Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alexander Duyck | 943 | 34.67% | 61 | 39.87% |
Auke-Jan H Kok | 609 | 22.39% | 1 | 0.65% |
Carolyn Wyborny | 244 | 8.97% | 13 | 8.50% |
Sven Auhagen | 172 | 6.32% | 2 | 1.31% |
Gangfeng Huang | 98 | 3.60% | 3 | 1.96% |
Richard Cochran | 77 | 2.83% | 4 | 2.61% |
Matthew Vick | 74 | 2.72% | 7 | 4.58% |
Yury Kylulin | 66 | 2.43% | 2 | 1.31% |
Vinicius Costa Gomes | 62 | 2.28% | 4 | 2.61% |
Eric Dumazet | 52 | 1.91% | 4 | 2.61% |
Jacob E Keller | 46 | 1.69% | 8 | 5.23% |
Akeem G. Abodunrin | 31 | 1.14% | 3 | 1.96% |
Guenter Roeck | 28 | 1.03% | 1 | 0.65% |
Nathan Sullivan | 25 | 0.92% | 1 | 0.65% |
Andre Guedes | 24 | 0.88% | 1 | 0.65% |
Nicholas Nunley | 23 | 0.85% | 5 | 3.27% |
Laura Mihaela Vasilescu | 17 | 0.62% | 3 | 1.96% |
Mitch A Williams | 17 | 0.62% | 1 | 0.65% |
Jiri Pirko | 12 | 0.44% | 1 | 0.65% |
Shota Suzuki | 11 | 0.40% | 1 | 0.65% |
Greg Rose | 11 | 0.40% | 2 | 1.31% |
Jesper Dangaard Brouer | 10 | 0.37% | 1 | 0.65% |
Lior Levy | 9 | 0.33% | 2 | 1.31% |
Robert Beckett | 7 | 0.26% | 1 | 0.65% |
Jarod Wilson | 6 | 0.22% | 1 | 0.65% |
Jeff Kirsher | 5 | 0.18% | 4 | 2.61% |
Patrick Ohly | 5 | 0.18% | 2 | 1.31% |
Stefan Assmann | 4 | 0.15% | 1 | 0.65% |
Jesus Sanchez-Palencia | 4 | 0.15% | 1 | 0.65% |
Lin Ma | 4 | 0.15% | 1 | 0.65% |
Peter P. Waskiewicz Jr | 3 | 0.11% | 1 | 0.65% |
Corinna Vinschen | 3 | 0.11% | 1 | 0.65% |
David Decotigny | 3 | 0.11% | 1 | 0.65% |
Jakub Kiciński | 3 | 0.11% | 1 | 0.65% |
Zhang Shengju | 3 | 0.11% | 1 | 0.65% |
Arnd Bergmann | 2 | 0.07% | 1 | 0.65% |
Olga Zaborska | 2 | 0.07% | 1 | 0.65% |
Kurt Kanzenbach | 2 | 0.07% | 1 | 0.65% |
Jesse Brandeburg | 1 | 0.04% | 1 | 0.65% |
Gustavo A. R. Silva | 1 | 0.04% | 1 | 0.65% |
Kunwu Chan | 1 | 0.04% | 1 | 0.65% |
Total | 2720 | 153 |
/* SPDX-License-Identifier: GPL-2.0 */ /* Copyright(c) 2007 - 2018 Intel Corporation. */ /* Linux PRO/1000 Ethernet Driver main header file */ #ifndef _IGB_H_ #define _IGB_H_ #include "e1000_mac.h" #include "e1000_82575.h" #include <linux/timecounter.h> #include <linux/net_tstamp.h> #include <linux/ptp_clock_kernel.h> #include <linux/bitops.h> #include <linux/if_vlan.h> #include <linux/i2c.h> #include <linux/i2c-algo-bit.h> #include <linux/pci.h> #include <linux/mdio.h> #include <net/xdp.h> struct igb_adapter; #define E1000_PCS_CFG_IGN_SD 1 /* Interrupt defines */ #define IGB_START_ITR 648 /* ~6000 ints/sec */ #define IGB_4K_ITR 980 #define IGB_20K_ITR 196 #define IGB_70K_ITR 56 /* TX/RX descriptor defines */ #define IGB_DEFAULT_TXD 256 #define IGB_DEFAULT_TX_WORK 128 #define IGB_MIN_TXD 64 #define IGB_MAX_TXD 4096 #define IGB_DEFAULT_RXD 256 #define IGB_MIN_RXD 64 #define IGB_MAX_RXD 4096 #define IGB_DEFAULT_ITR 3 /* dynamic */ #define IGB_MAX_ITR_USECS 10000 #define IGB_MIN_ITR_USECS 10 #define NON_Q_VECTORS 1 #define MAX_Q_VECTORS 8 #define MAX_MSIX_ENTRIES 10 /* Transmit and receive queues */ #define IGB_MAX_RX_QUEUES 8 #define IGB_MAX_RX_QUEUES_82575 4 #define IGB_MAX_RX_QUEUES_I211 2 #define IGB_MAX_TX_QUEUES 8 #define IGB_MAX_VF_MC_ENTRIES 30 #define IGB_MAX_VF_FUNCTIONS 8 #define IGB_MAX_VFTA_ENTRIES 128 #define IGB_82576_VF_DEV_ID 0x10CA #define IGB_I350_VF_DEV_ID 0x1520 /* NVM version defines */ #define IGB_MAJOR_MASK 0xF000 #define IGB_MINOR_MASK 0x0FF0 #define IGB_BUILD_MASK 0x000F #define IGB_COMB_VER_MASK 0x00FF #define IGB_MAJOR_SHIFT 12 #define IGB_MINOR_SHIFT 4 #define IGB_COMB_VER_SHFT 8 #define IGB_NVM_VER_INVALID 0xFFFF #define IGB_ETRACK_SHIFT 16 #define NVM_ETRACK_WORD 0x0042 #define NVM_COMB_VER_OFF 0x0083 #define NVM_COMB_VER_PTR 0x003d /* Transmit and receive latency (for PTP timestamps) */ #define IGB_I210_TX_LATENCY_10 9542 #define IGB_I210_TX_LATENCY_100 1024 #define IGB_I210_TX_LATENCY_1000 178 #define IGB_I210_RX_LATENCY_10 20662 #define IGB_I210_RX_LATENCY_100 2213 #define IGB_I210_RX_LATENCY_1000 448 /* XDP */ #define IGB_XDP_PASS 0 #define IGB_XDP_CONSUMED BIT(0) #define IGB_XDP_TX BIT(1) #define IGB_XDP_REDIR BIT(2) struct vf_data_storage { unsigned char vf_mac_addresses[ETH_ALEN]; u16 vf_mc_hashes[IGB_MAX_VF_MC_ENTRIES]; u16 num_vf_mc_hashes; u32 flags; unsigned long last_nack; u16 pf_vlan; /* When set, guest VLAN config not allowed. */ u16 pf_qos; u16 tx_rate; bool spoofchk_enabled; bool trusted; }; /* Number of unicast MAC filters reserved for the PF in the RAR registers */ #define IGB_PF_MAC_FILTERS_RESERVED 3 struct vf_mac_filter { struct list_head l; int vf; bool free; u8 vf_mac[ETH_ALEN]; }; #define IGB_VF_FLAG_CTS 0x00000001 /* VF is clear to send data */ #define IGB_VF_FLAG_UNI_PROMISC 0x00000002 /* VF has unicast promisc */ #define IGB_VF_FLAG_MULTI_PROMISC 0x00000004 /* VF has multicast promisc */ #define IGB_VF_FLAG_PF_SET_MAC 0x00000008 /* PF has set MAC address */ /* RX descriptor control thresholds. * PTHRESH - MAC will consider prefetch if it has fewer than this number of * descriptors available in its onboard memory. * Setting this to 0 disables RX descriptor prefetch. * HTHRESH - MAC will only prefetch if there are at least this many descriptors * available in host memory. * If PTHRESH is 0, this should also be 0. * WTHRESH - RX descriptor writeback threshold - MAC will delay writing back * descriptors until either it has this many to write back, or the * ITR timer expires. */ #define IGB_RX_PTHRESH ((hw->mac.type == e1000_i354) ? 12 : 8) #define IGB_RX_HTHRESH 8 #define IGB_TX_PTHRESH ((hw->mac.type == e1000_i354) ? 20 : 8) #define IGB_TX_HTHRESH 1 #define IGB_RX_WTHRESH ((hw->mac.type == e1000_82576 && \ (adapter->flags & IGB_FLAG_HAS_MSIX)) ? 1 : 4) #define IGB_TX_WTHRESH ((hw->mac.type == e1000_82576 && \ (adapter->flags & IGB_FLAG_HAS_MSIX)) ? 1 : 16) /* this is the size past which hardware will drop packets when setting LPE=0 */ #define MAXIMUM_ETHERNET_VLAN_SIZE 1522 #define IGB_ETH_PKT_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) /* Supported Rx Buffer Sizes */ #define IGB_RXBUFFER_256 256 #define IGB_RXBUFFER_1536 1536 #define IGB_RXBUFFER_2048 2048 #define IGB_RXBUFFER_3072 3072 #define IGB_RX_HDR_LEN IGB_RXBUFFER_256 #define IGB_TS_HDR_LEN 16 /* Attempt to maximize the headroom available for incoming frames. We * use a 2K buffer for receives and need 1536/1534 to store the data for * the frame. This leaves us with 512 bytes of room. From that we need * to deduct the space needed for the shared info and the padding needed * to IP align the frame. * * Note: For cache line sizes 256 or larger this value is going to end * up negative. In these cases we should fall back to the 3K * buffers. */ #if (PAGE_SIZE < 8192) #define IGB_MAX_FRAME_BUILD_SKB (IGB_RXBUFFER_1536 - NET_IP_ALIGN) #define IGB_2K_TOO_SMALL_WITH_PADDING \ ((NET_SKB_PAD + IGB_TS_HDR_LEN + IGB_RXBUFFER_1536) > SKB_WITH_OVERHEAD(IGB_RXBUFFER_2048)) static inline int igb_compute_pad(int rx_buf_len) { int page_size, pad_size; page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len; return pad_size; } static inline int igb_skb_pad(void) { int rx_buf_len; /* If a 2K buffer cannot handle a standard Ethernet frame then * optimize padding for a 3K buffer instead of a 1.5K buffer. * * For a 3K buffer we need to add enough padding to allow for * tailroom due to NET_IP_ALIGN possibly shifting us out of * cache-line alignment. */ if (IGB_2K_TOO_SMALL_WITH_PADDING) rx_buf_len = IGB_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); else rx_buf_len = IGB_RXBUFFER_1536; /* if needed make room for NET_IP_ALIGN */ rx_buf_len -= NET_IP_ALIGN; return igb_compute_pad(rx_buf_len); } #define IGB_SKB_PAD igb_skb_pad() #else #define IGB_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) #endif /* How many Rx Buffers do we bundle into one write to the hardware ? */ #define IGB_RX_BUFFER_WRITE 16 /* Must be power of 2 */ #define IGB_RX_DMA_ATTR \ (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) #define AUTO_ALL_MODES 0 #define IGB_EEPROM_APME 0x0400 #ifndef IGB_MASTER_SLAVE /* Switch to override PHY master/slave setting */ #define IGB_MASTER_SLAVE e1000_ms_hw_default #endif #define IGB_MNG_VLAN_NONE -1 enum igb_tx_flags { /* cmd_type flags */ IGB_TX_FLAGS_VLAN = 0x01, IGB_TX_FLAGS_TSO = 0x02, IGB_TX_FLAGS_TSTAMP = 0x04, /* olinfo flags */ IGB_TX_FLAGS_IPV4 = 0x10, IGB_TX_FLAGS_CSUM = 0x20, }; /* VLAN info */ #define IGB_TX_FLAGS_VLAN_MASK 0xffff0000 #define IGB_TX_FLAGS_VLAN_SHIFT 16 /* The largest size we can write to the descriptor is 65535. In order to * maintain a power of two alignment we have to limit ourselves to 32K. */ #define IGB_MAX_TXD_PWR 15 #define IGB_MAX_DATA_PER_TXD (1u << IGB_MAX_TXD_PWR) /* Tx Descriptors needed, worst case */ #define TXD_USE_COUNT(S) DIV_ROUND_UP((S), IGB_MAX_DATA_PER_TXD) #define DESC_NEEDED (MAX_SKB_FRAGS + 4) /* EEPROM byte offsets */ #define IGB_SFF_8472_SWAP 0x5C #define IGB_SFF_8472_COMP 0x5E /* Bitmasks */ #define IGB_SFF_ADDRESSING_MODE 0x4 #define IGB_SFF_8472_UNSUP 0x00 /* TX resources are shared between XDP and netstack * and we need to tag the buffer type to distinguish them */ enum igb_tx_buf_type { IGB_TYPE_SKB = 0, IGB_TYPE_XDP, }; /* wrapper around a pointer to a socket buffer, * so a DMA handle can be stored along with the buffer */ struct igb_tx_buffer { union e1000_adv_tx_desc *next_to_watch; unsigned long time_stamp; enum igb_tx_buf_type type; union { struct sk_buff *skb; struct xdp_frame *xdpf; }; unsigned int bytecount; u16 gso_segs; __be16 protocol; DEFINE_DMA_UNMAP_ADDR(dma); DEFINE_DMA_UNMAP_LEN(len); u32 tx_flags; }; struct igb_rx_buffer { dma_addr_t dma; struct page *page; #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536) __u32 page_offset; #else __u16 page_offset; #endif __u16 pagecnt_bias; }; struct igb_tx_queue_stats { u64 packets; u64 bytes; u64 restart_queue; u64 restart_queue2; }; struct igb_rx_queue_stats { u64 packets; u64 bytes; u64 drops; u64 csum_err; u64 alloc_failed; }; struct igb_ring_container { struct igb_ring *ring; /* pointer to linked list of rings */ unsigned int total_bytes; /* total bytes processed this int */ unsigned int total_packets; /* total packets processed this int */ u16 work_limit; /* total work allowed per interrupt */ u8 count; /* total number of rings in vector */ u8 itr; /* current ITR setting for ring */ }; struct igb_ring { struct igb_q_vector *q_vector; /* backlink to q_vector */ struct net_device *netdev; /* back pointer to net_device */ struct bpf_prog *xdp_prog; struct device *dev; /* device pointer for dma mapping */ union { /* array of buffer info structs */ struct igb_tx_buffer *tx_buffer_info; struct igb_rx_buffer *rx_buffer_info; }; void *desc; /* descriptor ring memory */ unsigned long flags; /* ring specific flags */ void __iomem *tail; /* pointer to ring tail register */ dma_addr_t dma; /* phys address of the ring */ unsigned int size; /* length of desc. ring in bytes */ u16 count; /* number of desc. in the ring */ u8 queue_index; /* logical index of the ring*/ u8 reg_idx; /* physical index of the ring */ bool launchtime_enable; /* true if LaunchTime is enabled */ bool cbs_enable; /* indicates if CBS is enabled */ s32 idleslope; /* idleSlope in kbps */ s32 sendslope; /* sendSlope in kbps */ s32 hicredit; /* hiCredit in bytes */ s32 locredit; /* loCredit in bytes */ /* everything past this point are written often */ u16 next_to_clean; u16 next_to_use; u16 next_to_alloc; union { /* TX */ struct { struct igb_tx_queue_stats tx_stats; struct u64_stats_sync tx_syncp; struct u64_stats_sync tx_syncp2; }; /* RX */ struct { struct sk_buff *skb; struct igb_rx_queue_stats rx_stats; struct u64_stats_sync rx_syncp; }; }; struct xdp_rxq_info xdp_rxq; } ____cacheline_internodealigned_in_smp; struct igb_q_vector { struct igb_adapter *adapter; /* backlink */ int cpu; /* CPU for DCA */ u32 eims_value; /* EIMS mask value */ u16 itr_val; u8 set_itr; void __iomem *itr_register; struct igb_ring_container rx, tx; struct napi_struct napi; struct rcu_head rcu; /* to avoid race with update stats on free */ char name[IFNAMSIZ + 9]; /* for dynamic allocation of rings associated with this q_vector */ struct igb_ring ring[] ____cacheline_internodealigned_in_smp; }; enum e1000_ring_flags_t { IGB_RING_FLAG_RX_3K_BUFFER, IGB_RING_FLAG_RX_BUILD_SKB_ENABLED, IGB_RING_FLAG_RX_SCTP_CSUM, IGB_RING_FLAG_RX_LB_VLAN_BSWAP, IGB_RING_FLAG_TX_CTX_IDX, IGB_RING_FLAG_TX_DETECT_HANG }; #define ring_uses_large_buffer(ring) \ test_bit(IGB_RING_FLAG_RX_3K_BUFFER, &(ring)->flags) #define set_ring_uses_large_buffer(ring) \ set_bit(IGB_RING_FLAG_RX_3K_BUFFER, &(ring)->flags) #define clear_ring_uses_large_buffer(ring) \ clear_bit(IGB_RING_FLAG_RX_3K_BUFFER, &(ring)->flags) #define ring_uses_build_skb(ring) \ test_bit(IGB_RING_FLAG_RX_BUILD_SKB_ENABLED, &(ring)->flags) #define set_ring_build_skb_enabled(ring) \ set_bit(IGB_RING_FLAG_RX_BUILD_SKB_ENABLED, &(ring)->flags) #define clear_ring_build_skb_enabled(ring) \ clear_bit(IGB_RING_FLAG_RX_BUILD_SKB_ENABLED, &(ring)->flags) static inline unsigned int igb_rx_bufsz(struct igb_ring *ring) { #if (PAGE_SIZE < 8192) if (ring_uses_large_buffer(ring)) return IGB_RXBUFFER_3072; if (ring_uses_build_skb(ring)) return IGB_MAX_FRAME_BUILD_SKB; #endif return IGB_RXBUFFER_2048; } static inline unsigned int igb_rx_pg_order(struct igb_ring *ring) { #if (PAGE_SIZE < 8192) if (ring_uses_large_buffer(ring)) return 1; #endif return 0; } #define igb_rx_pg_size(_ring) (PAGE_SIZE << igb_rx_pg_order(_ring)) #define IGB_TXD_DCMD (E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_RS) #define IGB_RX_DESC(R, i) \ (&(((union e1000_adv_rx_desc *)((R)->desc))[i])) #define IGB_TX_DESC(R, i) \ (&(((union e1000_adv_tx_desc *)((R)->desc))[i])) #define IGB_TX_CTXTDESC(R, i) \ (&(((struct e1000_adv_tx_context_desc *)((R)->desc))[i])) /* igb_test_staterr - tests bits within Rx descriptor status and error fields */ static inline __le32 igb_test_staterr(union e1000_adv_rx_desc *rx_desc, const u32 stat_err_bits) { return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits); } /* igb_desc_unused - calculate if we have unused descriptors */ static inline int igb_desc_unused(struct igb_ring *ring) { if (ring->next_to_clean > ring->next_to_use) return ring->next_to_clean - ring->next_to_use - 1; return ring->count + ring->next_to_clean - ring->next_to_use - 1; } #ifdef CONFIG_IGB_HWMON #define IGB_HWMON_TYPE_LOC 0 #define IGB_HWMON_TYPE_TEMP 1 #define IGB_HWMON_TYPE_CAUTION 2 #define IGB_HWMON_TYPE_MAX 3 struct hwmon_attr { struct device_attribute dev_attr; struct e1000_hw *hw; struct e1000_thermal_diode_data *sensor; char name[12]; }; struct hwmon_buff { struct attribute_group group; const struct attribute_group *groups[2]; struct attribute *attrs[E1000_MAX_SENSORS * 4 + 1]; struct hwmon_attr hwmon_list[E1000_MAX_SENSORS * 4]; unsigned int n_hwmon; }; #endif /* The number of L2 ether-type filter registers, Index 3 is reserved * for PTP 1588 timestamp */ #define MAX_ETYPE_FILTER (4 - 1) /* ETQF filter list: one static filter per filter consumer. This is * to avoid filter collisions later. Add new filters here!! * * Current filters: Filter 3 */ #define IGB_ETQF_FILTER_1588 3 #define IGB_N_EXTTS 2 #define IGB_N_PEROUT 2 #define IGB_N_SDP 4 #define IGB_RETA_SIZE 128 enum igb_filter_match_flags { IGB_FILTER_FLAG_ETHER_TYPE = 0x1, IGB_FILTER_FLAG_VLAN_TCI = 0x2, IGB_FILTER_FLAG_SRC_MAC_ADDR = 0x4, IGB_FILTER_FLAG_DST_MAC_ADDR = 0x8, }; #define IGB_MAX_RXNFC_FILTERS 16 /* RX network flow classification data structure */ struct igb_nfc_input { /* Byte layout in order, all values with MSB first: * match_flags - 1 byte * etype - 2 bytes * vlan_tci - 2 bytes */ u8 match_flags; __be16 etype; __be16 vlan_tci; u8 src_addr[ETH_ALEN]; u8 dst_addr[ETH_ALEN]; }; struct igb_nfc_filter { struct hlist_node nfc_node; struct igb_nfc_input filter; unsigned long cookie; u16 etype_reg_index; u16 sw_idx; u16 action; }; struct igb_mac_addr { u8 addr[ETH_ALEN]; u8 queue; u8 state; /* bitmask */ }; #define IGB_MAC_STATE_DEFAULT 0x1 #define IGB_MAC_STATE_IN_USE 0x2 #define IGB_MAC_STATE_SRC_ADDR 0x4 #define IGB_MAC_STATE_QUEUE_STEERING 0x8 /* board specific private data structure */ struct igb_adapter { unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; struct net_device *netdev; struct bpf_prog *xdp_prog; unsigned long state; unsigned int flags; unsigned int num_q_vectors; struct msix_entry msix_entries[MAX_MSIX_ENTRIES]; /* Interrupt Throttle Rate */ u32 rx_itr_setting; u32 tx_itr_setting; u16 tx_itr; u16 rx_itr; /* TX */ u16 tx_work_limit; u32 tx_timeout_count; int num_tx_queues; struct igb_ring *tx_ring[16]; /* RX */ int num_rx_queues; struct igb_ring *rx_ring[16]; u32 max_frame_size; u32 min_frame_size; struct timer_list watchdog_timer; struct timer_list phy_info_timer; u16 mng_vlan_id; u32 bd_number; u32 wol; u32 en_mng_pt; u16 link_speed; u16 link_duplex; u8 __iomem *io_addr; /* Mainly for iounmap use */ struct work_struct reset_task; struct work_struct watchdog_task; bool fc_autoneg; u8 tx_timeout_factor; struct timer_list blink_timer; unsigned long led_status; /* OS defined structs */ struct pci_dev *pdev; spinlock_t stats64_lock; struct rtnl_link_stats64 stats64; /* structs defined in e1000_hw.h */ struct e1000_hw hw; struct e1000_hw_stats stats; struct e1000_phy_info phy_info; u32 test_icr; struct igb_ring test_tx_ring; struct igb_ring test_rx_ring; int msg_enable; struct igb_q_vector *q_vector[MAX_Q_VECTORS]; u32 eims_enable_mask; u32 eims_other; /* to not mess up cache alignment, always add to the bottom */ u16 tx_ring_count; u16 rx_ring_count; unsigned int vfs_allocated_count; struct vf_data_storage *vf_data; int vf_rate_link_speed; u32 rss_queues; u32 wvbr; u32 *shadow_vfta; struct ptp_clock *ptp_clock; struct ptp_clock_info ptp_caps; struct delayed_work ptp_overflow_work; struct work_struct ptp_tx_work; struct sk_buff *ptp_tx_skb; struct hwtstamp_config tstamp_config; unsigned long ptp_tx_start; unsigned long last_rx_ptp_check; unsigned long last_rx_timestamp; unsigned int ptp_flags; spinlock_t tmreg_lock; struct cyclecounter cc; struct timecounter tc; u32 tx_hwtstamp_timeouts; u32 tx_hwtstamp_skipped; u32 rx_hwtstamp_cleared; bool pps_sys_wrap_on; struct ptp_pin_desc sdp_config[IGB_N_SDP]; struct { struct timespec64 start; struct timespec64 period; } perout[IGB_N_PEROUT]; char fw_version[48]; #ifdef CONFIG_IGB_HWMON struct hwmon_buff *igb_hwmon_buff; bool ets; #endif struct i2c_algo_bit_data i2c_algo; struct i2c_adapter i2c_adap; struct i2c_client *i2c_client; u32 rss_indir_tbl_init; u8 rss_indir_tbl[IGB_RETA_SIZE]; unsigned long link_check_timeout; int copper_tries; struct e1000_info ei; u16 eee_advert; /* RX network flow classification support */ struct hlist_head nfc_filter_list; struct hlist_head cls_flower_list; unsigned int nfc_filter_count; /* lock for RX network flow classification filter */ spinlock_t nfc_lock; bool etype_bitmap[MAX_ETYPE_FILTER]; struct igb_mac_addr *mac_table; struct vf_mac_filter vf_macs; struct vf_mac_filter *vf_mac_list; /* lock for VF resources */ spinlock_t vfs_lock; }; /* flags controlling PTP/1588 function */ #define IGB_PTP_ENABLED BIT(0) #define IGB_PTP_OVERFLOW_CHECK BIT(1) #define IGB_FLAG_HAS_MSI BIT(0) #define IGB_FLAG_DCA_ENABLED BIT(1) #define IGB_FLAG_QUAD_PORT_A BIT(2) #define IGB_FLAG_QUEUE_PAIRS BIT(3) #define IGB_FLAG_DMAC BIT(4) #define IGB_FLAG_RSS_FIELD_IPV4_UDP BIT(6) #define IGB_FLAG_RSS_FIELD_IPV6_UDP BIT(7) #define IGB_FLAG_WOL_SUPPORTED BIT(8) #define IGB_FLAG_NEED_LINK_UPDATE BIT(9) #define IGB_FLAG_MEDIA_RESET BIT(10) #define IGB_FLAG_MAS_CAPABLE BIT(11) #define IGB_FLAG_MAS_ENABLE BIT(12) #define IGB_FLAG_HAS_MSIX BIT(13) #define IGB_FLAG_EEE BIT(14) #define IGB_FLAG_VLAN_PROMISC BIT(15) #define IGB_FLAG_RX_LEGACY BIT(16) #define IGB_FLAG_FQTSS BIT(17) /* Media Auto Sense */ #define IGB_MAS_ENABLE_0 0X0001 #define IGB_MAS_ENABLE_1 0X0002 #define IGB_MAS_ENABLE_2 0X0004 #define IGB_MAS_ENABLE_3 0X0008 /* DMA Coalescing defines */ #define IGB_MIN_TXPBSIZE 20408 #define IGB_TX_BUF_4096 4096 #define IGB_DMCTLX_DCFLUSH_DIS 0x80000000 /* Disable DMA Coal Flush */ #define IGB_82576_TSYNC_SHIFT 19 enum e1000_state_t { __IGB_TESTING, __IGB_RESETTING, __IGB_DOWN, __IGB_PTP_TX_IN_PROGRESS, }; enum igb_boards { board_82575, }; extern char igb_driver_name[]; int igb_xmit_xdp_ring(struct igb_adapter *adapter, struct igb_ring *ring, struct xdp_frame *xdpf); int igb_open(struct net_device *netdev); int igb_close(struct net_device *netdev); int igb_up(struct igb_adapter *); void igb_down(struct igb_adapter *); void igb_reinit_locked(struct igb_adapter *); void igb_reset(struct igb_adapter *); int igb_reinit_queues(struct igb_adapter *); void igb_write_rss_indir_tbl(struct igb_adapter *); int igb_set_spd_dplx(struct igb_adapter *, u32, u8); int igb_setup_tx_resources(struct igb_ring *); int igb_setup_rx_resources(struct igb_ring *); void igb_free_tx_resources(struct igb_ring *); void igb_free_rx_resources(struct igb_ring *); void igb_configure_tx_ring(struct igb_adapter *, struct igb_ring *); void igb_configure_rx_ring(struct igb_adapter *, struct igb_ring *); void igb_setup_tctl(struct igb_adapter *); void igb_setup_rctl(struct igb_adapter *); void igb_setup_srrctl(struct igb_adapter *, struct igb_ring *); netdev_tx_t igb_xmit_frame_ring(struct sk_buff *, struct igb_ring *); void igb_alloc_rx_buffers(struct igb_ring *, u16); void igb_update_stats(struct igb_adapter *); bool igb_has_link(struct igb_adapter *adapter); void igb_set_ethtool_ops(struct net_device *); void igb_power_up_link(struct igb_adapter *); void igb_set_fw_version(struct igb_adapter *); void igb_ptp_init(struct igb_adapter *adapter); void igb_ptp_stop(struct igb_adapter *adapter); void igb_ptp_reset(struct igb_adapter *adapter); void igb_ptp_suspend(struct igb_adapter *adapter); void igb_ptp_rx_hang(struct igb_adapter *adapter); void igb_ptp_tx_hang(struct igb_adapter *adapter); void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb); int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va, ktime_t *timestamp); int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr); int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr); void igb_set_flag_queue_pairs(struct igb_adapter *, const u32); unsigned int igb_get_max_rss_queues(struct igb_adapter *); #ifdef CONFIG_IGB_HWMON void igb_sysfs_exit(struct igb_adapter *adapter); int igb_sysfs_init(struct igb_adapter *adapter); #endif static inline s32 igb_reset_phy(struct e1000_hw *hw) { if (hw->phy.ops.reset) return hw->phy.ops.reset(hw); return 0; } static inline s32 igb_read_phy_reg(struct e1000_hw *hw, u32 offset, u16 *data) { if (hw->phy.ops.read_reg) return hw->phy.ops.read_reg(hw, offset, data); return 0; } static inline s32 igb_write_phy_reg(struct e1000_hw *hw, u32 offset, u16 data) { if (hw->phy.ops.write_reg) return hw->phy.ops.write_reg(hw, offset, data); return 0; } static inline s32 igb_get_phy_info(struct e1000_hw *hw) { if (hw->phy.ops.get_phy_info) return hw->phy.ops.get_phy_info(hw); return 0; } static inline struct netdev_queue *txring_txq(const struct igb_ring *tx_ring) { return netdev_get_tx_queue(tx_ring->netdev, tx_ring->queue_index); } int igb_add_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input); int igb_erase_filter(struct igb_adapter *adapter, struct igb_nfc_filter *input); int igb_add_mac_steering_filter(struct igb_adapter *adapter, const u8 *addr, u8 queue, u8 flags); int igb_del_mac_steering_filter(struct igb_adapter *adapter, const u8 *addr, u8 queue, u8 flags); #endif /* _IGB_H_ */
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1