Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Sasha Neftin | 2446 | 99.47% | 13 | 86.67% |
Jesse Brandeburg | 13 | 0.53% | 2 | 13.33% |
Total | 2459 | 15 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018 Intel Corporation */ #include <linux/bitfield.h> #include "igc_phy.h" /** * igc_check_reset_block - Check if PHY reset is blocked * @hw: pointer to the HW structure * * Read the PHY management control register and check whether a PHY reset * is blocked. If a reset is not blocked return 0, otherwise * return IGC_ERR_BLK_PHY_RESET (12). */ s32 igc_check_reset_block(struct igc_hw *hw) { u32 manc; manc = rd32(IGC_MANC); return (manc & IGC_MANC_BLK_PHY_RST_ON_IDE) ? IGC_ERR_BLK_PHY_RESET : 0; } /** * igc_get_phy_id - Retrieve the PHY ID and revision * @hw: pointer to the HW structure * * Reads the PHY registers and stores the PHY ID and possibly the PHY * revision in the hardware structure. */ s32 igc_get_phy_id(struct igc_hw *hw) { struct igc_phy_info *phy = &hw->phy; s32 ret_val = 0; u16 phy_id; ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); if (ret_val) goto out; phy->id = (u32)(phy_id << 16); usleep_range(200, 500); ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); if (ret_val) goto out; phy->id |= (u32)(phy_id & PHY_REVISION_MASK); phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); out: return ret_val; } /** * igc_phy_has_link - Polls PHY for link * @hw: pointer to the HW structure * @iterations: number of times to poll for link * @usec_interval: delay between polling attempts * @success: pointer to whether polling was successful or not * * Polls the PHY status register for link, 'iterations' number of times. */ s32 igc_phy_has_link(struct igc_hw *hw, u32 iterations, u32 usec_interval, bool *success) { u16 i, phy_status; s32 ret_val = 0; for (i = 0; i < iterations; i++) { /* Some PHYs require the PHY_STATUS register to be read * twice due to the link bit being sticky. No harm doing * it across the board. */ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); if (ret_val && usec_interval > 0) { /* If the first read fails, another entity may have * ownership of the resources, wait and try again to * see if they have relinquished the resources yet. */ if (usec_interval >= 1000) mdelay(usec_interval / 1000); else udelay(usec_interval); } ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); if (ret_val) break; if (phy_status & MII_SR_LINK_STATUS) break; if (usec_interval >= 1000) mdelay(usec_interval / 1000); else udelay(usec_interval); } *success = (i < iterations) ? true : false; return ret_val; } /** * igc_power_up_phy_copper - Restore copper link in case of PHY power down * @hw: pointer to the HW structure * * In the case of a PHY power down to save power, or to turn off link during a * driver unload, restore the link to previous settings. */ void igc_power_up_phy_copper(struct igc_hw *hw) { u16 mii_reg = 0; /* The PHY will retain its settings across a power down/up cycle */ hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); mii_reg &= ~MII_CR_POWER_DOWN; hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); } /** * igc_power_down_phy_copper - Power down copper PHY * @hw: pointer to the HW structure * * Power down PHY to save power when interface is down and wake on lan * is not enabled. */ void igc_power_down_phy_copper(struct igc_hw *hw) { u16 mii_reg = 0; /* The PHY will retain its settings across a power down/up cycle */ hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); mii_reg |= MII_CR_POWER_DOWN; hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); usleep_range(1000, 2000); } /** * igc_check_downshift - Checks whether a downshift in speed occurred * @hw: pointer to the HW structure * * A downshift is detected by querying the PHY link health. */ void igc_check_downshift(struct igc_hw *hw) { struct igc_phy_info *phy = &hw->phy; /* speed downshift not supported */ phy->speed_downgraded = false; } /** * igc_phy_hw_reset - PHY hardware reset * @hw: pointer to the HW structure * * Verify the reset block is not blocking us from resetting. Acquire * semaphore (if necessary) and read/set/write the device control reset * bit in the PHY. Wait the appropriate delay time for the device to * reset and release the semaphore (if necessary). */ s32 igc_phy_hw_reset(struct igc_hw *hw) { struct igc_phy_info *phy = &hw->phy; u32 phpm = 0, timeout = 10000; s32 ret_val; u32 ctrl; ret_val = igc_check_reset_block(hw); if (ret_val) { ret_val = 0; goto out; } ret_val = phy->ops.acquire(hw); if (ret_val) goto out; phpm = rd32(IGC_I225_PHPM); ctrl = rd32(IGC_CTRL); wr32(IGC_CTRL, ctrl | IGC_CTRL_PHY_RST); wrfl(); udelay(phy->reset_delay_us); wr32(IGC_CTRL, ctrl); wrfl(); /* SW should guarantee 100us for the completion of the PHY reset */ usleep_range(100, 150); do { phpm = rd32(IGC_I225_PHPM); timeout--; udelay(1); } while (!(phpm & IGC_PHY_RST_COMP) && timeout); if (!timeout) hw_dbg("Timeout is expired after a phy reset\n"); usleep_range(100, 150); phy->ops.release(hw); out: return ret_val; } /** * igc_phy_setup_autoneg - Configure PHY for auto-negotiation * @hw: pointer to the HW structure * * Reads the MII auto-neg advertisement register and/or the 1000T control * register and if the PHY is already setup for auto-negotiation, then * return successful. Otherwise, setup advertisement and flow control to * the appropriate values for the wanted auto-negotiation. */ static s32 igc_phy_setup_autoneg(struct igc_hw *hw) { struct igc_phy_info *phy = &hw->phy; u16 aneg_multigbt_an_ctrl = 0; u16 mii_1000t_ctrl_reg = 0; u16 mii_autoneg_adv_reg; s32 ret_val; phy->autoneg_advertised &= phy->autoneg_mask; /* Read the MII Auto-Neg Advertisement Register (Address 4). */ ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); if (ret_val) return ret_val; if (phy->autoneg_mask & ADVERTISE_1000_FULL) { /* Read the MII 1000Base-T Control Register (Address 9). */ ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); if (ret_val) return ret_val; } if (phy->autoneg_mask & ADVERTISE_2500_FULL) { /* Read the MULTI GBT AN Control Register - reg 7.32 */ ret_val = phy->ops.read_reg(hw, (STANDARD_AN_REG_MASK << MMD_DEVADDR_SHIFT) | ANEG_MULTIGBT_AN_CTRL, &aneg_multigbt_an_ctrl); if (ret_val) return ret_val; } /* Need to parse both autoneg_advertised and fc and set up * the appropriate PHY registers. First we will parse for * autoneg_advertised software override. Since we can advertise * a plethora of combinations, we need to check each bit * individually. */ /* First we clear all the 10/100 mb speed bits in the Auto-Neg * Advertisement Register (Address 4) and the 1000 mb speed bits in * the 1000Base-T Control Register (Address 9). */ mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | NWAY_AR_100TX_HD_CAPS | NWAY_AR_10T_FD_CAPS | NWAY_AR_10T_HD_CAPS); mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); /* Do we want to advertise 10 Mb Half Duplex? */ if (phy->autoneg_advertised & ADVERTISE_10_HALF) { hw_dbg("Advertise 10mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; } /* Do we want to advertise 10 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_10_FULL) { hw_dbg("Advertise 10mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; } /* Do we want to advertise 100 Mb Half Duplex? */ if (phy->autoneg_advertised & ADVERTISE_100_HALF) { hw_dbg("Advertise 100mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; } /* Do we want to advertise 100 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_100_FULL) { hw_dbg("Advertise 100mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; } /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ if (phy->autoneg_advertised & ADVERTISE_1000_HALF) hw_dbg("Advertise 1000mb Half duplex request denied!\n"); /* Do we want to advertise 1000 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { hw_dbg("Advertise 1000mb Full duplex\n"); mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; } /* We do not allow the Phy to advertise 2500 Mb Half Duplex */ if (phy->autoneg_advertised & ADVERTISE_2500_HALF) hw_dbg("Advertise 2500mb Half duplex request denied!\n"); /* Do we want to advertise 2500 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_2500_FULL) { hw_dbg("Advertise 2500mb Full duplex\n"); aneg_multigbt_an_ctrl |= CR_2500T_FD_CAPS; } else { aneg_multigbt_an_ctrl &= ~CR_2500T_FD_CAPS; } /* Check for a software override of the flow control settings, and * setup the PHY advertisement registers accordingly. If * auto-negotiation is enabled, then software will have to set the * "PAUSE" bits to the correct value in the Auto-Negotiation * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- * negotiation. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause frames * but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames * but we do not support receiving pause frames). * 3: Both Rx and Tx flow control (symmetric) are enabled. * other: No software override. The flow control configuration * in the EEPROM is used. */ switch (hw->fc.current_mode) { case igc_fc_none: /* Flow control (Rx & Tx) is completely disabled by a * software over-ride. */ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; case igc_fc_rx_pause: /* Rx Flow control is enabled, and Tx Flow control is * disabled, by a software over-ride. * * Since there really isn't a way to advertise that we are * capable of Rx Pause ONLY, we will advertise that we * support both symmetric and asymmetric Rx PAUSE. Later * (in igc_config_fc_after_link_up) we will disable the * hw's ability to send PAUSE frames. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; case igc_fc_tx_pause: /* Tx Flow control is enabled, and Rx Flow control is * disabled, by a software over-ride. */ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; break; case igc_fc_full: /* Flow control (both Rx and Tx) is enabled by a software * over-ride. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; default: hw_dbg("Flow control param set incorrectly\n"); return -IGC_ERR_CONFIG; } ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); if (ret_val) return ret_val; hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); if (phy->autoneg_mask & ADVERTISE_1000_FULL) ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); if (phy->autoneg_mask & ADVERTISE_2500_FULL) ret_val = phy->ops.write_reg(hw, (STANDARD_AN_REG_MASK << MMD_DEVADDR_SHIFT) | ANEG_MULTIGBT_AN_CTRL, aneg_multigbt_an_ctrl); return ret_val; } /** * igc_wait_autoneg - Wait for auto-neg completion * @hw: pointer to the HW structure * * Waits for auto-negotiation to complete or for the auto-negotiation time * limit to expire, which ever happens first. */ static s32 igc_wait_autoneg(struct igc_hw *hw) { u16 i, phy_status; s32 ret_val = 0; /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); if (ret_val) break; ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); if (ret_val) break; if (phy_status & MII_SR_AUTONEG_COMPLETE) break; msleep(100); } /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation * has completed. */ return ret_val; } /** * igc_copper_link_autoneg - Setup/Enable autoneg for copper link * @hw: pointer to the HW structure * * Performs initial bounds checking on autoneg advertisement parameter, then * configure to advertise the full capability. Setup the PHY to autoneg * and restart the negotiation process between the link partner. If * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. */ static s32 igc_copper_link_autoneg(struct igc_hw *hw) { struct igc_phy_info *phy = &hw->phy; u16 phy_ctrl; s32 ret_val; /* Perform some bounds checking on the autoneg advertisement * parameter. */ phy->autoneg_advertised &= phy->autoneg_mask; /* If autoneg_advertised is zero, we assume it was not defaulted * by the calling code so we set to advertise full capability. */ if (phy->autoneg_advertised == 0) phy->autoneg_advertised = phy->autoneg_mask; hw_dbg("Reconfiguring auto-neg advertisement params\n"); ret_val = igc_phy_setup_autoneg(hw); if (ret_val) { hw_dbg("Error Setting up Auto-Negotiation\n"); goto out; } hw_dbg("Restarting Auto-Neg\n"); /* Restart auto-negotiation by setting the Auto Neg Enable bit and * the Auto Neg Restart bit in the PHY control register. */ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); if (ret_val) goto out; phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); if (ret_val) goto out; /* Does the user want to wait for Auto-Neg to complete here, or * check at a later time (for example, callback routine). */ if (phy->autoneg_wait_to_complete) { ret_val = igc_wait_autoneg(hw); if (ret_val) { hw_dbg("Error while waiting for autoneg to complete\n"); goto out; } } hw->mac.get_link_status = true; out: return ret_val; } /** * igc_setup_copper_link - Configure copper link settings * @hw: pointer to the HW structure * * Calls the appropriate function to configure the link for auto-neg or forced * speed and duplex. Then we check for link, once link is established calls * to configure collision distance and flow control are called. If link is * not established, we return -IGC_ERR_PHY (-2). */ s32 igc_setup_copper_link(struct igc_hw *hw) { s32 ret_val = 0; bool link; if (hw->mac.autoneg) { /* Setup autoneg and flow control advertisement and perform * autonegotiation. */ ret_val = igc_copper_link_autoneg(hw); if (ret_val) goto out; } else { /* PHY will be set to 10H, 10F, 100H or 100F * depending on user settings. */ hw_dbg("Forcing Speed and Duplex\n"); ret_val = hw->phy.ops.force_speed_duplex(hw); if (ret_val) { hw_dbg("Error Forcing Speed and Duplex\n"); goto out; } } /* Check link status. Wait up to 100 microseconds for link to become * valid. */ ret_val = igc_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link); if (ret_val) goto out; if (link) { hw_dbg("Valid link established!!!\n"); igc_config_collision_dist(hw); ret_val = igc_config_fc_after_link_up(hw); } else { hw_dbg("Unable to establish link!!!\n"); } out: return ret_val; } /** * igc_read_phy_reg_mdic - Read MDI control register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Reads the MDI control register in the PHY at offset and stores the * information read to data. */ static s32 igc_read_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 *data) { struct igc_phy_info *phy = &hw->phy; u32 i, mdic = 0; s32 ret_val = 0; if (offset > MAX_PHY_REG_ADDRESS) { hw_dbg("PHY Address %d is out of range\n", offset); ret_val = -IGC_ERR_PARAM; goto out; } /* Set up Op-code, Phy Address, and register offset in the MDI * Control register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. */ mdic = ((offset << IGC_MDIC_REG_SHIFT) | (phy->addr << IGC_MDIC_PHY_SHIFT) | (IGC_MDIC_OP_READ)); wr32(IGC_MDIC, mdic); /* Poll the ready bit to see if the MDI read completed * Increasing the time out as testing showed failures with * the lower time out */ for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) { udelay(50); mdic = rd32(IGC_MDIC); if (mdic & IGC_MDIC_READY) break; } if (!(mdic & IGC_MDIC_READY)) { hw_dbg("MDI Read did not complete\n"); ret_val = -IGC_ERR_PHY; goto out; } if (mdic & IGC_MDIC_ERROR) { hw_dbg("MDI Error\n"); ret_val = -IGC_ERR_PHY; goto out; } *data = (u16)mdic; out: return ret_val; } /** * igc_write_phy_reg_mdic - Write MDI control register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write to register at offset * * Writes data to MDI control register in the PHY at offset. */ static s32 igc_write_phy_reg_mdic(struct igc_hw *hw, u32 offset, u16 data) { struct igc_phy_info *phy = &hw->phy; u32 i, mdic = 0; s32 ret_val = 0; if (offset > MAX_PHY_REG_ADDRESS) { hw_dbg("PHY Address %d is out of range\n", offset); ret_val = -IGC_ERR_PARAM; goto out; } /* Set up Op-code, Phy Address, and register offset in the MDI * Control register. The MAC will take care of interfacing with the * PHY to write the desired data. */ mdic = (((u32)data) | (offset << IGC_MDIC_REG_SHIFT) | (phy->addr << IGC_MDIC_PHY_SHIFT) | (IGC_MDIC_OP_WRITE)); wr32(IGC_MDIC, mdic); /* Poll the ready bit to see if the MDI read completed * Increasing the time out as testing showed failures with * the lower time out */ for (i = 0; i < IGC_GEN_POLL_TIMEOUT; i++) { udelay(50); mdic = rd32(IGC_MDIC); if (mdic & IGC_MDIC_READY) break; } if (!(mdic & IGC_MDIC_READY)) { hw_dbg("MDI Write did not complete\n"); ret_val = -IGC_ERR_PHY; goto out; } if (mdic & IGC_MDIC_ERROR) { hw_dbg("MDI Error\n"); ret_val = -IGC_ERR_PHY; goto out; } out: return ret_val; } /** * __igc_access_xmdio_reg - Read/write XMDIO register * @hw: pointer to the HW structure * @address: XMDIO address to program * @dev_addr: device address to program * @data: pointer to value to read/write from/to the XMDIO address * @read: boolean flag to indicate read or write */ static s32 __igc_access_xmdio_reg(struct igc_hw *hw, u16 address, u8 dev_addr, u16 *data, bool read) { s32 ret_val; ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, dev_addr); if (ret_val) return ret_val; ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, address); if (ret_val) return ret_val; ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, IGC_MMDAC_FUNC_DATA | dev_addr); if (ret_val) return ret_val; if (read) ret_val = hw->phy.ops.read_reg(hw, IGC_MMDAAD, data); else ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAAD, *data); if (ret_val) return ret_val; /* Recalibrate the device back to 0 */ ret_val = hw->phy.ops.write_reg(hw, IGC_MMDAC, 0); if (ret_val) return ret_val; return ret_val; } /** * igc_read_xmdio_reg - Read XMDIO register * @hw: pointer to the HW structure * @addr: XMDIO address to program * @dev_addr: device address to program * @data: value to be read from the EMI address */ static s32 igc_read_xmdio_reg(struct igc_hw *hw, u16 addr, u8 dev_addr, u16 *data) { return __igc_access_xmdio_reg(hw, addr, dev_addr, data, true); } /** * igc_write_xmdio_reg - Write XMDIO register * @hw: pointer to the HW structure * @addr: XMDIO address to program * @dev_addr: device address to program * @data: value to be written to the XMDIO address */ static s32 igc_write_xmdio_reg(struct igc_hw *hw, u16 addr, u8 dev_addr, u16 data) { return __igc_access_xmdio_reg(hw, addr, dev_addr, &data, false); } /** * igc_write_phy_reg_gpy - Write GPY PHY register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Acquires semaphore, if necessary, then writes the data to PHY register * at the offset. Release any acquired semaphores before exiting. */ s32 igc_write_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 data) { u8 dev_addr = FIELD_GET(GPY_MMD_MASK, offset); s32 ret_val; offset = offset & GPY_REG_MASK; if (!dev_addr) { ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = igc_write_phy_reg_mdic(hw, offset, data); hw->phy.ops.release(hw); } else { ret_val = igc_write_xmdio_reg(hw, (u16)offset, dev_addr, data); } return ret_val; } /** * igc_read_phy_reg_gpy - Read GPY PHY register * @hw: pointer to the HW structure * @offset: lower half is register offset to read to * upper half is MMD to use. * @data: data to read at register offset * * Acquires semaphore, if necessary, then reads the data in the PHY register * at the offset. Release any acquired semaphores before exiting. */ s32 igc_read_phy_reg_gpy(struct igc_hw *hw, u32 offset, u16 *data) { u8 dev_addr = FIELD_GET(GPY_MMD_MASK, offset); s32 ret_val; offset = offset & GPY_REG_MASK; if (!dev_addr) { ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = igc_read_phy_reg_mdic(hw, offset, data); hw->phy.ops.release(hw); } else { ret_val = igc_read_xmdio_reg(hw, (u16)offset, dev_addr, data); } return ret_val; } /** * igc_read_phy_fw_version - Read gPHY firmware version * @hw: pointer to the HW structure */ u16 igc_read_phy_fw_version(struct igc_hw *hw) { struct igc_phy_info *phy = &hw->phy; u16 gphy_version = 0; u16 ret_val; /* NVM image version is reported as firmware version for i225 device */ ret_val = phy->ops.read_reg(hw, IGC_GPHY_VERSION, &gphy_version); if (ret_val) hw_dbg("igc_phy: read wrong gphy version\n"); return gphy_version; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1