;
	dma_addr_t		mapping;
};

struct de_private {
	unsigned		tx_head;
	unsigned		tx_tail;
	unsigned		rx_tail;

	void			__iomem *regs;
	struct net_device	*dev;
	spinlock_t		lock;

	struct de_desc		*rx_ring;
	struct de_desc		*tx_ring;
	struct ring_info	tx_skb[DE_TX_RING_SIZE];
	struct ring_info	rx_skb[DE_RX_RING_SIZE];
	unsigned		rx_buf_sz;
	dma_addr_t		ring_dma;

	u32			msg_enable;

	struct pci_dev		*pdev;

	u16			setup_frame[DE_SETUP_FRAME_WORDS];

	u32			media_type;
	u32			media_supported;
	u32			media_advertise;
	struct media_info	media[DE_MAX_MEDIA];
	struct timer_list	media_timer;

	u8			*ee_data;
	unsigned		board_idx;
	unsigned		de21040 : 1;
	unsigned		media_lock : 1;
};


static void de_set_rx_mode (struct net_device *dev);
static void de_tx (struct de_private *de);
static void de_clean_rings (struct de_private *de);
static void de_media_interrupt (struct de_private *de, u32 status);
static void de21040_media_timer (struct timer_list *t);
static void de21041_media_timer (struct timer_list *t);
static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media);


static const struct pci_device_id de_pci_tbl[] = {
	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
	{ },
};
MODULE_DEVICE_TABLE(pci, de_pci_tbl);

static const char * const media_name[DE_MAX_MEDIA] = {
	"10baseT auto",
	"BNC",
	"AUI",
	"10baseT-HD",
	"10baseT-FD"
};

/* 21040 transceiver register settings:
 * TP AUTO(unused), BNC(unused), AUI, TP, TP FD*/
static u16 t21040_csr13[] = { 0, 0, 0x8F09, 0x8F01, 0x8F01, };
static u16 t21040_csr14[] = { 0, 0, 0x0705, 0xFFFF, 0xFFFD, };
static u16 t21040_csr15[] = { 0, 0, 0x0006, 0x0000, 0x0000, };

/* 21041 transceiver register settings: TP AUTO, BNC, AUI, TP, TP FD*/
static u16 t21041_csr13[] = { 0xEF01, 0xEF09, 0xEF09, 0xEF01, 0xEF09, };
static u16 t21041_csr14[] = { 0xFFFF, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, };
/* If on-chip autonegotiation is broken, use half-duplex (FF3F) instead */
static u16 t21041_csr14_brk[] = { 0xFF3F, 0xF7FD, 0xF7FD, 0x7F3F, 0x7F3D, };
static u16 t21041_csr15[] = { 0x0008, 0x0006, 0x000E, 0x0008, 0x0008, };


#define dr32(reg)	ioread32(de->regs + (reg))
#define dw32(reg, val)	iowrite32((val), de->regs + (reg))


static void de_rx_err_acct (struct de_private *de, unsigned rx_tail,
			    u32 status, u32 len)
{
	netif_dbg(de, rx_err, de->dev,
		  "rx err, slot %d status 0x%x len %d\n",
		  rx_tail, status, len);

	if ((status & 0x38000300) != 0x0300) {
		/* Ingore earlier buffers. */
		if ((status & 0xffff) != 0x7fff) {
			netif_warn(de, rx_err, de->dev,
				   "Oversized Ethernet frame spanned multiple buffers, status %08x!\n",
				   status);
			de->dev->stats.rx_length_errors++;
		}
	} else if (status & RxError) {
		/* There was a fatal error. */
		de->dev->stats.rx_errors++; /* end of a packet.*/
		if (status & 0x0890) de->dev->stats.rx_length_errors++;
		if (status & RxErrCRC) de->dev->stats.rx_crc_errors++;
		if (status & RxErrFIFO) de->dev->stats.rx_fifo_errors++;
	}
}

static void de_rx (struct de_private *de)
{
	unsigned rx_tail = de->rx_tail;
	unsigned rx_work = DE_RX_RING_SIZE;
	unsigned drop = 0;
	int rc;

	while (--rx_work) {
		u32 status, len;
		dma_addr_t mapping;
		struct sk_buff *skb, *copy_skb;
		unsigned copying_skb, buflen;

		skb = de->rx_skb[rx_tail].skb;
		BUG_ON(!skb);
		rmb();
		status = le32_to_cpu(de->rx_ring[rx_tail].opts1);
		if (status & DescOwn)
			break;

		/* the length is actually a 15 bit value here according
		 * to Table 4-1 in the DE2104x spec so mask is 0x7fff
		 */
		len = ((status >> 16) & 0x7fff) - 4;
		mapping = de->rx_skb[rx_tail].mapping;

		if (unlikely(drop)) {
			de->dev->stats.rx_dropped++;
			goto rx_next;
		}

		if (unlikely((status & 0x38008300) != 0x0300)) {
			de_rx_err_acct(de, rx_tail, status, len);
			goto rx_next;
		}

		copying_skb = (len <= rx_copybreak);

		netif_dbg(de, rx_status, de->dev,
			  "rx slot %d status 0x%x len %d copying? %d\n",
			  rx_tail, status, len, copying_skb);

		buflen = copying_skb ? (len + RX_OFFSET) : de->rx_buf_sz;
		copy_skb = netdev_alloc_skb(de->dev, buflen);
		if (unlikely(!copy_skb)) {
			de->dev->stats.rx_dropped++;
			drop = 1;
			rx_work = 100;
			goto rx_next;
		}

		if (!copying_skb) {
			dma_unmap_single(&de->pdev->dev, mapping, buflen,
					 DMA_FROM_DEVICE);
			skb_put(skb, len);

			mapping =
			de->rx_skb[rx_tail].mapping =
				dma_map_single(&de->pdev->dev, copy_skb->data,
					       buflen, DMA_FROM_DEVICE);
			de->rx_skb[rx_tail].skb = copy_skb;
		} else {
			dma_sync_single_for_cpu(&de->pdev->dev, mapping, len,
						DMA_FROM_DEVICE);
			skb_reserve(copy_skb, RX_OFFSET);
			skb_copy_from_linear_data(skb, skb_put(copy_skb, len),
						  len);
			dma_sync_single_for_device(&de->pdev->dev, mapping,
						   len, DMA_FROM_DEVICE);

			/* We'll reuse the original ring buffer. */
			skb = copy_skb;
		}

		skb->protocol = eth_type_trans (skb, de->dev);

		de->dev->stats.rx_packets++;
		de->dev->stats.rx_bytes += skb->len;
		rc = netif_rx (skb);
		if (rc == NET_RX_DROP)
			drop = 1;

rx_next:
		if (rx_tail == (DE_RX_RING_SIZE - 1))
			de->rx_ring[rx_tail].opts2 =
				cpu_to_le32(RingEnd | de->rx_buf_sz);
		else
			de->rx_ring[rx_tail].opts2 = cpu_to_le32(de->rx_buf_sz);
		de->rx_ring[rx_tail].addr1 = cpu_to_le32(mapping);
		wmb();
		de->rx_ring[rx_tail].opts1 = cpu_to_le32(DescOwn);
		rx_tail = NEXT_RX(rx_tail);
	}

	if (!rx_work)
		netdev_warn(de->dev, "rx work limit reached\n");

	de->rx_tail = rx_tail;
}

static irqreturn_t de_interrupt (int irq, void *dev_instance)
{
	struct net_device *dev = dev_instance;
	struct de_private *de = netdev_priv(dev);
	u32 status;

	status = dr32(MacStatus);
	if ((!(status & (IntrOK|IntrErr))) || (status == 0xFFFF))
		return IRQ_NONE;

	netif_dbg(de, intr, dev, "intr, status %08x mode %08x desc %u/%u/%u\n",
		  status, dr32(MacMode),
		  de->rx_tail, de->tx_head, de->tx_tail);

	dw32(MacStatus, status);

	if (status & (RxIntr | RxEmpty)) {
		de_rx(de);
		if (status & RxEmpty)
			dw32(RxPoll, NormalRxPoll);
	}

	spin_lock(&de->lock);

	if (status & (TxIntr | TxEmpty))
		de_tx(de);

	if (status & (LinkPass | LinkFail))
		de_media_interrupt(de, status);

	spin_unlock(&de->lock);

	if (status & PciErr) {
		u16 pci_status;

		pci_read_config_word(de->pdev, PCI_STATUS, &pci_status);
		pci_write_config_word(de->pdev, PCI_STATUS, pci_status);
		netdev_err(de->dev,
			   "PCI bus error, status=%08x, PCI status=%04x\n",
			   status, pci_status);
	}

	return IRQ_HANDLED;
}

static void de_tx (struct de_private *de)
{
	unsigned tx_head = de->tx_head;
	unsigned tx_tail = de->tx_tail;

	while (tx_tail != tx_head) {
		struct sk_buff *skb;
		u32 status;

		rmb();
		status = le32_to_cpu(de->tx_ring[tx_tail].opts1);
		if (status & DescOwn)
			break;

		skb = de->tx_skb[tx_tail].skb;
		BUG_ON(!skb);
		if (unlikely(skb == DE_DUMMY_SKB))
			goto next;

		if (unlikely(skb == DE_SETUP_SKB)) {
			dma_unmap_single(&de->pdev->dev,
					 de->tx_skb[tx_tail].mapping,
					 sizeof(de->setup_frame),
					 DMA_TO_DEVICE);
			goto next;
		}

		dma_unmap_single(&de->pdev->dev, de->tx_skb[tx_tail].mapping,
				 skb->len, DMA_TO_DEVICE);

		if (status & LastFrag) {
			if (status & TxError) {
				netif_dbg(de, tx_err, de->dev,
					  "tx err, status 0x%x\n",
					  status);
				de->dev->stats.tx_errors++;
				if (status & TxOWC)
					de->dev->stats.tx_window_errors++;
				if (status & TxMaxCol)
					de->dev->stats.tx_aborted_errors++;
				if (status & TxLinkFail)
					de->dev->stats.tx_carrier_errors++;
				if (status & TxFIFOUnder)
					de->dev->stats.tx_fifo_errors++;
			} else {
				de->dev->stats.tx_packets++;
				de->dev->stats.tx_bytes += skb->len;
				netif_dbg(de, tx_done, de->dev,
					  "tx done, slot %d\n", tx_tail);
			}
			dev_consume_skb_irq(skb);
		}

next:
		de->tx_skb[tx_tail].skb = NULL;

		tx_tail = NEXT_TX(tx_tail);
	}

	de->tx_tail = tx_tail;

	if (netif_queue_stopped(de->dev) && (TX_BUFFS_AVAIL(de) > (DE_TX_RING_SIZE / 4)))
		netif_wake_queue(de->dev);
}

static netdev_tx_t de_start_xmit (struct sk_buff *skb,
					struct net_device *dev)
{
	struct de_private *de = netdev_priv(dev);
	unsigned int entry, tx_free;
	u32 mapping, len, flags = FirstFrag | LastFrag;
	struct de_desc *txd;

	spin_lock_irq(&de->lock);

	tx_free = TX_BUFFS_AVAIL(de);
	if (tx_free == 0) {
		netif_stop_queue(dev);
		spin_unlock_irq(&de->lock);
		return NETDEV_TX_BUSY;
	}
	tx_free--;

	entry = de->tx_head;

	txd = &de->tx_ring[entry];

	len = skb->len;
	mapping = dma_map_single(&de->pdev->dev, skb->data, len,
				 DMA_TO_DEVICE);
	if (entry == (DE_TX_RING_SIZE - 1))
		flags |= RingEnd;
	if (!tx_free || (tx_free == (DE_TX_RING_SIZE / 2)))
		flags |= TxSwInt;
	flags |= len;
	txd->opts2 = cpu_to_le32(flags);
	txd->addr1 = cpu_to_le32(mapping);

	de->tx_skb[entry].skb = skb;
	de->tx_skb[entry].mapping = mapping;
	wmb();

	txd->opts1 = cpu_to_le32(DescOwn);
	wmb();

	de->tx_head = NEXT_TX(entry);
	netif_dbg(de, tx_queued, dev, "tx queued, slot %d, skblen %d\n",
		  entry, skb->len);

	if (tx_free == 0)
		netif_stop_queue(dev);

	spin_unlock_irq(&de->lock);

	/* Trigger an immediate transmit demand. */
	dw32(TxPoll, NormalTxPoll);

	return NETDEV_TX_OK;
}

/* Set or clear the multicast filter for this adaptor.
   Note that we only use exclusion around actually queueing the
   new frame, not around filling de->setup_frame.  This is non-deterministic
   when re-entered but still correct. */

static void build_setup_frame_hash(u16 *setup_frm, struct net_device *dev)
{
	struct de_private *de = netdev_priv(dev);
	u16 hash_table[32];
	struct netdev_hw_addr *ha;
	const u16 *eaddrs;
	int i;

	memset(hash_table, 0, sizeof(hash_table));
	__set_bit_le(255, hash_table);			/* Broadcast entry */
	/* This should work on big-endian machines as well. */
	netdev_for_each_mc_addr(ha, dev) {
		int index = ether_crc_le(ETH_ALEN, ha->addr) & 0x1ff;

		__set_bit_le(index, hash_table);
	}

	for (i = 0; i < 32; i++) {
		*setup_frm++ = hash_table[i];
		*setup_frm++ = hash_table[i];
	}
	setup_frm = &de->setup_frame[13*6];

	/* Fill the final entry with our physical address. */
	eaddrs = (const u16 *)dev->dev_addr;
	*setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
	*setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
	*setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
}

static void build_setup_frame_perfect(u16 *setup_frm, struct net_device *dev)
{
	struct de_private *de = netdev_priv(dev);
	struct netdev_hw_addr *ha;
	const u16 *eaddrs;

	/* We have <= 14 addresses so we can use the wonderful
	   16 address perfect filtering of the Tulip. */
	netdev_for_each_mc_addr(ha, dev) {
		eaddrs = (u16 *) ha->addr;
		*setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
		*setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
		*setup_frm++ = *eaddrs; *setup_frm++ = *eaddrs++;
	}
	/* Fill the unused entries with the broadcast address. */
	memset(setup_frm, 0xff, (15 - netdev_mc_count(dev)) * 12);
	setup_frm = &de->setup_frame[15*6];

	/* Fill the final entry with our physical address. */
	eaddrs = (const u16 *)dev->dev_addr;
	*setup_frm++ = eaddrs[0]; *setup_frm++ = eaddrs[0];
	*setup_frm++ = eaddrs[1]; *setup_frm++ = eaddrs[1];
	*setup_frm++ = eaddrs[2]; *setup_frm++ = eaddrs[2];
}


static void __de_set_rx_mode (struct net_device *dev)
{
	struct de_private *de = netdev_priv(dev);
	u32 macmode;
	unsigned int entry;
	u32 mapping;
	struct de_desc *txd;
	struct de_desc *dummy_txd = NULL;

	macmode = dr32(MacMode) & ~(AcceptAllMulticast | AcceptAllPhys);

	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
		macmode |= AcceptAllMulticast | AcceptAllPhys;
		goto out;
	}

	if ((netdev_mc_count(dev) > 1000) || (dev->flags & IFF_ALLMULTI)) {
		/* Too many to filter well -- accept all multicasts. */
		macmode |= AcceptAllMulticast;
		goto out;
	}

	/* Note that only the low-address shortword of setup_frame is valid!
	   The values are doubled for big-endian architectures. */
	if (netdev_mc_count(dev) > 14)	/* Must use a multicast hash table. */
		build_setup_frame_hash (de->setup_frame, dev);
	else
		build_setup_frame_perfect (de->setup_frame, dev);

	/*
	 * Now add this frame to the Tx list.
	 */

	entry = de->tx_head;

	/* Avoid a chip errata by prefixing a dummy entry. */
	if (entry != 0) {
		de->tx_skb[entry].skb = DE_DUMMY_SKB;

		dummy_txd = &de->tx_ring[entry];
		dummy_txd->opts2 = (entry == (DE_TX_RING_SIZE - 1)) ?
				   cpu_to_le32(RingEnd) : 0;
		dummy_txd->addr1 = 0;

		/* Must set DescOwned later to avoid race with chip */

		entry = NEXT_TX(entry);
	}

	de->tx_skb[entry].skb = DE_SETUP_SKB;
	de->tx_skb[entry].mapping = mapping =
	    dma_map_single(&de->pdev->dev, de->setup_frame,
			   sizeof(de->setup_frame), DMA_TO_DEVICE);

	/* Put the setup frame on the Tx list. */
	txd = &de->tx_ring[entry];
	if (entry == (DE_TX_RING_SIZE - 1))
		txd->opts2 = cpu_to_le32(SetupFrame | RingEnd | sizeof (de->setup_frame));
	else
		txd->opts2 = cpu_to_le32(SetupFrame | sizeof (de->setup_frame));
	txd->addr1 = cpu_to_le32(mapping);
	wmb();

	txd->opts1 = cpu_to_le32(DescOwn);
	wmb();

	if (dummy_txd) {
		dummy_txd->opts1 = cpu_to_le32(DescOwn);
		wmb();
	}

	de->tx_head = NEXT_TX(entry);

	if (TX_BUFFS_AVAIL(de) == 0)
		netif_stop_queue(dev);

	/* Trigger an immediate transmit demand. */
	dw32(TxPoll, NormalTxPoll);

out:
	if (macmode != dr32(MacMode))
		dw32(MacMode, macmode);
}

static void de_set_rx_mode (struct net_device *dev)
{
	unsigned long flags;
	struct de_private *de = netdev_priv(dev);

	spin_lock_irqsave (&de->lock, flags);
	__de_set_rx_mode(dev);
	spin_unlock_irqrestore (&de->lock, flags);
}

static inline void de_rx_missed(struct de_private *de, u32 rx_missed)
{
	if (unlikely(rx_missed & RxMissedOver))
		de->dev->stats.rx_missed_errors += RxMissedMask;
	else
		de->dev->stats.rx_missed_errors += (rx_missed & RxMissedMask);
}

static void __de_get_stats(struct de_private *de)
{
	u32 tmp = dr32(RxMissed); /* self-clearing */

	de_rx_missed(de, tmp);
}

static struct net_device_stats *de_get_stats(struct net_device *dev)
{
	struct de_private *de = netdev_priv(dev);

	/* The chip only need report frame silently dropped. */
	spin_lock_irq(&de->lock);
	if (netif_running(dev) && netif_device_present(dev))
		__de_get_stats(de);
	spin_unlock_irq(&de->lock);

	return &dev->stats;
}

static inline int de_is_running (struct de_private *de)
{
	return (dr32(MacStatus) & (RxState | TxState)) ? 1 : 0;
}

static void de_stop_rxtx (struct de_private *de)
{
	u32 macmode;
	unsigned int i = 1300/100;

	macmode = dr32(MacMode);
	if (macmode & RxTx) {
		dw32(MacMode, macmode & ~RxTx);
		dr32(MacMode);
	}

	/* wait until in-flight frame completes.
	 * Max time @ 10BT: 1500*8b/10Mbps == 1200us (+ 100us margin)
	 * Typically expect this loop to end in < 50 us on 100BT.
	 */
	while (--i) {
		if (!de_is_running(de))
			return;
		udelay(100);
	}

	netdev_warn(de->dev, "timeout expired, stopping DMA\n");
}

static inline void de_start_rxtx (struct de_private *de)
{
	u32 macmode;

	macmode = dr32(MacMode);
	if ((macmode & RxTx) != RxTx) {
		dw32(MacMode, macmode | RxTx);
		dr32(MacMode);
	}
}

static void de_stop_hw (struct de_private *de)
{

	udelay(5);
	dw32(IntrMask, 0);

	de_stop_rxtx(de);

	dw32(MacStatus, dr32(MacStatus));

	udelay(10);

	de->rx_tail = 0;
	de->tx_head = de->tx_tail = 0;
}

static void de_link_up(struct de_private *de)
{
	if (!netif_carrier_ok(de->dev)) {
		netif_carrier_on(de->dev);
		netif_info(de, link, de->dev, "link up, media %s\n",
			   media_name[de->media_type]);
	}
}

static void de_link_down(struct de_private *de)
{
	if (netif_carrier_ok(de->dev)) {
		netif_carrier_off(de->dev);
		netif_info(de, link, de->dev, "link down\n");
	}
}

static void de_set_media (struct de_private *de)
{
	unsigned media = de->media_type;
	u32 macmode = dr32(MacMode);

	if (de_is_running(de))
		netdev_warn(de->dev, "chip is running while changing media!\n");

	if (de->de21040)
		dw32(CSR11, FULL_DUPLEX_MAGIC);
	dw32(CSR13, 0); /* Reset phy */
	dw32(CSR14, de->media[media].csr14);
	dw32(CSR15, de->media[media].csr15);
	dw32(CSR13, de->media[media].csr13);

	/* must delay 10ms before writing to other registers,
	 * especially CSR6
	 */
	mdelay(10);

	if (media == DE_MEDIA_TP_FD)
		macmode |= FullDuplex;
	else
		macmode &= ~FullDuplex;

	netif_info(de, link, de->dev, "set link %s\n", media_name[media]);
	netif_info(de, hw, de->dev, "mode 0x%x, sia 0x%x,0x%x,0x%x,0x%x\n",
		   dr32(MacMode), dr32(SIAStatus),
		   dr32(CSR13), dr32(CSR14), dr32(CSR15));
	netif_info(de, hw, de->dev, "set mode 0x%x, set sia 0x%x,0x%x,0x%x\n",
		   macmode, de->media[media].csr13,
		   de->media[media].csr14, de->media[media].csr15);
	if (macmode != dr32(MacMode))
		dw32(MacMode, macmode);
}

static void de_next_media (struct de_private *de, const u32 *media,
			   unsigned int n_media)
{
	unsigned int i;

	for (i = 0; i < n_media; i++) {
		if (de_ok_to_advertise(de, media[i])) {
			de->media_type = media[i];
			return;
		}
	}
}

static void de21040_media_timer (struct timer_list *t)
{
	struct de_private *de = from_timer(de, t, media_timer);
	struct net_device *dev = de->dev;
	u32 status = dr32(SIAStatus);
	unsigned int carrier;
	unsigned long flags;

	carrier = (status & NetCxnErr) ? 0 : 1;

	if (carrier) {
		if (de->media_type != DE_MEDIA_AUI && (status & LinkFailStatus))
			goto no_link_yet;

		de->media_timer.expires = jiffies + DE_TIMER_LINK;
		add_timer(&de->media_timer);
		if (!netif_carrier_ok(dev))
			de_link_up(de);
		else
			netif_info(de, timer, dev, "%s link ok, status %x\n",
				   media_name[de->media_type], status);
		return;
	}

	de_link_down(de);

	if (de->media_lock)
		return;

	if (de->media_type == DE_MEDIA_AUI) {
		static const u32 next_state = DE_MEDIA_TP;
		de_next_media(de, &next_state, 1);
	} else {
		static const u32 next_state = DE_MEDIA_AUI;
		de_next_media(de, &next_state, 1);
	}

	spin_lock_irqsave(&de->lock, flags);
	de_stop_rxtx(de);
	spin_unlock_irqrestore(&de->lock, flags);
	de_set_media(de);
	de_start_rxtx(de);

no_link_yet:
	de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
	add_timer(&de->media_timer);

	netif_info(de, timer, dev, "no link, trying media %s, status %x\n",
		   media_name[de->media_type], status);
}

static unsigned int de_ok_to_advertise (struct de_private *de, u32 new_media)
{
	switch (new_media) {
	case DE_MEDIA_TP_AUTO:
		if (!(de->media_advertise & ADVERTISED_Autoneg))
			return 0;
		if (!(de->media_advertise & (ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full)))
			return 0;
		break;
	case DE_MEDIA_BNC:
		if (!(de->media_advertise & ADVERTISED_BNC))
			return 0;
		break;
	case DE_MEDIA_AUI:
		if (!(de->media_advertise & ADVERTISED_AUI))
			return 0;
		break;
	case DE_MEDIA_TP:
		if (!(de->media_advertise & ADVERTISED_10baseT_Half))
			return 0;
		break;
	case DE_MEDIA_TP_FD:
		if (!(de->media_advertise & ADVERTISED_10baseT_Full))
			return 0;
		break;
	}

	return 1;
}

static void de21041_media_timer (struct timer_list *t)
{
	struct de_private *de = from_timer(de, t, media_timer);
	struct net_device *dev = de->dev;
	u32 status = dr32(SIAStatus);
	unsigned int carrier;
	unsigned long flags;

	/* clear port active bits */
	dw32(SIAStatus, NonselPortActive | SelPortActive);

	carrier = (status & NetCxnErr) ? 0 : 1;

	if (carrier) {
		if ((de->media_type == DE_MEDIA_TP_AUTO ||
		     de->media_type == DE_MEDIA_TP ||
		     de->media_type == DE_MEDIA_TP_FD) &&
		    (status & LinkFailStatus))
			goto no_link_yet;

		de->media_timer.expires = jiffies + DE_TIMER_LINK;
		add_timer(&de->media_timer);
		if (!netif_carrier_ok(dev))
			de_link_up(de);
		else
			netif_info(de, timer, dev,
				   "%s link ok, mode %x status %x\n",
				   media_name[de->media_type],
				   dr32(MacMode), status);
		return;
	}

	de_link_down(de);

	/* if media type locked, don't switch media */
	if (de->media_lock)
		goto set_media;

	/* if activity detected, use that as hint for new media type */
	if (status & NonselPortActive) {
		unsigned int have_media = 1;

		/* if AUI/BNC selected, then activity is on TP port */
		if (de->media_type == DE_MEDIA_AUI ||
		    de->media_type == DE_MEDIA_BNC) {
			if (de_ok_to_advertise(de, DE_MEDIA_TP_AUTO))
				de->media_type = DE_MEDIA_TP_AUTO;
			else
				have_media = 0;
		}

		/* TP selected.  If there is only TP and BNC, then it's BNC */
		else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_BNC) &&
			 de_ok_to_advertise(de, DE_MEDIA_BNC))
			de->media_type = DE_MEDIA_BNC;

		/* TP selected.  If there is only TP and AUI, then it's AUI */
		else if (((de->media_supported & DE_AUI_BNC) == SUPPORTED_AUI) &&
			 de_ok_to_advertise(de, DE_MEDIA_AUI))
			de->media_type = DE_MEDIA_AUI;

		/* otherwise, ignore the hint */
		else
			have_media = 0;

		if (have_media)
			goto set_media;
	}

	/*
	 * Absent or ambiguous activity hint, move to next advertised
	 * media state.  If de->media_type is left unchanged, this
	 * simply resets the PHY and reloads the current media settings.
	 */
	if (de->media_type == DE_MEDIA_AUI) {
		static const u32 next_states[] = {
			DE_MEDIA_BNC, DE_MEDIA_TP_AUTO
		};
		de_next_media(de, next_states, ARRAY_SIZE(next_states));
	} else if (de->media_type == DE_MEDIA_BNC) {
		static const u32 next_states[] = {
			DE_MEDIA_TP_AUTO, DE_MEDIA_AUI
		};
		de_next_media(de, next_states, ARRAY_SIZE(next_states));
	} else {
		static const u32 next_states[] = {
			DE_MEDIA_AUI, DE_MEDIA_BNC, DE_MEDIA_TP_AUTO
		};
		de_next_media(de, next_states, ARRAY_SIZE(next_states));
	}

set_media:
	spin_lock_irqsave(&de->lock, flags);
	de_stop_rxtx(de);
	spin_unlock_irqrestore(&de->lock, flags);
	de_set_media(de);
	de_start_rxtx(de);

no_link_yet:
	de->media_timer.expires = jiffies + DE_TIMER_NO_LINK;
	add_timer(&de->media_timer);

	netif_info(de, timer, dev, "no link, trying media %s, status %x\n",
		   media_name[de->media_type], status);
}

static void de_media_interrupt (struct de_private *de, u32 status)
{
	if (status & LinkPass) {
		/* Ignore if current media is AUI or BNC and we can't use TP */
		if ((de->media_type == DE_MEDIA_AUI ||
		     de->media_type == DE_MEDIA_BNC) &&
		    (de->media_lock ||
		     !de_ok_to_advertise(de, DE_MEDIA_TP_AUTO)))
			return;
		/* If current media is not TP, change it to TP */
		if ((de->media_type == DE_MEDIA_AUI ||
		     de->media_type == DE_MEDIA_BNC)) {
			de->media_type = DE_MEDIA_TP_AUTO;
			de_stop_rxtx(de);
			de_set_media(de);
			de_start_rxtx(de);
		}
		de_link_up(de);
		mod_timer(&de->media_timer, jiffies + DE_TIMER_LINK);
		return;
	}

	BUG_ON(!(status & LinkFail));
	/* Mark the link as down only if current media is TP */
	if (netif_carrier_ok(de->dev) && de->media_type != DE_MEDIA_AUI &&
	    de->media_type != DE_MEDIA_BNC) {
		de_link_down(de);
		mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
	}
}

static int de_reset_mac (struct de_private *de)
{
	u32 status, tmp;

	/*
	 * Reset MAC.  de4x5.c and tulip.c examined for "advice"
	 * in this area.
	 */

	if (dr32(BusMode) == 0xffffffff)
		return -EBUSY;

	/* Reset the chip, holding bit 0 set at least 50 PCI cycles. */
	dw32 (BusMode, CmdReset);
	mdelay (1);

	dw32 (BusMode, de_bus_mode);
	mdelay (1);

	for (tmp = 0; tmp < 5; tmp++) {
		dr32 (BusMode);
		mdelay (1);
	}

	mdelay (1);

	status = dr32(MacStatus);
	if (status & (RxState | TxState))
		return -EBUSY;
	if (status == 0xffffffff)
		return -ENODEV;
	return 0;
}

static void de_adapter_wake (struct de_private *de)
{
	u32 pmctl;

	if (de->de21040)
		return;

	pci_read_config_dword(de->pdev, PCIPM, &pmctl);
	if (pmctl & PM_Mask) {
		pmctl &= ~PM_Mask;
		pci_write_config_dword(de->pdev, PCIPM, pmctl);

		/* de4x5.c delays, so we do too */
		msleep(10);
	}
}

static void de_adapter_sleep (struct de_private *de)
{
	u32 pmctl;

	if (de->de21040)
		return;

	dw32(CSR13, 0); /* Reset phy */
	pci_read_config_dword(de->pdev, PCIPM, &pmctl);
	pmctl |= PM_Sleep;
	pci_write_config_dword(de->pdev, PCIPM, pmctl);
}

static int de_init_hw (struct de_private *de)
{
	struct net_device *dev = de->dev;
	u32 macmode;
	int rc;

	de_adapter_wake(de);

	macmode = dr32(MacMode) & ~MacModeClear;

	rc = de_reset_mac(de);
	if (rc)
		return rc;

	de_set_media(de); /* reset phy */

	dw32(RxRingAddr, de->ring_dma);
	dw32(TxRingAddr, de->ring_dma + (sizeof(struct de_desc) * DE_RX_RING_SIZE));

	dw32(MacMode, RxTx | macmode);

	dr32(RxMissed); /* self-clearing */

	dw32(IntrMask, de_intr_mask);

	de_set_rx_mode(dev);

	return 0;
}

static int de_refill_rx (struct de_private *de)
{
	unsigned i;

	for (i = 0; i < DE_RX_RING_SIZE; i++) {
		struct sk_buff *skb;

		skb = netdev_alloc_skb(de->dev, de->rx_buf_sz);
		if (!skb)
			goto err_out;

		de->rx_skb[i].mapping = dma_map_single(&de->pdev->dev,
						       skb->data,
						       de->rx_buf_sz,
						       DMA_FROM_DEVICE);
		de->rx_skb[i].skb = skb;

		de->rx_ring[i].opts1 = cpu_to_le32(DescOwn);
		if (i == (DE_RX_RING_SIZE - 1))
			de->rx_ring[i].opts2 =
				cpu_to_le32(RingEnd | de->rx_buf_sz);
		else
			de->rx_ring[i].opts2 = cpu_to_le32(de->rx_buf_sz);
		de->rx_ring[i].addr1 = cpu_to_le32(de->rx_skb[i].mapping);
		de->rx_ring[i].addr2 = 0;
	}

	return 0;

err_out:
	de_clean_rings(de);
	return -ENOMEM;
}

static int de_init_rings (struct de_private *de)
{
	memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
	de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);

	de->rx_tail = 0;
	de->tx_head = de->tx_tail = 0;

	return de_refill_rx (de);
}

static int de_alloc_rings (struct de_private *de)
{
	de->rx_ring = dma_alloc_coherent(&de->pdev->dev, DE_RING_BYTES,
					 &de->ring_dma, GFP_KERNEL);
	if (!de->rx_ring)
		return -ENOMEM;
	de->tx_ring = &de->rx_ring[DE_RX_RING_SIZE];
	return de_init_rings(de);
}

static void de_clean_rings (struct de_private *de)
{
	unsigned i;

	memset(de->rx_ring, 0, sizeof(struct de_desc) * DE_RX_RING_SIZE);
	de->rx_ring[DE_RX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
	wmb();
	memset(de->tx_ring, 0, sizeof(struct de_desc) * DE_TX_RING_SIZE);
	de->tx_ring[DE_TX_RING_SIZE - 1].opts2 = cpu_to_le32(RingEnd);
	wmb();

	for (i = 0; i < DE_RX_RING_SIZE; i++) {
		if (de->rx_skb[i].skb) {
			dma_unmap_single(&de->pdev->dev,
					 de->rx_skb[i].mapping, de->rx_buf_sz,
					 DMA_FROM_DEVICE);
			dev_kfree_skb(de->rx_skb[i].skb);
		}
	}

	for (i = 0; i < DE_TX_RING_SIZE; i++) {
		struct sk_buff *skb = de->tx_skb[i].skb;
		if ((skb) && (skb != DE_DUMMY_SKB)) {
			if (skb != DE_SETUP_SKB) {
				de->dev->stats.tx_dropped++;
				dma_unmap_single(&de->pdev->dev,
						 de->tx_skb[i].mapping,
						 skb->len, DMA_TO_DEVICE);
				dev_kfree_skb(skb);
			} else {
				dma_unmap_single(&de->pdev->dev,
						 de->tx_skb[i].mapping,
						 sizeof(de->setup_frame),
						 DMA_TO_DEVICE);
			}
		}
	}

	memset(&de->rx_skb, 0, sizeof(struct ring_info) * DE_RX_RING_SIZE);
	memset(&de->tx_skb, 0, sizeof(struct ring_info) * DE_TX_RING_SIZE);
}

static void de_free_rings (struct de_private *de)
{
	de_clean_rings(de);
	dma_free_coherent(&de->pdev->dev, DE_RING_BYTES, de->rx_ring,
			  de->ring_dma);
	de->rx_ring = NULL;
	de->tx_ring = NULL;
}

static int de_open (struct net_device *dev)
{
	struct de_private *de = netdev_priv(dev);
	const int irq = de->pdev->irq;
	int rc;

	netif_dbg(de, ifup, dev, "enabling interface\n");

	de->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);

	rc = de_alloc_rings(de);
	if (rc) {
		netdev_err(dev, "ring allocation failure, err=%d\n", rc);
		return rc;
	}

	dw32(IntrMask, 0);

	rc = request_irq(irq, de_interrupt, IRQF_SHARED, dev->name, dev);
	if (rc) {
		netdev_err(dev, "IRQ %d request failure, err=%d\n", irq, rc);
		goto err_out_free;
	}

	rc = de_init_hw(de);
	if (rc) {
		netdev_err(dev, "h/w init failure, err=%d\n", rc);
		goto err_out_free_irq;
	}

	netif_start_queue(dev);
	mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);

	return 0;

err_out_free_irq:
	free_irq(irq, dev);
err_out_free:
	de_free_rings(de);
	return rc;
}

static int de_close (struct net_device *dev)
{
	struct de_private *de = netdev_priv(dev);
	unsigned long flags;

	netif_dbg(de, ifdown, dev, "disabling interface\n");

	del_timer_sync(&de->media_timer);

	spin_lock_irqsave(&de->lock, flags);
	de_stop_hw(de);
	netif_stop_queue(dev);
	netif_carrier_off(dev);
	spin_unlock_irqrestore(&de->lock, flags);

	free_irq(de->pdev->irq, dev);

	de_free_rings(de);
	de_adapter_sleep(de);
	return 0;
}

static void de_tx_timeout (struct net_device *dev, unsigned int txqueue)
{
	struct de_private *de = netdev_priv(dev);
	const int irq = de->pdev->irq;

	netdev_dbg(dev, "NIC status %08x mode %08x sia %08x desc %u/%u/%u\n",
		   dr32(MacStatus), dr32(MacMode), dr32(SIAStatus),
		   de->rx_tail, de->tx_head, de->tx_tail);

	del_timer_sync(&de->media_timer);

	disable_irq(irq);
	spin_lock_irq(&de->lock);

	de_stop_hw(de);
	netif_stop_queue(dev);
	netif_carrier_off(dev);

	spin_unlock_irq(&de->lock);
	enable_irq(irq);

	/* Update the error counts. */
	__de_get_stats(de);

	synchronize_irq(irq);
	de_clean_rings(de);

	de_init_rings(de);

	de_init_hw(de);

	netif_wake_queue(dev);
}

static void __de_get_regs(struct de_private *de, u8 *buf)
{
	int i;
	u32 *rbuf = (u32 *)buf;

	/* read all CSRs */
	for (i = 0; i < DE_NUM_REGS; i++)
		rbuf[i] = dr32(i * 8);

	/* handle self-clearing RxMissed counter, CSR8 */
	de_rx_missed(de, rbuf[8]);
}

static void __de_get_link_ksettings(struct de_private *de,
				    struct ethtool_link_ksettings *cmd)
{
	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
						de->media_supported);
	cmd->base.phy_address = 0;
	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
						de->media_advertise);

	switch (de->media_type) {
	case DE_MEDIA_AUI:
		cmd->base.port = PORT_AUI;
		break;
	case DE_MEDIA_BNC:
		cmd->base.port = PORT_BNC;
		break;
	default:
		cmd->base.port = PORT_TP;
		break;
	}

	cmd->base.speed = 10;

	if (dr32(MacMode) & FullDuplex)
		cmd->base.duplex = DUPLEX_FULL;
	else
		cmd->base.duplex = DUPLEX_HALF;

	if (de->media_lock)
		cmd->base.autoneg = AUTONEG_DISABLE;
	else
		cmd->base.autoneg = AUTONEG_ENABLE;

	/* ignore maxtxpkt, maxrxpkt for now */
}

static int __de_set_link_ksettings(struct de_private *de,
				   const struct ethtool_link_ksettings *cmd)
{
	u32 new_media;
	unsigned int media_lock;
	u8 duplex = cmd->base.duplex;
	u8 port = cmd->base.port;
	u8 autoneg = cmd->base.autoneg;
	u32 advertising;

	ethtool_convert_link_mode_to_legacy_u32(&advertising,
						cmd->link_modes.advertising);

	if (cmd->base.speed != 10)
		return -EINVAL;
	if (duplex != DUPLEX_HALF && duplex != DUPLEX_FULL)
		return -EINVAL;
	if (port != PORT_TP && port != PORT_AUI && port != PORT_BNC)
		return -EINVAL;
	if (de->de21040 && port == PORT_BNC)
		return -EINVAL;
	if (autoneg != AUTONEG_DISABLE && autoneg != AUTONEG_ENABLE)
		return -EINVAL;
	if (advertising & ~de->media_supported)
		return -EINVAL;
	if (autoneg == AUTONEG_ENABLE &&
	    (!(advertising & ADVERTISED_Autoneg)))
		return -EINVAL;

	switch (port) {
	case PORT_AUI:
		new_media = DE_MEDIA_AUI;
		if (!(advertising & ADVERTISED_AUI))
			return -EINVAL;
		break;
	case PORT_BNC:
		new_media = DE_MEDIA_BNC;
		if (!(advertising & ADVERTISED_BNC))
			return -EINVAL;
		break;
	default:
		if (autoneg == AUTONEG_ENABLE)
			new_media = DE_MEDIA_TP_AUTO;
		else if (duplex == DUPLEX_FULL)
			new_media = DE_MEDIA_TP_FD;
		else
			new_media = DE_MEDIA_TP;
		if (!(advertising & ADVERTISED_TP))
			return -EINVAL;
		if (!(advertising & (ADVERTISED_10baseT_Full |
				     ADVERTISED_10baseT_Half)))
			return -EINVAL;
		break;
	}

	media_lock = (autoneg == AUTONEG_ENABLE) ? 0 : 1;

	if ((new_media == de->media_type) &&
	    (media_lock == de->media_lock) &&
	    (advertising == de->media_advertise))
		return 0; /* nothing to change */

	de_link_down(de);
	mod_timer(&de->media_timer, jiffies + DE_TIMER_NO_LINK);
	de_stop_rxtx(de);

	de->media_type = new_media;
	de->media_lock = media_lock;
	de->media_advertise = advertising;
	de_set_media(de);
	if (netif_running(de->dev))
		de_start_rxtx(de);

	return 0;
}

static void de_get_drvinfo (struct net_device *dev,struct ethtool_drvinfo *info)
{
	struct de_private *de = netdev_priv(dev);

	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
	strscpy(info->bus_info, pci_name(de->pdev), sizeof(info->bus_info));
}

static int de_get_regs_len(struct net_device *dev)
{
	return DE_REGS_SIZE;
}

static int de_get_link_ksettings(struct net_device *dev,
				 struct ethtool_link_ksettings *cmd)
{
	struct de_private *de = netdev_priv(dev);

	spin_lock_irq(&de->lock);
	__de_get_link_ksettings(de, cmd);
	spin_unlock_irq(&de->lock);

	return 0;
}

static int de_set_link_ksettings(struct net_device *dev,
				 const struct ethtool_link_ksettings *cmd)
{
	struct de_private *de = netdev_priv(dev);
	int rc;

	spin_lock_irq(&de->lock);
	rc = __de_set_link_ksettings(de, cmd);
	spin_unlock_irq(&de->lock);

	return rc;
}

static u32 de_get_msglevel(struct net_device *dev)
{
	struct de_private *de = netdev_priv(dev);

	return de->msg_enable;
}

static void de_set_msglevel(struct net_device *dev, u32 msglvl)
{
	struct de_private *de = netdev_priv(dev);

	de->msg_enable = msglvl;
}

static int de_get_eeprom(struct net_device *dev,
			 struct ethtool_eeprom *eeprom, u8 *data)
{
	struct de_private *de = netdev_priv(dev);

	if (!de->ee_data)
		return -EOPNOTSUPP;
	if ((eeprom->offset != 0) || (eeprom->magic != 0) ||
	    (eeprom->len != DE_EEPROM_SIZE))
		return -EINVAL;
	memcpy(data, de->ee_data, eeprom->len);

	return 0;
}

static int de_nway_reset(struct net_device *dev)
{
	struct de_private *de = netdev_priv(dev);
	u32 status;

	if (de->media_type != DE_MEDIA_TP_AUTO)
		return -EINVAL;
	if (netif_carrier_ok(de->dev))
		de_link_down(de);

	status = dr32(SIAStatus);
	dw32(SIAStatus, (status & ~NWayState) | NWayRestart);
	netif_info(de, link, dev, "link nway restart, status %x,%x\n",
		   status, dr32(SIAStatus));
	return 0;
}

static void de_get_regs(struct net_device *dev, struct ethtool_regs *regs,
			void *data)
{
	struct de_private *de = netdev_priv(dev);

	regs->version = (DE_REGS_VER << 2) | de->de21040;

	spin_lock_irq(&de->lock);
	__de_get_regs(de, data);
	spin_unlock_irq(&de->lock);
}

static const struct ethtool_ops de_ethtool_ops = {
	.get_link		= ethtool_op_get_link,
	.get_drvinfo		= de_get_drvinfo,
	.get_regs_len		= de_get_regs_len,
	.get_msglevel		= de_get_msglevel,
	.set_msglevel		= de_set_msglevel,
	.get_eeprom		= de_get_eeprom,
	.nway_reset		= de_nway_reset,
	.get_regs		= de_get_regs,
	.get_link_ksettings	= de_get_link_ksettings,
	.set_link_ksettings	= de_set_link_ksettings,
};

static void de21040_get_mac_address(struct de_private *de)
{
	u8 addr[ETH_ALEN];
	unsigned i;

	dw32 (ROMCmd, 0);	/* Reset the pointer with a dummy write. */
	udelay(5);

	for (i = 0; i < 6; i++) {
		int value, boguscnt = 100000;
		do {
			value = dr32(ROMCmd);
			rmb();
		} while (value < 0 && --boguscnt > 0);
		addr[i] = value;
		udelay(1);
		if (boguscnt <= 0)
			pr_warn("timeout reading 21040 MAC address byte %u\n",
				i);
	}
	eth_hw_addr_set(de->dev, addr);
}

static void de21040_get_media_info(struct de_private *de)
{
	unsigned int i;

	de->media_type = DE_MEDIA_TP;
	de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full |
			       SUPPORTED_10baseT_Half | SUPPORTED_AUI;
	de->media_advertise = de->media_supported;

	for (i = 0; i < DE_MAX_MEDIA; i++) {
		switch (i) {
		case DE_MEDIA_AUI:
		case DE_MEDIA_TP:
		case DE_MEDIA_TP_FD:
			de->media[i].type = i;
			de->media[i].csr13 = t21040_csr13[i];
			de->media[i].csr14 = t21040_csr14[i];
			de->media[i].csr15 = t21040_csr15[i];
			break;
		default:
			de->media[i].type = DE_MEDIA_INVALID;
			break;
		}
	}
}

/* Note: this routine returns extra data bits for size detection. */
static unsigned tulip_read_eeprom(void __iomem *regs, int location,
				  int addr_len)
{
	int i;
	unsigned retval = 0;
	void __iomem *ee_addr = regs + ROMCmd;
	int read_cmd = location | (EE_READ_CMD << addr_len);

	writel(EE_ENB & ~EE_CS, ee_addr);
	writel(EE_ENB, ee_addr);

	/* Shift the read command bits out. */
	for (i = 4 + addr_len; i >= 0; i--) {
		short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
		writel(EE_ENB | dataval, ee_addr);
		readl(ee_addr);
		writel(EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
		readl(ee_addr);
		retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
	}
	writel(EE_ENB, ee_addr);
	readl(ee_addr);

	for (i = 16; i > 0; i--) {
		writel(EE_ENB | EE_SHIFT_CLK, ee_addr);
		readl(ee_addr);
		retval = (retval << 1) | ((readl(ee_addr) & EE_DATA_READ) ? 1 : 0);
		writel(EE_ENB, ee_addr);
		readl(ee_addr);
	}

	/* Terminate the EEPROM access. */
	writel(EE_ENB & ~EE_CS, ee_addr);
	return retval;
}

static void de21041_get_srom_info(struct de_private *de)
{
	unsigned i, sa_offset = 0, ofs;
	u8 ee_data[DE_EEPROM_SIZE + 6] = {};
	unsigned ee_addr_size = tulip_read_eeprom(de->regs, 0xff, 8) & 0x40000 ? 8 : 6;
	struct de_srom_info_leaf *il;
	void *bufp;

	/* download entire eeprom */
	for (i = 0; i < DE_EEPROM_WORDS; i++)
		((__le16 *)ee_data)[i] =
			cpu_to_le16(tulip_read_eeprom(de->regs, i, ee_addr_size));

	/* DEC now has a specification but early board makers
	   just put the address in the first EEPROM locations. */
	/* This does  memcmp(eedata, eedata+16, 8) */

#ifndef CONFIG_MIPS_COBALT

	for (i = 0; i < 8; i ++)
		if (ee_data[i] != ee_data[16+i])
			sa_offset = 20;

#endif

	/* store MAC address */
	eth_hw_addr_set(de->dev, &ee_data[sa_offset]);

	/* get offset of controller 0 info leaf.  ignore 2nd byte. */
	ofs = ee_data[SROMC0InfoLeaf];
	if (ofs >= (sizeof(ee_data) - sizeof(struct de_srom_info_leaf) - sizeof(struct de_srom_media_block)))
		goto bad_srom;

	/* get pointer to info leaf */
	il = (struct de_srom_info_leaf *) &ee_data[ofs];

	/* paranoia checks */
	if (il->n_blocks == 0)
		goto bad_srom;
	if ((sizeof(ee_data) - ofs) <
	    (sizeof(struct de_srom_info_leaf) + (sizeof(struct de_srom_media_block) * il->n_blocks)))
		goto bad_srom;

	/* get default media type */
	switch (get_unaligned(&il->default_media)) {
	case 0x0001:  de->media_type = DE_MEDIA_BNC; break;
	case 0x0002:  de->media_type = DE_MEDIA_AUI; break;
	case 0x0204:  de->media_type = DE_MEDIA_TP_FD; break;
	default: de->media_type = DE_MEDIA_TP_AUTO; break;
	}

	if (netif_msg_probe(de))
		pr_info("de%d: SROM leaf offset %u, default media %s\n",
		       de->board_idx, ofs, media_name[de->media_type]);

	/* init SIA register values to defaults */
	for (i = 0; i < DE_MAX_MEDIA; i++) {
		de->media[i].type = DE_MEDIA_INVALID;
		de->media[i].csr13 = 0xffff;
		de->media[i].csr14 = 0xffff;
		de->media[i].csr15 = 0xffff;
	}

	/* parse media blocks to see what medias are supported,
	 * and if any custom CSR values are provided
	 */
	bufp = ((void *)il) + sizeof(*il);
	for (i = 0; i < il->n_blocks; i++) {
		struct de_srom_media_block *ib = bufp;
		unsigned idx;

		/* index based on media type in media block */
		switch(ib->opts & MediaBlockMask) {
		case 0: /* 10baseT */
			de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Half
					  | SUPPORTED_Autoneg;
			idx = DE_MEDIA_TP;
			de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
			break;
		case 1: /* BNC */
			de->media_supported |= SUPPORTED_BNC;
			idx = DE_MEDIA_BNC;
			break;
		case 2: /* AUI */
			de->media_supported |= SUPPORTED_AUI;
			idx = DE_MEDIA_AUI;
			break;
		case 4: /* 10baseT-FD */
			de->media_supported |= SUPPORTED_TP | SUPPORTED_10baseT_Full
					  | SUPPORTED_Autoneg;
			idx = DE_MEDIA_TP_FD;
			de->media[DE_MEDIA_TP_AUTO].type = DE_MEDIA_TP_AUTO;
			break;
		default:
			goto bad_srom;
		}

		de->media[idx].type = idx;

		if (netif_msg_probe(de))
			pr_info("de%d:   media block #%u: %s",
				de->board_idx, i,
				media_name[de->media[idx].type]);

		bufp += sizeof (ib->opts);

		if (ib->opts & MediaCustomCSRs) {
			de->media[idx].csr13 = get_unaligned(&ib->csr13);
			de->media[idx].csr14 = get_unaligned(&ib->csr14);
			de->media[idx].csr15 = get_unaligned(&ib->csr15);
			bufp += sizeof(ib->csr13) + sizeof(ib->csr14) +
				sizeof(ib->csr15);

			if (netif_msg_probe(de))
				pr_cont(" (%x,%x,%x)\n",
					de->media[idx].csr13,
					de->media[idx].csr14,
					de->media[idx].csr15);

		} else {
			if (netif_msg_probe(de))
				pr_cont("\n");
		}

		if (bufp > ((void *)&ee_data[DE_EEPROM_SIZE - 3]))
			break;
	}

	de->media_advertise = de->media_supported;

fill_defaults:
	/* fill in defaults, for cases where custom CSRs not used */
	for (i = 0; i < DE_MAX_MEDIA; i++) {
		if (de->media[i].csr13 == 0xffff)
			de->media[i].csr13 = t21041_csr13[i];
		if (de->media[i].csr14 == 0xffff) {
			/* autonegotiation is broken at least on some chip
			   revisions - rev. 0x21 works, 0x11 does not */
			if (de->pdev->revision < 0x20)
				de->media[i].csr14 = t21041_csr14_brk[i];
			else
				de->media[i].csr14 = t21041_csr14[i];
		}
		if (de->media[i].csr15 == 0xffff)
			de->media[i].csr15 = t21041_csr15[i];
	}

	de->ee_data = kmemdup(&ee_data[0], DE_EEPROM_SIZE, GFP_KERNEL);

	return;

bad_srom:
	/* for error cases, it's ok to assume we support all these */
	for (i = 0; i < DE_MAX_MEDIA; i++)
		de->media[i].type = i;
	de->media_supported =
		SUPPORTED_10baseT_Half |
		SUPPORTED_10baseT_Full |
		SUPPORTED_Autoneg |
		SUPPORTED_TP |
		SUPPORTED_AUI |
		SUPPORTED_BNC;
	goto fill_defaults;
}

static const struct net_device_ops de_netdev_ops = {
	.ndo_open		= de_open,
	.ndo_stop		= de_close,
	.ndo_set_rx_mode	= de_set_rx_mode,
	.ndo_start_xmit		= de_start_xmit,
	.ndo_get_stats		= de_get_stats,
	.ndo_tx_timeout 	= de_tx_timeout,
	.ndo_set_mac_address 	= eth_mac_addr,
	.ndo_validate_addr	= eth_validate_addr,
};

static int de_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
	struct net_device *dev;
	struct de_private *de;
	int rc;
	void __iomem *regs;
	unsigned long pciaddr;
	static int board_idx = -1;

	board_idx++;

	/* allocate a new ethernet device structure, and fill in defaults */
	dev = alloc_etherdev(sizeof(struct de_private));
	if (!dev)
		return -ENOMEM;

	dev->netdev_ops = &de_netdev_ops;
	SET_NETDEV_DEV(dev, &pdev->dev);
	dev->ethtool_ops = &de_ethtool_ops;
	dev->watchdog_timeo = TX_TIMEOUT;

	de = netdev_priv(dev);
	de->de21040 = ent->driver_data == 0 ? 1 : 0;
	de->pdev = pdev;
	de->dev = dev;
	de->msg_enable = (debug < 0 ? DE_DEF_MSG_ENABLE : debug);
	de->board_idx = board_idx;
	spin_lock_init (&de->lock);
	timer_setup(&de->media_timer,
		    de->de21040 ? de21040_media_timer : de21041_media_timer,
		    0);

	netif_carrier_off(dev);

	/* wake up device, assign resources */
	rc = pci_enable_device(pdev);
	if (rc)
		goto err_out_free;

	/* reserve PCI resources to ensure driver atomicity */
	rc = pci_request_regions(pdev, DRV_NAME);
	if (rc)
		goto err_out_disable;

	/* check for invalid IRQ value */
	if (pdev->irq < 2) {
		rc = -EIO;
		pr_err("invalid irq (%d) for pci dev %s\n",
		       pdev->irq, pci_name(pdev));
		goto err_out_res;
	}

	/* obtain and check validity of PCI I/O address */
	pciaddr = pci_resource_start(pdev, 1);
	if (!pciaddr) {
		rc = -EIO;
		pr_err("no MMIO resource for pci dev %s\n", pci_name(pdev));
		goto err_out_res;
	}
	if (pci_resource_len(pdev, 1) < DE_REGS_SIZE) {
		rc = -EIO;
		pr_err("MMIO resource (%llx) too small on pci dev %s\n",
		       (unsigned long long)pci_resource_len(pdev, 1),
		       pci_name(pdev));
		goto err_out_res;
	}

	/* remap CSR registers */
	regs = ioremap(pciaddr, DE_REGS_SIZE);
	if (!regs) {
		rc = -EIO;
		pr_err("Cannot map PCI MMIO (%llx@%lx) on pci dev %s\n",
		       (unsigned long long)pci_resource_len(pdev, 1),
		       pciaddr, pci_name(pdev));
		goto err_out_res;
	}
	de->regs = regs;

	de_adapter_wake(de);

	/* make sure hardware is not running */
	rc = de_reset_mac(de);
	if (rc) {
		pr_err("Cannot reset MAC, pci dev %s\n", pci_name(pdev));
		goto err_out_iomap;
	}

	/* get MAC address, initialize default media type and
	 * get list of supported media
	 */
	if (de->de21040) {
		de21040_get_mac_address(de);
		de21040_get_media_info(de);
	} else {
		de21041_get_srom_info(de);
	}

	/* register new network interface with kernel */
	rc = register_netdev(dev);
	if (rc)
		goto err_out_iomap;

	/* print info about board and interface just registered */
	netdev_info(dev, "%s at %p, %pM, IRQ %d\n",
		    de->de21040 ? "21040" : "21041",
		    regs, dev->dev_addr, pdev->irq);

	pci_set_drvdata(pdev, dev);

	/* enable busmastering */
	pci_set_master(pdev);

	/* put adapter to sleep */
	de_adapter_sleep(de);

	return 0;

err_out_iomap:
	kfree(de->ee_data);
	iounmap(regs);
err_out_res:
	pci_release_regions(pdev);
err_out_disable:
	pci_disable_device(pdev);
err_out_free:
	free_netdev(dev);
	return rc;
}

static void de_remove_one(struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);
	struct de_private *de = netdev_priv(dev);

	BUG_ON(!dev);
	unregister_netdev(dev);
	kfree(de->ee_data);
	iounmap(de->regs);
	pci_release_regions(pdev);
	pci_disable_device(pdev);
	free_netdev(dev);
}

static int __maybe_unused de_suspend(struct device *dev_d)
{
	struct pci_dev *pdev = to_pci_dev(dev_d);
	struct net_device *dev = pci_get_drvdata(pdev);
	struct de_private *de = netdev_priv(dev);

	rtnl_lock();
	if (netif_running (dev)) {
		const int irq = pdev->irq;

		del_timer_sync(&de->media_timer);

		disable_irq(irq);
		spin_lock_irq(&de->lock);

		de_stop_hw(de);
		netif_stop_queue(dev);
		netif_device_detach(dev);
		netif_carrier_off(dev);

		spin_unlock_irq(&de->lock);
		enable_irq(irq);

		/* Update the error counts. */
		__de_get_stats(de);

		synchronize_irq(irq);
		de_clean_rings(de);

		de_adapter_sleep(de);
	} else {
		netif_device_detach(dev);
	}
	rtnl_unlock();
	return 0;
}

static int __maybe_unused de_resume(struct device *dev_d)
{
	struct pci_dev *pdev = to_pci_dev(dev_d);
	struct net_device *dev = pci_get_drvdata(pdev);
	struct de_private *de = netdev_priv(dev);

	rtnl_lock();
	if (netif_device_present(dev))
		goto out;
	if (!netif_running(dev))
		goto out_attach;
	pci_set_master(pdev);
	de_init_rings(de);
	de_init_hw(de);
out_attach:
	netif_device_attach(dev);
out:
	rtnl_unlock();
	return 0;
}

static SIMPLE_DEV_PM_OPS(de_pm_ops, de_suspend, de_resume);

static void de_shutdown(struct pci_dev *pdev)
{
	struct net_device *dev = pci_get_drvdata(pdev);

	rtnl_lock();
	dev_close(dev);
	rtnl_unlock();
}

static struct pci_driver de_driver = {
	.name		= DRV_NAME,
	.id_table	= de_pci_tbl,
	.probe		= de_init_one,
	.remove		= de_remove_one,
	.shutdown	= de_shutdown,
	.driver.pm	= &de_pm_ops,
};

module_pci_driver(de_driver);