Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jacob E Keller | 504 | 52.23% | 20 | 41.67% |
Maciej Machnikowski | 178 | 18.45% | 2 | 4.17% |
Karol Kolacinski | 105 | 10.88% | 6 | 12.50% |
Anirudh Venkataramanan | 59 | 6.11% | 7 | 14.58% |
Michal Michalik | 54 | 5.60% | 3 | 6.25% |
Milena Olech | 15 | 1.55% | 1 | 2.08% |
Larysa Zaremba | 15 | 1.55% | 2 | 4.17% |
Krzysztof Kazimierczak | 10 | 1.04% | 1 | 2.08% |
Brett Creeley | 8 | 0.83% | 2 | 4.17% |
Sergey Temerkhanov | 7 | 0.73% | 1 | 2.08% |
Sudheer Mogilappagari | 7 | 0.73% | 1 | 2.08% |
Arkadiusz Kubalewski | 2 | 0.21% | 1 | 2.08% |
Lorenzo Bianconi | 1 | 0.10% | 1 | 2.08% |
Total | 965 | 48 |
/* SPDX-License-Identifier: GPL-2.0 */ /* Copyright (C) 2021, Intel Corporation. */ #ifndef _ICE_PTP_H_ #define _ICE_PTP_H_ #include <linux/ptp_clock_kernel.h> #include <linux/kthread.h> #include "ice_ptp_hw.h" enum ice_ptp_pin_e810 { GPIO_20 = 0, GPIO_21, GPIO_22, GPIO_23, NUM_PTP_PIN_E810 }; enum ice_ptp_pin_e810t { GNSS = 0, SMA1, UFL1, SMA2, UFL2, NUM_PTP_PINS_E810T }; struct ice_perout_channel { bool ena; u32 gpio_pin; u32 flags; u64 period; u64 start_time; }; struct ice_extts_channel { bool ena; u32 gpio_pin; u32 flags; }; /* The ice hardware captures Tx hardware timestamps in the PHY. The timestamp * is stored in a buffer of registers. Depending on the specific hardware, * this buffer might be shared across multiple PHY ports. * * On transmit of a packet to be timestamped, software is responsible for * selecting an open index. Hardware makes no attempt to lock or prevent * re-use of an index for multiple packets. * * To handle this, timestamp indexes must be tracked by software to ensure * that an index is not re-used for multiple transmitted packets. The * structures and functions declared in this file track the available Tx * register indexes, as well as provide storage for the SKB pointers. * * To allow multiple ports to access the shared register block independently, * the blocks are split up so that indexes are assigned to each port based on * hardware logical port number. * * The timestamp blocks are handled differently for E810- and E822-based * devices. In E810 devices, each port has its own block of timestamps, while in * E822 there is a need to logically break the block of registers into smaller * chunks based on the port number to avoid collisions. * * Example for port 5 in E810: * +--------+--------+--------+--------+--------+--------+--------+--------+ * |register|register|register|register|register|register|register|register| * | block | block | block | block | block | block | block | block | * | for | for | for | for | for | for | for | for | * | port 0 | port 1 | port 2 | port 3 | port 4 | port 5 | port 6 | port 7 | * +--------+--------+--------+--------+--------+--------+--------+--------+ * ^^ * || * |--- quad offset is always 0 * ---- quad number * * Example for port 5 in E822: * +-----------------------------+-----------------------------+ * | register block for quad 0 | register block for quad 1 | * |+------+------+------+------+|+------+------+------+------+| * ||port 0|port 1|port 2|port 3|||port 0|port 1|port 2|port 3|| * |+------+------+------+------+|+------+------+------+------+| * +-----------------------------+-------^---------------------+ * ^ | * | --- quad offset* * ---- quad number * * * PHY port 5 is port 1 in quad 1 * */ /** * struct ice_tx_tstamp - Tracking for a single Tx timestamp * @skb: pointer to the SKB for this timestamp request * @start: jiffies when the timestamp was first requested * @cached_tstamp: last read timestamp * * This structure tracks a single timestamp request. The SKB pointer is * provided when initiating a request. The start time is used to ensure that * we discard old requests that were not fulfilled within a 2 second time * window. * Timestamp values in the PHY are read only and do not get cleared except at * hardware reset or when a new timestamp value is captured. * * Some PHY types do not provide a "ready" bitmap indicating which timestamp * indexes are valid. In these cases, we use a cached_tstamp to keep track of * the last timestamp we read for a given index. If the current timestamp * value is the same as the cached value, we assume a new timestamp hasn't * been captured. This avoids reporting stale timestamps to the stack. This is * only done if the has_ready_bitmap flag is not set in ice_ptp_tx structure. */ struct ice_tx_tstamp { struct sk_buff *skb; unsigned long start; u64 cached_tstamp; }; /** * enum ice_tx_tstamp_work - Status of Tx timestamp work function * @ICE_TX_TSTAMP_WORK_DONE: Tx timestamp processing is complete * @ICE_TX_TSTAMP_WORK_PENDING: More Tx timestamps are pending */ enum ice_tx_tstamp_work { ICE_TX_TSTAMP_WORK_DONE = 0, ICE_TX_TSTAMP_WORK_PENDING, }; /** * struct ice_ptp_tx - Tracking structure for all Tx timestamp requests on a port * @lock: lock to prevent concurrent access to fields of this struct * @tstamps: array of len to store outstanding requests * @in_use: bitmap of len to indicate which slots are in use * @stale: bitmap of len to indicate slots which have stale timestamps * @block: which memory block (quad or port) the timestamps are captured in * @offset: offset into timestamp block to get the real index * @len: length of the tstamps and in_use fields. * @init: if true, the tracker is initialized; * @calibrating: if true, the PHY is calibrating the Tx offset. During this * window, timestamps are temporarily disabled. * @has_ready_bitmap: if true, the hardware has a valid Tx timestamp ready * bitmap register. If false, fall back to verifying new * timestamp values against previously cached copy. * @last_ll_ts_idx_read: index of the last LL TS read by the FW */ struct ice_ptp_tx { spinlock_t lock; /* lock protecting in_use bitmap */ struct ice_tx_tstamp *tstamps; unsigned long *in_use; unsigned long *stale; u8 block; u8 offset; u8 len; u8 init : 1; u8 calibrating : 1; u8 has_ready_bitmap : 1; s8 last_ll_ts_idx_read; }; /* Quad and port information for initializing timestamp blocks */ #define INDEX_PER_QUAD 64 #define INDEX_PER_PORT_E82X 16 #define INDEX_PER_PORT_E810 64 /** * struct ice_ptp_port - data used to initialize an external port for PTP * * This structure contains data indicating whether a single external port is * ready for PTP functionality. It is used to track the port initialization * and determine when the port's PHY offset is valid. * * @list_member: list member structure of auxiliary device * @tx: Tx timestamp tracking for this port * @aux_dev: auxiliary device associated with this port * @ov_work: delayed work task for tracking when PHY offset is valid * @ps_lock: mutex used to protect the overall PTP PHY start procedure * @link_up: indicates whether the link is up * @tx_fifo_busy_cnt: number of times the Tx FIFO was busy * @port_num: the port number this structure represents */ struct ice_ptp_port { struct list_head list_member; struct ice_ptp_tx tx; struct auxiliary_device aux_dev; struct kthread_delayed_work ov_work; struct mutex ps_lock; /* protects overall PTP PHY start procedure */ bool link_up; u8 tx_fifo_busy_cnt; u8 port_num; }; enum ice_ptp_tx_interrupt { ICE_PTP_TX_INTERRUPT_NONE = 0, ICE_PTP_TX_INTERRUPT_SELF, ICE_PTP_TX_INTERRUPT_ALL, }; /** * struct ice_ptp_port_owner - data used to handle the PTP clock owner info * * This structure contains data necessary for the PTP clock owner to correctly * handle the timestamping feature for all attached ports. * * @aux_driver: the structure carring the auxiliary driver information * @ports: list of porst handled by this port owner * @lock: protect access to ports list */ struct ice_ptp_port_owner { struct auxiliary_driver aux_driver; struct list_head ports; struct mutex lock; }; #define GLTSYN_TGT_H_IDX_MAX 4 enum ice_ptp_state { ICE_PTP_UNINIT = 0, ICE_PTP_INITIALIZING, ICE_PTP_READY, ICE_PTP_RESETTING, ICE_PTP_ERROR, }; /** * struct ice_ptp - data used for integrating with CONFIG_PTP_1588_CLOCK * @state: current state of PTP state machine * @tx_interrupt_mode: the TX interrupt mode for the PTP clock * @port: data for the PHY port initialization procedure * @ports_owner: data for the auxiliary driver owner * @work: delayed work function for periodic tasks * @cached_phc_time: a cached copy of the PHC time for timestamp extension * @cached_phc_jiffies: jiffies when cached_phc_time was last updated * @ext_ts_chan: the external timestamp channel in use * @ext_ts_irq: the external timestamp IRQ in use * @kworker: kwork thread for handling periodic work * @perout_channels: periodic output data * @extts_channels: channels for external timestamps * @info: structure defining PTP hardware capabilities * @clock: pointer to registered PTP clock device * @tstamp_config: hardware timestamping configuration * @reset_time: kernel time after clock stop on reset * @tx_hwtstamp_skipped: number of Tx time stamp requests skipped * @tx_hwtstamp_timeouts: number of Tx skbs discarded with no time stamp * @tx_hwtstamp_flushed: number of Tx skbs flushed due to interface closed * @tx_hwtstamp_discarded: number of Tx skbs discarded due to cached PHC time * being too old to correctly extend timestamp * @late_cached_phc_updates: number of times cached PHC update is late */ struct ice_ptp { enum ice_ptp_state state; enum ice_ptp_tx_interrupt tx_interrupt_mode; struct ice_ptp_port port; struct ice_ptp_port_owner ports_owner; struct kthread_delayed_work work; u64 cached_phc_time; unsigned long cached_phc_jiffies; u8 ext_ts_chan; u8 ext_ts_irq; struct kthread_worker *kworker; struct ice_perout_channel perout_channels[GLTSYN_TGT_H_IDX_MAX]; struct ice_extts_channel extts_channels[GLTSYN_TGT_H_IDX_MAX]; struct ptp_clock_info info; struct ptp_clock *clock; struct hwtstamp_config tstamp_config; u64 reset_time; u32 tx_hwtstamp_skipped; u32 tx_hwtstamp_timeouts; u32 tx_hwtstamp_flushed; u32 tx_hwtstamp_discarded; u32 late_cached_phc_updates; }; #define __ptp_port_to_ptp(p) \ container_of((p), struct ice_ptp, port) #define ptp_port_to_pf(p) \ container_of(__ptp_port_to_ptp((p)), struct ice_pf, ptp) #define __ptp_info_to_ptp(i) \ container_of((i), struct ice_ptp, info) #define ptp_info_to_pf(i) \ container_of(__ptp_info_to_ptp((i)), struct ice_pf, ptp) #define PFTSYN_SEM_BYTES 4 #define PTP_SHARED_CLK_IDX_VALID BIT(31) #define TS_CMD_MASK 0xF #define SYNC_EXEC_CMD 0x3 #define ICE_PTP_TS_VALID BIT(0) #define FIFO_EMPTY BIT(2) #define FIFO_OK 0xFF #define ICE_PTP_FIFO_NUM_CHECKS 5 /* Per-channel register definitions */ #define GLTSYN_AUX_OUT(_chan, _idx) (GLTSYN_AUX_OUT_0(_idx) + ((_chan) * 8)) #define GLTSYN_AUX_IN(_chan, _idx) (GLTSYN_AUX_IN_0(_idx) + ((_chan) * 8)) #define GLTSYN_CLKO(_chan, _idx) (GLTSYN_CLKO_0(_idx) + ((_chan) * 8)) #define GLTSYN_TGT_L(_chan, _idx) (GLTSYN_TGT_L_0(_idx) + ((_chan) * 16)) #define GLTSYN_TGT_H(_chan, _idx) (GLTSYN_TGT_H_0(_idx) + ((_chan) * 16)) #define GLTSYN_EVNT_L(_chan, _idx) (GLTSYN_EVNT_L_0(_idx) + ((_chan) * 16)) #define GLTSYN_EVNT_H(_chan, _idx) (GLTSYN_EVNT_H_0(_idx) + ((_chan) * 16)) #define GLTSYN_EVNT_H_IDX_MAX 3 /* Pin definitions for PTP PPS out */ #define PPS_CLK_GEN_CHAN 3 #define PPS_CLK_SRC_CHAN 2 #define PPS_PIN_INDEX 5 #define TIME_SYNC_PIN_INDEX 4 #define N_EXT_TS_E810 3 #define N_PER_OUT_E810 4 #define N_PER_OUT_E810T 3 #define N_PER_OUT_NO_SMA_E810T 2 #define N_EXT_TS_NO_SMA_E810T 2 #define ETH_GLTSYN_ENA(_i) (0x03000348 + ((_i) * 4)) #if IS_ENABLED(CONFIG_PTP_1588_CLOCK) int ice_ptp_clock_index(struct ice_pf *pf); struct ice_pf; int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr); int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr); void ice_ptp_restore_timestamp_mode(struct ice_pf *pf); void ice_ptp_extts_event(struct ice_pf *pf); s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb); void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx); void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx); enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf); u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc, const struct ice_pkt_ctx *pkt_ctx); void ice_ptp_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type); void ice_ptp_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type); void ice_ptp_init(struct ice_pf *pf); void ice_ptp_release(struct ice_pf *pf); void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup); #else /* IS_ENABLED(CONFIG_PTP_1588_CLOCK) */ static inline int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr) { return -EOPNOTSUPP; } static inline int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr) { return -EOPNOTSUPP; } static inline void ice_ptp_restore_timestamp_mode(struct ice_pf *pf) { } static inline void ice_ptp_extts_event(struct ice_pf *pf) { } static inline s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb) { return -1; } static inline void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx) { } static inline void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx) { } static inline bool ice_ptp_process_ts(struct ice_pf *pf) { return true; } static inline u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc, const struct ice_pkt_ctx *pkt_ctx) { return 0; } static inline void ice_ptp_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type) { } static inline void ice_ptp_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type) { } static inline void ice_ptp_init(struct ice_pf *pf) { } static inline void ice_ptp_release(struct ice_pf *pf) { } static inline void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup) { } static inline int ice_ptp_clock_index(struct ice_pf *pf) { return -1; } #endif /* IS_ENABLED(CONFIG_PTP_1588_CLOCK) */ #endif /* _ICE_PTP_H_ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1