Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
John Hurley | 4173 | 48.10% | 38 | 26.95% |
Pieter Jansen van Vuuren | 2545 | 29.33% | 26 | 18.44% |
Louis Peens | 745 | 8.59% | 15 | 10.64% |
Pablo Neira Ayuso | 388 | 4.47% | 11 | 7.80% |
Jiri Pirko | 213 | 2.46% | 7 | 4.96% |
Yinjun Zhang | 212 | 2.44% | 1 | 0.71% |
Jakub Kiciński | 128 | 1.48% | 13 | 9.22% |
Simon Horman | 60 | 0.69% | 5 | 3.55% |
Yanguo Li | 50 | 0.58% | 1 | 0.71% |
Wenjuan Geng | 34 | 0.39% | 1 | 0.71% |
Baowen Zheng | 33 | 0.38% | 2 | 1.42% |
wenxu | 17 | 0.20% | 2 | 1.42% |
Petr Machata | 14 | 0.16% | 1 | 0.71% |
Horatiu Vultur | 9 | 0.10% | 1 | 0.71% |
Asbjörn Sloth Tönnesen | 8 | 0.09% | 1 | 0.71% |
Guillaume Nault | 7 | 0.08% | 1 | 0.71% |
Yu Xiao | 6 | 0.07% | 1 | 0.71% |
Vlad Buslov | 6 | 0.07% | 1 | 0.71% |
Ratheesh Kannoth | 5 | 0.06% | 1 | 0.71% |
Ganesh Goudar | 4 | 0.05% | 2 | 1.42% |
Heinrich Kuhn | 3 | 0.03% | 1 | 0.71% |
Dirk van der Merwe | 3 | 0.03% | 1 | 0.71% |
Gustavo A. R. Silva | 2 | 0.02% | 1 | 0.71% |
Walter Heymans | 2 | 0.02% | 1 | 0.71% |
Wentao Jia | 2 | 0.02% | 1 | 0.71% |
Po Liu | 2 | 0.02% | 1 | 0.71% |
Américo Wang | 2 | 0.02% | 1 | 0.71% |
Linus Torvalds (pre-git) | 1 | 0.01% | 1 | 0.71% |
David S. Miller | 1 | 0.01% | 1 | 0.71% |
Hariprasad Shenai | 1 | 0.01% | 1 | 0.71% |
Total | 8676 | 141 |
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) /* Copyright (C) 2017-2018 Netronome Systems, Inc. */ #include <linux/skbuff.h> #include <net/devlink.h> #include <net/pkt_cls.h> #include "cmsg.h" #include "main.h" #include "conntrack.h" #include "../nfpcore/nfp_cpp.h" #include "../nfpcore/nfp_nsp.h" #include "../nfp_app.h" #include "../nfp_main.h" #include "../nfp_net.h" #include "../nfp_port.h" #define NFP_FLOWER_SUPPORTED_TCPFLAGS \ (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \ TCPHDR_PSH | TCPHDR_URG) #define NFP_FLOWER_SUPPORTED_CTLFLAGS \ (FLOW_DIS_IS_FRAGMENT | \ FLOW_DIS_FIRST_FRAG) #define NFP_FLOWER_WHITELIST_DISSECTOR \ (BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | \ BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | \ BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | \ BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | \ BIT_ULL(FLOW_DISSECTOR_KEY_TCP) | \ BIT_ULL(FLOW_DISSECTOR_KEY_PORTS) | \ BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) | \ BIT_ULL(FLOW_DISSECTOR_KEY_VLAN) | \ BIT_ULL(FLOW_DISSECTOR_KEY_CVLAN) | \ BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID) | \ BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \ BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \ BIT_ULL(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \ BIT_ULL(FLOW_DISSECTOR_KEY_ENC_PORTS) | \ BIT_ULL(FLOW_DISSECTOR_KEY_ENC_OPTS) | \ BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IP) | \ BIT_ULL(FLOW_DISSECTOR_KEY_MPLS) | \ BIT_ULL(FLOW_DISSECTOR_KEY_CT) | \ BIT_ULL(FLOW_DISSECTOR_KEY_META) | \ BIT_ULL(FLOW_DISSECTOR_KEY_IP)) #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR \ (BIT_ULL(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \ BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID) | \ BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \ BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \ BIT_ULL(FLOW_DISSECTOR_KEY_ENC_OPTS) | \ BIT_ULL(FLOW_DISSECTOR_KEY_ENC_PORTS) | \ BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IP)) #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R \ (BIT_ULL(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \ BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R \ (BIT_ULL(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \ BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) #define NFP_FLOWER_MERGE_FIELDS \ (NFP_FLOWER_LAYER_PORT | \ NFP_FLOWER_LAYER_MAC | \ NFP_FLOWER_LAYER_TP | \ NFP_FLOWER_LAYER_IPV4 | \ NFP_FLOWER_LAYER_IPV6) #define NFP_FLOWER_PRE_TUN_RULE_FIELDS \ (NFP_FLOWER_LAYER_EXT_META | \ NFP_FLOWER_LAYER_PORT | \ NFP_FLOWER_LAYER_MAC | \ NFP_FLOWER_LAYER_IPV4 | \ NFP_FLOWER_LAYER_IPV6) struct nfp_flower_merge_check { union { struct { __be16 tci; struct nfp_flower_mac_mpls l2; struct nfp_flower_tp_ports l4; union { struct nfp_flower_ipv4 ipv4; struct nfp_flower_ipv6 ipv6; }; }; unsigned long vals[8]; }; }; int nfp_flower_xmit_flow(struct nfp_app *app, struct nfp_fl_payload *nfp_flow, u8 mtype) { u32 meta_len, key_len, mask_len, act_len, tot_len; struct sk_buff *skb; unsigned char *msg; meta_len = sizeof(struct nfp_fl_rule_metadata); key_len = nfp_flow->meta.key_len; mask_len = nfp_flow->meta.mask_len; act_len = nfp_flow->meta.act_len; tot_len = meta_len + key_len + mask_len + act_len; /* Convert to long words as firmware expects * lengths in units of NFP_FL_LW_SIZ. */ nfp_flow->meta.key_len >>= NFP_FL_LW_SIZ; nfp_flow->meta.mask_len >>= NFP_FL_LW_SIZ; nfp_flow->meta.act_len >>= NFP_FL_LW_SIZ; skb = nfp_flower_cmsg_alloc(app, tot_len, mtype, GFP_KERNEL); if (!skb) return -ENOMEM; msg = nfp_flower_cmsg_get_data(skb); memcpy(msg, &nfp_flow->meta, meta_len); memcpy(&msg[meta_len], nfp_flow->unmasked_data, key_len); memcpy(&msg[meta_len + key_len], nfp_flow->mask_data, mask_len); memcpy(&msg[meta_len + key_len + mask_len], nfp_flow->action_data, act_len); /* Convert back to bytes as software expects * lengths in units of bytes. */ nfp_flow->meta.key_len <<= NFP_FL_LW_SIZ; nfp_flow->meta.mask_len <<= NFP_FL_LW_SIZ; nfp_flow->meta.act_len <<= NFP_FL_LW_SIZ; nfp_ctrl_tx(app->ctrl, skb); return 0; } static bool nfp_flower_check_higher_than_mac(struct flow_rule *rule) { return flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS) || flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS) || flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS) || flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP); } static bool nfp_flower_check_higher_than_l3(struct flow_rule *rule) { return flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS) || flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP); } static int nfp_flower_calc_opt_layer(struct flow_dissector_key_enc_opts *enc_opts, u32 *key_layer_two, int *key_size, bool ipv6, struct netlink_ext_ack *extack) { if (enc_opts->len > NFP_FL_MAX_GENEVE_OPT_KEY || (ipv6 && enc_opts->len > NFP_FL_MAX_GENEVE_OPT_KEY_V6)) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: geneve options exceed maximum length"); return -EOPNOTSUPP; } if (enc_opts->len > 0) { *key_layer_two |= NFP_FLOWER_LAYER2_GENEVE_OP; *key_size += sizeof(struct nfp_flower_geneve_options); } return 0; } static int nfp_flower_calc_udp_tun_layer(struct flow_dissector_key_ports *enc_ports, struct flow_dissector_key_enc_opts *enc_op, u32 *key_layer_two, u8 *key_layer, int *key_size, struct nfp_flower_priv *priv, enum nfp_flower_tun_type *tun_type, bool ipv6, struct netlink_ext_ack *extack) { int err; switch (enc_ports->dst) { case htons(IANA_VXLAN_UDP_PORT): *tun_type = NFP_FL_TUNNEL_VXLAN; *key_layer |= NFP_FLOWER_LAYER_VXLAN; if (ipv6) { *key_layer |= NFP_FLOWER_LAYER_EXT_META; *key_size += sizeof(struct nfp_flower_ext_meta); *key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6; *key_size += sizeof(struct nfp_flower_ipv6_udp_tun); } else { *key_size += sizeof(struct nfp_flower_ipv4_udp_tun); } if (enc_op) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: encap options not supported on vxlan tunnels"); return -EOPNOTSUPP; } break; case htons(GENEVE_UDP_PORT): if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE)) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support geneve offload"); return -EOPNOTSUPP; } *tun_type = NFP_FL_TUNNEL_GENEVE; *key_layer |= NFP_FLOWER_LAYER_EXT_META; *key_size += sizeof(struct nfp_flower_ext_meta); *key_layer_two |= NFP_FLOWER_LAYER2_GENEVE; if (ipv6) { *key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6; *key_size += sizeof(struct nfp_flower_ipv6_udp_tun); } else { *key_size += sizeof(struct nfp_flower_ipv4_udp_tun); } if (!enc_op) break; if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE_OPT)) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support geneve option offload"); return -EOPNOTSUPP; } err = nfp_flower_calc_opt_layer(enc_op, key_layer_two, key_size, ipv6, extack); if (err) return err; break; default: NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel type unknown"); return -EOPNOTSUPP; } return 0; } int nfp_flower_calculate_key_layers(struct nfp_app *app, struct net_device *netdev, struct nfp_fl_key_ls *ret_key_ls, struct flow_rule *rule, enum nfp_flower_tun_type *tun_type, struct netlink_ext_ack *extack) { struct flow_dissector *dissector = rule->match.dissector; struct flow_match_basic basic = { NULL, NULL}; struct nfp_flower_priv *priv = app->priv; u32 key_layer_two; u8 key_layer; int key_size; int err; if (dissector->used_keys & ~NFP_FLOWER_WHITELIST_DISSECTOR) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match not supported"); return -EOPNOTSUPP; } /* If any tun dissector is used then the required set must be used. */ if (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR && (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R) != NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R && (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R) != NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel match not supported"); return -EOPNOTSUPP; } key_layer_two = 0; key_layer = NFP_FLOWER_LAYER_PORT; key_size = sizeof(struct nfp_flower_meta_tci) + sizeof(struct nfp_flower_in_port); if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS) || flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_MPLS)) { key_layer |= NFP_FLOWER_LAYER_MAC; key_size += sizeof(struct nfp_flower_mac_mpls); } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) { struct flow_match_vlan vlan; flow_rule_match_vlan(rule, &vlan); if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_PCP) && vlan.key->vlan_priority) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support VLAN PCP offload"); return -EOPNOTSUPP; } if (priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ && !(key_layer_two & NFP_FLOWER_LAYER2_QINQ)) { key_layer |= NFP_FLOWER_LAYER_EXT_META; key_size += sizeof(struct nfp_flower_ext_meta); key_size += sizeof(struct nfp_flower_vlan); key_layer_two |= NFP_FLOWER_LAYER2_QINQ; } } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CVLAN)) { struct flow_match_vlan cvlan; if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ)) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support VLAN QinQ offload"); return -EOPNOTSUPP; } flow_rule_match_vlan(rule, &cvlan); if (!(key_layer_two & NFP_FLOWER_LAYER2_QINQ)) { key_layer |= NFP_FLOWER_LAYER_EXT_META; key_size += sizeof(struct nfp_flower_ext_meta); key_size += sizeof(struct nfp_flower_vlan); key_layer_two |= NFP_FLOWER_LAYER2_QINQ; } } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_CONTROL)) { struct flow_match_enc_opts enc_op = { NULL, NULL }; struct flow_match_ipv4_addrs ipv4_addrs; struct flow_match_ipv6_addrs ipv6_addrs; struct flow_match_control enc_ctl; struct flow_match_ports enc_ports; bool ipv6_tun = false; flow_rule_match_enc_control(rule, &enc_ctl); if (enc_ctl.mask->addr_type != 0xffff) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: wildcarded protocols on tunnels are not supported"); return -EOPNOTSUPP; } ipv6_tun = enc_ctl.key->addr_type == FLOW_DISSECTOR_KEY_IPV6_ADDRS; if (ipv6_tun && !(priv->flower_ext_feats & NFP_FL_FEATS_IPV6_TUN)) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: firmware does not support IPv6 tunnels"); return -EOPNOTSUPP; } if (!ipv6_tun && enc_ctl.key->addr_type != FLOW_DISSECTOR_KEY_IPV4_ADDRS) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel address type not IPv4 or IPv6"); return -EOPNOTSUPP; } if (ipv6_tun) { flow_rule_match_enc_ipv6_addrs(rule, &ipv6_addrs); if (memchr_inv(&ipv6_addrs.mask->dst, 0xff, sizeof(ipv6_addrs.mask->dst))) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match IPv6 destination address is supported"); return -EOPNOTSUPP; } } else { flow_rule_match_enc_ipv4_addrs(rule, &ipv4_addrs); if (ipv4_addrs.mask->dst != cpu_to_be32(~0)) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match IPv4 destination address is supported"); return -EOPNOTSUPP; } } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_OPTS)) flow_rule_match_enc_opts(rule, &enc_op); if (!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_PORTS)) { /* Check if GRE, which has no enc_ports */ if (!netif_is_gretap(netdev) && !netif_is_ip6gretap(netdev)) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: an exact match on L4 destination port is required for non-GRE tunnels"); return -EOPNOTSUPP; } *tun_type = NFP_FL_TUNNEL_GRE; key_layer |= NFP_FLOWER_LAYER_EXT_META; key_size += sizeof(struct nfp_flower_ext_meta); key_layer_two |= NFP_FLOWER_LAYER2_GRE; if (ipv6_tun) { key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6; key_size += sizeof(struct nfp_flower_ipv6_gre_tun); } else { key_size += sizeof(struct nfp_flower_ipv4_gre_tun); } if (enc_op.key) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: encap options not supported on GRE tunnels"); return -EOPNOTSUPP; } } else { flow_rule_match_enc_ports(rule, &enc_ports); if (enc_ports.mask->dst != cpu_to_be16(~0)) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match L4 destination port is supported"); return -EOPNOTSUPP; } err = nfp_flower_calc_udp_tun_layer(enc_ports.key, enc_op.key, &key_layer_two, &key_layer, &key_size, priv, tun_type, ipv6_tun, extack); if (err) return err; /* Ensure the ingress netdev matches the expected * tun type. */ if (!nfp_fl_netdev_is_tunnel_type(netdev, *tun_type)) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: ingress netdev does not match the expected tunnel type"); return -EOPNOTSUPP; } } } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) flow_rule_match_basic(rule, &basic); if (basic.mask && basic.mask->n_proto) { /* Ethernet type is present in the key. */ switch (basic.key->n_proto) { case cpu_to_be16(ETH_P_IP): key_layer |= NFP_FLOWER_LAYER_IPV4; key_size += sizeof(struct nfp_flower_ipv4); break; case cpu_to_be16(ETH_P_IPV6): key_layer |= NFP_FLOWER_LAYER_IPV6; key_size += sizeof(struct nfp_flower_ipv6); break; /* Currently we do not offload ARP * because we rely on it to get to the host. */ case cpu_to_be16(ETH_P_ARP): NL_SET_ERR_MSG_MOD(extack, "unsupported offload: ARP not supported"); return -EOPNOTSUPP; case cpu_to_be16(ETH_P_MPLS_UC): case cpu_to_be16(ETH_P_MPLS_MC): if (!(key_layer & NFP_FLOWER_LAYER_MAC)) { key_layer |= NFP_FLOWER_LAYER_MAC; key_size += sizeof(struct nfp_flower_mac_mpls); } break; /* Will be included in layer 2. */ case cpu_to_be16(ETH_P_8021Q): break; default: NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on given EtherType is not supported"); return -EOPNOTSUPP; } } else if (nfp_flower_check_higher_than_mac(rule)) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: cannot match above L2 without specified EtherType"); return -EOPNOTSUPP; } if (basic.mask && basic.mask->ip_proto) { switch (basic.key->ip_proto) { case IPPROTO_TCP: case IPPROTO_UDP: case IPPROTO_SCTP: case IPPROTO_ICMP: case IPPROTO_ICMPV6: key_layer |= NFP_FLOWER_LAYER_TP; key_size += sizeof(struct nfp_flower_tp_ports); break; } } if (!(key_layer & NFP_FLOWER_LAYER_TP) && nfp_flower_check_higher_than_l3(rule)) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: cannot match on L4 information without specified IP protocol type"); return -EOPNOTSUPP; } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_TCP)) { struct flow_match_tcp tcp; u32 tcp_flags; flow_rule_match_tcp(rule, &tcp); tcp_flags = be16_to_cpu(tcp.key->flags); if (tcp_flags & ~NFP_FLOWER_SUPPORTED_TCPFLAGS) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: no match support for selected TCP flags"); return -EOPNOTSUPP; } /* We only support PSH and URG flags when either * FIN, SYN or RST is present as well. */ if ((tcp_flags & (TCPHDR_PSH | TCPHDR_URG)) && !(tcp_flags & (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST))) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: PSH and URG is only supported when used with FIN, SYN or RST"); return -EOPNOTSUPP; } /* We need to store TCP flags in the either the IPv4 or IPv6 key * space, thus we need to ensure we include a IPv4/IPv6 key * layer if we have not done so already. */ if (!basic.key) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on TCP flags requires a match on L3 protocol"); return -EOPNOTSUPP; } if (!(key_layer & NFP_FLOWER_LAYER_IPV4) && !(key_layer & NFP_FLOWER_LAYER_IPV6)) { switch (basic.key->n_proto) { case cpu_to_be16(ETH_P_IP): key_layer |= NFP_FLOWER_LAYER_IPV4; key_size += sizeof(struct nfp_flower_ipv4); break; case cpu_to_be16(ETH_P_IPV6): key_layer |= NFP_FLOWER_LAYER_IPV6; key_size += sizeof(struct nfp_flower_ipv6); break; default: NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on TCP flags requires a match on IPv4/IPv6"); return -EOPNOTSUPP; } } } if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) { struct flow_match_control ctl; flow_rule_match_control(rule, &ctl); if (!flow_rule_is_supp_control_flags(NFP_FLOWER_SUPPORTED_CTLFLAGS, ctl.mask->flags, extack)) return -EOPNOTSUPP; } ret_key_ls->key_layer = key_layer; ret_key_ls->key_layer_two = key_layer_two; ret_key_ls->key_size = key_size; return 0; } struct nfp_fl_payload * nfp_flower_allocate_new(struct nfp_fl_key_ls *key_layer) { struct nfp_fl_payload *flow_pay; flow_pay = kmalloc(sizeof(*flow_pay), GFP_KERNEL); if (!flow_pay) return NULL; flow_pay->meta.key_len = key_layer->key_size; flow_pay->unmasked_data = kmalloc(key_layer->key_size, GFP_KERNEL); if (!flow_pay->unmasked_data) goto err_free_flow; flow_pay->meta.mask_len = key_layer->key_size; flow_pay->mask_data = kmalloc(key_layer->key_size, GFP_KERNEL); if (!flow_pay->mask_data) goto err_free_unmasked; flow_pay->action_data = kmalloc(NFP_FL_MAX_A_SIZ, GFP_KERNEL); if (!flow_pay->action_data) goto err_free_mask; flow_pay->nfp_tun_ipv4_addr = 0; flow_pay->nfp_tun_ipv6 = NULL; flow_pay->meta.flags = 0; INIT_LIST_HEAD(&flow_pay->linked_flows); flow_pay->in_hw = false; flow_pay->pre_tun_rule.dev = NULL; return flow_pay; err_free_mask: kfree(flow_pay->mask_data); err_free_unmasked: kfree(flow_pay->unmasked_data); err_free_flow: kfree(flow_pay); return NULL; } static int nfp_flower_update_merge_with_actions(struct nfp_fl_payload *flow, struct nfp_flower_merge_check *merge, u8 *last_act_id, int *act_out) { struct nfp_fl_set_ipv6_tc_hl_fl *ipv6_tc_hl_fl; struct nfp_fl_set_ip4_ttl_tos *ipv4_ttl_tos; struct nfp_fl_set_ip4_addrs *ipv4_add; struct nfp_fl_set_ipv6_addr *ipv6_add; struct nfp_fl_push_vlan *push_vlan; struct nfp_fl_pre_tunnel *pre_tun; struct nfp_fl_set_tport *tport; struct nfp_fl_set_eth *eth; struct nfp_fl_act_head *a; unsigned int act_off = 0; bool ipv6_tun = false; u8 act_id = 0; u8 *ports; int i; while (act_off < flow->meta.act_len) { a = (struct nfp_fl_act_head *)&flow->action_data[act_off]; act_id = a->jump_id; switch (act_id) { case NFP_FL_ACTION_OPCODE_OUTPUT: if (act_out) (*act_out)++; break; case NFP_FL_ACTION_OPCODE_PUSH_VLAN: push_vlan = (struct nfp_fl_push_vlan *)a; if (push_vlan->vlan_tci) merge->tci = cpu_to_be16(0xffff); break; case NFP_FL_ACTION_OPCODE_POP_VLAN: merge->tci = cpu_to_be16(0); break; case NFP_FL_ACTION_OPCODE_SET_TUNNEL: /* New tunnel header means l2 to l4 can be matched. */ eth_broadcast_addr(&merge->l2.mac_dst[0]); eth_broadcast_addr(&merge->l2.mac_src[0]); memset(&merge->l4, 0xff, sizeof(struct nfp_flower_tp_ports)); if (ipv6_tun) memset(&merge->ipv6, 0xff, sizeof(struct nfp_flower_ipv6)); else memset(&merge->ipv4, 0xff, sizeof(struct nfp_flower_ipv4)); break; case NFP_FL_ACTION_OPCODE_SET_ETHERNET: eth = (struct nfp_fl_set_eth *)a; for (i = 0; i < ETH_ALEN; i++) merge->l2.mac_dst[i] |= eth->eth_addr_mask[i]; for (i = 0; i < ETH_ALEN; i++) merge->l2.mac_src[i] |= eth->eth_addr_mask[ETH_ALEN + i]; break; case NFP_FL_ACTION_OPCODE_SET_IPV4_ADDRS: ipv4_add = (struct nfp_fl_set_ip4_addrs *)a; merge->ipv4.ipv4_src |= ipv4_add->ipv4_src_mask; merge->ipv4.ipv4_dst |= ipv4_add->ipv4_dst_mask; break; case NFP_FL_ACTION_OPCODE_SET_IPV4_TTL_TOS: ipv4_ttl_tos = (struct nfp_fl_set_ip4_ttl_tos *)a; merge->ipv4.ip_ext.ttl |= ipv4_ttl_tos->ipv4_ttl_mask; merge->ipv4.ip_ext.tos |= ipv4_ttl_tos->ipv4_tos_mask; break; case NFP_FL_ACTION_OPCODE_SET_IPV6_SRC: ipv6_add = (struct nfp_fl_set_ipv6_addr *)a; for (i = 0; i < 4; i++) merge->ipv6.ipv6_src.in6_u.u6_addr32[i] |= ipv6_add->ipv6[i].mask; break; case NFP_FL_ACTION_OPCODE_SET_IPV6_DST: ipv6_add = (struct nfp_fl_set_ipv6_addr *)a; for (i = 0; i < 4; i++) merge->ipv6.ipv6_dst.in6_u.u6_addr32[i] |= ipv6_add->ipv6[i].mask; break; case NFP_FL_ACTION_OPCODE_SET_IPV6_TC_HL_FL: ipv6_tc_hl_fl = (struct nfp_fl_set_ipv6_tc_hl_fl *)a; merge->ipv6.ip_ext.ttl |= ipv6_tc_hl_fl->ipv6_hop_limit_mask; merge->ipv6.ip_ext.tos |= ipv6_tc_hl_fl->ipv6_tc_mask; merge->ipv6.ipv6_flow_label_exthdr |= ipv6_tc_hl_fl->ipv6_label_mask; break; case NFP_FL_ACTION_OPCODE_SET_UDP: case NFP_FL_ACTION_OPCODE_SET_TCP: tport = (struct nfp_fl_set_tport *)a; ports = (u8 *)&merge->l4.port_src; for (i = 0; i < 4; i++) ports[i] |= tport->tp_port_mask[i]; break; case NFP_FL_ACTION_OPCODE_PRE_TUNNEL: pre_tun = (struct nfp_fl_pre_tunnel *)a; ipv6_tun = be16_to_cpu(pre_tun->flags) & NFP_FL_PRE_TUN_IPV6; break; case NFP_FL_ACTION_OPCODE_PRE_LAG: case NFP_FL_ACTION_OPCODE_PUSH_GENEVE: break; default: return -EOPNOTSUPP; } act_off += a->len_lw << NFP_FL_LW_SIZ; } if (last_act_id) *last_act_id = act_id; return 0; } static int nfp_flower_populate_merge_match(struct nfp_fl_payload *flow, struct nfp_flower_merge_check *merge, bool extra_fields) { struct nfp_flower_meta_tci *meta_tci; u8 *mask = flow->mask_data; u8 key_layer, match_size; memset(merge, 0, sizeof(struct nfp_flower_merge_check)); meta_tci = (struct nfp_flower_meta_tci *)mask; key_layer = meta_tci->nfp_flow_key_layer; if (key_layer & ~NFP_FLOWER_MERGE_FIELDS && !extra_fields) return -EOPNOTSUPP; merge->tci = meta_tci->tci; mask += sizeof(struct nfp_flower_meta_tci); if (key_layer & NFP_FLOWER_LAYER_EXT_META) mask += sizeof(struct nfp_flower_ext_meta); mask += sizeof(struct nfp_flower_in_port); if (key_layer & NFP_FLOWER_LAYER_MAC) { match_size = sizeof(struct nfp_flower_mac_mpls); memcpy(&merge->l2, mask, match_size); mask += match_size; } if (key_layer & NFP_FLOWER_LAYER_TP) { match_size = sizeof(struct nfp_flower_tp_ports); memcpy(&merge->l4, mask, match_size); mask += match_size; } if (key_layer & NFP_FLOWER_LAYER_IPV4) { match_size = sizeof(struct nfp_flower_ipv4); memcpy(&merge->ipv4, mask, match_size); } if (key_layer & NFP_FLOWER_LAYER_IPV6) { match_size = sizeof(struct nfp_flower_ipv6); memcpy(&merge->ipv6, mask, match_size); } return 0; } static int nfp_flower_can_merge(struct nfp_fl_payload *sub_flow1, struct nfp_fl_payload *sub_flow2) { /* Two flows can be merged if sub_flow2 only matches on bits that are * either matched by sub_flow1 or set by a sub_flow1 action. This * ensures that every packet that hits sub_flow1 and recirculates is * guaranteed to hit sub_flow2. */ struct nfp_flower_merge_check sub_flow1_merge, sub_flow2_merge; int err, act_out = 0; u8 last_act_id = 0; err = nfp_flower_populate_merge_match(sub_flow1, &sub_flow1_merge, true); if (err) return err; err = nfp_flower_populate_merge_match(sub_flow2, &sub_flow2_merge, false); if (err) return err; err = nfp_flower_update_merge_with_actions(sub_flow1, &sub_flow1_merge, &last_act_id, &act_out); if (err) return err; /* Must only be 1 output action and it must be the last in sequence. */ if (act_out != 1 || last_act_id != NFP_FL_ACTION_OPCODE_OUTPUT) return -EOPNOTSUPP; /* Reject merge if sub_flow2 matches on something that is not matched * on or set in an action by sub_flow1. */ err = bitmap_andnot(sub_flow2_merge.vals, sub_flow2_merge.vals, sub_flow1_merge.vals, sizeof(struct nfp_flower_merge_check) * 8); if (err) return -EINVAL; return 0; } static unsigned int nfp_flower_copy_pre_actions(char *act_dst, char *act_src, int len, bool *tunnel_act) { unsigned int act_off = 0, act_len; struct nfp_fl_act_head *a; u8 act_id = 0; while (act_off < len) { a = (struct nfp_fl_act_head *)&act_src[act_off]; act_len = a->len_lw << NFP_FL_LW_SIZ; act_id = a->jump_id; switch (act_id) { case NFP_FL_ACTION_OPCODE_PRE_TUNNEL: if (tunnel_act) *tunnel_act = true; fallthrough; case NFP_FL_ACTION_OPCODE_PRE_LAG: memcpy(act_dst + act_off, act_src + act_off, act_len); break; default: return act_off; } act_off += act_len; } return act_off; } static int nfp_fl_verify_post_tun_acts(char *acts, int len, struct nfp_fl_push_vlan **vlan) { struct nfp_fl_act_head *a; unsigned int act_off = 0; while (act_off < len) { a = (struct nfp_fl_act_head *)&acts[act_off]; if (a->jump_id == NFP_FL_ACTION_OPCODE_PUSH_VLAN && !act_off) *vlan = (struct nfp_fl_push_vlan *)a; else if (a->jump_id != NFP_FL_ACTION_OPCODE_OUTPUT) return -EOPNOTSUPP; act_off += a->len_lw << NFP_FL_LW_SIZ; } /* Ensure any VLAN push also has an egress action. */ if (*vlan && act_off <= sizeof(struct nfp_fl_push_vlan)) return -EOPNOTSUPP; return 0; } static int nfp_fl_push_vlan_after_tun(char *acts, int len, struct nfp_fl_push_vlan *vlan) { struct nfp_fl_set_tun *tun; struct nfp_fl_act_head *a; unsigned int act_off = 0; while (act_off < len) { a = (struct nfp_fl_act_head *)&acts[act_off]; if (a->jump_id == NFP_FL_ACTION_OPCODE_SET_TUNNEL) { tun = (struct nfp_fl_set_tun *)a; tun->outer_vlan_tpid = vlan->vlan_tpid; tun->outer_vlan_tci = vlan->vlan_tci; return 0; } act_off += a->len_lw << NFP_FL_LW_SIZ; } /* Return error if no tunnel action is found. */ return -EOPNOTSUPP; } static int nfp_flower_merge_action(struct nfp_fl_payload *sub_flow1, struct nfp_fl_payload *sub_flow2, struct nfp_fl_payload *merge_flow) { unsigned int sub1_act_len, sub2_act_len, pre_off1, pre_off2; struct nfp_fl_push_vlan *post_tun_push_vlan = NULL; bool tunnel_act = false; char *merge_act; int err; /* The last action of sub_flow1 must be output - do not merge this. */ sub1_act_len = sub_flow1->meta.act_len - sizeof(struct nfp_fl_output); sub2_act_len = sub_flow2->meta.act_len; if (!sub2_act_len) return -EINVAL; if (sub1_act_len + sub2_act_len > NFP_FL_MAX_A_SIZ) return -EINVAL; /* A shortcut can only be applied if there is a single action. */ if (sub1_act_len) merge_flow->meta.shortcut = cpu_to_be32(NFP_FL_SC_ACT_NULL); else merge_flow->meta.shortcut = sub_flow2->meta.shortcut; merge_flow->meta.act_len = sub1_act_len + sub2_act_len; merge_act = merge_flow->action_data; /* Copy any pre-actions to the start of merge flow action list. */ pre_off1 = nfp_flower_copy_pre_actions(merge_act, sub_flow1->action_data, sub1_act_len, &tunnel_act); merge_act += pre_off1; sub1_act_len -= pre_off1; pre_off2 = nfp_flower_copy_pre_actions(merge_act, sub_flow2->action_data, sub2_act_len, NULL); merge_act += pre_off2; sub2_act_len -= pre_off2; /* FW does a tunnel push when egressing, therefore, if sub_flow 1 pushes * a tunnel, there are restrictions on what sub_flow 2 actions lead to a * valid merge. */ if (tunnel_act) { char *post_tun_acts = &sub_flow2->action_data[pre_off2]; err = nfp_fl_verify_post_tun_acts(post_tun_acts, sub2_act_len, &post_tun_push_vlan); if (err) return err; if (post_tun_push_vlan) { pre_off2 += sizeof(*post_tun_push_vlan); sub2_act_len -= sizeof(*post_tun_push_vlan); } } /* Copy remaining actions from sub_flows 1 and 2. */ memcpy(merge_act, sub_flow1->action_data + pre_off1, sub1_act_len); if (post_tun_push_vlan) { /* Update tunnel action in merge to include VLAN push. */ err = nfp_fl_push_vlan_after_tun(merge_act, sub1_act_len, post_tun_push_vlan); if (err) return err; merge_flow->meta.act_len -= sizeof(*post_tun_push_vlan); } merge_act += sub1_act_len; memcpy(merge_act, sub_flow2->action_data + pre_off2, sub2_act_len); return 0; } /* Flow link code should only be accessed under RTNL. */ static void nfp_flower_unlink_flow(struct nfp_fl_payload_link *link) { list_del(&link->merge_flow.list); list_del(&link->sub_flow.list); kfree(link); } static void nfp_flower_unlink_flows(struct nfp_fl_payload *merge_flow, struct nfp_fl_payload *sub_flow) { struct nfp_fl_payload_link *link; list_for_each_entry(link, &merge_flow->linked_flows, merge_flow.list) if (link->sub_flow.flow == sub_flow) { nfp_flower_unlink_flow(link); return; } } static int nfp_flower_link_flows(struct nfp_fl_payload *merge_flow, struct nfp_fl_payload *sub_flow) { struct nfp_fl_payload_link *link; link = kmalloc(sizeof(*link), GFP_KERNEL); if (!link) return -ENOMEM; link->merge_flow.flow = merge_flow; list_add_tail(&link->merge_flow.list, &merge_flow->linked_flows); link->sub_flow.flow = sub_flow; list_add_tail(&link->sub_flow.list, &sub_flow->linked_flows); return 0; } /** * nfp_flower_merge_offloaded_flows() - Merge 2 existing flows to single flow. * @app: Pointer to the APP handle * @sub_flow1: Initial flow matched to produce merge hint * @sub_flow2: Post recirculation flow matched in merge hint * * Combines 2 flows (if valid) to a single flow, removing the initial from hw * and offloading the new, merged flow. * * Return: negative value on error, 0 in success. */ int nfp_flower_merge_offloaded_flows(struct nfp_app *app, struct nfp_fl_payload *sub_flow1, struct nfp_fl_payload *sub_flow2) { struct nfp_flower_priv *priv = app->priv; struct nfp_fl_payload *merge_flow; struct nfp_fl_key_ls merge_key_ls; struct nfp_merge_info *merge_info; u64 parent_ctx = 0; int err; if (sub_flow1 == sub_flow2 || nfp_flower_is_merge_flow(sub_flow1) || nfp_flower_is_merge_flow(sub_flow2)) return -EINVAL; /* Check if the two flows are already merged */ parent_ctx = (u64)(be32_to_cpu(sub_flow1->meta.host_ctx_id)) << 32; parent_ctx |= (u64)(be32_to_cpu(sub_flow2->meta.host_ctx_id)); if (rhashtable_lookup_fast(&priv->merge_table, &parent_ctx, merge_table_params)) { nfp_flower_cmsg_warn(app, "The two flows are already merged.\n"); return 0; } err = nfp_flower_can_merge(sub_flow1, sub_flow2); if (err) return err; merge_key_ls.key_size = sub_flow1->meta.key_len; merge_flow = nfp_flower_allocate_new(&merge_key_ls); if (!merge_flow) return -ENOMEM; merge_flow->tc_flower_cookie = (unsigned long)merge_flow; merge_flow->ingress_dev = sub_flow1->ingress_dev; memcpy(merge_flow->unmasked_data, sub_flow1->unmasked_data, sub_flow1->meta.key_len); memcpy(merge_flow->mask_data, sub_flow1->mask_data, sub_flow1->meta.mask_len); err = nfp_flower_merge_action(sub_flow1, sub_flow2, merge_flow); if (err) goto err_destroy_merge_flow; err = nfp_flower_link_flows(merge_flow, sub_flow1); if (err) goto err_destroy_merge_flow; err = nfp_flower_link_flows(merge_flow, sub_flow2); if (err) goto err_unlink_sub_flow1; err = nfp_compile_flow_metadata(app, merge_flow->tc_flower_cookie, merge_flow, merge_flow->ingress_dev, NULL); if (err) goto err_unlink_sub_flow2; err = rhashtable_insert_fast(&priv->flow_table, &merge_flow->fl_node, nfp_flower_table_params); if (err) goto err_release_metadata; merge_info = kmalloc(sizeof(*merge_info), GFP_KERNEL); if (!merge_info) { err = -ENOMEM; goto err_remove_rhash; } merge_info->parent_ctx = parent_ctx; err = rhashtable_insert_fast(&priv->merge_table, &merge_info->ht_node, merge_table_params); if (err) goto err_destroy_merge_info; err = nfp_flower_xmit_flow(app, merge_flow, NFP_FLOWER_CMSG_TYPE_FLOW_MOD); if (err) goto err_remove_merge_info; merge_flow->in_hw = true; sub_flow1->in_hw = false; return 0; err_remove_merge_info: WARN_ON_ONCE(rhashtable_remove_fast(&priv->merge_table, &merge_info->ht_node, merge_table_params)); err_destroy_merge_info: kfree(merge_info); err_remove_rhash: WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table, &merge_flow->fl_node, nfp_flower_table_params)); err_release_metadata: nfp_modify_flow_metadata(app, merge_flow); err_unlink_sub_flow2: nfp_flower_unlink_flows(merge_flow, sub_flow2); err_unlink_sub_flow1: nfp_flower_unlink_flows(merge_flow, sub_flow1); err_destroy_merge_flow: kfree(merge_flow->action_data); kfree(merge_flow->mask_data); kfree(merge_flow->unmasked_data); kfree(merge_flow); return err; } /** * nfp_flower_validate_pre_tun_rule() * @app: Pointer to the APP handle * @flow: Pointer to NFP flow representation of rule * @key_ls: Pointer to NFP key layers structure * @extack: Netlink extended ACK report * * Verifies the flow as a pre-tunnel rule. * * Return: negative value on error, 0 if verified. */ static int nfp_flower_validate_pre_tun_rule(struct nfp_app *app, struct nfp_fl_payload *flow, struct nfp_fl_key_ls *key_ls, struct netlink_ext_ack *extack) { struct nfp_flower_priv *priv = app->priv; struct nfp_flower_meta_tci *meta_tci; struct nfp_flower_mac_mpls *mac; u8 *ext = flow->unmasked_data; struct nfp_fl_act_head *act; u8 *mask = flow->mask_data; bool vlan = false; int act_offset; u8 key_layer; meta_tci = (struct nfp_flower_meta_tci *)flow->unmasked_data; key_layer = key_ls->key_layer; if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ)) { if (meta_tci->tci & cpu_to_be16(NFP_FLOWER_MASK_VLAN_PRESENT)) { u16 vlan_tci = be16_to_cpu(meta_tci->tci); vlan_tci &= ~NFP_FLOWER_MASK_VLAN_PRESENT; flow->pre_tun_rule.vlan_tci = cpu_to_be16(vlan_tci); vlan = true; } else { flow->pre_tun_rule.vlan_tci = cpu_to_be16(0xffff); } } if (key_layer & ~NFP_FLOWER_PRE_TUN_RULE_FIELDS) { NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: too many match fields"); return -EOPNOTSUPP; } else if (key_ls->key_layer_two & ~NFP_FLOWER_LAYER2_QINQ) { NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: non-vlan in extended match fields"); return -EOPNOTSUPP; } if (!(key_layer & NFP_FLOWER_LAYER_MAC)) { NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: MAC fields match required"); return -EOPNOTSUPP; } if (!(key_layer & NFP_FLOWER_LAYER_IPV4) && !(key_layer & NFP_FLOWER_LAYER_IPV6)) { NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: match on ipv4/ipv6 eth_type must be present"); return -EOPNOTSUPP; } if (key_layer & NFP_FLOWER_LAYER_IPV6) flow->pre_tun_rule.is_ipv6 = true; else flow->pre_tun_rule.is_ipv6 = false; /* Skip fields known to exist. */ mask += sizeof(struct nfp_flower_meta_tci); ext += sizeof(struct nfp_flower_meta_tci); if (key_ls->key_layer_two) { mask += sizeof(struct nfp_flower_ext_meta); ext += sizeof(struct nfp_flower_ext_meta); } mask += sizeof(struct nfp_flower_in_port); ext += sizeof(struct nfp_flower_in_port); /* Ensure destination MAC address is fully matched. */ mac = (struct nfp_flower_mac_mpls *)mask; if (!is_broadcast_ether_addr(&mac->mac_dst[0])) { NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: dest MAC field must not be masked"); return -EOPNOTSUPP; } /* Ensure source MAC address is fully matched. This is only needed * for firmware with the DECAP_V2 feature enabled. Don't do this * for firmware without this feature to keep old behaviour. */ if (priv->flower_ext_feats & NFP_FL_FEATS_DECAP_V2) { mac = (struct nfp_flower_mac_mpls *)mask; if (!is_broadcast_ether_addr(&mac->mac_src[0])) { NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: source MAC field must not be masked"); return -EOPNOTSUPP; } } if (mac->mpls_lse) { NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: MPLS not supported"); return -EOPNOTSUPP; } /* Ensure destination MAC address matches pre_tun_dev. */ mac = (struct nfp_flower_mac_mpls *)ext; if (memcmp(&mac->mac_dst[0], flow->pre_tun_rule.dev->dev_addr, 6)) { NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: dest MAC must match output dev MAC"); return -EOPNOTSUPP; } /* Save mac addresses in pre_tun_rule entry for later use */ memcpy(&flow->pre_tun_rule.loc_mac, &mac->mac_dst[0], ETH_ALEN); memcpy(&flow->pre_tun_rule.rem_mac, &mac->mac_src[0], ETH_ALEN); mask += sizeof(struct nfp_flower_mac_mpls); ext += sizeof(struct nfp_flower_mac_mpls); if (key_layer & NFP_FLOWER_LAYER_IPV4 || key_layer & NFP_FLOWER_LAYER_IPV6) { /* Flags and proto fields have same offset in IPv4 and IPv6. */ int ip_flags = offsetof(struct nfp_flower_ipv4, ip_ext.flags); int ip_proto = offsetof(struct nfp_flower_ipv4, ip_ext.proto); int size; int i; size = key_layer & NFP_FLOWER_LAYER_IPV4 ? sizeof(struct nfp_flower_ipv4) : sizeof(struct nfp_flower_ipv6); /* Ensure proto and flags are the only IP layer fields. */ for (i = 0; i < size; i++) if (mask[i] && i != ip_flags && i != ip_proto) { NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: only flags and proto can be matched in ip header"); return -EOPNOTSUPP; } ext += size; mask += size; } if ((priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ)) { if (key_ls->key_layer_two & NFP_FLOWER_LAYER2_QINQ) { struct nfp_flower_vlan *vlan_tags; u16 vlan_tpid; u16 vlan_tci; vlan_tags = (struct nfp_flower_vlan *)ext; vlan_tci = be16_to_cpu(vlan_tags->outer_tci); vlan_tpid = be16_to_cpu(vlan_tags->outer_tpid); vlan_tci &= ~NFP_FLOWER_MASK_VLAN_PRESENT; flow->pre_tun_rule.vlan_tci = cpu_to_be16(vlan_tci); flow->pre_tun_rule.vlan_tpid = cpu_to_be16(vlan_tpid); vlan = true; } else { flow->pre_tun_rule.vlan_tci = cpu_to_be16(0xffff); flow->pre_tun_rule.vlan_tpid = cpu_to_be16(0xffff); } } /* Action must be a single egress or pop_vlan and egress. */ act_offset = 0; act = (struct nfp_fl_act_head *)&flow->action_data[act_offset]; if (vlan) { if (act->jump_id != NFP_FL_ACTION_OPCODE_POP_VLAN) { NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: match on VLAN must have VLAN pop as first action"); return -EOPNOTSUPP; } act_offset += act->len_lw << NFP_FL_LW_SIZ; act = (struct nfp_fl_act_head *)&flow->action_data[act_offset]; } if (act->jump_id != NFP_FL_ACTION_OPCODE_OUTPUT) { NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: non egress action detected where egress was expected"); return -EOPNOTSUPP; } act_offset += act->len_lw << NFP_FL_LW_SIZ; /* Ensure there are no more actions after egress. */ if (act_offset != flow->meta.act_len) { NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: egress is not the last action"); return -EOPNOTSUPP; } return 0; } static bool offload_pre_check(struct flow_cls_offload *flow) { struct flow_rule *rule = flow_cls_offload_flow_rule(flow); struct flow_dissector *dissector = rule->match.dissector; struct flow_match_ct ct; if (dissector->used_keys & BIT_ULL(FLOW_DISSECTOR_KEY_CT)) { flow_rule_match_ct(rule, &ct); /* Allow special case where CT match is all 0 */ if (memchr_inv(ct.key, 0, sizeof(*ct.key))) return false; } if (flow->common.chain_index) return false; return true; } /** * nfp_flower_add_offload() - Adds a new flow to hardware. * @app: Pointer to the APP handle * @netdev: netdev structure. * @flow: TC flower classifier offload structure. * * Adds a new flow to the repeated hash structure and action payload. * * Return: negative value on error, 0 if configured successfully. */ static int nfp_flower_add_offload(struct nfp_app *app, struct net_device *netdev, struct flow_cls_offload *flow) { struct flow_rule *rule = flow_cls_offload_flow_rule(flow); enum nfp_flower_tun_type tun_type = NFP_FL_TUNNEL_NONE; struct nfp_flower_priv *priv = app->priv; struct netlink_ext_ack *extack = NULL; struct nfp_fl_payload *flow_pay; struct nfp_fl_key_ls *key_layer; struct nfp_port *port = NULL; int err; extack = flow->common.extack; if (nfp_netdev_is_nfp_repr(netdev)) port = nfp_port_from_netdev(netdev); if (is_pre_ct_flow(flow)) return nfp_fl_ct_handle_pre_ct(priv, netdev, flow, extack, NULL); if (is_post_ct_flow(flow)) return nfp_fl_ct_handle_post_ct(priv, netdev, flow, extack); if (!offload_pre_check(flow)) return -EOPNOTSUPP; key_layer = kmalloc(sizeof(*key_layer), GFP_KERNEL); if (!key_layer) return -ENOMEM; err = nfp_flower_calculate_key_layers(app, netdev, key_layer, rule, &tun_type, extack); if (err) goto err_free_key_ls; flow_pay = nfp_flower_allocate_new(key_layer); if (!flow_pay) { err = -ENOMEM; goto err_free_key_ls; } err = nfp_flower_compile_flow_match(app, rule, key_layer, netdev, flow_pay, tun_type, extack); if (err) goto err_destroy_flow; err = nfp_flower_compile_action(app, rule, netdev, flow_pay, extack); if (err) goto err_destroy_flow; if (flow_pay->pre_tun_rule.dev) { err = nfp_flower_validate_pre_tun_rule(app, flow_pay, key_layer, extack); if (err) goto err_destroy_flow; } err = nfp_compile_flow_metadata(app, flow->cookie, flow_pay, netdev, extack); if (err) goto err_destroy_flow; flow_pay->tc_flower_cookie = flow->cookie; err = rhashtable_insert_fast(&priv->flow_table, &flow_pay->fl_node, nfp_flower_table_params); if (err) { NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot insert flow into tables for offloads"); goto err_release_metadata; } if (flow_pay->pre_tun_rule.dev) { if (priv->flower_ext_feats & NFP_FL_FEATS_DECAP_V2) { struct nfp_predt_entry *predt; predt = kzalloc(sizeof(*predt), GFP_KERNEL); if (!predt) { err = -ENOMEM; goto err_remove_rhash; } predt->flow_pay = flow_pay; INIT_LIST_HEAD(&predt->nn_list); spin_lock_bh(&priv->predt_lock); list_add(&predt->list_head, &priv->predt_list); flow_pay->pre_tun_rule.predt = predt; nfp_tun_link_and_update_nn_entries(app, predt); spin_unlock_bh(&priv->predt_lock); } else { err = nfp_flower_xmit_pre_tun_flow(app, flow_pay); } } else { err = nfp_flower_xmit_flow(app, flow_pay, NFP_FLOWER_CMSG_TYPE_FLOW_ADD); } if (err) goto err_remove_rhash; if (port) port->tc_offload_cnt++; flow_pay->in_hw = true; /* Deallocate flow payload when flower rule has been destroyed. */ kfree(key_layer); return 0; err_remove_rhash: WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table, &flow_pay->fl_node, nfp_flower_table_params)); err_release_metadata: nfp_modify_flow_metadata(app, flow_pay); err_destroy_flow: if (flow_pay->nfp_tun_ipv6) nfp_tunnel_put_ipv6_off(app, flow_pay->nfp_tun_ipv6); kfree(flow_pay->action_data); kfree(flow_pay->mask_data); kfree(flow_pay->unmasked_data); kfree(flow_pay); err_free_key_ls: kfree(key_layer); return err; } static void nfp_flower_remove_merge_flow(struct nfp_app *app, struct nfp_fl_payload *del_sub_flow, struct nfp_fl_payload *merge_flow) { struct nfp_flower_priv *priv = app->priv; struct nfp_fl_payload_link *link, *temp; struct nfp_merge_info *merge_info; struct nfp_fl_payload *origin; u64 parent_ctx = 0; bool mod = false; int err; link = list_first_entry(&merge_flow->linked_flows, struct nfp_fl_payload_link, merge_flow.list); origin = link->sub_flow.flow; /* Re-add rule the merge had overwritten if it has not been deleted. */ if (origin != del_sub_flow) mod = true; err = nfp_modify_flow_metadata(app, merge_flow); if (err) { nfp_flower_cmsg_warn(app, "Metadata fail for merge flow delete.\n"); goto err_free_links; } if (!mod) { err = nfp_flower_xmit_flow(app, merge_flow, NFP_FLOWER_CMSG_TYPE_FLOW_DEL); if (err) { nfp_flower_cmsg_warn(app, "Failed to delete merged flow.\n"); goto err_free_links; } } else { __nfp_modify_flow_metadata(priv, origin); err = nfp_flower_xmit_flow(app, origin, NFP_FLOWER_CMSG_TYPE_FLOW_MOD); if (err) nfp_flower_cmsg_warn(app, "Failed to revert merge flow.\n"); origin->in_hw = true; } err_free_links: /* Clean any links connected with the merged flow. */ list_for_each_entry_safe(link, temp, &merge_flow->linked_flows, merge_flow.list) { u32 ctx_id = be32_to_cpu(link->sub_flow.flow->meta.host_ctx_id); parent_ctx = (parent_ctx << 32) | (u64)(ctx_id); nfp_flower_unlink_flow(link); } merge_info = rhashtable_lookup_fast(&priv->merge_table, &parent_ctx, merge_table_params); if (merge_info) { WARN_ON_ONCE(rhashtable_remove_fast(&priv->merge_table, &merge_info->ht_node, merge_table_params)); kfree(merge_info); } kfree(merge_flow->action_data); kfree(merge_flow->mask_data); kfree(merge_flow->unmasked_data); WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table, &merge_flow->fl_node, nfp_flower_table_params)); kfree_rcu(merge_flow, rcu); } void nfp_flower_del_linked_merge_flows(struct nfp_app *app, struct nfp_fl_payload *sub_flow) { struct nfp_fl_payload_link *link, *temp; /* Remove any merge flow formed from the deleted sub_flow. */ list_for_each_entry_safe(link, temp, &sub_flow->linked_flows, sub_flow.list) nfp_flower_remove_merge_flow(app, sub_flow, link->merge_flow.flow); } /** * nfp_flower_del_offload() - Removes a flow from hardware. * @app: Pointer to the APP handle * @netdev: netdev structure. * @flow: TC flower classifier offload structure * * Removes a flow from the repeated hash structure and clears the * action payload. Any flows merged from this are also deleted. * * Return: negative value on error, 0 if removed successfully. */ static int nfp_flower_del_offload(struct nfp_app *app, struct net_device *netdev, struct flow_cls_offload *flow) { struct nfp_flower_priv *priv = app->priv; struct nfp_fl_ct_map_entry *ct_map_ent; struct netlink_ext_ack *extack = NULL; struct nfp_fl_payload *nfp_flow; struct nfp_port *port = NULL; int err; extack = flow->common.extack; if (nfp_netdev_is_nfp_repr(netdev)) port = nfp_port_from_netdev(netdev); /* Check ct_map_table */ ct_map_ent = rhashtable_lookup_fast(&priv->ct_map_table, &flow->cookie, nfp_ct_map_params); if (ct_map_ent) { err = nfp_fl_ct_del_flow(ct_map_ent); return err; } nfp_flow = nfp_flower_search_fl_table(app, flow->cookie, netdev); if (!nfp_flow) { NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot remove flow that does not exist"); return -ENOENT; } err = nfp_modify_flow_metadata(app, nfp_flow); if (err) goto err_free_merge_flow; if (nfp_flow->nfp_tun_ipv4_addr) nfp_tunnel_del_ipv4_off(app, nfp_flow->nfp_tun_ipv4_addr); if (nfp_flow->nfp_tun_ipv6) nfp_tunnel_put_ipv6_off(app, nfp_flow->nfp_tun_ipv6); if (!nfp_flow->in_hw) { err = 0; goto err_free_merge_flow; } if (nfp_flow->pre_tun_rule.dev) { if (priv->flower_ext_feats & NFP_FL_FEATS_DECAP_V2) { struct nfp_predt_entry *predt; predt = nfp_flow->pre_tun_rule.predt; if (predt) { spin_lock_bh(&priv->predt_lock); nfp_tun_unlink_and_update_nn_entries(app, predt); list_del(&predt->list_head); spin_unlock_bh(&priv->predt_lock); kfree(predt); } } else { err = nfp_flower_xmit_pre_tun_del_flow(app, nfp_flow); } } else { err = nfp_flower_xmit_flow(app, nfp_flow, NFP_FLOWER_CMSG_TYPE_FLOW_DEL); } /* Fall through on error. */ err_free_merge_flow: nfp_flower_del_linked_merge_flows(app, nfp_flow); if (port) port->tc_offload_cnt--; kfree(nfp_flow->action_data); kfree(nfp_flow->mask_data); kfree(nfp_flow->unmasked_data); WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table, &nfp_flow->fl_node, nfp_flower_table_params)); kfree_rcu(nfp_flow, rcu); return err; } static void __nfp_flower_update_merge_stats(struct nfp_app *app, struct nfp_fl_payload *merge_flow) { struct nfp_flower_priv *priv = app->priv; struct nfp_fl_payload_link *link; struct nfp_fl_payload *sub_flow; u64 pkts, bytes, used; u32 ctx_id; ctx_id = be32_to_cpu(merge_flow->meta.host_ctx_id); pkts = priv->stats[ctx_id].pkts; /* Do not cycle subflows if no stats to distribute. */ if (!pkts) return; bytes = priv->stats[ctx_id].bytes; used = priv->stats[ctx_id].used; /* Reset stats for the merge flow. */ priv->stats[ctx_id].pkts = 0; priv->stats[ctx_id].bytes = 0; /* The merge flow has received stats updates from firmware. * Distribute these stats to all subflows that form the merge. * The stats will collected from TC via the subflows. */ list_for_each_entry(link, &merge_flow->linked_flows, merge_flow.list) { sub_flow = link->sub_flow.flow; ctx_id = be32_to_cpu(sub_flow->meta.host_ctx_id); priv->stats[ctx_id].pkts += pkts; priv->stats[ctx_id].bytes += bytes; priv->stats[ctx_id].used = max_t(u64, used, priv->stats[ctx_id].used); } } void nfp_flower_update_merge_stats(struct nfp_app *app, struct nfp_fl_payload *sub_flow) { struct nfp_fl_payload_link *link; /* Get merge flows that the subflow forms to distribute their stats. */ list_for_each_entry(link, &sub_flow->linked_flows, sub_flow.list) __nfp_flower_update_merge_stats(app, link->merge_flow.flow); } /** * nfp_flower_get_stats() - Populates flow stats obtained from hardware. * @app: Pointer to the APP handle * @netdev: Netdev structure. * @flow: TC flower classifier offload structure * * Populates a flow statistics structure which which corresponds to a * specific flow. * * Return: negative value on error, 0 if stats populated successfully. */ static int nfp_flower_get_stats(struct nfp_app *app, struct net_device *netdev, struct flow_cls_offload *flow) { struct nfp_flower_priv *priv = app->priv; struct nfp_fl_ct_map_entry *ct_map_ent; struct netlink_ext_ack *extack = NULL; struct nfp_fl_payload *nfp_flow; u32 ctx_id; /* Check ct_map table first */ ct_map_ent = rhashtable_lookup_fast(&priv->ct_map_table, &flow->cookie, nfp_ct_map_params); if (ct_map_ent) return nfp_fl_ct_stats(flow, ct_map_ent); extack = flow->common.extack; nfp_flow = nfp_flower_search_fl_table(app, flow->cookie, netdev); if (!nfp_flow) { NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot dump stats for flow that does not exist"); return -EINVAL; } ctx_id = be32_to_cpu(nfp_flow->meta.host_ctx_id); spin_lock_bh(&priv->stats_lock); /* If request is for a sub_flow, update stats from merged flows. */ if (!list_empty(&nfp_flow->linked_flows)) nfp_flower_update_merge_stats(app, nfp_flow); flow_stats_update(&flow->stats, priv->stats[ctx_id].bytes, priv->stats[ctx_id].pkts, 0, priv->stats[ctx_id].used, FLOW_ACTION_HW_STATS_DELAYED); priv->stats[ctx_id].pkts = 0; priv->stats[ctx_id].bytes = 0; spin_unlock_bh(&priv->stats_lock); return 0; } static int nfp_flower_repr_offload(struct nfp_app *app, struct net_device *netdev, struct flow_cls_offload *flower) { struct nfp_flower_priv *priv = app->priv; int ret; if (!eth_proto_is_802_3(flower->common.protocol)) return -EOPNOTSUPP; mutex_lock(&priv->nfp_fl_lock); switch (flower->command) { case FLOW_CLS_REPLACE: ret = nfp_flower_add_offload(app, netdev, flower); break; case FLOW_CLS_DESTROY: ret = nfp_flower_del_offload(app, netdev, flower); break; case FLOW_CLS_STATS: ret = nfp_flower_get_stats(app, netdev, flower); break; default: ret = -EOPNOTSUPP; break; } mutex_unlock(&priv->nfp_fl_lock); return ret; } static int nfp_flower_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) { struct flow_cls_common_offload *common = type_data; struct nfp_repr *repr = cb_priv; if (!tc_can_offload_extack(repr->netdev, common->extack)) return -EOPNOTSUPP; switch (type) { case TC_SETUP_CLSFLOWER: return nfp_flower_repr_offload(repr->app, repr->netdev, type_data); case TC_SETUP_CLSMATCHALL: return nfp_flower_setup_qos_offload(repr->app, repr->netdev, type_data); default: return -EOPNOTSUPP; } } static LIST_HEAD(nfp_block_cb_list); static int nfp_flower_setup_tc_block(struct net_device *netdev, struct flow_block_offload *f) { struct nfp_repr *repr = netdev_priv(netdev); struct nfp_flower_repr_priv *repr_priv; struct flow_block_cb *block_cb; if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS) return -EOPNOTSUPP; repr_priv = repr->app_priv; repr_priv->block_shared = f->block_shared; f->driver_block_list = &nfp_block_cb_list; f->unlocked_driver_cb = true; switch (f->command) { case FLOW_BLOCK_BIND: if (flow_block_cb_is_busy(nfp_flower_setup_tc_block_cb, repr, &nfp_block_cb_list)) return -EBUSY; block_cb = flow_block_cb_alloc(nfp_flower_setup_tc_block_cb, repr, repr, NULL); if (IS_ERR(block_cb)) return PTR_ERR(block_cb); flow_block_cb_add(block_cb, f); list_add_tail(&block_cb->driver_list, &nfp_block_cb_list); return 0; case FLOW_BLOCK_UNBIND: block_cb = flow_block_cb_lookup(f->block, nfp_flower_setup_tc_block_cb, repr); if (!block_cb) return -ENOENT; flow_block_cb_remove(block_cb, f); list_del(&block_cb->driver_list); return 0; default: return -EOPNOTSUPP; } } int nfp_flower_setup_tc(struct nfp_app *app, struct net_device *netdev, enum tc_setup_type type, void *type_data) { switch (type) { case TC_SETUP_BLOCK: return nfp_flower_setup_tc_block(netdev, type_data); default: return -EOPNOTSUPP; } } struct nfp_flower_indr_block_cb_priv { struct net_device *netdev; struct nfp_app *app; struct list_head list; }; static struct nfp_flower_indr_block_cb_priv * nfp_flower_indr_block_cb_priv_lookup(struct nfp_app *app, struct net_device *netdev) { struct nfp_flower_indr_block_cb_priv *cb_priv; struct nfp_flower_priv *priv = app->priv; list_for_each_entry(cb_priv, &priv->indr_block_cb_priv, list) if (cb_priv->netdev == netdev) return cb_priv; return NULL; } static int nfp_flower_setup_indr_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) { struct nfp_flower_indr_block_cb_priv *priv = cb_priv; switch (type) { case TC_SETUP_CLSFLOWER: return nfp_flower_repr_offload(priv->app, priv->netdev, type_data); default: return -EOPNOTSUPP; } } void nfp_flower_setup_indr_tc_release(void *cb_priv) { struct nfp_flower_indr_block_cb_priv *priv = cb_priv; list_del(&priv->list); kfree(priv); } static int nfp_flower_setup_indr_tc_block(struct net_device *netdev, struct Qdisc *sch, struct nfp_app *app, struct flow_block_offload *f, void *data, void (*cleanup)(struct flow_block_cb *block_cb)) { struct nfp_flower_indr_block_cb_priv *cb_priv; struct nfp_flower_priv *priv = app->priv; struct flow_block_cb *block_cb; if ((f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS && !nfp_flower_internal_port_can_offload(app, netdev)) || (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS && nfp_flower_internal_port_can_offload(app, netdev))) return -EOPNOTSUPP; f->unlocked_driver_cb = true; switch (f->command) { case FLOW_BLOCK_BIND: cb_priv = nfp_flower_indr_block_cb_priv_lookup(app, netdev); if (cb_priv && flow_block_cb_is_busy(nfp_flower_setup_indr_block_cb, cb_priv, &nfp_block_cb_list)) return -EBUSY; cb_priv = kmalloc(sizeof(*cb_priv), GFP_KERNEL); if (!cb_priv) return -ENOMEM; cb_priv->netdev = netdev; cb_priv->app = app; list_add(&cb_priv->list, &priv->indr_block_cb_priv); block_cb = flow_indr_block_cb_alloc(nfp_flower_setup_indr_block_cb, cb_priv, cb_priv, nfp_flower_setup_indr_tc_release, f, netdev, sch, data, app, cleanup); if (IS_ERR(block_cb)) { list_del(&cb_priv->list); kfree(cb_priv); return PTR_ERR(block_cb); } flow_block_cb_add(block_cb, f); list_add_tail(&block_cb->driver_list, &nfp_block_cb_list); return 0; case FLOW_BLOCK_UNBIND: cb_priv = nfp_flower_indr_block_cb_priv_lookup(app, netdev); if (!cb_priv) return -ENOENT; block_cb = flow_block_cb_lookup(f->block, nfp_flower_setup_indr_block_cb, cb_priv); if (!block_cb) return -ENOENT; flow_indr_block_cb_remove(block_cb, f); list_del(&block_cb->driver_list); return 0; default: return -EOPNOTSUPP; } return 0; } static int nfp_setup_tc_no_dev(struct nfp_app *app, enum tc_setup_type type, void *data) { if (!data) return -EOPNOTSUPP; switch (type) { case TC_SETUP_ACT: return nfp_setup_tc_act_offload(app, data); default: return -EOPNOTSUPP; } } int nfp_flower_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, void *cb_priv, enum tc_setup_type type, void *type_data, void *data, void (*cleanup)(struct flow_block_cb *block_cb)) { if (!netdev) return nfp_setup_tc_no_dev(cb_priv, type, data); if (!nfp_fl_is_netdev_to_offload(netdev)) return -EOPNOTSUPP; switch (type) { case TC_SETUP_BLOCK: return nfp_flower_setup_indr_tc_block(netdev, sch, cb_priv, type_data, data, cleanup); default: return -EOPNOTSUPP; } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1