Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anirudh Venkataramanan | 548 | 37.23% | 10 | 13.70% |
Maciej Fijalkowski | 456 | 30.98% | 20 | 27.40% |
Brett Creeley | 108 | 7.34% | 12 | 16.44% |
Jesse Brandeburg | 75 | 5.10% | 5 | 6.85% |
Larysa Zaremba | 63 | 4.28% | 3 | 4.11% |
Alexander Lobakin | 37 | 2.51% | 2 | 2.74% |
Henry Tieman | 24 | 1.63% | 2 | 2.74% |
Jacob E Keller | 22 | 1.49% | 3 | 4.11% |
Kiran Patil | 19 | 1.29% | 1 | 1.37% |
Michal Swiatkowski | 18 | 1.22% | 2 | 2.74% |
Benita Bose | 16 | 1.09% | 1 | 1.37% |
Krzysztof Kazimierczak | 15 | 1.02% | 2 | 2.74% |
Benjamin Mikailenko | 15 | 1.02% | 1 | 1.37% |
Tony Nguyen | 13 | 0.88% | 2 | 2.74% |
Michal Wilczynski | 11 | 0.75% | 1 | 1.37% |
Magnus Karlsson | 10 | 0.68% | 2 | 2.74% |
Jan Sokolowski | 7 | 0.48% | 1 | 1.37% |
Paul M Stillwell Jr | 6 | 0.41% | 1 | 1.37% |
Dave Ertman | 5 | 0.34% | 1 | 1.37% |
Sudheer Mogilappagari | 4 | 0.27% | 1 | 1.37% |
Total | 1472 | 73 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508
/* SPDX-License-Identifier: GPL-2.0 */ /* Copyright (c) 2018, Intel Corporation. */ #ifndef _ICE_TXRX_H_ #define _ICE_TXRX_H_ #include "ice_type.h" #define ICE_DFLT_IRQ_WORK 256 #define ICE_RXBUF_3072 3072 #define ICE_RXBUF_2048 2048 #define ICE_RXBUF_1664 1664 #define ICE_RXBUF_1536 1536 #define ICE_MAX_CHAINED_RX_BUFS 5 #define ICE_MAX_BUF_TXD 8 #define ICE_MIN_TX_LEN 17 #define ICE_MAX_FRAME_LEGACY_RX 8320 /* The size limit for a transmit buffer in a descriptor is (16K - 1). * In order to align with the read requests we will align the value to * the nearest 4K which represents our maximum read request size. */ #define ICE_MAX_READ_REQ_SIZE 4096 #define ICE_MAX_DATA_PER_TXD (16 * 1024 - 1) #define ICE_MAX_DATA_PER_TXD_ALIGNED \ (~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD) #define ICE_MAX_TXQ_PER_TXQG 128 /* Attempt to maximize the headroom available for incoming frames. We use a 2K * buffer for MTUs <= 1500 and need 1536/1534 to store the data for the frame. * This leaves us with 512 bytes of room. From that we need to deduct the * space needed for the shared info and the padding needed to IP align the * frame. * * Note: For cache line sizes 256 or larger this value is going to end * up negative. In these cases we should fall back to the legacy * receive path. */ #if (PAGE_SIZE < 8192) #define ICE_2K_TOO_SMALL_WITH_PADDING \ ((unsigned int)(NET_SKB_PAD + ICE_RXBUF_1536) > \ SKB_WITH_OVERHEAD(ICE_RXBUF_2048)) /** * ice_compute_pad - compute the padding * @rx_buf_len: buffer length * * Figure out the size of half page based on given buffer length and * then subtract the skb_shared_info followed by subtraction of the * actual buffer length; this in turn results in the actual space that * is left for padding usage */ static inline int ice_compute_pad(int rx_buf_len) { int half_page_size; half_page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); return SKB_WITH_OVERHEAD(half_page_size) - rx_buf_len; } /** * ice_skb_pad - determine the padding that we can supply * * Figure out the right Rx buffer size and based on that calculate the * padding */ static inline int ice_skb_pad(void) { int rx_buf_len; /* If a 2K buffer cannot handle a standard Ethernet frame then * optimize padding for a 3K buffer instead of a 1.5K buffer. * * For a 3K buffer we need to add enough padding to allow for * tailroom due to NET_IP_ALIGN possibly shifting us out of * cache-line alignment. */ if (ICE_2K_TOO_SMALL_WITH_PADDING) rx_buf_len = ICE_RXBUF_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); else rx_buf_len = ICE_RXBUF_1536; /* if needed make room for NET_IP_ALIGN */ rx_buf_len -= NET_IP_ALIGN; return ice_compute_pad(rx_buf_len); } #define ICE_SKB_PAD ice_skb_pad() #else #define ICE_2K_TOO_SMALL_WITH_PADDING false #define ICE_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) #endif /* We are assuming that the cache line is always 64 Bytes here for ice. * In order to make sure that is a correct assumption there is a check in probe * to print a warning if the read from GLPCI_CNF2 tells us that the cache line * size is 128 bytes. We do it this way because we do not want to read the * GLPCI_CNF2 register or a variable containing the value on every pass through * the Tx path. */ #define ICE_CACHE_LINE_BYTES 64 #define ICE_DESCS_PER_CACHE_LINE (ICE_CACHE_LINE_BYTES / \ sizeof(struct ice_tx_desc)) #define ICE_DESCS_FOR_CTX_DESC 1 #define ICE_DESCS_FOR_SKB_DATA_PTR 1 /* Tx descriptors needed, worst case */ #define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \ ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR) #define ICE_DESC_UNUSED(R) \ (u16)((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \ (R)->next_to_clean - (R)->next_to_use - 1) #define ICE_RX_DESC_UNUSED(R) \ ((((R)->first_desc > (R)->next_to_use) ? 0 : (R)->count) + \ (R)->first_desc - (R)->next_to_use - 1) #define ICE_RING_QUARTER(R) ((R)->count >> 2) #define ICE_TX_FLAGS_TSO BIT(0) #define ICE_TX_FLAGS_HW_VLAN BIT(1) #define ICE_TX_FLAGS_SW_VLAN BIT(2) /* Free, was ICE_TX_FLAGS_DUMMY_PKT */ #define ICE_TX_FLAGS_TSYN BIT(4) #define ICE_TX_FLAGS_IPV4 BIT(5) #define ICE_TX_FLAGS_IPV6 BIT(6) #define ICE_TX_FLAGS_TUNNEL BIT(7) #define ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN BIT(8) #define ICE_XDP_PASS 0 #define ICE_XDP_CONSUMED BIT(0) #define ICE_XDP_TX BIT(1) #define ICE_XDP_REDIR BIT(2) #define ICE_XDP_EXIT BIT(3) #define ICE_SKB_CONSUMED ICE_XDP_CONSUMED #define ICE_RX_DMA_ATTR \ (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) #define ICE_ETH_PKT_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) #define ICE_TXD_LAST_DESC_CMD (ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS) /** * enum ice_tx_buf_type - type of &ice_tx_buf to act on Tx completion * @ICE_TX_BUF_EMPTY: unused OR XSk frame, no action required * @ICE_TX_BUF_DUMMY: dummy Flow Director packet, unmap and kfree() * @ICE_TX_BUF_FRAG: mapped skb OR &xdp_buff frag, only unmap DMA * @ICE_TX_BUF_SKB: &sk_buff, unmap and consume_skb(), update stats * @ICE_TX_BUF_XDP_TX: &xdp_buff, unmap and page_frag_free(), stats * @ICE_TX_BUF_XDP_XMIT: &xdp_frame, unmap and xdp_return_frame(), stats * @ICE_TX_BUF_XSK_TX: &xdp_buff on XSk queue, xsk_buff_free(), stats */ enum ice_tx_buf_type { ICE_TX_BUF_EMPTY = 0U, ICE_TX_BUF_DUMMY, ICE_TX_BUF_FRAG, ICE_TX_BUF_SKB, ICE_TX_BUF_XDP_TX, ICE_TX_BUF_XDP_XMIT, ICE_TX_BUF_XSK_TX, }; struct ice_tx_buf { union { struct ice_tx_desc *next_to_watch; u32 rs_idx; }; union { void *raw_buf; /* used for XDP_TX and FDir rules */ struct sk_buff *skb; /* used for .ndo_start_xmit() */ struct xdp_frame *xdpf; /* used for .ndo_xdp_xmit() */ struct xdp_buff *xdp; /* used for XDP_TX ZC */ }; unsigned int bytecount; union { unsigned int gso_segs; unsigned int nr_frags; /* used for mbuf XDP */ }; u32 tx_flags:12; u32 type:4; /* &ice_tx_buf_type */ u32 vid:16; DEFINE_DMA_UNMAP_LEN(len); DEFINE_DMA_UNMAP_ADDR(dma); }; struct ice_tx_offload_params { u64 cd_qw1; struct ice_tx_ring *tx_ring; u32 td_cmd; u32 td_offset; u32 td_l2tag1; u32 cd_tunnel_params; u16 cd_l2tag2; u8 header_len; }; struct ice_rx_buf { dma_addr_t dma; struct page *page; unsigned int page_offset; unsigned int pgcnt; unsigned int act; unsigned int pagecnt_bias; }; struct ice_q_stats { u64 pkts; u64 bytes; }; struct ice_txq_stats { u64 restart_q; u64 tx_busy; u64 tx_linearize; int prev_pkt; /* negative if no pending Tx descriptors */ }; struct ice_rxq_stats { u64 non_eop_descs; u64 alloc_page_failed; u64 alloc_buf_failed; }; struct ice_ring_stats { struct rcu_head rcu; /* to avoid race on free */ struct ice_q_stats stats; struct u64_stats_sync syncp; union { struct ice_txq_stats tx_stats; struct ice_rxq_stats rx_stats; }; }; enum ice_ring_state_t { ICE_TX_XPS_INIT_DONE, ICE_TX_NBITS, }; /* this enum matches hardware bits and is meant to be used by DYN_CTLN * registers and QINT registers or more generally anywhere in the manual * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any * register but instead is a special value meaning "don't update" ITR0/1/2. */ enum ice_dyn_idx_t { ICE_IDX_ITR0 = 0, ICE_IDX_ITR1 = 1, ICE_IDX_ITR2 = 2, ICE_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ }; /* Header split modes defined by DTYPE field of Rx RLAN context */ enum ice_rx_dtype { ICE_RX_DTYPE_NO_SPLIT = 0, ICE_RX_DTYPE_HEADER_SPLIT = 1, ICE_RX_DTYPE_SPLIT_ALWAYS = 2, }; struct ice_pkt_ctx { u64 cached_phctime; __be16 vlan_proto; }; struct ice_xdp_buff { struct xdp_buff xdp_buff; const union ice_32b_rx_flex_desc *eop_desc; const struct ice_pkt_ctx *pkt_ctx; }; /* Required for compatibility with xdp_buffs from xsk_pool */ static_assert(offsetof(struct ice_xdp_buff, xdp_buff) == 0); /* indices into GLINT_ITR registers */ #define ICE_RX_ITR ICE_IDX_ITR0 #define ICE_TX_ITR ICE_IDX_ITR1 #define ICE_ITR_8K 124 #define ICE_ITR_20K 50 #define ICE_ITR_MAX 8160 /* 0x1FE0 */ #define ICE_DFLT_TX_ITR ICE_ITR_20K #define ICE_DFLT_RX_ITR ICE_ITR_20K enum ice_dynamic_itr { ITR_STATIC = 0, ITR_DYNAMIC = 1 }; #define ITR_IS_DYNAMIC(rc) ((rc)->itr_mode == ITR_DYNAMIC) #define ICE_ITR_GRAN_S 1 /* ITR granularity is always 2us */ #define ICE_ITR_GRAN_US BIT(ICE_ITR_GRAN_S) #define ICE_ITR_MASK 0x1FFE /* ITR register value alignment mask */ #define ITR_REG_ALIGN(setting) ((setting) & ICE_ITR_MASK) #define ICE_DFLT_INTRL 0 #define ICE_MAX_INTRL 236 #define ICE_IN_WB_ON_ITR_MODE 255 /* Sets WB_ON_ITR and assumes INTENA bit is already cleared, which allows * setting the MSK_M bit to tell hardware to ignore the INTENA_M bit. Also, * set the write-back latency to the usecs passed in. */ #define ICE_GLINT_DYN_CTL_WB_ON_ITR(usecs, itr_idx) \ ((((usecs) << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)) & \ GLINT_DYN_CTL_INTERVAL_M) | \ (((itr_idx) << GLINT_DYN_CTL_ITR_INDX_S) & \ GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | \ GLINT_DYN_CTL_WB_ON_ITR_M) /* Legacy or Advanced Mode Queue */ #define ICE_TX_ADVANCED 0 #define ICE_TX_LEGACY 1 /* descriptor ring, associated with a VSI */ struct ice_rx_ring { /* CL1 - 1st cacheline starts here */ void *desc; /* Descriptor ring memory */ struct device *dev; /* Used for DMA mapping */ struct net_device *netdev; /* netdev ring maps to */ struct ice_vsi *vsi; /* Backreference to associated VSI */ struct ice_q_vector *q_vector; /* Backreference to associated vector */ u8 __iomem *tail; u16 q_index; /* Queue number of ring */ u16 count; /* Number of descriptors */ u16 reg_idx; /* HW register index of the ring */ u16 next_to_alloc; union { struct ice_rx_buf *rx_buf; struct xdp_buff **xdp_buf; }; /* CL2 - 2nd cacheline starts here */ union { struct ice_xdp_buff xdp_ext; struct xdp_buff xdp; }; /* CL3 - 3rd cacheline starts here */ union { struct ice_pkt_ctx pkt_ctx; struct { u64 cached_phctime; __be16 vlan_proto; }; }; struct bpf_prog *xdp_prog; u16 rx_offset; /* used in interrupt processing */ u16 next_to_use; u16 next_to_clean; u16 first_desc; /* stats structs */ struct ice_ring_stats *ring_stats; struct rcu_head rcu; /* to avoid race on free */ /* CL4 - 4th cacheline starts here */ struct ice_channel *ch; struct ice_tx_ring *xdp_ring; struct ice_rx_ring *next; /* pointer to next ring in q_vector */ struct xsk_buff_pool *xsk_pool; u32 nr_frags; dma_addr_t dma; /* physical address of ring */ u16 rx_buf_len; u8 dcb_tc; /* Traffic class of ring */ u8 ptp_rx; #define ICE_RX_FLAGS_RING_BUILD_SKB BIT(1) #define ICE_RX_FLAGS_CRC_STRIP_DIS BIT(2) #define ICE_RX_FLAGS_MULTIDEV BIT(3) u8 flags; /* CL5 - 5th cacheline starts here */ struct xdp_rxq_info xdp_rxq; } ____cacheline_internodealigned_in_smp; struct ice_tx_ring { /* CL1 - 1st cacheline starts here */ struct ice_tx_ring *next; /* pointer to next ring in q_vector */ void *desc; /* Descriptor ring memory */ struct device *dev; /* Used for DMA mapping */ u8 __iomem *tail; struct ice_tx_buf *tx_buf; struct ice_q_vector *q_vector; /* Backreference to associated vector */ struct net_device *netdev; /* netdev ring maps to */ struct ice_vsi *vsi; /* Backreference to associated VSI */ /* CL2 - 2nd cacheline starts here */ dma_addr_t dma; /* physical address of ring */ struct xsk_buff_pool *xsk_pool; u16 next_to_use; u16 next_to_clean; u16 q_handle; /* Queue handle per TC */ u16 reg_idx; /* HW register index of the ring */ u16 count; /* Number of descriptors */ u16 q_index; /* Queue number of ring */ u16 xdp_tx_active; /* stats structs */ struct ice_ring_stats *ring_stats; /* CL3 - 3rd cacheline starts here */ struct rcu_head rcu; /* to avoid race on free */ DECLARE_BITMAP(xps_state, ICE_TX_NBITS); /* XPS Config State */ struct ice_channel *ch; struct ice_ptp_tx *tx_tstamps; spinlock_t tx_lock; u32 txq_teid; /* Added Tx queue TEID */ /* CL4 - 4th cacheline starts here */ #define ICE_TX_FLAGS_RING_XDP BIT(0) #define ICE_TX_FLAGS_RING_VLAN_L2TAG1 BIT(1) #define ICE_TX_FLAGS_RING_VLAN_L2TAG2 BIT(2) u8 flags; u8 dcb_tc; /* Traffic class of ring */ } ____cacheline_internodealigned_in_smp; static inline bool ice_ring_uses_build_skb(struct ice_rx_ring *ring) { return !!(ring->flags & ICE_RX_FLAGS_RING_BUILD_SKB); } static inline void ice_set_ring_build_skb_ena(struct ice_rx_ring *ring) { ring->flags |= ICE_RX_FLAGS_RING_BUILD_SKB; } static inline void ice_clear_ring_build_skb_ena(struct ice_rx_ring *ring) { ring->flags &= ~ICE_RX_FLAGS_RING_BUILD_SKB; } static inline bool ice_ring_ch_enabled(struct ice_tx_ring *ring) { return !!ring->ch; } static inline bool ice_ring_is_xdp(struct ice_tx_ring *ring) { return !!(ring->flags & ICE_TX_FLAGS_RING_XDP); } enum ice_container_type { ICE_RX_CONTAINER, ICE_TX_CONTAINER, }; struct ice_ring_container { /* head of linked-list of rings */ union { struct ice_rx_ring *rx_ring; struct ice_tx_ring *tx_ring; }; struct dim dim; /* data for net_dim algorithm */ u16 itr_idx; /* index in the interrupt vector */ /* this matches the maximum number of ITR bits, but in usec * values, so it is shifted left one bit (bit zero is ignored) */ union { struct { u16 itr_setting:13; u16 itr_reserved:2; u16 itr_mode:1; }; u16 itr_settings; }; enum ice_container_type type; }; struct ice_coalesce_stored { u16 itr_tx; u16 itr_rx; u8 intrl; u8 tx_valid; u8 rx_valid; }; /* iterator for handling rings in ring container */ #define ice_for_each_rx_ring(pos, head) \ for (pos = (head).rx_ring; pos; pos = pos->next) #define ice_for_each_tx_ring(pos, head) \ for (pos = (head).tx_ring; pos; pos = pos->next) static inline unsigned int ice_rx_pg_order(struct ice_rx_ring *ring) { #if (PAGE_SIZE < 8192) if (ring->rx_buf_len > (PAGE_SIZE / 2)) return 1; #endif return 0; } #define ice_rx_pg_size(_ring) (PAGE_SIZE << ice_rx_pg_order(_ring)) union ice_32b_rx_flex_desc; bool ice_alloc_rx_bufs(struct ice_rx_ring *rxr, unsigned int cleaned_count); netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev); u16 ice_select_queue(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev); void ice_clean_tx_ring(struct ice_tx_ring *tx_ring); void ice_clean_rx_ring(struct ice_rx_ring *rx_ring); int ice_setup_tx_ring(struct ice_tx_ring *tx_ring); int ice_setup_rx_ring(struct ice_rx_ring *rx_ring); void ice_free_tx_ring(struct ice_tx_ring *tx_ring); void ice_free_rx_ring(struct ice_rx_ring *rx_ring); int ice_napi_poll(struct napi_struct *napi, int budget); int ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, u8 *raw_packet); int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget); void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring); #endif /* _ICE_TXRX_H_ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1