Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michal Kalderon | 11592 | 49.33% | 21 | 13.04% |
Yuval Mintz | 4418 | 18.80% | 45 | 27.95% |
Ariel Elior | 2083 | 8.86% | 4 | 2.48% |
Manish Chopra | 1476 | 6.28% | 8 | 4.97% |
Sudarsana Reddy Kalluru | 839 | 3.57% | 19 | 11.80% |
Tomer Tayar | 670 | 2.85% | 15 | 9.32% |
Alexander Lobakin | 559 | 2.38% | 9 | 5.59% |
Prabhakar Kushwaha | 533 | 2.27% | 3 | 1.86% |
Ram Amrani | 462 | 1.97% | 4 | 2.48% |
Denis Bolotin | 218 | 0.93% | 7 | 4.35% |
Arun Easi | 178 | 0.76% | 1 | 0.62% |
Rahul Verma | 172 | 0.73% | 3 | 1.86% |
Shai Malin | 134 | 0.57% | 1 | 0.62% |
Igor Russkikh | 55 | 0.23% | 2 | 1.24% |
Dmitry Bogdanov | 22 | 0.09% | 1 | 0.62% |
Daniil Tatianin | 14 | 0.06% | 1 | 0.62% |
Yuval Basson | 11 | 0.05% | 1 | 0.62% |
Kees Cook | 10 | 0.04% | 1 | 0.62% |
Venkata Sudheer Kumar Bhavaraju | 9 | 0.04% | 1 | 0.62% |
Yue haibing | 7 | 0.03% | 1 | 0.62% |
Yuval Bason | 7 | 0.03% | 1 | 0.62% |
Gustavo A. R. Silva | 6 | 0.03% | 2 | 1.24% |
Dan Carpenter | 5 | 0.02% | 1 | 0.62% |
Arnd Bergmann | 5 | 0.02% | 1 | 0.62% |
Wei Yongjun | 4 | 0.02% | 1 | 0.62% |
Omkar Kulkarni | 4 | 0.02% | 2 | 1.24% |
Colin Ian King | 2 | 0.01% | 2 | 1.24% |
Jason Yan | 2 | 0.01% | 1 | 0.62% |
Justin Stitt | 2 | 0.01% | 1 | 0.62% |
Jakub Kiciński | 1 | 0.00% | 1 | 0.62% |
Total | 23500 | 161 |
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) /* QLogic qed NIC Driver * Copyright (c) 2015-2017 QLogic Corporation * Copyright (c) 2019-2020 Marvell International Ltd. */ #include <linux/types.h> #include <asm/byteorder.h> #include <linux/io.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/errno.h> #include <linux/kernel.h> #include <linux/mutex.h> #include <linux/pci.h> #include <linux/slab.h> #include <linux/string.h> #include <linux/vmalloc.h> #include <linux/etherdevice.h> #include <linux/qed/qed_chain.h> #include <linux/qed/qed_if.h> #include "qed.h" #include "qed_cxt.h" #include "qed_dcbx.h" #include "qed_dev_api.h" #include "qed_fcoe.h" #include "qed_hsi.h" #include "qed_iro_hsi.h" #include "qed_hw.h" #include "qed_init_ops.h" #include "qed_int.h" #include "qed_iscsi.h" #include "qed_ll2.h" #include "qed_mcp.h" #include "qed_ooo.h" #include "qed_reg_addr.h" #include "qed_sp.h" #include "qed_sriov.h" #include "qed_vf.h" #include "qed_rdma.h" #include "qed_nvmetcp.h" static DEFINE_SPINLOCK(qm_lock); /******************** Doorbell Recovery *******************/ /* The doorbell recovery mechanism consists of a list of entries which represent * doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each * entity needs to register with the mechanism and provide the parameters * describing it's doorbell, including a location where last used doorbell data * can be found. The doorbell execute function will traverse the list and * doorbell all of the registered entries. */ struct qed_db_recovery_entry { struct list_head list_entry; void __iomem *db_addr; void *db_data; enum qed_db_rec_width db_width; enum qed_db_rec_space db_space; u8 hwfn_idx; }; /* Display a single doorbell recovery entry */ static void qed_db_recovery_dp_entry(struct qed_hwfn *p_hwfn, struct qed_db_recovery_entry *db_entry, char *action) { DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n", action, db_entry, db_entry->db_addr, db_entry->db_data, db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b", db_entry->db_space == DB_REC_USER ? "user" : "kernel", db_entry->hwfn_idx); } /* Doorbell address sanity (address within doorbell bar range) */ static bool qed_db_rec_sanity(struct qed_dev *cdev, void __iomem *db_addr, enum qed_db_rec_width db_width, void *db_data) { u32 width = (db_width == DB_REC_WIDTH_32B) ? 32 : 64; /* Make sure doorbell address is within the doorbell bar */ if (db_addr < cdev->doorbells || (u8 __iomem *)db_addr + width > (u8 __iomem *)cdev->doorbells + cdev->db_size) { WARN(true, "Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n", db_addr, cdev->doorbells, (u8 __iomem *)cdev->doorbells + cdev->db_size); return false; } /* ake sure doorbell data pointer is not null */ if (!db_data) { WARN(true, "Illegal doorbell data pointer: %p", db_data); return false; } return true; } /* Find hwfn according to the doorbell address */ static struct qed_hwfn *qed_db_rec_find_hwfn(struct qed_dev *cdev, void __iomem *db_addr) { struct qed_hwfn *p_hwfn; /* In CMT doorbell bar is split down the middle between engine 0 and enigne 1 */ if (cdev->num_hwfns > 1) p_hwfn = db_addr < cdev->hwfns[1].doorbells ? &cdev->hwfns[0] : &cdev->hwfns[1]; else p_hwfn = QED_LEADING_HWFN(cdev); return p_hwfn; } /* Add a new entry to the doorbell recovery mechanism */ int qed_db_recovery_add(struct qed_dev *cdev, void __iomem *db_addr, void *db_data, enum qed_db_rec_width db_width, enum qed_db_rec_space db_space) { struct qed_db_recovery_entry *db_entry; struct qed_hwfn *p_hwfn; /* Shortcircuit VFs, for now */ if (IS_VF(cdev)) { DP_VERBOSE(cdev, QED_MSG_IOV, "db recovery - skipping VF doorbell\n"); return 0; } /* Sanitize doorbell address */ if (!qed_db_rec_sanity(cdev, db_addr, db_width, db_data)) return -EINVAL; /* Obtain hwfn from doorbell address */ p_hwfn = qed_db_rec_find_hwfn(cdev, db_addr); /* Create entry */ db_entry = kzalloc(sizeof(*db_entry), GFP_KERNEL); if (!db_entry) { DP_NOTICE(cdev, "Failed to allocate a db recovery entry\n"); return -ENOMEM; } /* Populate entry */ db_entry->db_addr = db_addr; db_entry->db_data = db_data; db_entry->db_width = db_width; db_entry->db_space = db_space; db_entry->hwfn_idx = p_hwfn->my_id; /* Display */ qed_db_recovery_dp_entry(p_hwfn, db_entry, "Adding"); /* Protect the list */ spin_lock_bh(&p_hwfn->db_recovery_info.lock); list_add_tail(&db_entry->list_entry, &p_hwfn->db_recovery_info.list); spin_unlock_bh(&p_hwfn->db_recovery_info.lock); return 0; } /* Remove an entry from the doorbell recovery mechanism */ int qed_db_recovery_del(struct qed_dev *cdev, void __iomem *db_addr, void *db_data) { struct qed_db_recovery_entry *db_entry = NULL; struct qed_hwfn *p_hwfn; int rc = -EINVAL; /* Shortcircuit VFs, for now */ if (IS_VF(cdev)) { DP_VERBOSE(cdev, QED_MSG_IOV, "db recovery - skipping VF doorbell\n"); return 0; } /* Obtain hwfn from doorbell address */ p_hwfn = qed_db_rec_find_hwfn(cdev, db_addr); /* Protect the list */ spin_lock_bh(&p_hwfn->db_recovery_info.lock); list_for_each_entry(db_entry, &p_hwfn->db_recovery_info.list, list_entry) { /* search according to db_data addr since db_addr is not unique (roce) */ if (db_entry->db_data == db_data) { qed_db_recovery_dp_entry(p_hwfn, db_entry, "Deleting"); list_del(&db_entry->list_entry); rc = 0; break; } } spin_unlock_bh(&p_hwfn->db_recovery_info.lock); if (rc == -EINVAL) DP_NOTICE(p_hwfn, "Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n", db_data, db_addr); else kfree(db_entry); return rc; } /* Initialize the doorbell recovery mechanism */ static int qed_db_recovery_setup(struct qed_hwfn *p_hwfn) { DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Setting up db recovery\n"); /* Make sure db_size was set in cdev */ if (!p_hwfn->cdev->db_size) { DP_ERR(p_hwfn->cdev, "db_size not set\n"); return -EINVAL; } INIT_LIST_HEAD(&p_hwfn->db_recovery_info.list); spin_lock_init(&p_hwfn->db_recovery_info.lock); p_hwfn->db_recovery_info.db_recovery_counter = 0; return 0; } /* Destroy the doorbell recovery mechanism */ static void qed_db_recovery_teardown(struct qed_hwfn *p_hwfn) { struct qed_db_recovery_entry *db_entry = NULL; DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Tearing down db recovery\n"); if (!list_empty(&p_hwfn->db_recovery_info.list)) { DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n"); while (!list_empty(&p_hwfn->db_recovery_info.list)) { db_entry = list_first_entry(&p_hwfn->db_recovery_info.list, struct qed_db_recovery_entry, list_entry); qed_db_recovery_dp_entry(p_hwfn, db_entry, "Purging"); list_del(&db_entry->list_entry); kfree(db_entry); } } p_hwfn->db_recovery_info.db_recovery_counter = 0; } /* Print the content of the doorbell recovery mechanism */ void qed_db_recovery_dp(struct qed_hwfn *p_hwfn) { struct qed_db_recovery_entry *db_entry = NULL; DP_NOTICE(p_hwfn, "Displaying doorbell recovery database. Counter was %d\n", p_hwfn->db_recovery_info.db_recovery_counter); /* Protect the list */ spin_lock_bh(&p_hwfn->db_recovery_info.lock); list_for_each_entry(db_entry, &p_hwfn->db_recovery_info.list, list_entry) { qed_db_recovery_dp_entry(p_hwfn, db_entry, "Printing"); } spin_unlock_bh(&p_hwfn->db_recovery_info.lock); } /* Ring the doorbell of a single doorbell recovery entry */ static void qed_db_recovery_ring(struct qed_hwfn *p_hwfn, struct qed_db_recovery_entry *db_entry) { /* Print according to width */ if (db_entry->db_width == DB_REC_WIDTH_32B) { DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "ringing doorbell address %p data %x\n", db_entry->db_addr, *(u32 *)db_entry->db_data); } else { DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "ringing doorbell address %p data %llx\n", db_entry->db_addr, *(u64 *)(db_entry->db_data)); } /* Sanity */ if (!qed_db_rec_sanity(p_hwfn->cdev, db_entry->db_addr, db_entry->db_width, db_entry->db_data)) return; /* Flush the write combined buffer. Since there are multiple doorbelling * entities using the same address, if we don't flush, a transaction * could be lost. */ wmb(); /* Ring the doorbell */ if (db_entry->db_width == DB_REC_WIDTH_32B) DIRECT_REG_WR(db_entry->db_addr, *(u32 *)(db_entry->db_data)); else DIRECT_REG_WR64(db_entry->db_addr, *(u64 *)(db_entry->db_data)); /* Flush the write combined buffer. Next doorbell may come from a * different entity to the same address... */ wmb(); } /* Traverse the doorbell recovery entry list and ring all the doorbells */ void qed_db_recovery_execute(struct qed_hwfn *p_hwfn) { struct qed_db_recovery_entry *db_entry = NULL; DP_NOTICE(p_hwfn, "Executing doorbell recovery. Counter was %d\n", p_hwfn->db_recovery_info.db_recovery_counter); /* Track amount of times recovery was executed */ p_hwfn->db_recovery_info.db_recovery_counter++; /* Protect the list */ spin_lock_bh(&p_hwfn->db_recovery_info.lock); list_for_each_entry(db_entry, &p_hwfn->db_recovery_info.list, list_entry) qed_db_recovery_ring(p_hwfn, db_entry); spin_unlock_bh(&p_hwfn->db_recovery_info.lock); } /******************** Doorbell Recovery end ****************/ /********************************** NIG LLH ***********************************/ enum qed_llh_filter_type { QED_LLH_FILTER_TYPE_MAC, QED_LLH_FILTER_TYPE_PROTOCOL, }; struct qed_llh_mac_filter { u8 addr[ETH_ALEN]; }; struct qed_llh_protocol_filter { enum qed_llh_prot_filter_type_t type; u16 source_port_or_eth_type; u16 dest_port; }; union qed_llh_filter { struct qed_llh_mac_filter mac; struct qed_llh_protocol_filter protocol; }; struct qed_llh_filter_info { bool b_enabled; u32 ref_cnt; enum qed_llh_filter_type type; union qed_llh_filter filter; }; struct qed_llh_info { /* Number of LLH filters banks */ u8 num_ppfid; #define MAX_NUM_PPFID 8 u8 ppfid_array[MAX_NUM_PPFID]; /* Array of filters arrays: * "num_ppfid" elements of filters banks, where each is an array of * "NIG_REG_LLH_FUNC_FILTER_EN_SIZE" filters. */ struct qed_llh_filter_info **pp_filters; }; static void qed_llh_free(struct qed_dev *cdev) { struct qed_llh_info *p_llh_info = cdev->p_llh_info; u32 i; if (p_llh_info) { if (p_llh_info->pp_filters) for (i = 0; i < p_llh_info->num_ppfid; i++) kfree(p_llh_info->pp_filters[i]); kfree(p_llh_info->pp_filters); } kfree(p_llh_info); cdev->p_llh_info = NULL; } static int qed_llh_alloc(struct qed_dev *cdev) { struct qed_llh_info *p_llh_info; u32 size, i; p_llh_info = kzalloc(sizeof(*p_llh_info), GFP_KERNEL); if (!p_llh_info) return -ENOMEM; cdev->p_llh_info = p_llh_info; for (i = 0; i < MAX_NUM_PPFID; i++) { if (!(cdev->ppfid_bitmap & (0x1 << i))) continue; p_llh_info->ppfid_array[p_llh_info->num_ppfid] = i; DP_VERBOSE(cdev, QED_MSG_SP, "ppfid_array[%d] = %u\n", p_llh_info->num_ppfid, i); p_llh_info->num_ppfid++; } size = p_llh_info->num_ppfid * sizeof(*p_llh_info->pp_filters); p_llh_info->pp_filters = kzalloc(size, GFP_KERNEL); if (!p_llh_info->pp_filters) return -ENOMEM; size = NIG_REG_LLH_FUNC_FILTER_EN_SIZE * sizeof(**p_llh_info->pp_filters); for (i = 0; i < p_llh_info->num_ppfid; i++) { p_llh_info->pp_filters[i] = kzalloc(size, GFP_KERNEL); if (!p_llh_info->pp_filters[i]) return -ENOMEM; } return 0; } static int qed_llh_shadow_sanity(struct qed_dev *cdev, u8 ppfid, u8 filter_idx, const char *action) { struct qed_llh_info *p_llh_info = cdev->p_llh_info; if (ppfid >= p_llh_info->num_ppfid) { DP_NOTICE(cdev, "LLH shadow [%s]: using ppfid %d while only %d ppfids are available\n", action, ppfid, p_llh_info->num_ppfid); return -EINVAL; } if (filter_idx >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) { DP_NOTICE(cdev, "LLH shadow [%s]: using filter_idx %d while only %d filters are available\n", action, filter_idx, NIG_REG_LLH_FUNC_FILTER_EN_SIZE); return -EINVAL; } return 0; } #define QED_LLH_INVALID_FILTER_IDX 0xff static int qed_llh_shadow_search_filter(struct qed_dev *cdev, u8 ppfid, union qed_llh_filter *p_filter, u8 *p_filter_idx) { struct qed_llh_info *p_llh_info = cdev->p_llh_info; struct qed_llh_filter_info *p_filters; int rc; u8 i; rc = qed_llh_shadow_sanity(cdev, ppfid, 0, "search"); if (rc) return rc; *p_filter_idx = QED_LLH_INVALID_FILTER_IDX; p_filters = p_llh_info->pp_filters[ppfid]; for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { if (!memcmp(p_filter, &p_filters[i].filter, sizeof(*p_filter))) { *p_filter_idx = i; break; } } return 0; } static int qed_llh_shadow_get_free_idx(struct qed_dev *cdev, u8 ppfid, u8 *p_filter_idx) { struct qed_llh_info *p_llh_info = cdev->p_llh_info; struct qed_llh_filter_info *p_filters; int rc; u8 i; rc = qed_llh_shadow_sanity(cdev, ppfid, 0, "get_free_idx"); if (rc) return rc; *p_filter_idx = QED_LLH_INVALID_FILTER_IDX; p_filters = p_llh_info->pp_filters[ppfid]; for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) { if (!p_filters[i].b_enabled) { *p_filter_idx = i; break; } } return 0; } static int __qed_llh_shadow_add_filter(struct qed_dev *cdev, u8 ppfid, u8 filter_idx, enum qed_llh_filter_type type, union qed_llh_filter *p_filter, u32 *p_ref_cnt) { struct qed_llh_info *p_llh_info = cdev->p_llh_info; struct qed_llh_filter_info *p_filters; int rc; rc = qed_llh_shadow_sanity(cdev, ppfid, filter_idx, "add"); if (rc) return rc; p_filters = p_llh_info->pp_filters[ppfid]; if (!p_filters[filter_idx].ref_cnt) { p_filters[filter_idx].b_enabled = true; p_filters[filter_idx].type = type; memcpy(&p_filters[filter_idx].filter, p_filter, sizeof(p_filters[filter_idx].filter)); } *p_ref_cnt = ++p_filters[filter_idx].ref_cnt; return 0; } static int qed_llh_shadow_add_filter(struct qed_dev *cdev, u8 ppfid, enum qed_llh_filter_type type, union qed_llh_filter *p_filter, u8 *p_filter_idx, u32 *p_ref_cnt) { int rc; /* Check if the same filter already exist */ rc = qed_llh_shadow_search_filter(cdev, ppfid, p_filter, p_filter_idx); if (rc) return rc; /* Find a new entry in case of a new filter */ if (*p_filter_idx == QED_LLH_INVALID_FILTER_IDX) { rc = qed_llh_shadow_get_free_idx(cdev, ppfid, p_filter_idx); if (rc) return rc; } /* No free entry was found */ if (*p_filter_idx == QED_LLH_INVALID_FILTER_IDX) { DP_NOTICE(cdev, "Failed to find an empty LLH filter to utilize [ppfid %d]\n", ppfid); return -EINVAL; } return __qed_llh_shadow_add_filter(cdev, ppfid, *p_filter_idx, type, p_filter, p_ref_cnt); } static int __qed_llh_shadow_remove_filter(struct qed_dev *cdev, u8 ppfid, u8 filter_idx, u32 *p_ref_cnt) { struct qed_llh_info *p_llh_info = cdev->p_llh_info; struct qed_llh_filter_info *p_filters; int rc; rc = qed_llh_shadow_sanity(cdev, ppfid, filter_idx, "remove"); if (rc) return rc; p_filters = p_llh_info->pp_filters[ppfid]; if (!p_filters[filter_idx].ref_cnt) { DP_NOTICE(cdev, "LLH shadow: trying to remove a filter with ref_cnt=0\n"); return -EINVAL; } *p_ref_cnt = --p_filters[filter_idx].ref_cnt; if (!p_filters[filter_idx].ref_cnt) memset(&p_filters[filter_idx], 0, sizeof(p_filters[filter_idx])); return 0; } static int qed_llh_shadow_remove_filter(struct qed_dev *cdev, u8 ppfid, union qed_llh_filter *p_filter, u8 *p_filter_idx, u32 *p_ref_cnt) { int rc; rc = qed_llh_shadow_search_filter(cdev, ppfid, p_filter, p_filter_idx); if (rc) return rc; /* No matching filter was found */ if (*p_filter_idx == QED_LLH_INVALID_FILTER_IDX) { DP_NOTICE(cdev, "Failed to find a filter in the LLH shadow\n"); return -EINVAL; } return __qed_llh_shadow_remove_filter(cdev, ppfid, *p_filter_idx, p_ref_cnt); } static int qed_llh_abs_ppfid(struct qed_dev *cdev, u8 ppfid, u8 *p_abs_ppfid) { struct qed_llh_info *p_llh_info = cdev->p_llh_info; if (ppfid >= p_llh_info->num_ppfid) { DP_NOTICE(cdev, "ppfid %d is not valid, available indices are 0..%d\n", ppfid, p_llh_info->num_ppfid - 1); *p_abs_ppfid = 0; return -EINVAL; } *p_abs_ppfid = p_llh_info->ppfid_array[ppfid]; return 0; } static int qed_llh_set_engine_affin(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_dev *cdev = p_hwfn->cdev; enum qed_eng eng; u8 ppfid; int rc; rc = qed_mcp_get_engine_config(p_hwfn, p_ptt); if (rc != 0 && rc != -EOPNOTSUPP) { DP_NOTICE(p_hwfn, "Failed to get the engine affinity configuration\n"); return rc; } /* RoCE PF is bound to a single engine */ if (QED_IS_ROCE_PERSONALITY(p_hwfn)) { eng = cdev->fir_affin ? QED_ENG1 : QED_ENG0; rc = qed_llh_set_roce_affinity(cdev, eng); if (rc) { DP_NOTICE(cdev, "Failed to set the RoCE engine affinity\n"); return rc; } DP_VERBOSE(cdev, QED_MSG_SP, "LLH: Set the engine affinity of RoCE packets as %d\n", eng); } /* Storage PF is bound to a single engine while L2 PF uses both */ if (QED_IS_FCOE_PERSONALITY(p_hwfn) || QED_IS_ISCSI_PERSONALITY(p_hwfn) || QED_IS_NVMETCP_PERSONALITY(p_hwfn)) eng = cdev->fir_affin ? QED_ENG1 : QED_ENG0; else /* L2_PERSONALITY */ eng = QED_BOTH_ENG; for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) { rc = qed_llh_set_ppfid_affinity(cdev, ppfid, eng); if (rc) { DP_NOTICE(cdev, "Failed to set the engine affinity of ppfid %d\n", ppfid); return rc; } } DP_VERBOSE(cdev, QED_MSG_SP, "LLH: Set the engine affinity of non-RoCE packets as %d\n", eng); return 0; } static int qed_llh_hw_init_pf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_dev *cdev = p_hwfn->cdev; u8 ppfid, abs_ppfid; int rc; for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) { u32 addr; rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid); if (rc) return rc; addr = NIG_REG_LLH_PPFID2PFID_TBL_0 + abs_ppfid * 0x4; qed_wr(p_hwfn, p_ptt, addr, p_hwfn->rel_pf_id); } if (test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits) && !QED_IS_FCOE_PERSONALITY(p_hwfn)) { rc = qed_llh_add_mac_filter(cdev, 0, p_hwfn->hw_info.hw_mac_addr); if (rc) DP_NOTICE(cdev, "Failed to add an LLH filter with the primary MAC\n"); } if (QED_IS_CMT(cdev)) { rc = qed_llh_set_engine_affin(p_hwfn, p_ptt); if (rc) return rc; } return 0; } u8 qed_llh_get_num_ppfid(struct qed_dev *cdev) { return cdev->p_llh_info->num_ppfid; } #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_MASK 0x3 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_SHIFT 0 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_MASK 0x3 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_SHIFT 2 int qed_llh_set_ppfid_affinity(struct qed_dev *cdev, u8 ppfid, enum qed_eng eng) { struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn); u32 addr, val, eng_sel; u8 abs_ppfid; int rc = 0; if (!p_ptt) return -EAGAIN; if (!QED_IS_CMT(cdev)) goto out; rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid); if (rc) goto out; switch (eng) { case QED_ENG0: eng_sel = 0; break; case QED_ENG1: eng_sel = 1; break; case QED_BOTH_ENG: eng_sel = 2; break; default: DP_NOTICE(cdev, "Invalid affinity value for ppfid [%d]\n", eng); rc = -EINVAL; goto out; } addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4; val = qed_rd(p_hwfn, p_ptt, addr); SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE, eng_sel); qed_wr(p_hwfn, p_ptt, addr, val); /* The iWARP affinity is set as the affinity of ppfid 0 */ if (!ppfid && QED_IS_IWARP_PERSONALITY(p_hwfn)) cdev->iwarp_affin = (eng == QED_ENG1) ? 1 : 0; out: qed_ptt_release(p_hwfn, p_ptt); return rc; } int qed_llh_set_roce_affinity(struct qed_dev *cdev, enum qed_eng eng) { struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn); u32 addr, val, eng_sel; u8 ppfid, abs_ppfid; int rc = 0; if (!p_ptt) return -EAGAIN; if (!QED_IS_CMT(cdev)) goto out; switch (eng) { case QED_ENG0: eng_sel = 0; break; case QED_ENG1: eng_sel = 1; break; case QED_BOTH_ENG: eng_sel = 2; qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_ENG_CLS_ROCE_QP_SEL, 0xf); /* QP bit 15 */ break; default: DP_NOTICE(cdev, "Invalid affinity value for RoCE [%d]\n", eng); rc = -EINVAL; goto out; } for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) { rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid); if (rc) goto out; addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4; val = qed_rd(p_hwfn, p_ptt, addr); SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_ROCE, eng_sel); qed_wr(p_hwfn, p_ptt, addr, val); } out: qed_ptt_release(p_hwfn, p_ptt); return rc; } struct qed_llh_filter_details { u64 value; u32 mode; u32 protocol_type; u32 hdr_sel; u32 enable; }; static int qed_llh_access_filter(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx, struct qed_llh_filter_details *p_details) { struct qed_dmae_params params = {0}; u32 addr; u8 pfid; int rc; /* The NIG/LLH registers that are accessed in this function have only 16 * rows which are exposed to a PF. I.e. only the 16 filters of its * default ppfid. Accessing filters of other ppfids requires pretending * to another PFs. * The calculation of PPFID->PFID in AH is based on the relative index * of a PF on its port. * For BB the pfid is actually the abs_ppfid. */ if (QED_IS_BB(p_hwfn->cdev)) pfid = abs_ppfid; else pfid = abs_ppfid * p_hwfn->cdev->num_ports_in_engine + MFW_PORT(p_hwfn); /* Filter enable - should be done first when removing a filter */ if (!p_details->enable) { qed_fid_pretend(p_hwfn, p_ptt, pfid << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT); addr = NIG_REG_LLH_FUNC_FILTER_EN + filter_idx * 0x4; qed_wr(p_hwfn, p_ptt, addr, p_details->enable); qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT); } /* Filter value */ addr = NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * filter_idx * 0x4; SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_PF_VALID, 0x1); params.dst_pfid = pfid; rc = qed_dmae_host2grc(p_hwfn, p_ptt, (u64)(uintptr_t)&p_details->value, addr, 2 /* size_in_dwords */, ¶ms); if (rc) return rc; qed_fid_pretend(p_hwfn, p_ptt, pfid << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT); /* Filter mode */ addr = NIG_REG_LLH_FUNC_FILTER_MODE + filter_idx * 0x4; qed_wr(p_hwfn, p_ptt, addr, p_details->mode); /* Filter protocol type */ addr = NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + filter_idx * 0x4; qed_wr(p_hwfn, p_ptt, addr, p_details->protocol_type); /* Filter header select */ addr = NIG_REG_LLH_FUNC_FILTER_HDR_SEL + filter_idx * 0x4; qed_wr(p_hwfn, p_ptt, addr, p_details->hdr_sel); /* Filter enable - should be done last when adding a filter */ if (p_details->enable) { addr = NIG_REG_LLH_FUNC_FILTER_EN + filter_idx * 0x4; qed_wr(p_hwfn, p_ptt, addr, p_details->enable); } qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT); return 0; } static int qed_llh_add_filter(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx, u8 filter_prot_type, u32 high, u32 low) { struct qed_llh_filter_details filter_details; filter_details.enable = 1; filter_details.value = ((u64)high << 32) | low; filter_details.hdr_sel = 0; filter_details.protocol_type = filter_prot_type; /* Mode: 0: MAC-address classification 1: protocol classification */ filter_details.mode = filter_prot_type ? 1 : 0; return qed_llh_access_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx, &filter_details); } static int qed_llh_remove_filter(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx) { struct qed_llh_filter_details filter_details = {0}; return qed_llh_access_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx, &filter_details); } int qed_llh_add_mac_filter(struct qed_dev *cdev, u8 ppfid, const u8 mac_addr[ETH_ALEN]) { struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn); union qed_llh_filter filter = {}; u8 filter_idx, abs_ppfid = 0; u32 high, low, ref_cnt; int rc = 0; if (!p_ptt) return -EAGAIN; if (!test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits)) goto out; memcpy(filter.mac.addr, mac_addr, ETH_ALEN); rc = qed_llh_shadow_add_filter(cdev, ppfid, QED_LLH_FILTER_TYPE_MAC, &filter, &filter_idx, &ref_cnt); if (rc) goto err; /* Configure the LLH only in case of a new the filter */ if (ref_cnt == 1) { rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid); if (rc) goto err; high = mac_addr[1] | (mac_addr[0] << 8); low = mac_addr[5] | (mac_addr[4] << 8) | (mac_addr[3] << 16) | (mac_addr[2] << 24); rc = qed_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx, 0, high, low); if (rc) goto err; } DP_VERBOSE(cdev, QED_MSG_SP, "LLH: Added MAC filter [%pM] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n", mac_addr, ppfid, abs_ppfid, filter_idx, ref_cnt); goto out; err: DP_NOTICE(cdev, "LLH: Failed to add MAC filter [%pM] to ppfid %hhd\n", mac_addr, ppfid); out: qed_ptt_release(p_hwfn, p_ptt); return rc; } static int qed_llh_protocol_filter_stringify(struct qed_dev *cdev, enum qed_llh_prot_filter_type_t type, u16 source_port_or_eth_type, u16 dest_port, u8 *str, size_t str_len) { switch (type) { case QED_LLH_FILTER_ETHERTYPE: snprintf(str, str_len, "Ethertype 0x%04x", source_port_or_eth_type); break; case QED_LLH_FILTER_TCP_SRC_PORT: snprintf(str, str_len, "TCP src port 0x%04x", source_port_or_eth_type); break; case QED_LLH_FILTER_UDP_SRC_PORT: snprintf(str, str_len, "UDP src port 0x%04x", source_port_or_eth_type); break; case QED_LLH_FILTER_TCP_DEST_PORT: snprintf(str, str_len, "TCP dst port 0x%04x", dest_port); break; case QED_LLH_FILTER_UDP_DEST_PORT: snprintf(str, str_len, "UDP dst port 0x%04x", dest_port); break; case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: snprintf(str, str_len, "TCP src/dst ports 0x%04x/0x%04x", source_port_or_eth_type, dest_port); break; case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: snprintf(str, str_len, "UDP src/dst ports 0x%04x/0x%04x", source_port_or_eth_type, dest_port); break; default: DP_NOTICE(cdev, "Non valid LLH protocol filter type %d\n", type); return -EINVAL; } return 0; } static int qed_llh_protocol_filter_to_hilo(struct qed_dev *cdev, enum qed_llh_prot_filter_type_t type, u16 source_port_or_eth_type, u16 dest_port, u32 *p_high, u32 *p_low) { *p_high = 0; *p_low = 0; switch (type) { case QED_LLH_FILTER_ETHERTYPE: *p_high = source_port_or_eth_type; break; case QED_LLH_FILTER_TCP_SRC_PORT: case QED_LLH_FILTER_UDP_SRC_PORT: *p_low = source_port_or_eth_type << 16; break; case QED_LLH_FILTER_TCP_DEST_PORT: case QED_LLH_FILTER_UDP_DEST_PORT: *p_low = dest_port; break; case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT: case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT: *p_low = (source_port_or_eth_type << 16) | dest_port; break; default: DP_NOTICE(cdev, "Non valid LLH protocol filter type %d\n", type); return -EINVAL; } return 0; } int qed_llh_add_protocol_filter(struct qed_dev *cdev, u8 ppfid, enum qed_llh_prot_filter_type_t type, u16 source_port_or_eth_type, u16 dest_port) { struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn); u8 filter_idx, abs_ppfid, str[32], type_bitmap; union qed_llh_filter filter = {}; u32 high, low, ref_cnt; int rc = 0; if (!p_ptt) return -EAGAIN; if (!test_bit(QED_MF_LLH_PROTO_CLSS, &cdev->mf_bits)) goto out; rc = qed_llh_protocol_filter_stringify(cdev, type, source_port_or_eth_type, dest_port, str, sizeof(str)); if (rc) goto err; filter.protocol.type = type; filter.protocol.source_port_or_eth_type = source_port_or_eth_type; filter.protocol.dest_port = dest_port; rc = qed_llh_shadow_add_filter(cdev, ppfid, QED_LLH_FILTER_TYPE_PROTOCOL, &filter, &filter_idx, &ref_cnt); if (rc) goto err; rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid); if (rc) goto err; /* Configure the LLH only in case of a new the filter */ if (ref_cnt == 1) { rc = qed_llh_protocol_filter_to_hilo(cdev, type, source_port_or_eth_type, dest_port, &high, &low); if (rc) goto err; type_bitmap = 0x1 << type; rc = qed_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx, type_bitmap, high, low); if (rc) goto err; } DP_VERBOSE(cdev, QED_MSG_SP, "LLH: Added protocol filter [%s] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n", str, ppfid, abs_ppfid, filter_idx, ref_cnt); goto out; err: DP_NOTICE(p_hwfn, "LLH: Failed to add protocol filter [%s] to ppfid %hhd\n", str, ppfid); out: qed_ptt_release(p_hwfn, p_ptt); return rc; } void qed_llh_remove_mac_filter(struct qed_dev *cdev, u8 ppfid, u8 mac_addr[ETH_ALEN]) { struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn); union qed_llh_filter filter = {}; u8 filter_idx, abs_ppfid; int rc = 0; u32 ref_cnt; if (!p_ptt) return; if (!test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits)) goto out; if (QED_IS_NVMETCP_PERSONALITY(p_hwfn)) return; ether_addr_copy(filter.mac.addr, mac_addr); rc = qed_llh_shadow_remove_filter(cdev, ppfid, &filter, &filter_idx, &ref_cnt); if (rc) goto err; rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid); if (rc) goto err; /* Remove from the LLH in case the filter is not in use */ if (!ref_cnt) { rc = qed_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx); if (rc) goto err; } DP_VERBOSE(cdev, QED_MSG_SP, "LLH: Removed MAC filter [%pM] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n", mac_addr, ppfid, abs_ppfid, filter_idx, ref_cnt); goto out; err: DP_NOTICE(cdev, "LLH: Failed to remove MAC filter [%pM] from ppfid %hhd\n", mac_addr, ppfid); out: qed_ptt_release(p_hwfn, p_ptt); } void qed_llh_remove_protocol_filter(struct qed_dev *cdev, u8 ppfid, enum qed_llh_prot_filter_type_t type, u16 source_port_or_eth_type, u16 dest_port) { struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn); u8 filter_idx, abs_ppfid, str[32]; union qed_llh_filter filter = {}; int rc = 0; u32 ref_cnt; if (!p_ptt) return; if (!test_bit(QED_MF_LLH_PROTO_CLSS, &cdev->mf_bits)) goto out; rc = qed_llh_protocol_filter_stringify(cdev, type, source_port_or_eth_type, dest_port, str, sizeof(str)); if (rc) goto err; filter.protocol.type = type; filter.protocol.source_port_or_eth_type = source_port_or_eth_type; filter.protocol.dest_port = dest_port; rc = qed_llh_shadow_remove_filter(cdev, ppfid, &filter, &filter_idx, &ref_cnt); if (rc) goto err; rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid); if (rc) goto err; /* Remove from the LLH in case the filter is not in use */ if (!ref_cnt) { rc = qed_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx); if (rc) goto err; } DP_VERBOSE(cdev, QED_MSG_SP, "LLH: Removed protocol filter [%s] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n", str, ppfid, abs_ppfid, filter_idx, ref_cnt); goto out; err: DP_NOTICE(cdev, "LLH: Failed to remove protocol filter [%s] from ppfid %hhd\n", str, ppfid); out: qed_ptt_release(p_hwfn, p_ptt); } /******************************* NIG LLH - End ********************************/ #define QED_MIN_DPIS (4) #define QED_MIN_PWM_REGION (QED_WID_SIZE * QED_MIN_DPIS) static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, enum BAR_ID bar_id) { u32 bar_reg = (bar_id == BAR_ID_0 ? PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE); u32 val; if (IS_VF(p_hwfn->cdev)) return qed_vf_hw_bar_size(p_hwfn, bar_id); val = qed_rd(p_hwfn, p_ptt, bar_reg); if (val) return 1 << (val + 15); /* Old MFW initialized above registered only conditionally */ if (p_hwfn->cdev->num_hwfns > 1) { DP_INFO(p_hwfn, "BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n"); return BAR_ID_0 ? 256 * 1024 : 512 * 1024; } else { DP_INFO(p_hwfn, "BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n"); return 512 * 1024; } } void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level) { u32 i; cdev->dp_level = dp_level; cdev->dp_module = dp_module; for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; p_hwfn->dp_level = dp_level; p_hwfn->dp_module = dp_module; } } void qed_init_struct(struct qed_dev *cdev) { u8 i; for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; p_hwfn->cdev = cdev; p_hwfn->my_id = i; p_hwfn->b_active = false; mutex_init(&p_hwfn->dmae_info.mutex); } /* hwfn 0 is always active */ cdev->hwfns[0].b_active = true; /* set the default cache alignment to 128 */ cdev->cache_shift = 7; } static void qed_qm_info_free(struct qed_hwfn *p_hwfn) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; kfree(qm_info->qm_pq_params); qm_info->qm_pq_params = NULL; kfree(qm_info->qm_vport_params); qm_info->qm_vport_params = NULL; kfree(qm_info->qm_port_params); qm_info->qm_port_params = NULL; kfree(qm_info->wfq_data); qm_info->wfq_data = NULL; } static void qed_dbg_user_data_free(struct qed_hwfn *p_hwfn) { kfree(p_hwfn->dbg_user_info); p_hwfn->dbg_user_info = NULL; } void qed_resc_free(struct qed_dev *cdev) { struct qed_rdma_info *rdma_info; struct qed_hwfn *p_hwfn; int i; if (IS_VF(cdev)) { for_each_hwfn(cdev, i) qed_l2_free(&cdev->hwfns[i]); return; } kfree(cdev->fw_data); cdev->fw_data = NULL; kfree(cdev->reset_stats); cdev->reset_stats = NULL; qed_llh_free(cdev); for_each_hwfn(cdev, i) { p_hwfn = cdev->hwfns + i; rdma_info = p_hwfn->p_rdma_info; qed_cxt_mngr_free(p_hwfn); qed_qm_info_free(p_hwfn); qed_spq_free(p_hwfn); qed_eq_free(p_hwfn); qed_consq_free(p_hwfn); qed_int_free(p_hwfn); #ifdef CONFIG_QED_LL2 qed_ll2_free(p_hwfn); #endif if (p_hwfn->hw_info.personality == QED_PCI_FCOE) qed_fcoe_free(p_hwfn); if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { qed_iscsi_free(p_hwfn); qed_ooo_free(p_hwfn); } if (p_hwfn->hw_info.personality == QED_PCI_NVMETCP) { qed_nvmetcp_free(p_hwfn); qed_ooo_free(p_hwfn); } if (QED_IS_RDMA_PERSONALITY(p_hwfn) && rdma_info) { qed_spq_unregister_async_cb(p_hwfn, rdma_info->proto); qed_rdma_info_free(p_hwfn); } qed_spq_unregister_async_cb(p_hwfn, PROTOCOLID_COMMON); qed_iov_free(p_hwfn); qed_l2_free(p_hwfn); qed_dmae_info_free(p_hwfn); qed_dcbx_info_free(p_hwfn); qed_dbg_user_data_free(p_hwfn); qed_fw_overlay_mem_free(p_hwfn, &p_hwfn->fw_overlay_mem); /* Destroy doorbell recovery mechanism */ qed_db_recovery_teardown(p_hwfn); } } /******************** QM initialization *******************/ #define ACTIVE_TCS_BMAP 0x9f #define ACTIVE_TCS_BMAP_4PORT_K2 0xf /* determines the physical queue flags for a given PF. */ static u32 qed_get_pq_flags(struct qed_hwfn *p_hwfn) { u32 flags; /* common flags */ flags = PQ_FLAGS_LB; /* feature flags */ if (IS_QED_SRIOV(p_hwfn->cdev)) flags |= PQ_FLAGS_VFS; /* protocol flags */ switch (p_hwfn->hw_info.personality) { case QED_PCI_ETH: flags |= PQ_FLAGS_MCOS; break; case QED_PCI_FCOE: flags |= PQ_FLAGS_OFLD; break; case QED_PCI_ISCSI: case QED_PCI_NVMETCP: flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD; break; case QED_PCI_ETH_ROCE: flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT; if (IS_QED_MULTI_TC_ROCE(p_hwfn)) flags |= PQ_FLAGS_MTC; break; case QED_PCI_ETH_IWARP: flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD; break; default: DP_ERR(p_hwfn, "unknown personality %d\n", p_hwfn->hw_info.personality); return 0; } return flags; } /* Getters for resource amounts necessary for qm initialization */ static u8 qed_init_qm_get_num_tcs(struct qed_hwfn *p_hwfn) { return p_hwfn->hw_info.num_hw_tc; } static u16 qed_init_qm_get_num_vfs(struct qed_hwfn *p_hwfn) { return IS_QED_SRIOV(p_hwfn->cdev) ? p_hwfn->cdev->p_iov_info->total_vfs : 0; } static u8 qed_init_qm_get_num_mtc_tcs(struct qed_hwfn *p_hwfn) { u32 pq_flags = qed_get_pq_flags(p_hwfn); if (!(PQ_FLAGS_MTC & pq_flags)) return 1; return qed_init_qm_get_num_tcs(p_hwfn); } #define NUM_DEFAULT_RLS 1 static u16 qed_init_qm_get_num_pf_rls(struct qed_hwfn *p_hwfn) { u16 num_pf_rls, num_vfs = qed_init_qm_get_num_vfs(p_hwfn); /* num RLs can't exceed resource amount of rls or vports */ num_pf_rls = (u16)min_t(u32, RESC_NUM(p_hwfn, QED_RL), RESC_NUM(p_hwfn, QED_VPORT)); /* Make sure after we reserve there's something left */ if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS) return 0; /* subtract rls necessary for VFs and one default one for the PF */ num_pf_rls -= num_vfs + NUM_DEFAULT_RLS; return num_pf_rls; } static u16 qed_init_qm_get_num_vports(struct qed_hwfn *p_hwfn) { u32 pq_flags = qed_get_pq_flags(p_hwfn); /* all pqs share the same vport, except for vfs and pf_rl pqs */ return (!!(PQ_FLAGS_RLS & pq_flags)) * qed_init_qm_get_num_pf_rls(p_hwfn) + (!!(PQ_FLAGS_VFS & pq_flags)) * qed_init_qm_get_num_vfs(p_hwfn) + 1; } /* calc amount of PQs according to the requested flags */ static u16 qed_init_qm_get_num_pqs(struct qed_hwfn *p_hwfn) { u32 pq_flags = qed_get_pq_flags(p_hwfn); return (!!(PQ_FLAGS_RLS & pq_flags)) * qed_init_qm_get_num_pf_rls(p_hwfn) + (!!(PQ_FLAGS_MCOS & pq_flags)) * qed_init_qm_get_num_tcs(p_hwfn) + (!!(PQ_FLAGS_LB & pq_flags)) + (!!(PQ_FLAGS_OOO & pq_flags)) + (!!(PQ_FLAGS_ACK & pq_flags)) + (!!(PQ_FLAGS_OFLD & pq_flags)) * qed_init_qm_get_num_mtc_tcs(p_hwfn) + (!!(PQ_FLAGS_LLT & pq_flags)) * qed_init_qm_get_num_mtc_tcs(p_hwfn) + (!!(PQ_FLAGS_VFS & pq_flags)) * qed_init_qm_get_num_vfs(p_hwfn); } /* initialize the top level QM params */ static void qed_init_qm_params(struct qed_hwfn *p_hwfn) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; bool four_port; /* pq and vport bases for this PF */ qm_info->start_pq = (u16)RESC_START(p_hwfn, QED_PQ); qm_info->start_vport = (u8)RESC_START(p_hwfn, QED_VPORT); /* rate limiting and weighted fair queueing are always enabled */ qm_info->vport_rl_en = true; qm_info->vport_wfq_en = true; /* TC config is different for AH 4 port */ four_port = p_hwfn->cdev->num_ports_in_engine == MAX_NUM_PORTS_K2; /* in AH 4 port we have fewer TCs per port */ qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 : NUM_OF_PHYS_TCS; /* unless MFW indicated otherwise, ooo_tc == 3 for * AH 4-port and 4 otherwise. */ if (!qm_info->ooo_tc) qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC : DCBX_TCP_OOO_TC; } /* initialize qm vport params */ static void qed_init_qm_vport_params(struct qed_hwfn *p_hwfn) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; u8 i; /* all vports participate in weighted fair queueing */ for (i = 0; i < qed_init_qm_get_num_vports(p_hwfn); i++) qm_info->qm_vport_params[i].wfq = 1; } /* initialize qm port params */ static void qed_init_qm_port_params(struct qed_hwfn *p_hwfn) { /* Initialize qm port parameters */ u8 i, active_phys_tcs, num_ports = p_hwfn->cdev->num_ports_in_engine; struct qed_dev *cdev = p_hwfn->cdev; /* indicate how ooo and high pri traffic is dealt with */ active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ? ACTIVE_TCS_BMAP_4PORT_K2 : ACTIVE_TCS_BMAP; for (i = 0; i < num_ports; i++) { struct init_qm_port_params *p_qm_port = &p_hwfn->qm_info.qm_port_params[i]; u16 pbf_max_cmd_lines; p_qm_port->active = 1; p_qm_port->active_phys_tcs = active_phys_tcs; pbf_max_cmd_lines = (u16)NUM_OF_PBF_CMD_LINES(cdev); p_qm_port->num_pbf_cmd_lines = pbf_max_cmd_lines / num_ports; p_qm_port->num_btb_blocks = NUM_OF_BTB_BLOCKS(cdev) / num_ports; } } /* Reset the params which must be reset for qm init. QM init may be called as * a result of flows other than driver load (e.g. dcbx renegotiation). Other * params may be affected by the init but would simply recalculate to the same * values. The allocations made for QM init, ports, vports, pqs and vfqs are not * affected as these amounts stay the same. */ static void qed_init_qm_reset_params(struct qed_hwfn *p_hwfn) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; qm_info->num_pqs = 0; qm_info->num_vports = 0; qm_info->num_pf_rls = 0; qm_info->num_vf_pqs = 0; qm_info->first_vf_pq = 0; qm_info->first_mcos_pq = 0; qm_info->first_rl_pq = 0; } static void qed_init_qm_advance_vport(struct qed_hwfn *p_hwfn) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; qm_info->num_vports++; if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn)) DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn)); } /* initialize a single pq and manage qm_info resources accounting. * The pq_init_flags param determines whether the PQ is rate limited * (for VF or PF) and whether a new vport is allocated to the pq or not * (i.e. vport will be shared). */ /* flags for pq init */ #define PQ_INIT_SHARE_VPORT BIT(0) #define PQ_INIT_PF_RL BIT(1) #define PQ_INIT_VF_RL BIT(2) /* defines for pq init */ #define PQ_INIT_DEFAULT_WRR_GROUP 1 #define PQ_INIT_DEFAULT_TC 0 void qed_hw_info_set_offload_tc(struct qed_hw_info *p_info, u8 tc) { p_info->offload_tc = tc; p_info->offload_tc_set = true; } static bool qed_is_offload_tc_set(struct qed_hwfn *p_hwfn) { return p_hwfn->hw_info.offload_tc_set; } static u32 qed_get_offload_tc(struct qed_hwfn *p_hwfn) { if (qed_is_offload_tc_set(p_hwfn)) return p_hwfn->hw_info.offload_tc; return PQ_INIT_DEFAULT_TC; } static void qed_init_qm_pq(struct qed_hwfn *p_hwfn, struct qed_qm_info *qm_info, u8 tc, u32 pq_init_flags) { u16 pq_idx = qm_info->num_pqs, max_pq = qed_init_qm_get_num_pqs(p_hwfn); if (pq_idx > max_pq) DP_ERR(p_hwfn, "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq); /* init pq params */ qm_info->qm_pq_params[pq_idx].port_id = p_hwfn->port_id; qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport + qm_info->num_vports; qm_info->qm_pq_params[pq_idx].tc_id = tc; qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP; qm_info->qm_pq_params[pq_idx].rl_valid = (pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL); /* qm params accounting */ qm_info->num_pqs++; if (!(pq_init_flags & PQ_INIT_SHARE_VPORT)) qm_info->num_vports++; if (pq_init_flags & PQ_INIT_PF_RL) qm_info->num_pf_rls++; if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn)) DP_ERR(p_hwfn, "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n", qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn)); if (qm_info->num_pf_rls > qed_init_qm_get_num_pf_rls(p_hwfn)) DP_ERR(p_hwfn, "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n", qm_info->num_pf_rls, qed_init_qm_get_num_pf_rls(p_hwfn)); } /* get pq index according to PQ_FLAGS */ static u16 *qed_init_qm_get_idx_from_flags(struct qed_hwfn *p_hwfn, unsigned long pq_flags) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; /* Can't have multiple flags set here */ if (bitmap_weight(&pq_flags, sizeof(pq_flags) * BITS_PER_BYTE) > 1) { DP_ERR(p_hwfn, "requested multiple pq flags 0x%lx\n", pq_flags); goto err; } if (!(qed_get_pq_flags(p_hwfn) & pq_flags)) { DP_ERR(p_hwfn, "pq flag 0x%lx is not set\n", pq_flags); goto err; } switch (pq_flags) { case PQ_FLAGS_RLS: return &qm_info->first_rl_pq; case PQ_FLAGS_MCOS: return &qm_info->first_mcos_pq; case PQ_FLAGS_LB: return &qm_info->pure_lb_pq; case PQ_FLAGS_OOO: return &qm_info->ooo_pq; case PQ_FLAGS_ACK: return &qm_info->pure_ack_pq; case PQ_FLAGS_OFLD: return &qm_info->first_ofld_pq; case PQ_FLAGS_LLT: return &qm_info->first_llt_pq; case PQ_FLAGS_VFS: return &qm_info->first_vf_pq; default: goto err; } err: return &qm_info->start_pq; } /* save pq index in qm info */ static void qed_init_qm_set_idx(struct qed_hwfn *p_hwfn, u32 pq_flags, u16 pq_val) { u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags); *base_pq_idx = p_hwfn->qm_info.start_pq + pq_val; } /* get tx pq index, with the PQ TX base already set (ready for context init) */ u16 qed_get_cm_pq_idx(struct qed_hwfn *p_hwfn, u32 pq_flags) { u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags); return *base_pq_idx + CM_TX_PQ_BASE; } u16 qed_get_cm_pq_idx_mcos(struct qed_hwfn *p_hwfn, u8 tc) { u8 max_tc = qed_init_qm_get_num_tcs(p_hwfn); if (max_tc == 0) { DP_ERR(p_hwfn, "pq with flag 0x%lx do not exist\n", PQ_FLAGS_MCOS); return p_hwfn->qm_info.start_pq; } if (tc > max_tc) DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc); return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + (tc % max_tc); } u16 qed_get_cm_pq_idx_vf(struct qed_hwfn *p_hwfn, u16 vf) { u16 max_vf = qed_init_qm_get_num_vfs(p_hwfn); if (max_vf == 0) { DP_ERR(p_hwfn, "pq with flag 0x%lx do not exist\n", PQ_FLAGS_VFS); return p_hwfn->qm_info.start_pq; } if (vf > max_vf) DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf); return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + (vf % max_vf); } u16 qed_get_cm_pq_idx_ofld_mtc(struct qed_hwfn *p_hwfn, u8 tc) { u16 first_ofld_pq, pq_offset; first_ofld_pq = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_OFLD); pq_offset = (tc < qed_init_qm_get_num_mtc_tcs(p_hwfn)) ? tc : PQ_INIT_DEFAULT_TC; return first_ofld_pq + pq_offset; } u16 qed_get_cm_pq_idx_llt_mtc(struct qed_hwfn *p_hwfn, u8 tc) { u16 first_llt_pq, pq_offset; first_llt_pq = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LLT); pq_offset = (tc < qed_init_qm_get_num_mtc_tcs(p_hwfn)) ? tc : PQ_INIT_DEFAULT_TC; return first_llt_pq + pq_offset; } /* Functions for creating specific types of pqs */ static void qed_init_qm_lb_pq(struct qed_hwfn *p_hwfn) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LB)) return; qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs); qed_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT); } static void qed_init_qm_ooo_pq(struct qed_hwfn *p_hwfn) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO)) return; qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs); qed_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT); } static void qed_init_qm_pure_ack_pq(struct qed_hwfn *p_hwfn) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK)) return; qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs); qed_init_qm_pq(p_hwfn, qm_info, qed_get_offload_tc(p_hwfn), PQ_INIT_SHARE_VPORT); } static void qed_init_qm_mtc_pqs(struct qed_hwfn *p_hwfn) { u8 num_tcs = qed_init_qm_get_num_mtc_tcs(p_hwfn); struct qed_qm_info *qm_info = &p_hwfn->qm_info; u8 tc; /* override pq's TC if offload TC is set */ for (tc = 0; tc < num_tcs; tc++) qed_init_qm_pq(p_hwfn, qm_info, qed_is_offload_tc_set(p_hwfn) ? p_hwfn->hw_info.offload_tc : tc, PQ_INIT_SHARE_VPORT); } static void qed_init_qm_offload_pq(struct qed_hwfn *p_hwfn) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD)) return; qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs); qed_init_qm_mtc_pqs(p_hwfn); } static void qed_init_qm_low_latency_pq(struct qed_hwfn *p_hwfn) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT)) return; qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs); qed_init_qm_mtc_pqs(p_hwfn); } static void qed_init_qm_mcos_pqs(struct qed_hwfn *p_hwfn) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; u8 tc_idx; if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS)) return; qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs); for (tc_idx = 0; tc_idx < qed_init_qm_get_num_tcs(p_hwfn); tc_idx++) qed_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT); } static void qed_init_qm_vf_pqs(struct qed_hwfn *p_hwfn) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; u16 vf_idx, num_vfs = qed_init_qm_get_num_vfs(p_hwfn); if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS)) return; qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs); qm_info->num_vf_pqs = num_vfs; for (vf_idx = 0; vf_idx < num_vfs; vf_idx++) qed_init_qm_pq(p_hwfn, qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL); } static void qed_init_qm_rl_pqs(struct qed_hwfn *p_hwfn) { u16 pf_rls_idx, num_pf_rls = qed_init_qm_get_num_pf_rls(p_hwfn); struct qed_qm_info *qm_info = &p_hwfn->qm_info; if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS)) return; qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs); for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++) qed_init_qm_pq(p_hwfn, qm_info, qed_get_offload_tc(p_hwfn), PQ_INIT_PF_RL); } static void qed_init_qm_pq_params(struct qed_hwfn *p_hwfn) { /* rate limited pqs, must come first (FW assumption) */ qed_init_qm_rl_pqs(p_hwfn); /* pqs for multi cos */ qed_init_qm_mcos_pqs(p_hwfn); /* pure loopback pq */ qed_init_qm_lb_pq(p_hwfn); /* out of order pq */ qed_init_qm_ooo_pq(p_hwfn); /* pure ack pq */ qed_init_qm_pure_ack_pq(p_hwfn); /* pq for offloaded protocol */ qed_init_qm_offload_pq(p_hwfn); /* low latency pq */ qed_init_qm_low_latency_pq(p_hwfn); /* done sharing vports */ qed_init_qm_advance_vport(p_hwfn); /* pqs for vfs */ qed_init_qm_vf_pqs(p_hwfn); } /* compare values of getters against resources amounts */ static int qed_init_qm_sanity(struct qed_hwfn *p_hwfn) { if (qed_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, QED_VPORT)) { DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n"); return -EINVAL; } if (qed_init_qm_get_num_pqs(p_hwfn) <= RESC_NUM(p_hwfn, QED_PQ)) return 0; if (QED_IS_ROCE_PERSONALITY(p_hwfn)) { p_hwfn->hw_info.multi_tc_roce_en = false; DP_NOTICE(p_hwfn, "multi-tc roce was disabled to reduce requested amount of pqs\n"); if (qed_init_qm_get_num_pqs(p_hwfn) <= RESC_NUM(p_hwfn, QED_PQ)) return 0; } DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n"); return -EINVAL; } static void qed_dp_init_qm_params(struct qed_hwfn *p_hwfn) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; struct init_qm_vport_params *vport; struct init_qm_port_params *port; struct init_qm_pq_params *pq; int i, tc; /* top level params */ DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, llt_pq %d, pure_ack_pq %d\n", qm_info->start_pq, qm_info->start_vport, qm_info->pure_lb_pq, qm_info->first_ofld_pq, qm_info->first_llt_pq, qm_info->pure_ack_pq); DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n", qm_info->ooo_pq, qm_info->first_vf_pq, qm_info->num_pqs, qm_info->num_vf_pqs, qm_info->num_vports, qm_info->max_phys_tcs_per_port); DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n", qm_info->pf_rl_en, qm_info->pf_wfq_en, qm_info->vport_rl_en, qm_info->vport_wfq_en, qm_info->pf_wfq, qm_info->pf_rl, qm_info->num_pf_rls, qed_get_pq_flags(p_hwfn)); /* port table */ for (i = 0; i < p_hwfn->cdev->num_ports_in_engine; i++) { port = &(qm_info->qm_port_params[i]); DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n", i, port->active, port->active_phys_tcs, port->num_pbf_cmd_lines, port->num_btb_blocks, port->reserved); } /* vport table */ for (i = 0; i < qm_info->num_vports; i++) { vport = &(qm_info->qm_vport_params[i]); DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "vport idx %d, wfq %d, first_tx_pq_id [ ", qm_info->start_vport + i, vport->wfq); for (tc = 0; tc < NUM_OF_TCS; tc++) DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "%d ", vport->first_tx_pq_id[tc]); DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "]\n"); } /* pq table */ for (i = 0; i < qm_info->num_pqs; i++) { pq = &(qm_info->qm_pq_params[i]); DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "pq idx %d, port %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d rl_id %d\n", qm_info->start_pq + i, pq->port_id, pq->vport_id, pq->tc_id, pq->wrr_group, pq->rl_valid, pq->rl_id); } } static void qed_init_qm_info(struct qed_hwfn *p_hwfn) { /* reset params required for init run */ qed_init_qm_reset_params(p_hwfn); /* init QM top level params */ qed_init_qm_params(p_hwfn); /* init QM port params */ qed_init_qm_port_params(p_hwfn); /* init QM vport params */ qed_init_qm_vport_params(p_hwfn); /* init QM physical queue params */ qed_init_qm_pq_params(p_hwfn); /* display all that init */ qed_dp_init_qm_params(p_hwfn); } /* This function reconfigures the QM pf on the fly. * For this purpose we: * 1. reconfigure the QM database * 2. set new values to runtime array * 3. send an sdm_qm_cmd through the rbc interface to stop the QM * 4. activate init tool in QM_PF stage * 5. send an sdm_qm_cmd through rbc interface to release the QM */ int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; bool b_rc; int rc; /* initialize qed's qm data structure */ qed_init_qm_info(p_hwfn); /* stop PF's qm queues */ spin_lock_bh(&qm_lock); b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true, qm_info->start_pq, qm_info->num_pqs); spin_unlock_bh(&qm_lock); if (!b_rc) return -EINVAL; /* prepare QM portion of runtime array */ qed_qm_init_pf(p_hwfn, p_ptt, false); /* activate init tool on runtime array */ rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id, p_hwfn->hw_info.hw_mode); if (rc) return rc; /* start PF's qm queues */ spin_lock_bh(&qm_lock); b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true, qm_info->start_pq, qm_info->num_pqs); spin_unlock_bh(&qm_lock); if (!b_rc) return -EINVAL; return 0; } static int qed_alloc_qm_data(struct qed_hwfn *p_hwfn) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; int rc; rc = qed_init_qm_sanity(p_hwfn); if (rc) goto alloc_err; qm_info->qm_pq_params = kcalloc(qed_init_qm_get_num_pqs(p_hwfn), sizeof(*qm_info->qm_pq_params), GFP_KERNEL); if (!qm_info->qm_pq_params) goto alloc_err; qm_info->qm_vport_params = kcalloc(qed_init_qm_get_num_vports(p_hwfn), sizeof(*qm_info->qm_vport_params), GFP_KERNEL); if (!qm_info->qm_vport_params) goto alloc_err; qm_info->qm_port_params = kcalloc(p_hwfn->cdev->num_ports_in_engine, sizeof(*qm_info->qm_port_params), GFP_KERNEL); if (!qm_info->qm_port_params) goto alloc_err; qm_info->wfq_data = kcalloc(qed_init_qm_get_num_vports(p_hwfn), sizeof(*qm_info->wfq_data), GFP_KERNEL); if (!qm_info->wfq_data) goto alloc_err; return 0; alloc_err: DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n"); qed_qm_info_free(p_hwfn); return -ENOMEM; } int qed_resc_alloc(struct qed_dev *cdev) { u32 rdma_tasks, excess_tasks; u32 line_count; int i, rc = 0; if (IS_VF(cdev)) { for_each_hwfn(cdev, i) { rc = qed_l2_alloc(&cdev->hwfns[i]); if (rc) return rc; } return rc; } cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL); if (!cdev->fw_data) return -ENOMEM; for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; u32 n_eqes, num_cons; /* Initialize the doorbell recovery mechanism */ rc = qed_db_recovery_setup(p_hwfn); if (rc) goto alloc_err; /* First allocate the context manager structure */ rc = qed_cxt_mngr_alloc(p_hwfn); if (rc) goto alloc_err; /* Set the HW cid/tid numbers (in the contest manager) * Must be done prior to any further computations. */ rc = qed_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS); if (rc) goto alloc_err; rc = qed_alloc_qm_data(p_hwfn); if (rc) goto alloc_err; /* init qm info */ qed_init_qm_info(p_hwfn); /* Compute the ILT client partition */ rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count); if (rc) { DP_NOTICE(p_hwfn, "too many ILT lines; re-computing with less lines\n"); /* In case there are not enough ILT lines we reduce the * number of RDMA tasks and re-compute. */ excess_tasks = qed_cxt_cfg_ilt_compute_excess(p_hwfn, line_count); if (!excess_tasks) goto alloc_err; rdma_tasks = RDMA_MAX_TIDS - excess_tasks; rc = qed_cxt_set_pf_params(p_hwfn, rdma_tasks); if (rc) goto alloc_err; rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count); if (rc) { DP_ERR(p_hwfn, "failed ILT compute. Requested too many lines: %u\n", line_count); goto alloc_err; } } /* CID map / ILT shadow table / T2 * The talbes sizes are determined by the computations above */ rc = qed_cxt_tables_alloc(p_hwfn); if (rc) goto alloc_err; /* SPQ, must follow ILT because initializes SPQ context */ rc = qed_spq_alloc(p_hwfn); if (rc) goto alloc_err; /* SP status block allocation */ p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_DPC); rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt); if (rc) goto alloc_err; rc = qed_iov_alloc(p_hwfn); if (rc) goto alloc_err; /* EQ */ n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain); if (QED_IS_RDMA_PERSONALITY(p_hwfn)) { u32 n_srq = qed_cxt_get_total_srq_count(p_hwfn); enum protocol_type rdma_proto; if (QED_IS_ROCE_PERSONALITY(p_hwfn)) rdma_proto = PROTOCOLID_ROCE; else rdma_proto = PROTOCOLID_IWARP; num_cons = qed_cxt_get_proto_cid_count(p_hwfn, rdma_proto, NULL) * 2; /* EQ should be able to get events from all SRQ's * at the same time */ n_eqes += num_cons + 2 * MAX_NUM_VFS_BB + n_srq; } else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI || p_hwfn->hw_info.personality == QED_PCI_NVMETCP) { num_cons = qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_TCP_ULP, NULL); n_eqes += 2 * num_cons; } if (n_eqes > 0xFFFF) { DP_ERR(p_hwfn, "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n", n_eqes, 0xFFFF); goto alloc_no_mem; } rc = qed_eq_alloc(p_hwfn, (u16)n_eqes); if (rc) goto alloc_err; rc = qed_consq_alloc(p_hwfn); if (rc) goto alloc_err; rc = qed_l2_alloc(p_hwfn); if (rc) goto alloc_err; #ifdef CONFIG_QED_LL2 if (p_hwfn->using_ll2) { rc = qed_ll2_alloc(p_hwfn); if (rc) goto alloc_err; } #endif if (p_hwfn->hw_info.personality == QED_PCI_FCOE) { rc = qed_fcoe_alloc(p_hwfn); if (rc) goto alloc_err; } if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { rc = qed_iscsi_alloc(p_hwfn); if (rc) goto alloc_err; rc = qed_ooo_alloc(p_hwfn); if (rc) goto alloc_err; } if (p_hwfn->hw_info.personality == QED_PCI_NVMETCP) { rc = qed_nvmetcp_alloc(p_hwfn); if (rc) goto alloc_err; rc = qed_ooo_alloc(p_hwfn); if (rc) goto alloc_err; } if (QED_IS_RDMA_PERSONALITY(p_hwfn)) { rc = qed_rdma_info_alloc(p_hwfn); if (rc) goto alloc_err; } /* DMA info initialization */ rc = qed_dmae_info_alloc(p_hwfn); if (rc) goto alloc_err; /* DCBX initialization */ rc = qed_dcbx_info_alloc(p_hwfn); if (rc) goto alloc_err; rc = qed_dbg_alloc_user_data(p_hwfn, &p_hwfn->dbg_user_info); if (rc) goto alloc_err; } rc = qed_llh_alloc(cdev); if (rc) { DP_NOTICE(cdev, "Failed to allocate memory for the llh_info structure\n"); goto alloc_err; } cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL); if (!cdev->reset_stats) goto alloc_no_mem; return 0; alloc_no_mem: rc = -ENOMEM; alloc_err: qed_resc_free(cdev); return rc; } static int qed_fw_err_handler(struct qed_hwfn *p_hwfn, u8 opcode, u16 echo, union event_ring_data *data, u8 fw_return_code) { if (fw_return_code != COMMON_ERR_CODE_ERROR) goto eqe_unexpected; if (data->err_data.recovery_scope == ERR_SCOPE_FUNC && le16_to_cpu(data->err_data.entity_id) >= MAX_NUM_PFS) { qed_sriov_vfpf_malicious(p_hwfn, &data->err_data); return 0; } eqe_unexpected: DP_ERR(p_hwfn, "Skipping unexpected eqe 0x%02x, FW return code 0x%x, echo 0x%x\n", opcode, fw_return_code, echo); return -EINVAL; } static int qed_common_eqe_event(struct qed_hwfn *p_hwfn, u8 opcode, __le16 echo, union event_ring_data *data, u8 fw_return_code) { switch (opcode) { case COMMON_EVENT_VF_PF_CHANNEL: case COMMON_EVENT_VF_FLR: return qed_sriov_eqe_event(p_hwfn, opcode, echo, data, fw_return_code); case COMMON_EVENT_FW_ERROR: return qed_fw_err_handler(p_hwfn, opcode, le16_to_cpu(echo), data, fw_return_code); default: DP_INFO(p_hwfn->cdev, "Unknown eqe event 0x%02x, echo 0x%x\n", opcode, echo); return -EINVAL; } } void qed_resc_setup(struct qed_dev *cdev) { int i; if (IS_VF(cdev)) { for_each_hwfn(cdev, i) qed_l2_setup(&cdev->hwfns[i]); return; } for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; qed_cxt_mngr_setup(p_hwfn); qed_spq_setup(p_hwfn); qed_eq_setup(p_hwfn); qed_consq_setup(p_hwfn); /* Read shadow of current MFW mailbox */ qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt); memcpy(p_hwfn->mcp_info->mfw_mb_shadow, p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length); qed_int_setup(p_hwfn, p_hwfn->p_main_ptt); qed_l2_setup(p_hwfn); qed_iov_setup(p_hwfn); qed_spq_register_async_cb(p_hwfn, PROTOCOLID_COMMON, qed_common_eqe_event); #ifdef CONFIG_QED_LL2 if (p_hwfn->using_ll2) qed_ll2_setup(p_hwfn); #endif if (p_hwfn->hw_info.personality == QED_PCI_FCOE) qed_fcoe_setup(p_hwfn); if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) { qed_iscsi_setup(p_hwfn); qed_ooo_setup(p_hwfn); } if (p_hwfn->hw_info.personality == QED_PCI_NVMETCP) { qed_nvmetcp_setup(p_hwfn); qed_ooo_setup(p_hwfn); } } } #define FINAL_CLEANUP_POLL_CNT (100) #define FINAL_CLEANUP_POLL_TIME (10) int qed_final_cleanup(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 id, bool is_vf) { u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT; int rc = -EBUSY; addr = GET_GTT_REG_ADDR(GTT_BAR0_MAP_REG_USDM_RAM, USTORM_FLR_FINAL_ACK, p_hwfn->rel_pf_id); if (is_vf) id += 0x10; command |= X_FINAL_CLEANUP_AGG_INT << SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT; command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT; command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT; command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT; /* Make sure notification is not set before initiating final cleanup */ if (REG_RD(p_hwfn, addr)) { DP_NOTICE(p_hwfn, "Unexpected; Found final cleanup notification before initiating final cleanup\n"); REG_WR(p_hwfn, addr, 0); } DP_VERBOSE(p_hwfn, QED_MSG_IOV, "Sending final cleanup for PFVF[%d] [Command %08x]\n", id, command); qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command); /* Poll until completion */ while (!REG_RD(p_hwfn, addr) && count--) msleep(FINAL_CLEANUP_POLL_TIME); if (REG_RD(p_hwfn, addr)) rc = 0; else DP_NOTICE(p_hwfn, "Failed to receive FW final cleanup notification\n"); /* Cleanup afterwards */ REG_WR(p_hwfn, addr, 0); return rc; } static int qed_calc_hw_mode(struct qed_hwfn *p_hwfn) { int hw_mode = 0; if (QED_IS_BB_B0(p_hwfn->cdev)) { hw_mode |= 1 << MODE_BB; } else if (QED_IS_AH(p_hwfn->cdev)) { hw_mode |= 1 << MODE_K2; } else { DP_NOTICE(p_hwfn, "Unknown chip type %#x\n", p_hwfn->cdev->type); return -EINVAL; } switch (p_hwfn->cdev->num_ports_in_engine) { case 1: hw_mode |= 1 << MODE_PORTS_PER_ENG_1; break; case 2: hw_mode |= 1 << MODE_PORTS_PER_ENG_2; break; case 4: hw_mode |= 1 << MODE_PORTS_PER_ENG_4; break; default: DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n", p_hwfn->cdev->num_ports_in_engine); return -EINVAL; } if (test_bit(QED_MF_OVLAN_CLSS, &p_hwfn->cdev->mf_bits)) hw_mode |= 1 << MODE_MF_SD; else hw_mode |= 1 << MODE_MF_SI; hw_mode |= 1 << MODE_ASIC; if (p_hwfn->cdev->num_hwfns > 1) hw_mode |= 1 << MODE_100G; p_hwfn->hw_info.hw_mode = hw_mode; DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP), "Configuring function for hw_mode: 0x%08x\n", p_hwfn->hw_info.hw_mode); return 0; } /* Init run time data for all PFs on an engine. */ static void qed_init_cau_rt_data(struct qed_dev *cdev) { u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET; int i, igu_sb_id; for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; struct qed_igu_info *p_igu_info; struct qed_igu_block *p_block; struct cau_sb_entry sb_entry; p_igu_info = p_hwfn->hw_info.p_igu_info; for (igu_sb_id = 0; igu_sb_id < QED_MAPPING_MEMORY_SIZE(cdev); igu_sb_id++) { p_block = &p_igu_info->entry[igu_sb_id]; if (!p_block->is_pf) continue; qed_init_cau_sb_entry(p_hwfn, &sb_entry, p_block->function_id, 0, 0); STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2, sb_entry); } } } static void qed_init_cache_line_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { u32 val, wr_mbs, cache_line_size; val = qed_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0); switch (val) { case 0: wr_mbs = 128; break; case 1: wr_mbs = 256; break; case 2: wr_mbs = 512; break; default: DP_INFO(p_hwfn, "Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n", val); return; } cache_line_size = min_t(u32, L1_CACHE_BYTES, wr_mbs); switch (cache_line_size) { case 32: val = 0; break; case 64: val = 1; break; case 128: val = 2; break; case 256: val = 3; break; default: DP_INFO(p_hwfn, "Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n", cache_line_size); } if (wr_mbs < L1_CACHE_BYTES) DP_INFO(p_hwfn, "The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n", L1_CACHE_BYTES, wr_mbs); STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val); if (val > 0) { STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val); STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val); } } static int qed_hw_init_common(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, int hw_mode) { struct qed_qm_info *qm_info = &p_hwfn->qm_info; struct qed_qm_common_rt_init_params *params; struct qed_dev *cdev = p_hwfn->cdev; u8 vf_id, max_num_vfs; u16 num_pfs, pf_id; u32 concrete_fid; int rc = 0; params = kzalloc(sizeof(*params), GFP_KERNEL); if (!params) { DP_NOTICE(p_hwfn->cdev, "Failed to allocate common init params\n"); return -ENOMEM; } qed_init_cau_rt_data(cdev); /* Program GTT windows */ qed_gtt_init(p_hwfn); if (p_hwfn->mcp_info) { if (p_hwfn->mcp_info->func_info.bandwidth_max) qm_info->pf_rl_en = true; if (p_hwfn->mcp_info->func_info.bandwidth_min) qm_info->pf_wfq_en = true; } params->max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine; params->max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port; params->pf_rl_en = qm_info->pf_rl_en; params->pf_wfq_en = qm_info->pf_wfq_en; params->global_rl_en = qm_info->vport_rl_en; params->vport_wfq_en = qm_info->vport_wfq_en; params->port_params = qm_info->qm_port_params; qed_qm_common_rt_init(p_hwfn, params); qed_cxt_hw_init_common(p_hwfn); qed_init_cache_line_size(p_hwfn, p_ptt); rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode); if (rc) goto out; qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0); qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1); if (QED_IS_BB(p_hwfn->cdev)) { num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev); for (pf_id = 0; pf_id < num_pfs; pf_id++) { qed_fid_pretend(p_hwfn, p_ptt, pf_id); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); } /* pretend to original PF */ qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); } max_num_vfs = QED_IS_AH(cdev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB; for (vf_id = 0; vf_id < max_num_vfs; vf_id++) { concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id); qed_fid_pretend(p_hwfn, p_ptt, (u16)concrete_fid); qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1); qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0); qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1); qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0); } /* pretend to original PF */ qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id); out: kfree(params); return rc; } static int qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus) { u32 dpi_bit_shift, dpi_count, dpi_page_size; u32 min_dpis; u32 n_wids; /* Calculate DPI size */ n_wids = max_t(u32, QED_MIN_WIDS, n_cpus); dpi_page_size = QED_WID_SIZE * roundup_pow_of_two(n_wids); dpi_page_size = (dpi_page_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1); dpi_bit_shift = ilog2(dpi_page_size / 4096); dpi_count = pwm_region_size / dpi_page_size; min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis; min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis); p_hwfn->dpi_size = dpi_page_size; p_hwfn->dpi_count = dpi_count; qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift); if (dpi_count < min_dpis) return -EINVAL; return 0; } enum QED_ROCE_EDPM_MODE { QED_ROCE_EDPM_MODE_ENABLE = 0, QED_ROCE_EDPM_MODE_FORCE_ON = 1, QED_ROCE_EDPM_MODE_DISABLE = 2, }; bool qed_edpm_enabled(struct qed_hwfn *p_hwfn) { if (p_hwfn->dcbx_no_edpm || p_hwfn->db_bar_no_edpm) return false; return true; } static int qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { u32 pwm_regsize, norm_regsize; u32 non_pwm_conn, min_addr_reg1; u32 db_bar_size, n_cpus = 1; u32 roce_edpm_mode; u32 pf_dems_shift; int rc = 0; u8 cond; db_bar_size = qed_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1); if (p_hwfn->cdev->num_hwfns > 1) db_bar_size /= 2; /* Calculate doorbell regions */ non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) + qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE, NULL) + qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH, NULL); norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, PAGE_SIZE); min_addr_reg1 = norm_regsize / 4096; pwm_regsize = db_bar_size - norm_regsize; /* Check that the normal and PWM sizes are valid */ if (db_bar_size < norm_regsize) { DP_ERR(p_hwfn->cdev, "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n", db_bar_size, norm_regsize); return -EINVAL; } if (pwm_regsize < QED_MIN_PWM_REGION) { DP_ERR(p_hwfn->cdev, "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n", pwm_regsize, QED_MIN_PWM_REGION, db_bar_size, norm_regsize); return -EINVAL; } /* Calculate number of DPIs */ roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode; if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) || ((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) { /* Either EDPM is mandatory, or we are attempting to allocate a * WID per CPU. */ n_cpus = num_present_cpus(); rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); } cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) || (roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE); if (cond || p_hwfn->dcbx_no_edpm) { /* Either EDPM is disabled from user configuration, or it is * disabled via DCBx, or it is not mandatory and we failed to * allocated a WID per CPU. */ n_cpus = 1; rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus); if (cond) qed_rdma_dpm_bar(p_hwfn, p_ptt); } p_hwfn->wid_count = (u16)n_cpus; DP_INFO(p_hwfn, "doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n", norm_regsize, pwm_regsize, p_hwfn->dpi_size, p_hwfn->dpi_count, (!qed_edpm_enabled(p_hwfn)) ? "disabled" : "enabled", PAGE_SIZE); if (rc) { DP_ERR(p_hwfn, "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n", p_hwfn->dpi_count, p_hwfn->pf_params.rdma_pf_params.min_dpis); return -EINVAL; } p_hwfn->dpi_start_offset = norm_regsize; /* DEMS size is configured log2 of DWORDs, hence the division by 4 */ pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4); qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift); qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1); return 0; } static int qed_hw_init_port(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, int hw_mode) { int rc = 0; /* In CMT the gate should be cleared by the 2nd hwfn */ if (!QED_IS_CMT(p_hwfn->cdev) || !IS_LEAD_HWFN(p_hwfn)) STORE_RT_REG(p_hwfn, NIG_REG_BRB_GATE_DNTFWD_PORT_RT_OFFSET, 0); rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode); if (rc) return rc; qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0); return 0; } static int qed_hw_init_pf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_tunnel_info *p_tunn, int hw_mode, bool b_hw_start, enum qed_int_mode int_mode, bool allow_npar_tx_switch) { u8 rel_pf_id = p_hwfn->rel_pf_id; int rc = 0; if (p_hwfn->mcp_info) { struct qed_mcp_function_info *p_info; p_info = &p_hwfn->mcp_info->func_info; if (p_info->bandwidth_min) p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min; /* Update rate limit once we'll actually have a link */ p_hwfn->qm_info.pf_rl = 100000; } qed_cxt_hw_init_pf(p_hwfn, p_ptt); qed_int_igu_init_rt(p_hwfn); /* Set VLAN in NIG if needed */ if (hw_mode & BIT(MODE_MF_SD)) { DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n"); STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1); STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET, p_hwfn->hw_info.ovlan); DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_FILTER_HDR_SEL\n"); STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET, 1); } /* Enable classification by MAC if needed */ if (hw_mode & BIT(MODE_MF_SI)) { DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring TAGMAC_CLS_TYPE\n"); STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1); } /* Protocol Configuration */ STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET, ((p_hwfn->hw_info.personality == QED_PCI_ISCSI) || (p_hwfn->hw_info.personality == QED_PCI_NVMETCP)) ? 1 : 0); STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET, (p_hwfn->hw_info.personality == QED_PCI_FCOE) ? 1 : 0); STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0); /* Sanity check before the PF init sequence that uses DMAE */ rc = qed_dmae_sanity(p_hwfn, p_ptt, "pf_phase"); if (rc) return rc; /* PF Init sequence */ rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode); if (rc) return rc; /* QM_PF Init sequence (may be invoked separately e.g. for DCB) */ rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode); if (rc) return rc; qed_fw_overlay_init_ram(p_hwfn, p_ptt, p_hwfn->fw_overlay_mem); /* Pure runtime initializations - directly to the HW */ qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true); rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt); if (rc) return rc; /* Use the leading hwfn since in CMT only NIG #0 is operational */ if (IS_LEAD_HWFN(p_hwfn)) { rc = qed_llh_hw_init_pf(p_hwfn, p_ptt); if (rc) return rc; } if (b_hw_start) { /* enable interrupts */ qed_int_igu_enable(p_hwfn, p_ptt, int_mode); /* send function start command */ rc = qed_sp_pf_start(p_hwfn, p_ptt, p_tunn, allow_npar_tx_switch); if (rc) { DP_NOTICE(p_hwfn, "Function start ramrod failed\n"); return rc; } if (p_hwfn->hw_info.personality == QED_PCI_FCOE) { qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1, BIT(2)); qed_wr(p_hwfn, p_ptt, PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST, 0x100); } } return rc; } int qed_pglueb_set_pfid_enable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, bool b_enable) { u32 delay_idx = 0, val, set_val = b_enable ? 1 : 0; /* Configure the PF's internal FID_enable for master transactions */ qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val); /* Wait until value is set - try for 1 second every 50us */ for (delay_idx = 0; delay_idx < 20000; delay_idx++) { val = qed_rd(p_hwfn, p_ptt, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER); if (val == set_val) break; usleep_range(50, 60); } if (val != set_val) { DP_NOTICE(p_hwfn, "PFID_ENABLE_MASTER wasn't changed after a second\n"); return -EAGAIN; } return 0; } static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn, struct qed_ptt *p_main_ptt) { /* Read shadow of current MFW mailbox */ qed_mcp_read_mb(p_hwfn, p_main_ptt); memcpy(p_hwfn->mcp_info->mfw_mb_shadow, p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length); } static void qed_fill_load_req_params(struct qed_load_req_params *p_load_req, struct qed_drv_load_params *p_drv_load) { memset(p_load_req, 0, sizeof(*p_load_req)); p_load_req->drv_role = p_drv_load->is_crash_kernel ? QED_DRV_ROLE_KDUMP : QED_DRV_ROLE_OS; p_load_req->timeout_val = p_drv_load->mfw_timeout_val; p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset; p_load_req->override_force_load = p_drv_load->override_force_load; } static int qed_vf_start(struct qed_hwfn *p_hwfn, struct qed_hw_init_params *p_params) { if (p_params->p_tunn) { qed_vf_set_vf_start_tunn_update_param(p_params->p_tunn); qed_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn); } p_hwfn->b_int_enabled = true; return 0; } static void qed_pglueb_clear_err(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR, BIT(p_hwfn->abs_pf_id)); } int qed_hw_init(struct qed_dev *cdev, struct qed_hw_init_params *p_params) { struct qed_load_req_params load_req_params; u32 load_code, resp, param, drv_mb_param; bool b_default_mtu = true; struct qed_hwfn *p_hwfn; const u32 *fw_overlays; u32 fw_overlays_len; u16 ether_type; int rc = 0, i; if ((p_params->int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) { DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n"); return -EINVAL; } if (IS_PF(cdev)) { rc = qed_init_fw_data(cdev, p_params->bin_fw_data); if (rc) return rc; } for_each_hwfn(cdev, i) { p_hwfn = &cdev->hwfns[i]; /* If management didn't provide a default, set one of our own */ if (!p_hwfn->hw_info.mtu) { p_hwfn->hw_info.mtu = 1500; b_default_mtu = false; } if (IS_VF(cdev)) { qed_vf_start(p_hwfn, p_params); continue; } /* Some flows may keep variable set */ p_hwfn->mcp_info->mcp_handling_status = 0; rc = qed_calc_hw_mode(p_hwfn); if (rc) return rc; if (IS_PF(cdev) && (test_bit(QED_MF_8021Q_TAGGING, &cdev->mf_bits) || test_bit(QED_MF_8021AD_TAGGING, &cdev->mf_bits))) { if (test_bit(QED_MF_8021Q_TAGGING, &cdev->mf_bits)) ether_type = ETH_P_8021Q; else ether_type = ETH_P_8021AD; STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET, ether_type); STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET, ether_type); STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET, ether_type); STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET, ether_type); } qed_fill_load_req_params(&load_req_params, p_params->p_drv_load_params); rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt, &load_req_params); if (rc) { DP_NOTICE(p_hwfn, "Failed sending a LOAD_REQ command\n"); return rc; } load_code = load_req_params.load_code; DP_VERBOSE(p_hwfn, QED_MSG_SP, "Load request was sent. Load code: 0x%x\n", load_code); /* Only relevant for recovery: * Clear the indication after LOAD_REQ is responded by the MFW. */ cdev->recov_in_prog = false; qed_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt); qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt); /* Clean up chip from previous driver if such remains exist. * This is not needed when the PF is the first one on the * engine, since afterwards we are going to init the FW. */ if (load_code != FW_MSG_CODE_DRV_LOAD_ENGINE) { rc = qed_final_cleanup(p_hwfn, p_hwfn->p_main_ptt, p_hwfn->rel_pf_id, false); if (rc) { qed_hw_err_notify(p_hwfn, p_hwfn->p_main_ptt, QED_HW_ERR_RAMROD_FAIL, "Final cleanup failed\n"); goto load_err; } } /* Log and clear previous pglue_b errors if such exist */ qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_main_ptt, true); /* Enable the PF's internal FID_enable in the PXP */ rc = qed_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt, true); if (rc) goto load_err; /* Clear the pglue_b was_error indication. * In E4 it must be done after the BME and the internal * FID_enable for the PF are set, since VDMs may cause the * indication to be set again. */ qed_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt); fw_overlays = cdev->fw_data->fw_overlays; fw_overlays_len = cdev->fw_data->fw_overlays_len; p_hwfn->fw_overlay_mem = qed_fw_overlay_mem_alloc(p_hwfn, fw_overlays, fw_overlays_len); if (!p_hwfn->fw_overlay_mem) { DP_NOTICE(p_hwfn, "Failed to allocate fw overlay memory\n"); rc = -ENOMEM; goto load_err; } switch (load_code) { case FW_MSG_CODE_DRV_LOAD_ENGINE: rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt, p_hwfn->hw_info.hw_mode); if (rc) break; fallthrough; case FW_MSG_CODE_DRV_LOAD_PORT: rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt, p_hwfn->hw_info.hw_mode); if (rc) break; fallthrough; case FW_MSG_CODE_DRV_LOAD_FUNCTION: rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt, p_params->p_tunn, p_hwfn->hw_info.hw_mode, p_params->b_hw_start, p_params->int_mode, p_params->allow_npar_tx_switch); break; default: DP_NOTICE(p_hwfn, "Unexpected load code [0x%08x]", load_code); rc = -EINVAL; break; } if (rc) { DP_NOTICE(p_hwfn, "init phase failed for loadcode 0x%x (rc %d)\n", load_code, rc); goto load_err; } rc = qed_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt); if (rc) return rc; /* send DCBX attention request command */ DP_VERBOSE(p_hwfn, QED_MSG_DCB, "sending phony dcbx set command to trigger DCBx attention handling\n"); rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, DRV_MSG_CODE_SET_DCBX, 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT, &resp, ¶m); if (rc) { DP_NOTICE(p_hwfn, "Failed to send DCBX attention request\n"); return rc; } p_hwfn->hw_init_done = true; } if (IS_PF(cdev)) { p_hwfn = QED_LEADING_HWFN(cdev); /* Get pre-negotiated values for stag, bandwidth etc. */ DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n"); drv_mb_param = 1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET; rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, DRV_MSG_CODE_GET_OEM_UPDATES, drv_mb_param, &resp, ¶m); if (rc) DP_NOTICE(p_hwfn, "Failed to send GET_OEM_UPDATES attention request\n"); drv_mb_param = STORM_FW_VERSION; rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt, DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER, drv_mb_param, &load_code, ¶m); if (rc) DP_INFO(p_hwfn, "Failed to update firmware version\n"); if (!b_default_mtu) { rc = qed_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt, p_hwfn->hw_info.mtu); if (rc) DP_INFO(p_hwfn, "Failed to update default mtu\n"); } rc = qed_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt, QED_OV_DRIVER_STATE_DISABLED); if (rc) DP_INFO(p_hwfn, "Failed to update driver state\n"); rc = qed_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt, QED_OV_ESWITCH_NONE); if (rc) DP_INFO(p_hwfn, "Failed to update eswitch mode\n"); } return 0; load_err: /* The MFW load lock should be released also when initialization fails. */ qed_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt); return rc; } #define QED_HW_STOP_RETRY_LIMIT (10) static void qed_hw_timers_stop(struct qed_dev *cdev, struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { int i; /* close timers */ qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0); qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0); if (cdev->recov_in_prog) return; for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) { if ((!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN)) && (!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK))) break; /* Dependent on number of connection/tasks, possibly * 1ms sleep is required between polls */ usleep_range(1000, 2000); } if (i < QED_HW_STOP_RETRY_LIMIT) return; DP_NOTICE(p_hwfn, "Timers linear scans are not over [Connection %02x Tasks %02x]\n", (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN), (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)); } void qed_hw_timers_stop_all(struct qed_dev *cdev) { int j; for_each_hwfn(cdev, j) { struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; struct qed_ptt *p_ptt = p_hwfn->p_main_ptt; qed_hw_timers_stop(cdev, p_hwfn, p_ptt); } } int qed_hw_stop(struct qed_dev *cdev) { struct qed_hwfn *p_hwfn; struct qed_ptt *p_ptt; int rc, rc2 = 0; int j; for_each_hwfn(cdev, j) { p_hwfn = &cdev->hwfns[j]; p_ptt = p_hwfn->p_main_ptt; DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n"); if (IS_VF(cdev)) { qed_vf_pf_int_cleanup(p_hwfn); rc = qed_vf_pf_reset(p_hwfn); if (rc) { DP_NOTICE(p_hwfn, "qed_vf_pf_reset failed. rc = %d.\n", rc); rc2 = -EINVAL; } continue; } /* mark the hw as uninitialized... */ p_hwfn->hw_init_done = false; /* Send unload command to MCP */ if (!cdev->recov_in_prog) { rc = qed_mcp_unload_req(p_hwfn, p_ptt); if (rc) { DP_NOTICE(p_hwfn, "Failed sending a UNLOAD_REQ command. rc = %d.\n", rc); rc2 = -EINVAL; } } qed_slowpath_irq_sync(p_hwfn); /* After this point no MFW attentions are expected, e.g. prevent * race between pf stop and dcbx pf update. */ rc = qed_sp_pf_stop(p_hwfn); if (rc) { DP_NOTICE(p_hwfn, "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n", rc); rc2 = -EINVAL; } qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); qed_hw_timers_stop(cdev, p_hwfn, p_ptt); /* Disable Attention Generation */ qed_int_igu_disable_int(p_hwfn, p_ptt); qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0); qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0); qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true); /* Need to wait 1ms to guarantee SBs are cleared */ usleep_range(1000, 2000); /* Disable PF in HW blocks */ qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0); qed_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0); if (IS_LEAD_HWFN(p_hwfn) && test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits) && !QED_IS_FCOE_PERSONALITY(p_hwfn)) qed_llh_remove_mac_filter(cdev, 0, p_hwfn->hw_info.hw_mac_addr); if (!cdev->recov_in_prog) { rc = qed_mcp_unload_done(p_hwfn, p_ptt); if (rc) { DP_NOTICE(p_hwfn, "Failed sending a UNLOAD_DONE command. rc = %d.\n", rc); rc2 = -EINVAL; } } } if (IS_PF(cdev) && !cdev->recov_in_prog) { p_hwfn = QED_LEADING_HWFN(cdev); p_ptt = QED_LEADING_HWFN(cdev)->p_main_ptt; /* Clear the PF's internal FID_enable in the PXP. * In CMT this should only be done for first hw-function, and * only after all transactions have stopped for all active * hw-functions. */ rc = qed_pglueb_set_pfid_enable(p_hwfn, p_ptt, false); if (rc) { DP_NOTICE(p_hwfn, "qed_pglueb_set_pfid_enable() failed. rc = %d.\n", rc); rc2 = -EINVAL; } } return rc2; } int qed_hw_stop_fastpath(struct qed_dev *cdev) { int j; for_each_hwfn(cdev, j) { struct qed_hwfn *p_hwfn = &cdev->hwfns[j]; struct qed_ptt *p_ptt; if (IS_VF(cdev)) { qed_vf_pf_int_cleanup(p_hwfn); continue; } p_ptt = qed_ptt_acquire(p_hwfn); if (!p_ptt) return -EAGAIN; DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Shutting down the fastpath\n"); qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0); qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0); qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false); /* Need to wait 1ms to guarantee SBs are cleared */ usleep_range(1000, 2000); qed_ptt_release(p_hwfn, p_ptt); } return 0; } int qed_hw_start_fastpath(struct qed_hwfn *p_hwfn) { struct qed_ptt *p_ptt; if (IS_VF(p_hwfn->cdev)) return 0; p_ptt = qed_ptt_acquire(p_hwfn); if (!p_ptt) return -EAGAIN; if (p_hwfn->p_rdma_info && p_hwfn->p_rdma_info->active && p_hwfn->b_rdma_enabled_in_prs) qed_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1); /* Re-open incoming traffic */ qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0); qed_ptt_release(p_hwfn, p_ptt); return 0; } /* Free hwfn memory and resources acquired in hw_hwfn_prepare */ static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn) { qed_ptt_pool_free(p_hwfn); kfree(p_hwfn->hw_info.p_igu_info); p_hwfn->hw_info.p_igu_info = NULL; } /* Setup bar access */ static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn) { /* clear indirect access */ if (QED_IS_AH(p_hwfn->cdev)) { qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_E8_F0_K2, 0); qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_EC_F0_K2, 0); qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_F0_F0_K2, 0); qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_F4_F0_K2, 0); } else { qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0); qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0); qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0); qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0); } /* Clean previous pglue_b errors if such exist */ qed_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt); /* enable internal target-read */ qed_wr(p_hwfn, p_hwfn->p_main_ptt, PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1); } static void get_function_id(struct qed_hwfn *p_hwfn) { /* ME Register */ p_hwfn->hw_info.opaque_fid = (u16)REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR); p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR); p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf; p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, PXP_CONCRETE_FID_PFID); p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid, PXP_CONCRETE_FID_PORT); DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "Read ME register: Concrete 0x%08x Opaque 0x%04x\n", p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid); } static void qed_hw_set_feat(struct qed_hwfn *p_hwfn) { u32 *feat_num = p_hwfn->hw_info.feat_num; struct qed_sb_cnt_info sb_cnt; u32 non_l2_sbs = 0; memset(&sb_cnt, 0, sizeof(sb_cnt)); qed_int_get_num_sbs(p_hwfn, &sb_cnt); if (IS_ENABLED(CONFIG_QED_RDMA) && QED_IS_RDMA_PERSONALITY(p_hwfn)) { /* Roce CNQ each requires: 1 status block + 1 CNQ. We divide * the status blocks equally between L2 / RoCE but with * consideration as to how many l2 queues / cnqs we have. */ feat_num[QED_RDMA_CNQ] = min_t(u32, sb_cnt.cnt / 2, RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM)); non_l2_sbs = feat_num[QED_RDMA_CNQ]; } if (QED_IS_L2_PERSONALITY(p_hwfn)) { /* Start by allocating VF queues, then PF's */ feat_num[QED_VF_L2_QUE] = min_t(u32, RESC_NUM(p_hwfn, QED_L2_QUEUE), sb_cnt.iov_cnt); feat_num[QED_PF_L2_QUE] = min_t(u32, sb_cnt.cnt - non_l2_sbs, RESC_NUM(p_hwfn, QED_L2_QUEUE) - FEAT_NUM(p_hwfn, QED_VF_L2_QUE)); } if (QED_IS_FCOE_PERSONALITY(p_hwfn)) feat_num[QED_FCOE_CQ] = min_t(u32, sb_cnt.cnt, RESC_NUM(p_hwfn, QED_CMDQS_CQS)); if (QED_IS_ISCSI_PERSONALITY(p_hwfn)) feat_num[QED_ISCSI_CQ] = min_t(u32, sb_cnt.cnt, RESC_NUM(p_hwfn, QED_CMDQS_CQS)); if (QED_IS_NVMETCP_PERSONALITY(p_hwfn)) feat_num[QED_NVMETCP_CQ] = min_t(u32, sb_cnt.cnt, RESC_NUM(p_hwfn, QED_CMDQS_CQS)); DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "#PF_L2_QUEUES=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d FCOE_CQ=%d ISCSI_CQ=%d NVMETCP_CQ=%d #SBS=%d\n", (int)FEAT_NUM(p_hwfn, QED_PF_L2_QUE), (int)FEAT_NUM(p_hwfn, QED_VF_L2_QUE), (int)FEAT_NUM(p_hwfn, QED_RDMA_CNQ), (int)FEAT_NUM(p_hwfn, QED_FCOE_CQ), (int)FEAT_NUM(p_hwfn, QED_ISCSI_CQ), (int)FEAT_NUM(p_hwfn, QED_NVMETCP_CQ), (int)sb_cnt.cnt); } const char *qed_hw_get_resc_name(enum qed_resources res_id) { switch (res_id) { case QED_L2_QUEUE: return "L2_QUEUE"; case QED_VPORT: return "VPORT"; case QED_RSS_ENG: return "RSS_ENG"; case QED_PQ: return "PQ"; case QED_RL: return "RL"; case QED_MAC: return "MAC"; case QED_VLAN: return "VLAN"; case QED_RDMA_CNQ_RAM: return "RDMA_CNQ_RAM"; case QED_ILT: return "ILT"; case QED_LL2_RAM_QUEUE: return "LL2_RAM_QUEUE"; case QED_LL2_CTX_QUEUE: return "LL2_CTX_QUEUE"; case QED_CMDQS_CQS: return "CMDQS_CQS"; case QED_RDMA_STATS_QUEUE: return "RDMA_STATS_QUEUE"; case QED_BDQ: return "BDQ"; case QED_SB: return "SB"; default: return "UNKNOWN_RESOURCE"; } } static int __qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, enum qed_resources res_id, u32 resc_max_val, u32 *p_mcp_resp) { int rc; rc = qed_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id, resc_max_val, p_mcp_resp); if (rc) { DP_NOTICE(p_hwfn, "MFW response failure for a max value setting of resource %d [%s]\n", res_id, qed_hw_get_resc_name(res_id)); return rc; } if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) DP_INFO(p_hwfn, "Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n", res_id, qed_hw_get_resc_name(res_id), *p_mcp_resp); return 0; } static u32 qed_hsi_def_val[][MAX_CHIP_IDS] = { {MAX_NUM_VFS_BB, MAX_NUM_VFS_K2}, {MAX_NUM_L2_QUEUES_BB, MAX_NUM_L2_QUEUES_K2}, {MAX_NUM_PORTS_BB, MAX_NUM_PORTS_K2}, {MAX_SB_PER_PATH_BB, MAX_SB_PER_PATH_K2,}, {MAX_NUM_PFS_BB, MAX_NUM_PFS_K2}, {MAX_NUM_VPORTS_BB, MAX_NUM_VPORTS_K2}, {ETH_RSS_ENGINE_NUM_BB, ETH_RSS_ENGINE_NUM_K2}, {MAX_QM_TX_QUEUES_BB, MAX_QM_TX_QUEUES_K2}, {PXP_NUM_ILT_RECORDS_BB, PXP_NUM_ILT_RECORDS_K2}, {RDMA_NUM_STATISTIC_COUNTERS_BB, RDMA_NUM_STATISTIC_COUNTERS_K2}, {MAX_QM_GLOBAL_RLS, MAX_QM_GLOBAL_RLS}, {PBF_MAX_CMD_LINES, PBF_MAX_CMD_LINES}, {BTB_MAX_BLOCKS_BB, BTB_MAX_BLOCKS_K2}, }; u32 qed_get_hsi_def_val(struct qed_dev *cdev, enum qed_hsi_def_type type) { enum chip_ids chip_id = QED_IS_BB(cdev) ? CHIP_BB : CHIP_K2; if (type >= QED_NUM_HSI_DEFS) { DP_ERR(cdev, "Unexpected HSI definition type [%d]\n", type); return 0; } return qed_hsi_def_val[type][chip_id]; } static int qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { u32 resc_max_val, mcp_resp; u8 res_id; int rc; for (res_id = 0; res_id < QED_MAX_RESC; res_id++) { switch (res_id) { case QED_LL2_RAM_QUEUE: resc_max_val = MAX_NUM_LL2_RX_RAM_QUEUES; break; case QED_LL2_CTX_QUEUE: resc_max_val = MAX_NUM_LL2_RX_CTX_QUEUES; break; case QED_RDMA_CNQ_RAM: /* No need for a case for QED_CMDQS_CQS since * CNQ/CMDQS are the same resource. */ resc_max_val = NUM_OF_GLOBAL_QUEUES; break; case QED_RDMA_STATS_QUEUE: resc_max_val = NUM_OF_RDMA_STATISTIC_COUNTERS(p_hwfn->cdev); break; case QED_BDQ: resc_max_val = BDQ_NUM_RESOURCES; break; default: continue; } rc = __qed_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id, resc_max_val, &mcp_resp); if (rc) return rc; /* There's no point to continue to the next resource if the * command is not supported by the MFW. * We do continue if the command is supported but the resource * is unknown to the MFW. Such a resource will be later * configured with the default allocation values. */ if (mcp_resp == FW_MSG_CODE_UNSUPPORTED) return -EINVAL; } return 0; } static int qed_hw_get_dflt_resc(struct qed_hwfn *p_hwfn, enum qed_resources res_id, u32 *p_resc_num, u32 *p_resc_start) { u8 num_funcs = p_hwfn->num_funcs_on_engine; struct qed_dev *cdev = p_hwfn->cdev; switch (res_id) { case QED_L2_QUEUE: *p_resc_num = NUM_OF_L2_QUEUES(cdev) / num_funcs; break; case QED_VPORT: *p_resc_num = NUM_OF_VPORTS(cdev) / num_funcs; break; case QED_RSS_ENG: *p_resc_num = NUM_OF_RSS_ENGINES(cdev) / num_funcs; break; case QED_PQ: *p_resc_num = NUM_OF_QM_TX_QUEUES(cdev) / num_funcs; *p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */ break; case QED_RL: *p_resc_num = NUM_OF_QM_GLOBAL_RLS(cdev) / num_funcs; break; case QED_MAC: case QED_VLAN: /* Each VFC resource can accommodate both a MAC and a VLAN */ *p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs; break; case QED_ILT: *p_resc_num = NUM_OF_PXP_ILT_RECORDS(cdev) / num_funcs; break; case QED_LL2_RAM_QUEUE: *p_resc_num = MAX_NUM_LL2_RX_RAM_QUEUES / num_funcs; break; case QED_LL2_CTX_QUEUE: *p_resc_num = MAX_NUM_LL2_RX_CTX_QUEUES / num_funcs; break; case QED_RDMA_CNQ_RAM: case QED_CMDQS_CQS: /* CNQ/CMDQS are the same resource */ *p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs; break; case QED_RDMA_STATS_QUEUE: *p_resc_num = NUM_OF_RDMA_STATISTIC_COUNTERS(cdev) / num_funcs; break; case QED_BDQ: if (p_hwfn->hw_info.personality != QED_PCI_ISCSI && p_hwfn->hw_info.personality != QED_PCI_FCOE && p_hwfn->hw_info.personality != QED_PCI_NVMETCP) *p_resc_num = 0; else *p_resc_num = 1; break; case QED_SB: /* Since we want its value to reflect whether MFW supports * the new scheme, have a default of 0. */ *p_resc_num = 0; break; default: return -EINVAL; } switch (res_id) { case QED_BDQ: if (!*p_resc_num) *p_resc_start = 0; else if (p_hwfn->cdev->num_ports_in_engine == 4) *p_resc_start = p_hwfn->port_id; else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI || p_hwfn->hw_info.personality == QED_PCI_NVMETCP) *p_resc_start = p_hwfn->port_id; else if (p_hwfn->hw_info.personality == QED_PCI_FCOE) *p_resc_start = p_hwfn->port_id + 2; break; default: *p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx; break; } return 0; } static int __qed_hw_set_resc_info(struct qed_hwfn *p_hwfn, enum qed_resources res_id) { u32 dflt_resc_num = 0, dflt_resc_start = 0; u32 mcp_resp, *p_resc_num, *p_resc_start; int rc; p_resc_num = &RESC_NUM(p_hwfn, res_id); p_resc_start = &RESC_START(p_hwfn, res_id); rc = qed_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num, &dflt_resc_start); if (rc) { DP_ERR(p_hwfn, "Failed to get default amount for resource %d [%s]\n", res_id, qed_hw_get_resc_name(res_id)); return rc; } rc = qed_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id, &mcp_resp, p_resc_num, p_resc_start); if (rc) { DP_NOTICE(p_hwfn, "MFW response failure for an allocation request for resource %d [%s]\n", res_id, qed_hw_get_resc_name(res_id)); return rc; } /* Default driver values are applied in the following cases: * - The resource allocation MB command is not supported by the MFW * - There is an internal error in the MFW while processing the request * - The resource ID is unknown to the MFW */ if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) { DP_INFO(p_hwfn, "Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n", res_id, qed_hw_get_resc_name(res_id), mcp_resp, dflt_resc_num, dflt_resc_start); *p_resc_num = dflt_resc_num; *p_resc_start = dflt_resc_start; goto out; } out: /* PQs have to divide by 8 [that's the HW granularity]. * Reduce number so it would fit. */ if ((res_id == QED_PQ) && ((*p_resc_num % 8) || (*p_resc_start % 8))) { DP_INFO(p_hwfn, "PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n", *p_resc_num, (*p_resc_num) & ~0x7, *p_resc_start, (*p_resc_start) & ~0x7); *p_resc_num &= ~0x7; *p_resc_start &= ~0x7; } return 0; } static int qed_hw_set_resc_info(struct qed_hwfn *p_hwfn) { int rc; u8 res_id; for (res_id = 0; res_id < QED_MAX_RESC; res_id++) { rc = __qed_hw_set_resc_info(p_hwfn, res_id); if (rc) return rc; } return 0; } static int qed_hw_get_ppfid_bitmap(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_dev *cdev = p_hwfn->cdev; u8 native_ppfid_idx; int rc; /* Calculation of BB/AH is different for native_ppfid_idx */ if (QED_IS_BB(cdev)) native_ppfid_idx = p_hwfn->rel_pf_id; else native_ppfid_idx = p_hwfn->rel_pf_id / cdev->num_ports_in_engine; rc = qed_mcp_get_ppfid_bitmap(p_hwfn, p_ptt); if (rc != 0 && rc != -EOPNOTSUPP) return rc; else if (rc == -EOPNOTSUPP) cdev->ppfid_bitmap = 0x1 << native_ppfid_idx; if (!(cdev->ppfid_bitmap & (0x1 << native_ppfid_idx))) { DP_INFO(p_hwfn, "Fix the PPFID bitmap to include the native PPFID [native_ppfid_idx %hhd, orig_bitmap 0x%hhx]\n", native_ppfid_idx, cdev->ppfid_bitmap); cdev->ppfid_bitmap = 0x1 << native_ppfid_idx; } return 0; } static int qed_hw_get_resc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_resc_unlock_params resc_unlock_params; struct qed_resc_lock_params resc_lock_params; bool b_ah = QED_IS_AH(p_hwfn->cdev); u8 res_id; int rc; /* Setting the max values of the soft resources and the following * resources allocation queries should be atomic. Since several PFs can * run in parallel - a resource lock is needed. * If either the resource lock or resource set value commands are not * supported - skip the max values setting, release the lock if * needed, and proceed to the queries. Other failures, including a * failure to acquire the lock, will cause this function to fail. */ qed_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params, QED_RESC_LOCK_RESC_ALLOC, false); rc = qed_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params); if (rc && rc != -EINVAL) { return rc; } else if (rc == -EINVAL) { DP_INFO(p_hwfn, "Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n"); } else if (!resc_lock_params.b_granted) { DP_NOTICE(p_hwfn, "Failed to acquire the resource lock for the resource allocation commands\n"); return -EBUSY; } else { rc = qed_hw_set_soft_resc_size(p_hwfn, p_ptt); if (rc && rc != -EINVAL) { DP_NOTICE(p_hwfn, "Failed to set the max values of the soft resources\n"); goto unlock_and_exit; } else if (rc == -EINVAL) { DP_INFO(p_hwfn, "Skip the max values setting of the soft resources since it is not supported by the MFW\n"); rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params); if (rc) DP_INFO(p_hwfn, "Failed to release the resource lock for the resource allocation commands\n"); } } rc = qed_hw_set_resc_info(p_hwfn); if (rc) goto unlock_and_exit; if (resc_lock_params.b_granted && !resc_unlock_params.b_released) { rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params); if (rc) DP_INFO(p_hwfn, "Failed to release the resource lock for the resource allocation commands\n"); } /* PPFID bitmap */ if (IS_LEAD_HWFN(p_hwfn)) { rc = qed_hw_get_ppfid_bitmap(p_hwfn, p_ptt); if (rc) return rc; } /* Sanity for ILT */ if ((b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_K2)) || (!b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB))) { DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n", RESC_START(p_hwfn, QED_ILT), RESC_END(p_hwfn, QED_ILT) - 1); return -EINVAL; } /* This will also learn the number of SBs from MFW */ if (qed_int_igu_reset_cam(p_hwfn, p_ptt)) return -EINVAL; qed_hw_set_feat(p_hwfn); for (res_id = 0; res_id < QED_MAX_RESC; res_id++) DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "%s = %d start = %d\n", qed_hw_get_resc_name(res_id), RESC_NUM(p_hwfn, res_id), RESC_START(p_hwfn, res_id)); return 0; unlock_and_exit: if (resc_lock_params.b_granted && !resc_unlock_params.b_released) qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params); return rc; } static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities, fld; u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg; struct qed_mcp_link_speed_params *ext_speed; struct qed_mcp_link_capabilities *p_caps; struct qed_mcp_link_params *link; int i; /* Read global nvm_cfg address */ nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0); /* Verify MCP has initialized it */ if (!nvm_cfg_addr) { DP_NOTICE(p_hwfn, "Shared memory not initialized\n"); return -EINVAL; } /* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */ nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4); addr = MCP_REG_SCRATCH + nvm_cfg1_offset + offsetof(struct nvm_cfg1, glob) + offsetof(struct nvm_cfg1_glob, core_cfg); core_cfg = qed_rd(p_hwfn, p_ptt, addr); switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >> NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) { case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G: case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G: case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G: case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F: case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E: case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G: case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G: case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G: case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G: case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G: case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G: case NVM_CFG1_GLOB_NETWORK_PORT_MODE_AHP_2X50G_R1: case NVM_CFG1_GLOB_NETWORK_PORT_MODE_AHP_4X50G_R1: case NVM_CFG1_GLOB_NETWORK_PORT_MODE_AHP_1X100G_R2: case NVM_CFG1_GLOB_NETWORK_PORT_MODE_AHP_2X100G_R2: case NVM_CFG1_GLOB_NETWORK_PORT_MODE_AHP_1X100G_R4: break; default: DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg); break; } /* Read default link configuration */ link = &p_hwfn->mcp_info->link_input; p_caps = &p_hwfn->mcp_info->link_capabilities; port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset + offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]); link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr + offsetof(struct nvm_cfg1_port, speed_cap_mask)); link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK; link->speed.advertised_speeds = link_temp; p_caps->speed_capabilities = link->speed.advertised_speeds; link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr + offsetof(struct nvm_cfg1_port, link_settings)); switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >> NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) { case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG: link->speed.autoneg = true; break; case NVM_CFG1_PORT_DRV_LINK_SPEED_1G: link->speed.forced_speed = 1000; break; case NVM_CFG1_PORT_DRV_LINK_SPEED_10G: link->speed.forced_speed = 10000; break; case NVM_CFG1_PORT_DRV_LINK_SPEED_20G: link->speed.forced_speed = 20000; break; case NVM_CFG1_PORT_DRV_LINK_SPEED_25G: link->speed.forced_speed = 25000; break; case NVM_CFG1_PORT_DRV_LINK_SPEED_40G: link->speed.forced_speed = 40000; break; case NVM_CFG1_PORT_DRV_LINK_SPEED_50G: link->speed.forced_speed = 50000; break; case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G: link->speed.forced_speed = 100000; break; default: DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp); } p_caps->default_speed_autoneg = link->speed.autoneg; fld = GET_MFW_FIELD(link_temp, NVM_CFG1_PORT_DRV_FLOW_CONTROL); link->pause.autoneg = !!(fld & NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG); link->pause.forced_rx = !!(fld & NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX); link->pause.forced_tx = !!(fld & NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX); link->loopback_mode = 0; if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_FEC_CONTROL) { switch (GET_MFW_FIELD(link_temp, NVM_CFG1_PORT_FEC_FORCE_MODE)) { case NVM_CFG1_PORT_FEC_FORCE_MODE_NONE: p_caps->fec_default |= QED_FEC_MODE_NONE; break; case NVM_CFG1_PORT_FEC_FORCE_MODE_FIRECODE: p_caps->fec_default |= QED_FEC_MODE_FIRECODE; break; case NVM_CFG1_PORT_FEC_FORCE_MODE_RS: p_caps->fec_default |= QED_FEC_MODE_RS; break; case NVM_CFG1_PORT_FEC_FORCE_MODE_AUTO: p_caps->fec_default |= QED_FEC_MODE_AUTO; break; default: DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "unknown FEC mode in 0x%08x\n", link_temp); } } else { p_caps->fec_default = QED_FEC_MODE_UNSUPPORTED; } link->fec = p_caps->fec_default; if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) { link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr + offsetof(struct nvm_cfg1_port, ext_phy)); link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK; link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET; p_caps->default_eee = QED_MCP_EEE_ENABLED; link->eee.enable = true; switch (link_temp) { case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED: p_caps->default_eee = QED_MCP_EEE_DISABLED; link->eee.enable = false; break; case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED: p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME; break; case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE: p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_AGGRESSIVE_TIME; break; case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY: p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME; break; } link->eee.tx_lpi_timer = p_caps->eee_lpi_timer; link->eee.tx_lpi_enable = link->eee.enable; link->eee.adv_caps = QED_EEE_1G_ADV | QED_EEE_10G_ADV; } else { p_caps->default_eee = QED_MCP_EEE_UNSUPPORTED; } if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EXT_SPEED_FEC_CONTROL) { ext_speed = &link->ext_speed; link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr + offsetof(struct nvm_cfg1_port, extended_speed)); fld = GET_MFW_FIELD(link_temp, NVM_CFG1_PORT_EXTENDED_SPEED); if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_AN) ext_speed->autoneg = true; ext_speed->forced_speed = 0; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_1G) ext_speed->forced_speed |= QED_EXT_SPEED_1G; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_10G) ext_speed->forced_speed |= QED_EXT_SPEED_10G; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_20G) ext_speed->forced_speed |= QED_EXT_SPEED_20G; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_25G) ext_speed->forced_speed |= QED_EXT_SPEED_25G; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_40G) ext_speed->forced_speed |= QED_EXT_SPEED_40G; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_50G_R) ext_speed->forced_speed |= QED_EXT_SPEED_50G_R; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_50G_R2) ext_speed->forced_speed |= QED_EXT_SPEED_50G_R2; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_100G_R2) ext_speed->forced_speed |= QED_EXT_SPEED_100G_R2; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_100G_R4) ext_speed->forced_speed |= QED_EXT_SPEED_100G_R4; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_100G_P4) ext_speed->forced_speed |= QED_EXT_SPEED_100G_P4; fld = GET_MFW_FIELD(link_temp, NVM_CFG1_PORT_EXTENDED_SPEED_CAP); ext_speed->advertised_speeds = 0; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_RESERVED) ext_speed->advertised_speeds |= QED_EXT_SPEED_MASK_RES; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_1G) ext_speed->advertised_speeds |= QED_EXT_SPEED_MASK_1G; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_10G) ext_speed->advertised_speeds |= QED_EXT_SPEED_MASK_10G; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_20G) ext_speed->advertised_speeds |= QED_EXT_SPEED_MASK_20G; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_25G) ext_speed->advertised_speeds |= QED_EXT_SPEED_MASK_25G; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_40G) ext_speed->advertised_speeds |= QED_EXT_SPEED_MASK_40G; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_50G_R) ext_speed->advertised_speeds |= QED_EXT_SPEED_MASK_50G_R; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_50G_R2) ext_speed->advertised_speeds |= QED_EXT_SPEED_MASK_50G_R2; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_100G_R2) ext_speed->advertised_speeds |= QED_EXT_SPEED_MASK_100G_R2; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_100G_R4) ext_speed->advertised_speeds |= QED_EXT_SPEED_MASK_100G_R4; if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_100G_P4) ext_speed->advertised_speeds |= QED_EXT_SPEED_MASK_100G_P4; link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr + offsetof(struct nvm_cfg1_port, extended_fec_mode)); link->ext_fec_mode = link_temp; p_caps->default_ext_speed_caps = ext_speed->advertised_speeds; p_caps->default_ext_speed = ext_speed->forced_speed; p_caps->default_ext_autoneg = ext_speed->autoneg; p_caps->default_ext_fec = link->ext_fec_mode; DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Read default extended link config: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, FEC: 0x%02x\n", ext_speed->forced_speed, ext_speed->advertised_speeds, ext_speed->autoneg, p_caps->default_ext_fec); } DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x, EEE: 0x%02x [0x%08x usec], FEC: 0x%02x\n", link->speed.forced_speed, link->speed.advertised_speeds, link->speed.autoneg, link->pause.autoneg, p_caps->default_eee, p_caps->eee_lpi_timer, p_caps->fec_default); if (IS_LEAD_HWFN(p_hwfn)) { struct qed_dev *cdev = p_hwfn->cdev; /* Read Multi-function information from shmem */ addr = MCP_REG_SCRATCH + nvm_cfg1_offset + offsetof(struct nvm_cfg1, glob) + offsetof(struct nvm_cfg1_glob, generic_cont0); generic_cont0 = qed_rd(p_hwfn, p_ptt, addr); mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >> NVM_CFG1_GLOB_MF_MODE_OFFSET; switch (mf_mode) { case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED: cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS); break; case NVM_CFG1_GLOB_MF_MODE_UFP: cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS) | BIT(QED_MF_LLH_PROTO_CLSS) | BIT(QED_MF_UFP_SPECIFIC) | BIT(QED_MF_8021Q_TAGGING) | BIT(QED_MF_DONT_ADD_VLAN0_TAG); break; case NVM_CFG1_GLOB_MF_MODE_BD: cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS) | BIT(QED_MF_LLH_PROTO_CLSS) | BIT(QED_MF_8021AD_TAGGING) | BIT(QED_MF_DONT_ADD_VLAN0_TAG); break; case NVM_CFG1_GLOB_MF_MODE_NPAR1_0: cdev->mf_bits = BIT(QED_MF_LLH_MAC_CLSS) | BIT(QED_MF_LLH_PROTO_CLSS) | BIT(QED_MF_LL2_NON_UNICAST) | BIT(QED_MF_INTER_PF_SWITCH) | BIT(QED_MF_DISABLE_ARFS); break; case NVM_CFG1_GLOB_MF_MODE_DEFAULT: cdev->mf_bits = BIT(QED_MF_LLH_MAC_CLSS) | BIT(QED_MF_LLH_PROTO_CLSS) | BIT(QED_MF_LL2_NON_UNICAST); if (QED_IS_BB(p_hwfn->cdev)) cdev->mf_bits |= BIT(QED_MF_NEED_DEF_PF); break; } DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n", cdev->mf_bits); /* In CMT the PF is unknown when the GFS block processes the * packet. Therefore cannot use searcher as it has a per PF * database, and thus ARFS must be disabled. * */ if (QED_IS_CMT(cdev)) cdev->mf_bits |= BIT(QED_MF_DISABLE_ARFS); } DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n", p_hwfn->cdev->mf_bits); /* Read device capabilities information from shmem */ addr = MCP_REG_SCRATCH + nvm_cfg1_offset + offsetof(struct nvm_cfg1, glob) + offsetof(struct nvm_cfg1_glob, device_capabilities); device_capabilities = qed_rd(p_hwfn, p_ptt, addr); if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET) __set_bit(QED_DEV_CAP_ETH, &p_hwfn->hw_info.device_capabilities); if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE) __set_bit(QED_DEV_CAP_FCOE, &p_hwfn->hw_info.device_capabilities); if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI) __set_bit(QED_DEV_CAP_ISCSI, &p_hwfn->hw_info.device_capabilities); if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE) __set_bit(QED_DEV_CAP_ROCE, &p_hwfn->hw_info.device_capabilities); /* Read device serial number information from shmem */ addr = MCP_REG_SCRATCH + nvm_cfg1_offset + offsetof(struct nvm_cfg1, glob) + offsetof(struct nvm_cfg1_glob, serial_number); for (i = 0; i < 4; i++) p_hwfn->hw_info.part_num[i] = qed_rd(p_hwfn, p_ptt, addr + i * 4); return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt); } static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id; u32 reg_function_hide, tmp, eng_mask, low_pfs_mask; struct qed_dev *cdev = p_hwfn->cdev; num_funcs = QED_IS_AH(cdev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB; /* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values * in the other bits are selected. * Bits 1-15 are for functions 1-15, respectively, and their value is * '0' only for enabled functions (function 0 always exists and * enabled). * In case of CMT, only the "even" functions are enabled, and thus the * number of functions for both hwfns is learnt from the same bits. */ reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE); if (reg_function_hide & 0x1) { if (QED_IS_BB(cdev)) { if (QED_PATH_ID(p_hwfn) && cdev->num_hwfns == 1) { num_funcs = 0; eng_mask = 0xaaaa; } else { num_funcs = 1; eng_mask = 0x5554; } } else { num_funcs = 1; eng_mask = 0xfffe; } /* Get the number of the enabled functions on the engine */ tmp = (reg_function_hide ^ 0xffffffff) & eng_mask; while (tmp) { if (tmp & 0x1) num_funcs++; tmp >>= 0x1; } /* Get the PF index within the enabled functions */ low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1; tmp = reg_function_hide & eng_mask & low_pfs_mask; while (tmp) { if (tmp & 0x1) enabled_func_idx--; tmp >>= 0x1; } } p_hwfn->num_funcs_on_engine = num_funcs; p_hwfn->enabled_func_idx = enabled_func_idx; DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n", p_hwfn->rel_pf_id, p_hwfn->abs_pf_id, p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine); } static void qed_hw_info_port_num(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { u32 addr, global_offsize, global_addr, port_mode; struct qed_dev *cdev = p_hwfn->cdev; /* In CMT there is always only one port */ if (cdev->num_hwfns > 1) { cdev->num_ports_in_engine = 1; cdev->num_ports = 1; return; } /* Determine the number of ports per engine */ port_mode = qed_rd(p_hwfn, p_ptt, MISC_REG_PORT_MODE); switch (port_mode) { case 0x0: cdev->num_ports_in_engine = 1; break; case 0x1: cdev->num_ports_in_engine = 2; break; case 0x2: cdev->num_ports_in_engine = 4; break; default: DP_NOTICE(p_hwfn, "Unknown port mode 0x%08x\n", port_mode); cdev->num_ports_in_engine = 1; /* Default to something */ break; } /* Get the total number of ports of the device */ addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base, PUBLIC_GLOBAL); global_offsize = qed_rd(p_hwfn, p_ptt, addr); global_addr = SECTION_ADDR(global_offsize, 0); addr = global_addr + offsetof(struct public_global, max_ports); cdev->num_ports = (u8)qed_rd(p_hwfn, p_ptt, addr); } static void qed_get_eee_caps(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_mcp_link_capabilities *p_caps; u32 eee_status; p_caps = &p_hwfn->mcp_info->link_capabilities; if (p_caps->default_eee == QED_MCP_EEE_UNSUPPORTED) return; p_caps->eee_speed_caps = 0; eee_status = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr + offsetof(struct public_port, eee_status)); eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >> EEE_SUPPORTED_SPEED_OFFSET; if (eee_status & EEE_1G_SUPPORTED) p_caps->eee_speed_caps |= QED_EEE_1G_ADV; if (eee_status & EEE_10G_ADV) p_caps->eee_speed_caps |= QED_EEE_10G_ADV; } static int qed_get_hw_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, enum qed_pci_personality personality) { int rc; /* Since all information is common, only first hwfns should do this */ if (IS_LEAD_HWFN(p_hwfn)) { rc = qed_iov_hw_info(p_hwfn); if (rc) return rc; } if (IS_LEAD_HWFN(p_hwfn)) qed_hw_info_port_num(p_hwfn, p_ptt); qed_mcp_get_capabilities(p_hwfn, p_ptt); qed_hw_get_nvm_info(p_hwfn, p_ptt); rc = qed_int_igu_read_cam(p_hwfn, p_ptt); if (rc) return rc; if (qed_mcp_is_init(p_hwfn)) ether_addr_copy(p_hwfn->hw_info.hw_mac_addr, p_hwfn->mcp_info->func_info.mac); else eth_random_addr(p_hwfn->hw_info.hw_mac_addr); if (qed_mcp_is_init(p_hwfn)) { if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET) p_hwfn->hw_info.ovlan = p_hwfn->mcp_info->func_info.ovlan; qed_mcp_cmd_port_init(p_hwfn, p_ptt); qed_get_eee_caps(p_hwfn, p_ptt); qed_mcp_read_ufp_config(p_hwfn, p_ptt); } if (qed_mcp_is_init(p_hwfn)) { enum qed_pci_personality protocol; protocol = p_hwfn->mcp_info->func_info.protocol; p_hwfn->hw_info.personality = protocol; } if (QED_IS_ROCE_PERSONALITY(p_hwfn)) p_hwfn->hw_info.multi_tc_roce_en = true; p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2; p_hwfn->hw_info.num_active_tc = 1; qed_get_num_funcs(p_hwfn, p_ptt); if (qed_mcp_is_init(p_hwfn)) p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu; return qed_hw_get_resc(p_hwfn, p_ptt); } static int qed_get_dev_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_dev *cdev = p_hwfn->cdev; u16 device_id_mask; u32 tmp; /* Read Vendor Id / Device Id */ pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id); pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id); /* Determine type */ device_id_mask = cdev->device_id & QED_DEV_ID_MASK; switch (device_id_mask) { case QED_DEV_ID_MASK_BB: cdev->type = QED_DEV_TYPE_BB; break; case QED_DEV_ID_MASK_AH: cdev->type = QED_DEV_TYPE_AH; break; default: DP_NOTICE(p_hwfn, "Unknown device id 0x%x\n", cdev->device_id); return -EBUSY; } cdev->chip_num = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM); cdev->chip_rev = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV); MASK_FIELD(CHIP_REV, cdev->chip_rev); /* Learn number of HW-functions */ tmp = qed_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR); if (tmp & (1 << p_hwfn->rel_pf_id)) { DP_NOTICE(cdev->hwfns, "device in CMT mode\n"); cdev->num_hwfns = 2; } else { cdev->num_hwfns = 1; } cdev->chip_bond_id = qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_TEST_REG) >> 4; MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id); cdev->chip_metal = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL); MASK_FIELD(CHIP_METAL, cdev->chip_metal); DP_INFO(cdev->hwfns, "Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n", QED_IS_BB(cdev) ? "BB" : "AH", 'A' + cdev->chip_rev, (int)cdev->chip_metal, cdev->chip_num, cdev->chip_rev, cdev->chip_bond_id, cdev->chip_metal); return 0; } static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn, void __iomem *p_regview, void __iomem *p_doorbells, u64 db_phys_addr, enum qed_pci_personality personality) { struct qed_dev *cdev = p_hwfn->cdev; int rc = 0; /* Split PCI bars evenly between hwfns */ p_hwfn->regview = p_regview; p_hwfn->doorbells = p_doorbells; p_hwfn->db_phys_addr = db_phys_addr; if (IS_VF(p_hwfn->cdev)) return qed_vf_hw_prepare(p_hwfn); /* Validate that chip access is feasible */ if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) { DP_ERR(p_hwfn, "Reading the ME register returns all Fs; Preventing further chip access\n"); return -EINVAL; } get_function_id(p_hwfn); /* Allocate PTT pool */ rc = qed_ptt_pool_alloc(p_hwfn); if (rc) goto err0; /* Allocate the main PTT */ p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN); /* First hwfn learns basic information, e.g., number of hwfns */ if (!p_hwfn->my_id) { rc = qed_get_dev_info(p_hwfn, p_hwfn->p_main_ptt); if (rc) goto err1; } qed_hw_hwfn_prepare(p_hwfn); /* Initialize MCP structure */ rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt); if (rc) { DP_NOTICE(p_hwfn, "Failed initializing mcp command\n"); goto err1; } /* Read the device configuration information from the HW and SHMEM */ rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality); if (rc) { DP_NOTICE(p_hwfn, "Failed to get HW information\n"); goto err2; } /* Sending a mailbox to the MFW should be done after qed_get_hw_info() * is called as it sets the ports number in an engine. */ if (IS_LEAD_HWFN(p_hwfn) && !cdev->recov_in_prog) { rc = qed_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt); if (rc) DP_NOTICE(p_hwfn, "Failed to initiate PF FLR\n"); } /* NVRAM info initialization and population */ if (IS_LEAD_HWFN(p_hwfn)) { rc = qed_mcp_nvm_info_populate(p_hwfn); if (rc) { DP_NOTICE(p_hwfn, "Failed to populate nvm info shadow\n"); goto err2; } } /* Allocate the init RT array and initialize the init-ops engine */ rc = qed_init_alloc(p_hwfn); if (rc) goto err3; return rc; err3: if (IS_LEAD_HWFN(p_hwfn)) qed_mcp_nvm_info_free(p_hwfn); err2: if (IS_LEAD_HWFN(p_hwfn)) qed_iov_free_hw_info(p_hwfn->cdev); qed_mcp_free(p_hwfn); err1: qed_hw_hwfn_free(p_hwfn); err0: return rc; } int qed_hw_prepare(struct qed_dev *cdev, int personality) { struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); int rc; /* Store the precompiled init data ptrs */ if (IS_PF(cdev)) qed_init_iro_array(cdev); /* Initialize the first hwfn - will learn number of hwfns */ rc = qed_hw_prepare_single(p_hwfn, cdev->regview, cdev->doorbells, cdev->db_phys_addr, personality); if (rc) return rc; personality = p_hwfn->hw_info.personality; /* Initialize the rest of the hwfns */ if (cdev->num_hwfns > 1) { void __iomem *p_regview, *p_doorbell; u64 db_phys_addr; u32 offset; /* adjust bar offset for second engine */ offset = qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt, BAR_ID_0) / 2; p_regview = cdev->regview + offset; offset = qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt, BAR_ID_1) / 2; p_doorbell = cdev->doorbells + offset; db_phys_addr = cdev->db_phys_addr + offset; /* prepare second hw function */ rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview, p_doorbell, db_phys_addr, personality); /* in case of error, need to free the previously * initiliazed hwfn 0. */ if (rc) { if (IS_PF(cdev)) { qed_init_free(p_hwfn); qed_mcp_nvm_info_free(p_hwfn); qed_mcp_free(p_hwfn); qed_hw_hwfn_free(p_hwfn); } } } return rc; } void qed_hw_remove(struct qed_dev *cdev) { struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); int i; if (IS_PF(cdev)) qed_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt, QED_OV_DRIVER_STATE_NOT_LOADED); for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; if (IS_VF(cdev)) { qed_vf_pf_release(p_hwfn); continue; } qed_init_free(p_hwfn); qed_hw_hwfn_free(p_hwfn); qed_mcp_free(p_hwfn); } qed_iov_free_hw_info(cdev); qed_mcp_nvm_info_free(p_hwfn); } int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id) { if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) { u16 min, max; min = (u16)RESC_START(p_hwfn, QED_L2_QUEUE); max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE); DP_NOTICE(p_hwfn, "l2_queue id [%d] is not valid, available indices [%d - %d]\n", src_id, min, max); return -EINVAL; } *dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id; return 0; } int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id) { if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) { u8 min, max; min = (u8)RESC_START(p_hwfn, QED_VPORT); max = min + RESC_NUM(p_hwfn, QED_VPORT); DP_NOTICE(p_hwfn, "vport id [%d] is not valid, available indices [%d - %d]\n", src_id, min, max); return -EINVAL; } *dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id; return 0; } int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id) { if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) { u8 min, max; min = (u8)RESC_START(p_hwfn, QED_RSS_ENG); max = min + RESC_NUM(p_hwfn, QED_RSS_ENG); DP_NOTICE(p_hwfn, "rss_eng id [%d] is not valid, available indices [%d - %d]\n", src_id, min, max); return -EINVAL; } *dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id; return 0; } static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u32 hw_addr, void *p_eth_qzone, size_t eth_qzone_size, u8 timeset) { struct coalescing_timeset *p_coal_timeset; if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) { DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n"); return -EINVAL; } p_coal_timeset = p_eth_qzone; memset(p_eth_qzone, 0, eth_qzone_size); SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset); SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1); qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size); return 0; } int qed_set_queue_coalesce(u16 rx_coal, u16 tx_coal, void *p_handle) { struct qed_queue_cid *p_cid = p_handle; struct qed_hwfn *p_hwfn; struct qed_ptt *p_ptt; int rc = 0; p_hwfn = p_cid->p_owner; if (IS_VF(p_hwfn->cdev)) return qed_vf_pf_set_coalesce(p_hwfn, rx_coal, tx_coal, p_cid); p_ptt = qed_ptt_acquire(p_hwfn); if (!p_ptt) return -EAGAIN; if (rx_coal) { rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid); if (rc) goto out; p_hwfn->cdev->rx_coalesce_usecs = rx_coal; } if (tx_coal) { rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid); if (rc) goto out; p_hwfn->cdev->tx_coalesce_usecs = tx_coal; } out: qed_ptt_release(p_hwfn, p_ptt); return rc; } int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 coalesce, struct qed_queue_cid *p_cid) { struct ustorm_eth_queue_zone eth_qzone; u8 timeset, timer_res; u32 address; int rc; /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ if (coalesce <= 0x7F) { timer_res = 0; } else if (coalesce <= 0xFF) { timer_res = 1; } else if (coalesce <= 0x1FF) { timer_res = 2; } else { DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); return -EINVAL; } timeset = (u8)(coalesce >> timer_res); rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, p_cid->sb_igu_id, false); if (rc) goto out; address = BAR0_MAP_REG_USDM_RAM + USTORM_ETH_QUEUE_ZONE_GTT_OFFSET(p_cid->abs.queue_id); rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, sizeof(struct ustorm_eth_queue_zone), timeset); if (rc) goto out; out: return rc; } int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 coalesce, struct qed_queue_cid *p_cid) { struct xstorm_eth_queue_zone eth_qzone; u8 timeset, timer_res; u32 address; int rc; /* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */ if (coalesce <= 0x7F) { timer_res = 0; } else if (coalesce <= 0xFF) { timer_res = 1; } else if (coalesce <= 0x1FF) { timer_res = 2; } else { DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce); return -EINVAL; } timeset = (u8)(coalesce >> timer_res); rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res, p_cid->sb_igu_id, true); if (rc) goto out; address = BAR0_MAP_REG_XSDM_RAM + XSTORM_ETH_QUEUE_ZONE_GTT_OFFSET(p_cid->abs.queue_id); rc = qed_set_coalesce(p_hwfn, p_ptt, address, ð_qzone, sizeof(struct xstorm_eth_queue_zone), timeset); out: return rc; } /* Calculate final WFQ values for all vports and configure them. * After this configuration each vport will have * approx min rate = min_pf_rate * (vport_wfq / QED_WFQ_UNIT) */ static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u32 min_pf_rate) { struct init_qm_vport_params *vport_params; int i; vport_params = p_hwfn->qm_info.qm_vport_params; for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed; vport_params[i].wfq = (wfq_speed * QED_WFQ_UNIT) / min_pf_rate; qed_init_vport_wfq(p_hwfn, p_ptt, vport_params[i].first_tx_pq_id, vport_params[i].wfq); } } static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn, u32 min_pf_rate) { int i; for (i = 0; i < p_hwfn->qm_info.num_vports; i++) p_hwfn->qm_info.qm_vport_params[i].wfq = 1; } static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u32 min_pf_rate) { struct init_qm_vport_params *vport_params; int i; vport_params = p_hwfn->qm_info.qm_vport_params; for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { qed_init_wfq_default_param(p_hwfn, min_pf_rate); qed_init_vport_wfq(p_hwfn, p_ptt, vport_params[i].first_tx_pq_id, vport_params[i].wfq); } } /* This function performs several validations for WFQ * configuration and required min rate for a given vport * 1. req_rate must be greater than one percent of min_pf_rate. * 2. req_rate should not cause other vports [not configured for WFQ explicitly] * rates to get less than one percent of min_pf_rate. * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate. */ static int qed_init_wfq_param(struct qed_hwfn *p_hwfn, u16 vport_id, u32 req_rate, u32 min_pf_rate) { u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0; int non_requested_count = 0, req_count = 0, i, num_vports; num_vports = p_hwfn->qm_info.num_vports; if (num_vports < 2) { DP_NOTICE(p_hwfn, "Unexpected num_vports: %d\n", num_vports); return -EINVAL; } /* Accounting for the vports which are configured for WFQ explicitly */ for (i = 0; i < num_vports; i++) { u32 tmp_speed; if ((i != vport_id) && p_hwfn->qm_info.wfq_data[i].configured) { req_count++; tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed; total_req_min_rate += tmp_speed; } } /* Include current vport data as well */ req_count++; total_req_min_rate += req_rate; non_requested_count = num_vports - req_count; if (req_rate < min_pf_rate / QED_WFQ_UNIT) { DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", vport_id, req_rate, min_pf_rate); return -EINVAL; } if (num_vports > QED_WFQ_UNIT) { DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Number of vports is greater than %d\n", QED_WFQ_UNIT); return -EINVAL; } if (total_req_min_rate > min_pf_rate) { DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n", total_req_min_rate, min_pf_rate); return -EINVAL; } total_left_rate = min_pf_rate - total_req_min_rate; left_rate_per_vp = total_left_rate / non_requested_count; if (left_rate_per_vp < min_pf_rate / QED_WFQ_UNIT) { DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n", left_rate_per_vp, min_pf_rate); return -EINVAL; } p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate; p_hwfn->qm_info.wfq_data[vport_id].configured = true; for (i = 0; i < num_vports; i++) { if (p_hwfn->qm_info.wfq_data[i].configured) continue; p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp; } return 0; } static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 vp_id, u32 rate) { struct qed_mcp_link_state *p_link; int rc = 0; p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output; if (!p_link->min_pf_rate) { p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate; p_hwfn->qm_info.wfq_data[vp_id].configured = true; return rc; } rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate); if (!rc) qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, p_link->min_pf_rate); else DP_NOTICE(p_hwfn, "Validation failed while configuring min rate\n"); return rc; } static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u32 min_pf_rate) { bool use_wfq = false; int rc = 0; u16 i; /* Validate all pre configured vports for wfq */ for (i = 0; i < p_hwfn->qm_info.num_vports; i++) { u32 rate; if (!p_hwfn->qm_info.wfq_data[i].configured) continue; rate = p_hwfn->qm_info.wfq_data[i].min_speed; use_wfq = true; rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate); if (rc) { DP_NOTICE(p_hwfn, "WFQ validation failed while configuring min rate\n"); break; } } if (!rc && use_wfq) qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); else qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate); return rc; } /* Main API for qed clients to configure vport min rate. * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)] * rate - Speed in Mbps needs to be assigned to a given vport. */ int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate) { int i, rc = -EINVAL; /* Currently not supported; Might change in future */ if (cdev->num_hwfns > 1) { DP_NOTICE(cdev, "WFQ configuration is not supported for this device\n"); return rc; } for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; struct qed_ptt *p_ptt; p_ptt = qed_ptt_acquire(p_hwfn); if (!p_ptt) return -EBUSY; rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate); if (rc) { qed_ptt_release(p_hwfn, p_ptt); return rc; } qed_ptt_release(p_hwfn, p_ptt); } return rc; } /* API to configure WFQ from mcp link change */ void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev, struct qed_ptt *p_ptt, u32 min_pf_rate) { int i; if (cdev->num_hwfns > 1) { DP_VERBOSE(cdev, NETIF_MSG_LINK, "WFQ configuration is not supported for this device\n"); return; } for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; __qed_configure_vp_wfq_on_link_change(p_hwfn, p_ptt, min_pf_rate); } } int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_mcp_link_state *p_link, u8 max_bw) { int rc = 0; p_hwfn->mcp_info->func_info.bandwidth_max = max_bw; if (!p_link->line_speed && (max_bw != 100)) return rc; p_link->speed = (p_link->line_speed * max_bw) / 100; p_hwfn->qm_info.pf_rl = p_link->speed; /* Since the limiter also affects Tx-switched traffic, we don't want it * to limit such traffic in case there's no actual limit. * In that case, set limit to imaginary high boundary. */ if (max_bw == 100) p_hwfn->qm_info.pf_rl = 100000; rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id, p_hwfn->qm_info.pf_rl); DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Configured MAX bandwidth to be %08x Mb/sec\n", p_link->speed); return rc; } /* Main API to configure PF max bandwidth where bw range is [1 - 100] */ int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw) { int i, rc = -EINVAL; if (max_bw < 1 || max_bw > 100) { DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n"); return rc; } for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev); struct qed_mcp_link_state *p_link; struct qed_ptt *p_ptt; p_link = &p_lead->mcp_info->link_output; p_ptt = qed_ptt_acquire(p_hwfn); if (!p_ptt) return -EBUSY; rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt, p_link, max_bw); qed_ptt_release(p_hwfn, p_ptt); if (rc) break; } return rc; } int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, struct qed_mcp_link_state *p_link, u8 min_bw) { int rc = 0; p_hwfn->mcp_info->func_info.bandwidth_min = min_bw; p_hwfn->qm_info.pf_wfq = min_bw; if (!p_link->line_speed) return rc; p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100; rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw); DP_VERBOSE(p_hwfn, NETIF_MSG_LINK, "Configured MIN bandwidth to be %d Mb/sec\n", p_link->min_pf_rate); return rc; } /* Main API to configure PF min bandwidth where bw range is [1-100] */ int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw) { int i, rc = -EINVAL; if (min_bw < 1 || min_bw > 100) { DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n"); return rc; } for_each_hwfn(cdev, i) { struct qed_hwfn *p_hwfn = &cdev->hwfns[i]; struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev); struct qed_mcp_link_state *p_link; struct qed_ptt *p_ptt; p_link = &p_lead->mcp_info->link_output; p_ptt = qed_ptt_acquire(p_hwfn); if (!p_ptt) return -EBUSY; rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt, p_link, min_bw); if (rc) { qed_ptt_release(p_hwfn, p_ptt); return rc; } if (p_link->min_pf_rate) { u32 min_rate = p_link->min_pf_rate; rc = __qed_configure_vp_wfq_on_link_change(p_hwfn, p_ptt, min_rate); } qed_ptt_release(p_hwfn, p_ptt); } return rc; } void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt) { struct qed_mcp_link_state *p_link; p_link = &p_hwfn->mcp_info->link_output; if (p_link->min_pf_rate) qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, p_link->min_pf_rate); memset(p_hwfn->qm_info.wfq_data, 0, sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports); } int qed_device_num_ports(struct qed_dev *cdev) { return cdev->num_ports; } void qed_set_fw_mac_addr(__le16 *fw_msb, __le16 *fw_mid, __le16 *fw_lsb, u8 *mac) { ((u8 *)fw_msb)[0] = mac[1]; ((u8 *)fw_msb)[1] = mac[0]; ((u8 *)fw_mid)[0] = mac[3]; ((u8 *)fw_mid)[1] = mac[2]; ((u8 *)fw_lsb)[0] = mac[5]; ((u8 *)fw_lsb)[1] = mac[4]; } static int qed_llh_shadow_remove_all_filters(struct qed_dev *cdev, u8 ppfid) { struct qed_llh_info *p_llh_info = cdev->p_llh_info; struct qed_llh_filter_info *p_filters; int rc; rc = qed_llh_shadow_sanity(cdev, ppfid, 0, "remove_all"); if (rc) return rc; p_filters = p_llh_info->pp_filters[ppfid]; memset(p_filters, 0, NIG_REG_LLH_FUNC_FILTER_EN_SIZE * sizeof(*p_filters)); return 0; } static void qed_llh_clear_ppfid_filters(struct qed_dev *cdev, u8 ppfid) { struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev); struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn); u8 filter_idx, abs_ppfid; int rc = 0; if (!p_ptt) return; if (!test_bit(QED_MF_LLH_PROTO_CLSS, &cdev->mf_bits) && !test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits)) goto out; rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid); if (rc) goto out; rc = qed_llh_shadow_remove_all_filters(cdev, ppfid); if (rc) goto out; for (filter_idx = 0; filter_idx < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; filter_idx++) { rc = qed_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx); if (rc) goto out; } out: qed_ptt_release(p_hwfn, p_ptt); } int qed_llh_add_src_tcp_port_filter(struct qed_dev *cdev, u16 src_port) { return qed_llh_add_protocol_filter(cdev, 0, QED_LLH_FILTER_TCP_SRC_PORT, src_port, QED_LLH_DONT_CARE); } void qed_llh_remove_src_tcp_port_filter(struct qed_dev *cdev, u16 src_port) { qed_llh_remove_protocol_filter(cdev, 0, QED_LLH_FILTER_TCP_SRC_PORT, src_port, QED_LLH_DONT_CARE); } int qed_llh_add_dst_tcp_port_filter(struct qed_dev *cdev, u16 dest_port) { return qed_llh_add_protocol_filter(cdev, 0, QED_LLH_FILTER_TCP_DEST_PORT, QED_LLH_DONT_CARE, dest_port); } void qed_llh_remove_dst_tcp_port_filter(struct qed_dev *cdev, u16 dest_port) { qed_llh_remove_protocol_filter(cdev, 0, QED_LLH_FILTER_TCP_DEST_PORT, QED_LLH_DONT_CARE, dest_port); } void qed_llh_clear_all_filters(struct qed_dev *cdev) { u8 ppfid; if (!test_bit(QED_MF_LLH_PROTO_CLSS, &cdev->mf_bits) && !test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits)) return; for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) qed_llh_clear_ppfid_filters(cdev, ppfid); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1