Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Grygorii Strashko | 7003 | 89.66% | 21 | 28.00% |
Mugunthan V N | 312 | 3.99% | 11 | 14.67% |
Ivan Khoronzhuk | 232 | 2.97% | 15 | 20.00% |
Ilias Apalodimas | 103 | 1.32% | 1 | 1.33% |
Kurt Kanzenbach | 30 | 0.38% | 1 | 1.33% |
Lorenzo Bianconi | 24 | 0.31% | 3 | 4.00% |
Richard Cochran | 20 | 0.26% | 2 | 2.67% |
J Keerthy | 10 | 0.13% | 1 | 1.33% |
Wei Yongjun | 9 | 0.12% | 1 | 1.33% |
Asbjörn Sloth Tönnesen | 7 | 0.09% | 1 | 1.33% |
Felipe Balbi | 6 | 0.08% | 1 | 1.33% |
Jakub Kiciński | 6 | 0.08% | 1 | 1.33% |
Yegor Yefremov | 6 | 0.08% | 1 | 1.33% |
Sebastian Andrzej Siewior | 5 | 0.06% | 2 | 2.67% |
Gustavo A. R. Silva | 5 | 0.06% | 1 | 1.33% |
Florian Fainelli | 5 | 0.06% | 1 | 1.33% |
Michael S. Tsirkin | 4 | 0.05% | 1 | 1.33% |
Paolo Abeni | 4 | 0.05% | 1 | 1.33% |
Toke Höiland-Jörgensen | 4 | 0.05% | 2 | 2.67% |
Chi Minghao | 3 | 0.04% | 1 | 1.33% |
Vladimir Oltean | 3 | 0.04% | 1 | 1.33% |
Ratheesh Kannoth | 3 | 0.04% | 1 | 1.33% |
William Hua | 3 | 0.04% | 1 | 1.33% |
Björn Töpel | 2 | 0.03% | 1 | 1.33% |
Ard Biesheuvel | 1 | 0.01% | 1 | 1.33% |
Lin Yun Sheng | 1 | 0.01% | 1 | 1.33% |
Total | 7811 | 75 |
// SPDX-License-Identifier: GPL-2.0 /* * Texas Instruments Ethernet Switch Driver * * Copyright (C) 2019 Texas Instruments */ #include <linux/bpf.h> #include <linux/bpf_trace.h> #include <linux/if_ether.h> #include <linux/if_vlan.h> #include <linux/kmemleak.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/net_tstamp.h> #include <linux/of.h> #include <linux/phy.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/skbuff.h> #include <net/page_pool/helpers.h> #include <net/pkt_cls.h> #include <net/pkt_sched.h> #include "cpsw.h" #include "cpts.h" #include "cpsw_ale.h" #include "cpsw_priv.h" #include "cpsw_sl.h" #include "davinci_cpdma.h" #define CPTS_N_ETX_TS 4 int (*cpsw_slave_index)(struct cpsw_common *cpsw, struct cpsw_priv *priv); void cpsw_intr_enable(struct cpsw_common *cpsw) { writel_relaxed(0xFF, &cpsw->wr_regs->tx_en); writel_relaxed(0xFF, &cpsw->wr_regs->rx_en); cpdma_ctlr_int_ctrl(cpsw->dma, true); } void cpsw_intr_disable(struct cpsw_common *cpsw) { writel_relaxed(0, &cpsw->wr_regs->tx_en); writel_relaxed(0, &cpsw->wr_regs->rx_en); cpdma_ctlr_int_ctrl(cpsw->dma, false); } void cpsw_tx_handler(void *token, int len, int status) { struct cpsw_meta_xdp *xmeta; struct xdp_frame *xdpf; struct net_device *ndev; struct netdev_queue *txq; struct sk_buff *skb; int ch; if (cpsw_is_xdpf_handle(token)) { xdpf = cpsw_handle_to_xdpf(token); xmeta = (void *)xdpf + CPSW_XMETA_OFFSET; ndev = xmeta->ndev; ch = xmeta->ch; xdp_return_frame(xdpf); } else { skb = token; ndev = skb->dev; ch = skb_get_queue_mapping(skb); cpts_tx_timestamp(ndev_to_cpsw(ndev)->cpts, skb); dev_kfree_skb_any(skb); } /* Check whether the queue is stopped due to stalled tx dma, if the * queue is stopped then start the queue as we have free desc for tx */ txq = netdev_get_tx_queue(ndev, ch); if (unlikely(netif_tx_queue_stopped(txq))) netif_tx_wake_queue(txq); ndev->stats.tx_packets++; ndev->stats.tx_bytes += len; } irqreturn_t cpsw_tx_interrupt(int irq, void *dev_id) { struct cpsw_common *cpsw = dev_id; writel(0, &cpsw->wr_regs->tx_en); cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_TX); if (cpsw->quirk_irq) { disable_irq_nosync(cpsw->irqs_table[1]); cpsw->tx_irq_disabled = true; } napi_schedule(&cpsw->napi_tx); return IRQ_HANDLED; } irqreturn_t cpsw_rx_interrupt(int irq, void *dev_id) { struct cpsw_common *cpsw = dev_id; writel(0, &cpsw->wr_regs->rx_en); cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_RX); if (cpsw->quirk_irq) { disable_irq_nosync(cpsw->irqs_table[0]); cpsw->rx_irq_disabled = true; } napi_schedule(&cpsw->napi_rx); return IRQ_HANDLED; } irqreturn_t cpsw_misc_interrupt(int irq, void *dev_id) { struct cpsw_common *cpsw = dev_id; writel(0, &cpsw->wr_regs->misc_en); cpdma_ctlr_eoi(cpsw->dma, CPDMA_EOI_MISC); cpts_misc_interrupt(cpsw->cpts); writel(0x10, &cpsw->wr_regs->misc_en); return IRQ_HANDLED; } int cpsw_tx_mq_poll(struct napi_struct *napi_tx, int budget) { struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); int num_tx, cur_budget, ch; u32 ch_map; struct cpsw_vector *txv; /* process every unprocessed channel */ ch_map = cpdma_ctrl_txchs_state(cpsw->dma); for (ch = 0, num_tx = 0; ch_map & 0xff; ch_map <<= 1, ch++) { if (!(ch_map & 0x80)) continue; txv = &cpsw->txv[ch]; if (unlikely(txv->budget > budget - num_tx)) cur_budget = budget - num_tx; else cur_budget = txv->budget; num_tx += cpdma_chan_process(txv->ch, cur_budget); if (num_tx >= budget) break; } if (num_tx < budget) { napi_complete(napi_tx); writel(0xff, &cpsw->wr_regs->tx_en); } return num_tx; } int cpsw_tx_poll(struct napi_struct *napi_tx, int budget) { struct cpsw_common *cpsw = napi_to_cpsw(napi_tx); int num_tx; num_tx = cpdma_chan_process(cpsw->txv[0].ch, budget); if (num_tx < budget) { napi_complete(napi_tx); writel(0xff, &cpsw->wr_regs->tx_en); if (cpsw->tx_irq_disabled) { cpsw->tx_irq_disabled = false; enable_irq(cpsw->irqs_table[1]); } } return num_tx; } int cpsw_rx_mq_poll(struct napi_struct *napi_rx, int budget) { struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); int num_rx, cur_budget, ch; u32 ch_map; struct cpsw_vector *rxv; /* process every unprocessed channel */ ch_map = cpdma_ctrl_rxchs_state(cpsw->dma); for (ch = 0, num_rx = 0; ch_map; ch_map >>= 1, ch++) { if (!(ch_map & 0x01)) continue; rxv = &cpsw->rxv[ch]; if (unlikely(rxv->budget > budget - num_rx)) cur_budget = budget - num_rx; else cur_budget = rxv->budget; num_rx += cpdma_chan_process(rxv->ch, cur_budget); if (num_rx >= budget) break; } if (num_rx < budget) { napi_complete_done(napi_rx, num_rx); writel(0xff, &cpsw->wr_regs->rx_en); } return num_rx; } int cpsw_rx_poll(struct napi_struct *napi_rx, int budget) { struct cpsw_common *cpsw = napi_to_cpsw(napi_rx); int num_rx; num_rx = cpdma_chan_process(cpsw->rxv[0].ch, budget); if (num_rx < budget) { napi_complete_done(napi_rx, num_rx); writel(0xff, &cpsw->wr_regs->rx_en); if (cpsw->rx_irq_disabled) { cpsw->rx_irq_disabled = false; enable_irq(cpsw->irqs_table[0]); } } return num_rx; } void cpsw_rx_vlan_encap(struct sk_buff *skb) { struct cpsw_priv *priv = netdev_priv(skb->dev); u32 rx_vlan_encap_hdr = *((u32 *)skb->data); struct cpsw_common *cpsw = priv->cpsw; u16 vtag, vid, prio, pkt_type; /* Remove VLAN header encapsulation word */ skb_pull(skb, CPSW_RX_VLAN_ENCAP_HDR_SIZE); pkt_type = (rx_vlan_encap_hdr >> CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_SHIFT) & CPSW_RX_VLAN_ENCAP_HDR_PKT_TYPE_MSK; /* Ignore unknown & Priority-tagged packets*/ if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_RESERV || pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_PRIO_TAG) return; vid = (rx_vlan_encap_hdr >> CPSW_RX_VLAN_ENCAP_HDR_VID_SHIFT) & VLAN_VID_MASK; /* Ignore vid 0 and pass packet as is */ if (!vid) return; /* Untag P0 packets if set for vlan */ if (!cpsw_ale_get_vlan_p0_untag(cpsw->ale, vid)) { prio = (rx_vlan_encap_hdr >> CPSW_RX_VLAN_ENCAP_HDR_PRIO_SHIFT) & CPSW_RX_VLAN_ENCAP_HDR_PRIO_MSK; vtag = (prio << VLAN_PRIO_SHIFT) | vid; __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vtag); } /* strip vlan tag for VLAN-tagged packet */ if (pkt_type == CPSW_RX_VLAN_ENCAP_HDR_PKT_VLAN_TAG) { memmove(skb->data + VLAN_HLEN, skb->data, 2 * ETH_ALEN); skb_pull(skb, VLAN_HLEN); } } void cpsw_set_slave_mac(struct cpsw_slave *slave, struct cpsw_priv *priv) { slave_write(slave, mac_hi(priv->mac_addr), SA_HI); slave_write(slave, mac_lo(priv->mac_addr), SA_LO); } void soft_reset(const char *module, void __iomem *reg) { unsigned long timeout = jiffies + HZ; writel_relaxed(1, reg); do { cpu_relax(); } while ((readl_relaxed(reg) & 1) && time_after(timeout, jiffies)); WARN(readl_relaxed(reg) & 1, "failed to soft-reset %s\n", module); } void cpsw_ndo_tx_timeout(struct net_device *ndev, unsigned int txqueue) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int ch; cpsw_err(priv, tx_err, "transmit timeout, restarting dma\n"); ndev->stats.tx_errors++; cpsw_intr_disable(cpsw); for (ch = 0; ch < cpsw->tx_ch_num; ch++) { cpdma_chan_stop(cpsw->txv[ch].ch); cpdma_chan_start(cpsw->txv[ch].ch); } cpsw_intr_enable(cpsw); netif_trans_update(ndev); netif_tx_wake_all_queues(ndev); } static int cpsw_get_common_speed(struct cpsw_common *cpsw) { int i, speed; for (i = 0, speed = 0; i < cpsw->data.slaves; i++) if (cpsw->slaves[i].phy && cpsw->slaves[i].phy->link) speed += cpsw->slaves[i].phy->speed; return speed; } int cpsw_need_resplit(struct cpsw_common *cpsw) { int i, rlim_ch_num; int speed, ch_rate; /* re-split resources only in case speed was changed */ speed = cpsw_get_common_speed(cpsw); if (speed == cpsw->speed || !speed) return 0; cpsw->speed = speed; for (i = 0, rlim_ch_num = 0; i < cpsw->tx_ch_num; i++) { ch_rate = cpdma_chan_get_rate(cpsw->txv[i].ch); if (!ch_rate) break; rlim_ch_num++; } /* cases not dependent on speed */ if (!rlim_ch_num || rlim_ch_num == cpsw->tx_ch_num) return 0; return 1; } void cpsw_split_res(struct cpsw_common *cpsw) { u32 consumed_rate = 0, bigest_rate = 0; struct cpsw_vector *txv = cpsw->txv; int i, ch_weight, rlim_ch_num = 0; int budget, bigest_rate_ch = 0; u32 ch_rate, max_rate; int ch_budget = 0; for (i = 0; i < cpsw->tx_ch_num; i++) { ch_rate = cpdma_chan_get_rate(txv[i].ch); if (!ch_rate) continue; rlim_ch_num++; consumed_rate += ch_rate; } if (cpsw->tx_ch_num == rlim_ch_num) { max_rate = consumed_rate; } else if (!rlim_ch_num) { ch_budget = NAPI_POLL_WEIGHT / cpsw->tx_ch_num; bigest_rate = 0; max_rate = consumed_rate; } else { max_rate = cpsw->speed * 1000; /* if max_rate is less then expected due to reduced link speed, * split proportionally according next potential max speed */ if (max_rate < consumed_rate) max_rate *= 10; if (max_rate < consumed_rate) max_rate *= 10; ch_budget = (consumed_rate * NAPI_POLL_WEIGHT) / max_rate; ch_budget = (NAPI_POLL_WEIGHT - ch_budget) / (cpsw->tx_ch_num - rlim_ch_num); bigest_rate = (max_rate - consumed_rate) / (cpsw->tx_ch_num - rlim_ch_num); } /* split tx weight/budget */ budget = NAPI_POLL_WEIGHT; for (i = 0; i < cpsw->tx_ch_num; i++) { ch_rate = cpdma_chan_get_rate(txv[i].ch); if (ch_rate) { txv[i].budget = (ch_rate * NAPI_POLL_WEIGHT) / max_rate; if (!txv[i].budget) txv[i].budget++; if (ch_rate > bigest_rate) { bigest_rate_ch = i; bigest_rate = ch_rate; } ch_weight = (ch_rate * 100) / max_rate; if (!ch_weight) ch_weight++; cpdma_chan_set_weight(cpsw->txv[i].ch, ch_weight); } else { txv[i].budget = ch_budget; if (!bigest_rate_ch) bigest_rate_ch = i; cpdma_chan_set_weight(cpsw->txv[i].ch, 0); } budget -= txv[i].budget; } if (budget) txv[bigest_rate_ch].budget += budget; /* split rx budget */ budget = NAPI_POLL_WEIGHT; ch_budget = budget / cpsw->rx_ch_num; for (i = 0; i < cpsw->rx_ch_num; i++) { cpsw->rxv[i].budget = ch_budget; budget -= ch_budget; } if (budget) cpsw->rxv[0].budget += budget; } int cpsw_init_common(struct cpsw_common *cpsw, void __iomem *ss_regs, int ale_ageout, phys_addr_t desc_mem_phys, int descs_pool_size) { u32 slave_offset, sliver_offset, slave_size; struct cpsw_ale_params ale_params; struct cpsw_platform_data *data; struct cpdma_params dma_params; struct device *dev = cpsw->dev; struct device_node *cpts_node; void __iomem *cpts_regs; int ret = 0, i; data = &cpsw->data; cpsw->rx_ch_num = 1; cpsw->tx_ch_num = 1; cpsw->version = readl(&cpsw->regs->id_ver); memset(&dma_params, 0, sizeof(dma_params)); memset(&ale_params, 0, sizeof(ale_params)); switch (cpsw->version) { case CPSW_VERSION_1: cpsw->host_port_regs = ss_regs + CPSW1_HOST_PORT_OFFSET; cpts_regs = ss_regs + CPSW1_CPTS_OFFSET; cpsw->hw_stats = ss_regs + CPSW1_HW_STATS; dma_params.dmaregs = ss_regs + CPSW1_CPDMA_OFFSET; dma_params.txhdp = ss_regs + CPSW1_STATERAM_OFFSET; ale_params.ale_regs = ss_regs + CPSW1_ALE_OFFSET; slave_offset = CPSW1_SLAVE_OFFSET; slave_size = CPSW1_SLAVE_SIZE; sliver_offset = CPSW1_SLIVER_OFFSET; dma_params.desc_mem_phys = 0; break; case CPSW_VERSION_2: case CPSW_VERSION_3: case CPSW_VERSION_4: cpsw->host_port_regs = ss_regs + CPSW2_HOST_PORT_OFFSET; cpts_regs = ss_regs + CPSW2_CPTS_OFFSET; cpsw->hw_stats = ss_regs + CPSW2_HW_STATS; dma_params.dmaregs = ss_regs + CPSW2_CPDMA_OFFSET; dma_params.txhdp = ss_regs + CPSW2_STATERAM_OFFSET; ale_params.ale_regs = ss_regs + CPSW2_ALE_OFFSET; slave_offset = CPSW2_SLAVE_OFFSET; slave_size = CPSW2_SLAVE_SIZE; sliver_offset = CPSW2_SLIVER_OFFSET; dma_params.desc_mem_phys = desc_mem_phys; break; default: dev_err(dev, "unknown version 0x%08x\n", cpsw->version); return -ENODEV; } for (i = 0; i < cpsw->data.slaves; i++) { struct cpsw_slave *slave = &cpsw->slaves[i]; void __iomem *regs = cpsw->regs; slave->slave_num = i; slave->data = &cpsw->data.slave_data[i]; slave->regs = regs + slave_offset; slave->port_vlan = slave->data->dual_emac_res_vlan; slave->mac_sl = cpsw_sl_get("cpsw", dev, regs + sliver_offset); if (IS_ERR(slave->mac_sl)) return PTR_ERR(slave->mac_sl); slave_offset += slave_size; sliver_offset += SLIVER_SIZE; } ale_params.dev = dev; ale_params.ale_ageout = ale_ageout; ale_params.ale_ports = CPSW_ALE_PORTS_NUM; ale_params.dev_id = "cpsw"; ale_params.bus_freq = cpsw->bus_freq_mhz * 1000000; cpsw->ale = cpsw_ale_create(&ale_params); if (IS_ERR(cpsw->ale)) { dev_err(dev, "error initializing ale engine\n"); return PTR_ERR(cpsw->ale); } dma_params.dev = dev; dma_params.rxthresh = dma_params.dmaregs + CPDMA_RXTHRESH; dma_params.rxfree = dma_params.dmaregs + CPDMA_RXFREE; dma_params.rxhdp = dma_params.txhdp + CPDMA_RXHDP; dma_params.txcp = dma_params.txhdp + CPDMA_TXCP; dma_params.rxcp = dma_params.txhdp + CPDMA_RXCP; dma_params.num_chan = data->channels; dma_params.has_soft_reset = true; dma_params.min_packet_size = CPSW_MIN_PACKET_SIZE; dma_params.desc_mem_size = data->bd_ram_size; dma_params.desc_align = 16; dma_params.has_ext_regs = true; dma_params.desc_hw_addr = dma_params.desc_mem_phys; dma_params.bus_freq_mhz = cpsw->bus_freq_mhz; dma_params.descs_pool_size = descs_pool_size; cpsw->dma = cpdma_ctlr_create(&dma_params); if (!cpsw->dma) { dev_err(dev, "error initializing dma\n"); return -ENOMEM; } cpts_node = of_get_child_by_name(cpsw->dev->of_node, "cpts"); if (!cpts_node) cpts_node = cpsw->dev->of_node; cpsw->cpts = cpts_create(cpsw->dev, cpts_regs, cpts_node, CPTS_N_ETX_TS); if (IS_ERR(cpsw->cpts)) { ret = PTR_ERR(cpsw->cpts); cpdma_ctlr_destroy(cpsw->dma); } of_node_put(cpts_node); return ret; } #if IS_ENABLED(CONFIG_TI_CPTS) static void cpsw_hwtstamp_v1(struct cpsw_priv *priv) { struct cpsw_common *cpsw = priv->cpsw; struct cpsw_slave *slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; u32 ts_en, seq_id; if (!priv->tx_ts_enabled && !priv->rx_ts_enabled) { slave_write(slave, 0, CPSW1_TS_CTL); return; } seq_id = (30 << CPSW_V1_SEQ_ID_OFS_SHIFT) | ETH_P_1588; ts_en = EVENT_MSG_BITS << CPSW_V1_MSG_TYPE_OFS; if (priv->tx_ts_enabled) ts_en |= CPSW_V1_TS_TX_EN; if (priv->rx_ts_enabled) ts_en |= CPSW_V1_TS_RX_EN; slave_write(slave, ts_en, CPSW1_TS_CTL); slave_write(slave, seq_id, CPSW1_TS_SEQ_LTYPE); } static void cpsw_hwtstamp_v2(struct cpsw_priv *priv) { struct cpsw_common *cpsw = priv->cpsw; struct cpsw_slave *slave; u32 ctrl, mtype; slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; ctrl = slave_read(slave, CPSW2_CONTROL); switch (cpsw->version) { case CPSW_VERSION_2: ctrl &= ~CTRL_V2_ALL_TS_MASK; if (priv->tx_ts_enabled) ctrl |= CTRL_V2_TX_TS_BITS; if (priv->rx_ts_enabled) ctrl |= CTRL_V2_RX_TS_BITS; break; case CPSW_VERSION_3: default: ctrl &= ~CTRL_V3_ALL_TS_MASK; if (priv->tx_ts_enabled) ctrl |= CTRL_V3_TX_TS_BITS; if (priv->rx_ts_enabled) ctrl |= CTRL_V3_RX_TS_BITS; break; } mtype = (30 << TS_SEQ_ID_OFFSET_SHIFT) | EVENT_MSG_BITS; slave_write(slave, mtype, CPSW2_TS_SEQ_MTYPE); slave_write(slave, ctrl, CPSW2_CONTROL); writel_relaxed(ETH_P_1588, &cpsw->regs->ts_ltype); writel_relaxed(ETH_P_8021Q, &cpsw->regs->vlan_ltype); } static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) { struct cpsw_priv *priv = netdev_priv(dev); struct cpsw_common *cpsw = priv->cpsw; struct hwtstamp_config cfg; if (cpsw->version != CPSW_VERSION_1 && cpsw->version != CPSW_VERSION_2 && cpsw->version != CPSW_VERSION_3) return -EOPNOTSUPP; if (copy_from_user(&cfg, ifr->ifr_data, sizeof(cfg))) return -EFAULT; if (cfg.tx_type != HWTSTAMP_TX_OFF && cfg.tx_type != HWTSTAMP_TX_ON) return -ERANGE; switch (cfg.rx_filter) { case HWTSTAMP_FILTER_NONE: priv->rx_ts_enabled = 0; break; case HWTSTAMP_FILTER_ALL: case HWTSTAMP_FILTER_NTP_ALL: case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: return -ERANGE; case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: priv->rx_ts_enabled = HWTSTAMP_FILTER_PTP_V2_EVENT; cfg.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; break; default: return -ERANGE; } priv->tx_ts_enabled = cfg.tx_type == HWTSTAMP_TX_ON; switch (cpsw->version) { case CPSW_VERSION_1: cpsw_hwtstamp_v1(priv); break; case CPSW_VERSION_2: case CPSW_VERSION_3: cpsw_hwtstamp_v2(priv); break; default: WARN_ON(1); } return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; } static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) { struct cpsw_common *cpsw = ndev_to_cpsw(dev); struct cpsw_priv *priv = netdev_priv(dev); struct hwtstamp_config cfg; if (cpsw->version != CPSW_VERSION_1 && cpsw->version != CPSW_VERSION_2 && cpsw->version != CPSW_VERSION_3) return -EOPNOTSUPP; cfg.flags = 0; cfg.tx_type = priv->tx_ts_enabled ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF; cfg.rx_filter = priv->rx_ts_enabled; return copy_to_user(ifr->ifr_data, &cfg, sizeof(cfg)) ? -EFAULT : 0; } #else static int cpsw_hwtstamp_get(struct net_device *dev, struct ifreq *ifr) { return -EOPNOTSUPP; } static int cpsw_hwtstamp_set(struct net_device *dev, struct ifreq *ifr) { return -EOPNOTSUPP; } #endif /*CONFIG_TI_CPTS*/ int cpsw_ndo_ioctl(struct net_device *dev, struct ifreq *req, int cmd) { struct cpsw_priv *priv = netdev_priv(dev); struct cpsw_common *cpsw = priv->cpsw; int slave_no = cpsw_slave_index(cpsw, priv); struct phy_device *phy; if (!netif_running(dev)) return -EINVAL; phy = cpsw->slaves[slave_no].phy; if (!phy_has_hwtstamp(phy)) { switch (cmd) { case SIOCSHWTSTAMP: return cpsw_hwtstamp_set(dev, req); case SIOCGHWTSTAMP: return cpsw_hwtstamp_get(dev, req); } } if (phy) return phy_mii_ioctl(phy, req, cmd); return -EOPNOTSUPP; } int cpsw_ndo_set_tx_maxrate(struct net_device *ndev, int queue, u32 rate) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; struct cpsw_slave *slave; u32 min_rate; u32 ch_rate; int i, ret; ch_rate = netdev_get_tx_queue(ndev, queue)->tx_maxrate; if (ch_rate == rate) return 0; ch_rate = rate * 1000; min_rate = cpdma_chan_get_min_rate(cpsw->dma); if ((ch_rate < min_rate && ch_rate)) { dev_err(priv->dev, "The channel rate cannot be less than %dMbps", min_rate); return -EINVAL; } if (rate > cpsw->speed) { dev_err(priv->dev, "The channel rate cannot be more than 2Gbps"); return -EINVAL; } ret = pm_runtime_resume_and_get(cpsw->dev); if (ret < 0) return ret; ret = cpdma_chan_set_rate(cpsw->txv[queue].ch, ch_rate); pm_runtime_put(cpsw->dev); if (ret) return ret; /* update rates for slaves tx queues */ for (i = 0; i < cpsw->data.slaves; i++) { slave = &cpsw->slaves[i]; if (!slave->ndev) continue; netdev_get_tx_queue(slave->ndev, queue)->tx_maxrate = rate; } cpsw_split_res(cpsw); return ret; } static int cpsw_tc_to_fifo(int tc, int num_tc) { if (tc == num_tc - 1) return 0; return CPSW_FIFO_SHAPERS_NUM - tc; } bool cpsw_shp_is_off(struct cpsw_priv *priv) { struct cpsw_common *cpsw = priv->cpsw; struct cpsw_slave *slave; u32 shift, mask, val; val = readl_relaxed(&cpsw->regs->ptype); slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; mask = 7 << shift; val = val & mask; return !val; } static void cpsw_fifo_shp_on(struct cpsw_priv *priv, int fifo, int on) { struct cpsw_common *cpsw = priv->cpsw; struct cpsw_slave *slave; u32 shift, mask, val; val = readl_relaxed(&cpsw->regs->ptype); slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; shift = CPSW_FIFO_SHAPE_EN_SHIFT + 3 * slave->slave_num; mask = (1 << --fifo) << shift; val = on ? val | mask : val & ~mask; writel_relaxed(val, &cpsw->regs->ptype); } static int cpsw_set_fifo_bw(struct cpsw_priv *priv, int fifo, int bw) { struct cpsw_common *cpsw = priv->cpsw; u32 val = 0, send_pct, shift; struct cpsw_slave *slave; int pct = 0, i; if (bw > priv->shp_cfg_speed * 1000) goto err; /* shaping has to stay enabled for highest fifos linearly * and fifo bw no more then interface can allow */ slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; send_pct = slave_read(slave, SEND_PERCENT); for (i = CPSW_FIFO_SHAPERS_NUM; i > 0; i--) { if (!bw) { if (i >= fifo || !priv->fifo_bw[i]) continue; dev_warn(priv->dev, "Prev FIFO%d is shaped", i); continue; } if (!priv->fifo_bw[i] && i > fifo) { dev_err(priv->dev, "Upper FIFO%d is not shaped", i); return -EINVAL; } shift = (i - 1) * 8; if (i == fifo) { send_pct &= ~(CPSW_PCT_MASK << shift); val = DIV_ROUND_UP(bw, priv->shp_cfg_speed * 10); if (!val) val = 1; send_pct |= val << shift; pct += val; continue; } if (priv->fifo_bw[i]) pct += (send_pct >> shift) & CPSW_PCT_MASK; } if (pct >= 100) goto err; slave_write(slave, send_pct, SEND_PERCENT); priv->fifo_bw[fifo] = bw; dev_warn(priv->dev, "set FIFO%d bw = %d\n", fifo, DIV_ROUND_CLOSEST(val * priv->shp_cfg_speed, 100)); return 0; err: dev_err(priv->dev, "Bandwidth doesn't fit in tc configuration"); return -EINVAL; } static int cpsw_set_fifo_rlimit(struct cpsw_priv *priv, int fifo, int bw) { struct cpsw_common *cpsw = priv->cpsw; struct cpsw_slave *slave; u32 tx_in_ctl_rg, val; int ret; ret = cpsw_set_fifo_bw(priv, fifo, bw); if (ret) return ret; slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; tx_in_ctl_rg = cpsw->version == CPSW_VERSION_1 ? CPSW1_TX_IN_CTL : CPSW2_TX_IN_CTL; if (!bw) cpsw_fifo_shp_on(priv, fifo, bw); val = slave_read(slave, tx_in_ctl_rg); if (cpsw_shp_is_off(priv)) { /* disable FIFOs rate limited queues */ val &= ~(0xf << CPSW_FIFO_RATE_EN_SHIFT); /* set type of FIFO queues to normal priority mode */ val &= ~(3 << CPSW_FIFO_QUEUE_TYPE_SHIFT); /* set type of FIFO queues to be rate limited */ if (bw) val |= 2 << CPSW_FIFO_QUEUE_TYPE_SHIFT; else priv->shp_cfg_speed = 0; } /* toggle a FIFO rate limited queue */ if (bw) val |= BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); else val &= ~BIT(fifo + CPSW_FIFO_RATE_EN_SHIFT); slave_write(slave, val, tx_in_ctl_rg); /* FIFO transmit shape enable */ cpsw_fifo_shp_on(priv, fifo, bw); return 0; } /* Defaults: * class A - prio 3 * class B - prio 2 * shaping for class A should be set first */ static int cpsw_set_cbs(struct net_device *ndev, struct tc_cbs_qopt_offload *qopt) { struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; struct cpsw_slave *slave; int prev_speed = 0; int tc, ret, fifo; u32 bw = 0; tc = netdev_txq_to_tc(priv->ndev, qopt->queue); /* enable channels in backward order, as highest FIFOs must be rate * limited first and for compliance with CPDMA rate limited channels * that also used in bacward order. FIFO0 cannot be rate limited. */ fifo = cpsw_tc_to_fifo(tc, ndev->num_tc); if (!fifo) { dev_err(priv->dev, "Last tc%d can't be rate limited", tc); return -EINVAL; } /* do nothing, it's disabled anyway */ if (!qopt->enable && !priv->fifo_bw[fifo]) return 0; /* shapers can be set if link speed is known */ slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; if (slave->phy && slave->phy->link) { if (priv->shp_cfg_speed && priv->shp_cfg_speed != slave->phy->speed) prev_speed = priv->shp_cfg_speed; priv->shp_cfg_speed = slave->phy->speed; } if (!priv->shp_cfg_speed) { dev_err(priv->dev, "Link speed is not known"); return -1; } ret = pm_runtime_resume_and_get(cpsw->dev); if (ret < 0) return ret; bw = qopt->enable ? qopt->idleslope : 0; ret = cpsw_set_fifo_rlimit(priv, fifo, bw); if (ret) { priv->shp_cfg_speed = prev_speed; prev_speed = 0; } if (bw && prev_speed) dev_warn(priv->dev, "Speed was changed, CBS shaper speeds are changed!"); pm_runtime_put_sync(cpsw->dev); return ret; } static int cpsw_set_mqprio(struct net_device *ndev, void *type_data) { struct tc_mqprio_qopt_offload *mqprio = type_data; struct cpsw_priv *priv = netdev_priv(ndev); struct cpsw_common *cpsw = priv->cpsw; int fifo, num_tc, count, offset; struct cpsw_slave *slave; u32 tx_prio_map = 0; int i, tc, ret; num_tc = mqprio->qopt.num_tc; if (num_tc > CPSW_TC_NUM) return -EINVAL; if (mqprio->mode != TC_MQPRIO_MODE_DCB) return -EINVAL; ret = pm_runtime_resume_and_get(cpsw->dev); if (ret < 0) return ret; if (num_tc) { for (i = 0; i < 8; i++) { tc = mqprio->qopt.prio_tc_map[i]; fifo = cpsw_tc_to_fifo(tc, num_tc); tx_prio_map |= fifo << (4 * i); } netdev_set_num_tc(ndev, num_tc); for (i = 0; i < num_tc; i++) { count = mqprio->qopt.count[i]; offset = mqprio->qopt.offset[i]; netdev_set_tc_queue(ndev, i, count, offset); } } if (!mqprio->qopt.hw) { /* restore default configuration */ netdev_reset_tc(ndev); tx_prio_map = TX_PRIORITY_MAPPING; } priv->mqprio_hw = mqprio->qopt.hw; offset = cpsw->version == CPSW_VERSION_1 ? CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; slave = &cpsw->slaves[cpsw_slave_index(cpsw, priv)]; slave_write(slave, tx_prio_map, offset); pm_runtime_put_sync(cpsw->dev); return 0; } static int cpsw_qos_setup_tc_block(struct net_device *ndev, struct flow_block_offload *f); int cpsw_ndo_setup_tc(struct net_device *ndev, enum tc_setup_type type, void *type_data) { switch (type) { case TC_SETUP_QDISC_CBS: return cpsw_set_cbs(ndev, type_data); case TC_SETUP_QDISC_MQPRIO: return cpsw_set_mqprio(ndev, type_data); case TC_SETUP_BLOCK: return cpsw_qos_setup_tc_block(ndev, type_data); default: return -EOPNOTSUPP; } } void cpsw_cbs_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) { int fifo, bw; for (fifo = CPSW_FIFO_SHAPERS_NUM; fifo > 0; fifo--) { bw = priv->fifo_bw[fifo]; if (!bw) continue; cpsw_set_fifo_rlimit(priv, fifo, bw); } } void cpsw_mqprio_resume(struct cpsw_slave *slave, struct cpsw_priv *priv) { struct cpsw_common *cpsw = priv->cpsw; u32 tx_prio_map = 0; int i, tc, fifo; u32 tx_prio_rg; if (!priv->mqprio_hw) return; for (i = 0; i < 8; i++) { tc = netdev_get_prio_tc_map(priv->ndev, i); fifo = CPSW_FIFO_SHAPERS_NUM - tc; tx_prio_map |= fifo << (4 * i); } tx_prio_rg = cpsw->version == CPSW_VERSION_1 ? CPSW1_TX_PRI_MAP : CPSW2_TX_PRI_MAP; slave_write(slave, tx_prio_map, tx_prio_rg); } int cpsw_fill_rx_channels(struct cpsw_priv *priv) { struct cpsw_common *cpsw = priv->cpsw; struct cpsw_meta_xdp *xmeta; struct page_pool *pool; struct page *page; int ch_buf_num; int ch, i, ret; dma_addr_t dma; for (ch = 0; ch < cpsw->rx_ch_num; ch++) { pool = cpsw->page_pool[ch]; ch_buf_num = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); for (i = 0; i < ch_buf_num; i++) { page = page_pool_dev_alloc_pages(pool); if (!page) { cpsw_err(priv, ifup, "allocate rx page err\n"); return -ENOMEM; } xmeta = page_address(page) + CPSW_XMETA_OFFSET; xmeta->ndev = priv->ndev; xmeta->ch = ch; dma = page_pool_get_dma_addr(page) + CPSW_HEADROOM_NA; ret = cpdma_chan_idle_submit_mapped(cpsw->rxv[ch].ch, page, dma, cpsw->rx_packet_max, 0); if (ret < 0) { cpsw_err(priv, ifup, "cannot submit page to channel %d rx, error %d\n", ch, ret); page_pool_recycle_direct(pool, page); return ret; } } cpsw_info(priv, ifup, "ch %d rx, submitted %d descriptors\n", ch, ch_buf_num); } return 0; } static struct page_pool *cpsw_create_page_pool(struct cpsw_common *cpsw, int size) { struct page_pool_params pp_params = {}; struct page_pool *pool; pp_params.order = 0; pp_params.flags = PP_FLAG_DMA_MAP; pp_params.pool_size = size; pp_params.nid = NUMA_NO_NODE; pp_params.dma_dir = DMA_BIDIRECTIONAL; pp_params.dev = cpsw->dev; pool = page_pool_create(&pp_params); if (IS_ERR(pool)) dev_err(cpsw->dev, "cannot create rx page pool\n"); return pool; } static int cpsw_create_rx_pool(struct cpsw_common *cpsw, int ch) { struct page_pool *pool; int ret = 0, pool_size; pool_size = cpdma_chan_get_rx_buf_num(cpsw->rxv[ch].ch); pool = cpsw_create_page_pool(cpsw, pool_size); if (IS_ERR(pool)) ret = PTR_ERR(pool); else cpsw->page_pool[ch] = pool; return ret; } static int cpsw_ndev_create_xdp_rxq(struct cpsw_priv *priv, int ch) { struct cpsw_common *cpsw = priv->cpsw; struct xdp_rxq_info *rxq; struct page_pool *pool; int ret; pool = cpsw->page_pool[ch]; rxq = &priv->xdp_rxq[ch]; ret = xdp_rxq_info_reg(rxq, priv->ndev, ch, 0); if (ret) return ret; ret = xdp_rxq_info_reg_mem_model(rxq, MEM_TYPE_PAGE_POOL, pool); if (ret) xdp_rxq_info_unreg(rxq); return ret; } static void cpsw_ndev_destroy_xdp_rxq(struct cpsw_priv *priv, int ch) { struct xdp_rxq_info *rxq = &priv->xdp_rxq[ch]; if (!xdp_rxq_info_is_reg(rxq)) return; xdp_rxq_info_unreg(rxq); } void cpsw_destroy_xdp_rxqs(struct cpsw_common *cpsw) { struct net_device *ndev; int i, ch; for (ch = 0; ch < cpsw->rx_ch_num; ch++) { for (i = 0; i < cpsw->data.slaves; i++) { ndev = cpsw->slaves[i].ndev; if (!ndev) continue; cpsw_ndev_destroy_xdp_rxq(netdev_priv(ndev), ch); } page_pool_destroy(cpsw->page_pool[ch]); cpsw->page_pool[ch] = NULL; } } int cpsw_create_xdp_rxqs(struct cpsw_common *cpsw) { struct net_device *ndev; int i, ch, ret; for (ch = 0; ch < cpsw->rx_ch_num; ch++) { ret = cpsw_create_rx_pool(cpsw, ch); if (ret) goto err_cleanup; /* using same page pool is allowed as no running rx handlers * simultaneously for both ndevs */ for (i = 0; i < cpsw->data.slaves; i++) { ndev = cpsw->slaves[i].ndev; if (!ndev) continue; ret = cpsw_ndev_create_xdp_rxq(netdev_priv(ndev), ch); if (ret) goto err_cleanup; } } return 0; err_cleanup: cpsw_destroy_xdp_rxqs(cpsw); return ret; } static int cpsw_xdp_prog_setup(struct cpsw_priv *priv, struct netdev_bpf *bpf) { struct bpf_prog *prog = bpf->prog; if (!priv->xdpi.prog && !prog) return 0; WRITE_ONCE(priv->xdp_prog, prog); xdp_attachment_setup(&priv->xdpi, bpf); return 0; } int cpsw_ndo_bpf(struct net_device *ndev, struct netdev_bpf *bpf) { struct cpsw_priv *priv = netdev_priv(ndev); switch (bpf->command) { case XDP_SETUP_PROG: return cpsw_xdp_prog_setup(priv, bpf); default: return -EINVAL; } } int cpsw_xdp_tx_frame(struct cpsw_priv *priv, struct xdp_frame *xdpf, struct page *page, int port) { struct cpsw_common *cpsw = priv->cpsw; struct cpsw_meta_xdp *xmeta; struct cpdma_chan *txch; dma_addr_t dma; int ret; xmeta = (void *)xdpf + CPSW_XMETA_OFFSET; xmeta->ndev = priv->ndev; xmeta->ch = 0; txch = cpsw->txv[0].ch; if (page) { dma = page_pool_get_dma_addr(page); dma += xdpf->headroom + sizeof(struct xdp_frame); ret = cpdma_chan_submit_mapped(txch, cpsw_xdpf_to_handle(xdpf), dma, xdpf->len, port); } else { if (sizeof(*xmeta) > xdpf->headroom) return -EINVAL; ret = cpdma_chan_submit(txch, cpsw_xdpf_to_handle(xdpf), xdpf->data, xdpf->len, port); } if (ret) priv->ndev->stats.tx_dropped++; return ret; } int cpsw_run_xdp(struct cpsw_priv *priv, int ch, struct xdp_buff *xdp, struct page *page, int port, int *len) { struct cpsw_common *cpsw = priv->cpsw; struct net_device *ndev = priv->ndev; int ret = CPSW_XDP_CONSUMED; struct xdp_frame *xdpf; struct bpf_prog *prog; u32 act; prog = READ_ONCE(priv->xdp_prog); if (!prog) return CPSW_XDP_PASS; act = bpf_prog_run_xdp(prog, xdp); /* XDP prog might have changed packet data and boundaries */ *len = xdp->data_end - xdp->data; switch (act) { case XDP_PASS: ret = CPSW_XDP_PASS; goto out; case XDP_TX: xdpf = xdp_convert_buff_to_frame(xdp); if (unlikely(!xdpf)) goto drop; if (cpsw_xdp_tx_frame(priv, xdpf, page, port)) xdp_return_frame_rx_napi(xdpf); break; case XDP_REDIRECT: if (xdp_do_redirect(ndev, xdp, prog)) goto drop; /* Have to flush here, per packet, instead of doing it in bulk * at the end of the napi handler. The RX devices on this * particular hardware is sharing a common queue, so the * incoming device might change per packet. */ xdp_do_flush(); break; default: bpf_warn_invalid_xdp_action(ndev, prog, act); fallthrough; case XDP_ABORTED: trace_xdp_exception(ndev, prog, act); fallthrough; /* handle aborts by dropping packet */ case XDP_DROP: ndev->stats.rx_bytes += *len; ndev->stats.rx_packets++; goto drop; } ndev->stats.rx_bytes += *len; ndev->stats.rx_packets++; out: return ret; drop: page_pool_recycle_direct(cpsw->page_pool[ch], page); return ret; } static int cpsw_qos_clsflower_add_policer(struct cpsw_priv *priv, struct netlink_ext_ack *extack, struct flow_cls_offload *cls, u64 rate_pkt_ps) { struct flow_rule *rule = flow_cls_offload_flow_rule(cls); struct flow_dissector *dissector = rule->match.dissector; static const u8 mc_mac[] = {0x01, 0x00, 0x00, 0x00, 0x00, 0x00}; struct flow_match_eth_addrs match; u32 port_id; int ret; if (dissector->used_keys & ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) | BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) | BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS))) { NL_SET_ERR_MSG_MOD(extack, "Unsupported keys used"); return -EOPNOTSUPP; } if (flow_rule_match_has_control_flags(rule, extack)) return -EOPNOTSUPP; if (!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) { NL_SET_ERR_MSG_MOD(extack, "Not matching on eth address"); return -EOPNOTSUPP; } flow_rule_match_eth_addrs(rule, &match); if (!is_zero_ether_addr(match.mask->src)) { NL_SET_ERR_MSG_MOD(extack, "Matching on source MAC not supported"); return -EOPNOTSUPP; } port_id = cpsw_slave_index(priv->cpsw, priv) + 1; if (is_broadcast_ether_addr(match.key->dst) && is_broadcast_ether_addr(match.mask->dst)) { ret = cpsw_ale_rx_ratelimit_bc(priv->cpsw->ale, port_id, rate_pkt_ps); if (ret) return ret; priv->ale_bc_ratelimit.cookie = cls->cookie; priv->ale_bc_ratelimit.rate_packet_ps = rate_pkt_ps; } else if (ether_addr_equal_unaligned(match.key->dst, mc_mac) && ether_addr_equal_unaligned(match.mask->dst, mc_mac)) { ret = cpsw_ale_rx_ratelimit_mc(priv->cpsw->ale, port_id, rate_pkt_ps); if (ret) return ret; priv->ale_mc_ratelimit.cookie = cls->cookie; priv->ale_mc_ratelimit.rate_packet_ps = rate_pkt_ps; } else { NL_SET_ERR_MSG_MOD(extack, "Not supported matching key"); return -EOPNOTSUPP; } return 0; } static int cpsw_qos_clsflower_policer_validate(const struct flow_action *action, const struct flow_action_entry *act, struct netlink_ext_ack *extack) { if (act->police.exceed.act_id != FLOW_ACTION_DROP) { NL_SET_ERR_MSG_MOD(extack, "Offload not supported when exceed action is not drop"); return -EOPNOTSUPP; } if (act->police.notexceed.act_id != FLOW_ACTION_PIPE && act->police.notexceed.act_id != FLOW_ACTION_ACCEPT) { NL_SET_ERR_MSG_MOD(extack, "Offload not supported when conform action is not pipe or ok"); return -EOPNOTSUPP; } if (act->police.notexceed.act_id == FLOW_ACTION_ACCEPT && !flow_action_is_last_entry(action, act)) { NL_SET_ERR_MSG_MOD(extack, "Offload not supported when conform action is ok, but action is not last"); return -EOPNOTSUPP; } if (act->police.rate_bytes_ps || act->police.peakrate_bytes_ps || act->police.avrate || act->police.overhead) { NL_SET_ERR_MSG_MOD(extack, "Offload not supported when bytes per second/peakrate/avrate/overhead is configured"); return -EOPNOTSUPP; } return 0; } static int cpsw_qos_configure_clsflower(struct cpsw_priv *priv, struct flow_cls_offload *cls) { struct flow_rule *rule = flow_cls_offload_flow_rule(cls); struct netlink_ext_ack *extack = cls->common.extack; const struct flow_action_entry *act; int i, ret; flow_action_for_each(i, act, &rule->action) { switch (act->id) { case FLOW_ACTION_POLICE: ret = cpsw_qos_clsflower_policer_validate(&rule->action, act, extack); if (ret) return ret; return cpsw_qos_clsflower_add_policer(priv, extack, cls, act->police.rate_pkt_ps); default: NL_SET_ERR_MSG_MOD(extack, "Action not supported"); return -EOPNOTSUPP; } } return -EOPNOTSUPP; } static int cpsw_qos_delete_clsflower(struct cpsw_priv *priv, struct flow_cls_offload *cls) { u32 port_id = cpsw_slave_index(priv->cpsw, priv) + 1; if (cls->cookie == priv->ale_bc_ratelimit.cookie) { priv->ale_bc_ratelimit.cookie = 0; priv->ale_bc_ratelimit.rate_packet_ps = 0; cpsw_ale_rx_ratelimit_bc(priv->cpsw->ale, port_id, 0); } if (cls->cookie == priv->ale_mc_ratelimit.cookie) { priv->ale_mc_ratelimit.cookie = 0; priv->ale_mc_ratelimit.rate_packet_ps = 0; cpsw_ale_rx_ratelimit_mc(priv->cpsw->ale, port_id, 0); } return 0; } static int cpsw_qos_setup_tc_clsflower(struct cpsw_priv *priv, struct flow_cls_offload *cls_flower) { switch (cls_flower->command) { case FLOW_CLS_REPLACE: return cpsw_qos_configure_clsflower(priv, cls_flower); case FLOW_CLS_DESTROY: return cpsw_qos_delete_clsflower(priv, cls_flower); default: return -EOPNOTSUPP; } } static int cpsw_qos_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv) { struct cpsw_priv *priv = cb_priv; int ret; if (!tc_cls_can_offload_and_chain0(priv->ndev, type_data)) return -EOPNOTSUPP; ret = pm_runtime_get_sync(priv->dev); if (ret < 0) { pm_runtime_put_noidle(priv->dev); return ret; } switch (type) { case TC_SETUP_CLSFLOWER: ret = cpsw_qos_setup_tc_clsflower(priv, type_data); break; default: ret = -EOPNOTSUPP; } pm_runtime_put(priv->dev); return ret; } static LIST_HEAD(cpsw_qos_block_cb_list); static int cpsw_qos_setup_tc_block(struct net_device *ndev, struct flow_block_offload *f) { struct cpsw_priv *priv = netdev_priv(ndev); return flow_block_cb_setup_simple(f, &cpsw_qos_block_cb_list, cpsw_qos_setup_tc_block_cb, priv, priv, true); } void cpsw_qos_clsflower_resume(struct cpsw_priv *priv) { u32 port_id = cpsw_slave_index(priv->cpsw, priv) + 1; if (priv->ale_bc_ratelimit.cookie) cpsw_ale_rx_ratelimit_bc(priv->cpsw->ale, port_id, priv->ale_bc_ratelimit.rate_packet_ps); if (priv->ale_mc_ratelimit.cookie) cpsw_ale_rx_ratelimit_mc(priv->cpsw->ale, port_id, priv->ale_mc_ratelimit.rate_packet_ps); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1