Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Haiyang Zhang | 2530 | 32.43% | 58 | 24.37% |
Stephen Hemminger | 1788 | 22.92% | 60 | 25.21% |
Hank Janssen | 958 | 12.28% | 4 | 1.68% |
K. Y. Srinivasan | 791 | 10.14% | 34 | 14.29% |
Andres Beltran | 364 | 4.67% | 3 | 1.26% |
Lan Tianyu | 319 | 4.09% | 3 | 1.26% |
Vitaly Kuznetsov | 198 | 2.54% | 10 | 4.20% |
Andrea Parri | 177 | 2.27% | 8 | 3.36% |
Mohammed Gamal | 133 | 1.70% | 4 | 1.68% |
Long Li | 116 | 1.49% | 2 | 0.84% |
Greg Kroah-Hartman | 99 | 1.27% | 16 | 6.72% |
Michael Kelley | 71 | 0.91% | 3 | 1.26% |
Simon Xiao | 46 | 0.59% | 2 | 0.84% |
Nicolas Palix | 35 | 0.45% | 2 | 0.84% |
Joe Perches | 27 | 0.35% | 1 | 0.42% |
Bill Pemberton | 25 | 0.32% | 3 | 1.26% |
Florian Fainelli | 20 | 0.26% | 1 | 0.42% |
Rick Edgecombe | 18 | 0.23% | 1 | 0.42% |
Sonia Sharma | 15 | 0.19% | 1 | 0.42% |
Gaurav Kohli | 14 | 0.18% | 1 | 0.42% |
Souradeep Chakrabarti | 9 | 0.12% | 1 | 0.42% |
Dexuan Cui | 8 | 0.10% | 2 | 0.84% |
Wei Yongjun | 7 | 0.09% | 1 | 0.42% |
Christophe Jaillet | 6 | 0.08% | 1 | 0.42% |
Andi Kleen | 3 | 0.04% | 1 | 0.42% |
Dan Carpenter | 3 | 0.04% | 1 | 0.42% |
Thomas Meyer | 3 | 0.04% | 1 | 0.42% |
Björn Töpel | 2 | 0.03% | 1 | 0.42% |
Thomas Gleixner | 2 | 0.03% | 1 | 0.42% |
Alex Ng | 2 | 0.03% | 1 | 0.42% |
Linus Torvalds (pre-git) | 2 | 0.03% | 1 | 0.42% |
Florian Westphal | 2 | 0.03% | 1 | 0.42% |
Boqun Feng | 1 | 0.01% | 1 | 0.42% |
Linus Torvalds | 1 | 0.01% | 1 | 0.42% |
Adrian Vladu | 1 | 0.01% | 1 | 0.42% |
Gerard Snitselaar | 1 | 0.01% | 1 | 0.42% |
Nicholas Mc Guire | 1 | 0.01% | 1 | 0.42% |
Lad Prabhakar | 1 | 0.01% | 1 | 0.42% |
Colin Ian King | 1 | 0.01% | 1 | 0.42% |
Shachar Raindel | 1 | 0.01% | 1 | 0.42% |
Total | 7801 | 238 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2009, Microsoft Corporation. * * Authors: * Haiyang Zhang <haiyangz@microsoft.com> * Hank Janssen <hjanssen@microsoft.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/sched.h> #include <linux/wait.h> #include <linux/mm.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/netdevice.h> #include <linux/if_ether.h> #include <linux/vmalloc.h> #include <linux/rtnetlink.h> #include <linux/prefetch.h> #include <linux/filter.h> #include <asm/sync_bitops.h> #include <asm/mshyperv.h> #include "hyperv_net.h" #include "netvsc_trace.h" /* * Switch the data path from the synthetic interface to the VF * interface. */ int netvsc_switch_datapath(struct net_device *ndev, bool vf) { struct net_device_context *net_device_ctx = netdev_priv(ndev); struct hv_device *dev = net_device_ctx->device_ctx; struct netvsc_device *nv_dev = rtnl_dereference(net_device_ctx->nvdev); struct nvsp_message *init_pkt = &nv_dev->channel_init_pkt; int ret, retry = 0; /* Block sending traffic to VF if it's about to be gone */ if (!vf) net_device_ctx->data_path_is_vf = vf; memset(init_pkt, 0, sizeof(struct nvsp_message)); init_pkt->hdr.msg_type = NVSP_MSG4_TYPE_SWITCH_DATA_PATH; if (vf) init_pkt->msg.v4_msg.active_dp.active_datapath = NVSP_DATAPATH_VF; else init_pkt->msg.v4_msg.active_dp.active_datapath = NVSP_DATAPATH_SYNTHETIC; again: trace_nvsp_send(ndev, init_pkt); ret = vmbus_sendpacket(dev->channel, init_pkt, sizeof(struct nvsp_message), (unsigned long)init_pkt, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); /* If failed to switch to/from VF, let data_path_is_vf stay false, * so we use synthetic path to send data. */ if (ret) { if (ret != -EAGAIN) { netdev_err(ndev, "Unable to send sw datapath msg, err: %d\n", ret); return ret; } if (retry++ < RETRY_MAX) { usleep_range(RETRY_US_LO, RETRY_US_HI); goto again; } else { netdev_err( ndev, "Retry failed to send sw datapath msg, err: %d\n", ret); return ret; } } wait_for_completion(&nv_dev->channel_init_wait); net_device_ctx->data_path_is_vf = vf; return 0; } /* Worker to setup sub channels on initial setup * Initial hotplug event occurs in softirq context * and can't wait for channels. */ static void netvsc_subchan_work(struct work_struct *w) { struct netvsc_device *nvdev = container_of(w, struct netvsc_device, subchan_work); struct rndis_device *rdev; int i, ret; /* Avoid deadlock with device removal already under RTNL */ if (!rtnl_trylock()) { schedule_work(w); return; } rdev = nvdev->extension; if (rdev) { ret = rndis_set_subchannel(rdev->ndev, nvdev, NULL); if (ret == 0) { netif_device_attach(rdev->ndev); } else { /* fallback to only primary channel */ for (i = 1; i < nvdev->num_chn; i++) netif_napi_del(&nvdev->chan_table[i].napi); nvdev->max_chn = 1; nvdev->num_chn = 1; } } rtnl_unlock(); } static struct netvsc_device *alloc_net_device(void) { struct netvsc_device *net_device; net_device = kzalloc(sizeof(struct netvsc_device), GFP_KERNEL); if (!net_device) return NULL; init_waitqueue_head(&net_device->wait_drain); net_device->destroy = false; net_device->tx_disable = true; net_device->max_pkt = RNDIS_MAX_PKT_DEFAULT; net_device->pkt_align = RNDIS_PKT_ALIGN_DEFAULT; init_completion(&net_device->channel_init_wait); init_waitqueue_head(&net_device->subchan_open); INIT_WORK(&net_device->subchan_work, netvsc_subchan_work); return net_device; } static void free_netvsc_device(struct rcu_head *head) { struct netvsc_device *nvdev = container_of(head, struct netvsc_device, rcu); int i; kfree(nvdev->extension); if (!nvdev->recv_buf_gpadl_handle.decrypted) vfree(nvdev->recv_buf); if (!nvdev->send_buf_gpadl_handle.decrypted) vfree(nvdev->send_buf); bitmap_free(nvdev->send_section_map); for (i = 0; i < VRSS_CHANNEL_MAX; i++) { xdp_rxq_info_unreg(&nvdev->chan_table[i].xdp_rxq); kfree(nvdev->chan_table[i].recv_buf); vfree(nvdev->chan_table[i].mrc.slots); } kfree(nvdev); } static void free_netvsc_device_rcu(struct netvsc_device *nvdev) { call_rcu(&nvdev->rcu, free_netvsc_device); } static void netvsc_revoke_recv_buf(struct hv_device *device, struct netvsc_device *net_device, struct net_device *ndev) { struct nvsp_message *revoke_packet; int ret; /* * If we got a section count, it means we received a * SendReceiveBufferComplete msg (ie sent * NvspMessage1TypeSendReceiveBuffer msg) therefore, we need * to send a revoke msg here */ if (net_device->recv_section_cnt) { /* Send the revoke receive buffer */ revoke_packet = &net_device->revoke_packet; memset(revoke_packet, 0, sizeof(struct nvsp_message)); revoke_packet->hdr.msg_type = NVSP_MSG1_TYPE_REVOKE_RECV_BUF; revoke_packet->msg.v1_msg. revoke_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID; trace_nvsp_send(ndev, revoke_packet); ret = vmbus_sendpacket(device->channel, revoke_packet, sizeof(struct nvsp_message), VMBUS_RQST_ID_NO_RESPONSE, VM_PKT_DATA_INBAND, 0); /* If the failure is because the channel is rescinded; * ignore the failure since we cannot send on a rescinded * channel. This would allow us to properly cleanup * even when the channel is rescinded. */ if (device->channel->rescind) ret = 0; /* * If we failed here, we might as well return and * have a leak rather than continue and a bugchk */ if (ret != 0) { netdev_err(ndev, "unable to send " "revoke receive buffer to netvsp\n"); return; } net_device->recv_section_cnt = 0; } } static void netvsc_revoke_send_buf(struct hv_device *device, struct netvsc_device *net_device, struct net_device *ndev) { struct nvsp_message *revoke_packet; int ret; /* Deal with the send buffer we may have setup. * If we got a send section size, it means we received a * NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE msg (ie sent * NVSP_MSG1_TYPE_SEND_SEND_BUF msg) therefore, we need * to send a revoke msg here */ if (net_device->send_section_cnt) { /* Send the revoke receive buffer */ revoke_packet = &net_device->revoke_packet; memset(revoke_packet, 0, sizeof(struct nvsp_message)); revoke_packet->hdr.msg_type = NVSP_MSG1_TYPE_REVOKE_SEND_BUF; revoke_packet->msg.v1_msg.revoke_send_buf.id = NETVSC_SEND_BUFFER_ID; trace_nvsp_send(ndev, revoke_packet); ret = vmbus_sendpacket(device->channel, revoke_packet, sizeof(struct nvsp_message), VMBUS_RQST_ID_NO_RESPONSE, VM_PKT_DATA_INBAND, 0); /* If the failure is because the channel is rescinded; * ignore the failure since we cannot send on a rescinded * channel. This would allow us to properly cleanup * even when the channel is rescinded. */ if (device->channel->rescind) ret = 0; /* If we failed here, we might as well return and * have a leak rather than continue and a bugchk */ if (ret != 0) { netdev_err(ndev, "unable to send " "revoke send buffer to netvsp\n"); return; } net_device->send_section_cnt = 0; } } static void netvsc_teardown_recv_gpadl(struct hv_device *device, struct netvsc_device *net_device, struct net_device *ndev) { int ret; if (net_device->recv_buf_gpadl_handle.gpadl_handle) { ret = vmbus_teardown_gpadl(device->channel, &net_device->recv_buf_gpadl_handle); /* If we failed here, we might as well return and have a leak * rather than continue and a bugchk */ if (ret != 0) { netdev_err(ndev, "unable to teardown receive buffer's gpadl\n"); return; } } } static void netvsc_teardown_send_gpadl(struct hv_device *device, struct netvsc_device *net_device, struct net_device *ndev) { int ret; if (net_device->send_buf_gpadl_handle.gpadl_handle) { ret = vmbus_teardown_gpadl(device->channel, &net_device->send_buf_gpadl_handle); /* If we failed here, we might as well return and have a leak * rather than continue and a bugchk */ if (ret != 0) { netdev_err(ndev, "unable to teardown send buffer's gpadl\n"); return; } } } int netvsc_alloc_recv_comp_ring(struct netvsc_device *net_device, u32 q_idx) { struct netvsc_channel *nvchan = &net_device->chan_table[q_idx]; int node = cpu_to_node(nvchan->channel->target_cpu); size_t size; size = net_device->recv_completion_cnt * sizeof(struct recv_comp_data); nvchan->mrc.slots = vzalloc_node(size, node); if (!nvchan->mrc.slots) nvchan->mrc.slots = vzalloc(size); return nvchan->mrc.slots ? 0 : -ENOMEM; } static int netvsc_init_buf(struct hv_device *device, struct netvsc_device *net_device, const struct netvsc_device_info *device_info) { struct nvsp_1_message_send_receive_buffer_complete *resp; struct net_device *ndev = hv_get_drvdata(device); struct nvsp_message *init_packet; unsigned int buf_size; int i, ret = 0; /* Get receive buffer area. */ buf_size = device_info->recv_sections * device_info->recv_section_size; buf_size = roundup(buf_size, PAGE_SIZE); /* Legacy hosts only allow smaller receive buffer */ if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_2) buf_size = min_t(unsigned int, buf_size, NETVSC_RECEIVE_BUFFER_SIZE_LEGACY); net_device->recv_buf = vzalloc(buf_size); if (!net_device->recv_buf) { netdev_err(ndev, "unable to allocate receive buffer of size %u\n", buf_size); ret = -ENOMEM; goto cleanup; } net_device->recv_buf_size = buf_size; /* * Establish the gpadl handle for this buffer on this * channel. Note: This call uses the vmbus connection rather * than the channel to establish the gpadl handle. */ ret = vmbus_establish_gpadl(device->channel, net_device->recv_buf, buf_size, &net_device->recv_buf_gpadl_handle); if (ret != 0) { netdev_err(ndev, "unable to establish receive buffer's gpadl\n"); goto cleanup; } /* Notify the NetVsp of the gpadl handle */ init_packet = &net_device->channel_init_pkt; memset(init_packet, 0, sizeof(struct nvsp_message)); init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_RECV_BUF; init_packet->msg.v1_msg.send_recv_buf. gpadl_handle = net_device->recv_buf_gpadl_handle.gpadl_handle; init_packet->msg.v1_msg. send_recv_buf.id = NETVSC_RECEIVE_BUFFER_ID; trace_nvsp_send(ndev, init_packet); /* Send the gpadl notification request */ ret = vmbus_sendpacket(device->channel, init_packet, sizeof(struct nvsp_message), (unsigned long)init_packet, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); if (ret != 0) { netdev_err(ndev, "unable to send receive buffer's gpadl to netvsp\n"); goto cleanup; } wait_for_completion(&net_device->channel_init_wait); /* Check the response */ resp = &init_packet->msg.v1_msg.send_recv_buf_complete; if (resp->status != NVSP_STAT_SUCCESS) { netdev_err(ndev, "Unable to complete receive buffer initialization with NetVsp - status %d\n", resp->status); ret = -EINVAL; goto cleanup; } /* Parse the response */ netdev_dbg(ndev, "Receive sections: %u sub_allocs: size %u count: %u\n", resp->num_sections, resp->sections[0].sub_alloc_size, resp->sections[0].num_sub_allocs); /* There should only be one section for the entire receive buffer */ if (resp->num_sections != 1 || resp->sections[0].offset != 0) { ret = -EINVAL; goto cleanup; } net_device->recv_section_size = resp->sections[0].sub_alloc_size; net_device->recv_section_cnt = resp->sections[0].num_sub_allocs; /* Ensure buffer will not overflow */ if (net_device->recv_section_size < NETVSC_MTU_MIN || (u64)net_device->recv_section_size * (u64)net_device->recv_section_cnt > (u64)buf_size) { netdev_err(ndev, "invalid recv_section_size %u\n", net_device->recv_section_size); ret = -EINVAL; goto cleanup; } for (i = 0; i < VRSS_CHANNEL_MAX; i++) { struct netvsc_channel *nvchan = &net_device->chan_table[i]; nvchan->recv_buf = kzalloc(net_device->recv_section_size, GFP_KERNEL); if (nvchan->recv_buf == NULL) { ret = -ENOMEM; goto cleanup; } } /* Setup receive completion ring. * Add 1 to the recv_section_cnt because at least one entry in a * ring buffer has to be empty. */ net_device->recv_completion_cnt = net_device->recv_section_cnt + 1; ret = netvsc_alloc_recv_comp_ring(net_device, 0); if (ret) goto cleanup; /* Now setup the send buffer. */ buf_size = device_info->send_sections * device_info->send_section_size; buf_size = round_up(buf_size, PAGE_SIZE); net_device->send_buf = vzalloc(buf_size); if (!net_device->send_buf) { netdev_err(ndev, "unable to allocate send buffer of size %u\n", buf_size); ret = -ENOMEM; goto cleanup; } net_device->send_buf_size = buf_size; /* Establish the gpadl handle for this buffer on this * channel. Note: This call uses the vmbus connection rather * than the channel to establish the gpadl handle. */ ret = vmbus_establish_gpadl(device->channel, net_device->send_buf, buf_size, &net_device->send_buf_gpadl_handle); if (ret != 0) { netdev_err(ndev, "unable to establish send buffer's gpadl\n"); goto cleanup; } /* Notify the NetVsp of the gpadl handle */ init_packet = &net_device->channel_init_pkt; memset(init_packet, 0, sizeof(struct nvsp_message)); init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_SEND_BUF; init_packet->msg.v1_msg.send_send_buf.gpadl_handle = net_device->send_buf_gpadl_handle.gpadl_handle; init_packet->msg.v1_msg.send_send_buf.id = NETVSC_SEND_BUFFER_ID; trace_nvsp_send(ndev, init_packet); /* Send the gpadl notification request */ ret = vmbus_sendpacket(device->channel, init_packet, sizeof(struct nvsp_message), (unsigned long)init_packet, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); if (ret != 0) { netdev_err(ndev, "unable to send send buffer's gpadl to netvsp\n"); goto cleanup; } wait_for_completion(&net_device->channel_init_wait); /* Check the response */ if (init_packet->msg.v1_msg. send_send_buf_complete.status != NVSP_STAT_SUCCESS) { netdev_err(ndev, "Unable to complete send buffer " "initialization with NetVsp - status %d\n", init_packet->msg.v1_msg. send_send_buf_complete.status); ret = -EINVAL; goto cleanup; } /* Parse the response */ net_device->send_section_size = init_packet->msg. v1_msg.send_send_buf_complete.section_size; if (net_device->send_section_size < NETVSC_MTU_MIN) { netdev_err(ndev, "invalid send_section_size %u\n", net_device->send_section_size); ret = -EINVAL; goto cleanup; } /* Section count is simply the size divided by the section size. */ net_device->send_section_cnt = buf_size / net_device->send_section_size; netdev_dbg(ndev, "Send section size: %d, Section count:%d\n", net_device->send_section_size, net_device->send_section_cnt); /* Setup state for managing the send buffer. */ net_device->send_section_map = bitmap_zalloc(net_device->send_section_cnt, GFP_KERNEL); if (!net_device->send_section_map) { ret = -ENOMEM; goto cleanup; } goto exit; cleanup: netvsc_revoke_recv_buf(device, net_device, ndev); netvsc_revoke_send_buf(device, net_device, ndev); netvsc_teardown_recv_gpadl(device, net_device, ndev); netvsc_teardown_send_gpadl(device, net_device, ndev); exit: return ret; } /* Negotiate NVSP protocol version */ static int negotiate_nvsp_ver(struct hv_device *device, struct netvsc_device *net_device, struct nvsp_message *init_packet, u32 nvsp_ver) { struct net_device *ndev = hv_get_drvdata(device); int ret; memset(init_packet, 0, sizeof(struct nvsp_message)); init_packet->hdr.msg_type = NVSP_MSG_TYPE_INIT; init_packet->msg.init_msg.init.min_protocol_ver = nvsp_ver; init_packet->msg.init_msg.init.max_protocol_ver = nvsp_ver; trace_nvsp_send(ndev, init_packet); /* Send the init request */ ret = vmbus_sendpacket(device->channel, init_packet, sizeof(struct nvsp_message), (unsigned long)init_packet, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); if (ret != 0) return ret; wait_for_completion(&net_device->channel_init_wait); if (init_packet->msg.init_msg.init_complete.status != NVSP_STAT_SUCCESS) return -EINVAL; if (nvsp_ver == NVSP_PROTOCOL_VERSION_1) return 0; /* NVSPv2 or later: Send NDIS config */ memset(init_packet, 0, sizeof(struct nvsp_message)); init_packet->hdr.msg_type = NVSP_MSG2_TYPE_SEND_NDIS_CONFIG; init_packet->msg.v2_msg.send_ndis_config.mtu = ndev->mtu + ETH_HLEN; init_packet->msg.v2_msg.send_ndis_config.capability.ieee8021q = 1; if (nvsp_ver >= NVSP_PROTOCOL_VERSION_5) { if (hv_is_isolation_supported()) netdev_info(ndev, "SR-IOV not advertised by guests on the host supporting isolation\n"); else init_packet->msg.v2_msg.send_ndis_config.capability.sriov = 1; /* Teaming bit is needed to receive link speed updates */ init_packet->msg.v2_msg.send_ndis_config.capability.teaming = 1; } if (nvsp_ver >= NVSP_PROTOCOL_VERSION_61) init_packet->msg.v2_msg.send_ndis_config.capability.rsc = 1; trace_nvsp_send(ndev, init_packet); ret = vmbus_sendpacket(device->channel, init_packet, sizeof(struct nvsp_message), VMBUS_RQST_ID_NO_RESPONSE, VM_PKT_DATA_INBAND, 0); return ret; } static int netvsc_connect_vsp(struct hv_device *device, struct netvsc_device *net_device, const struct netvsc_device_info *device_info) { struct net_device *ndev = hv_get_drvdata(device); static const u32 ver_list[] = { NVSP_PROTOCOL_VERSION_1, NVSP_PROTOCOL_VERSION_2, NVSP_PROTOCOL_VERSION_4, NVSP_PROTOCOL_VERSION_5, NVSP_PROTOCOL_VERSION_6, NVSP_PROTOCOL_VERSION_61 }; struct nvsp_message *init_packet; int ndis_version, i, ret; init_packet = &net_device->channel_init_pkt; /* Negotiate the latest NVSP protocol supported */ for (i = ARRAY_SIZE(ver_list) - 1; i >= 0; i--) if (negotiate_nvsp_ver(device, net_device, init_packet, ver_list[i]) == 0) { net_device->nvsp_version = ver_list[i]; break; } if (i < 0) { ret = -EPROTO; goto cleanup; } if (hv_is_isolation_supported() && net_device->nvsp_version < NVSP_PROTOCOL_VERSION_61) { netdev_err(ndev, "Invalid NVSP version 0x%x (expected >= 0x%x) from the host supporting isolation\n", net_device->nvsp_version, NVSP_PROTOCOL_VERSION_61); ret = -EPROTO; goto cleanup; } pr_debug("Negotiated NVSP version:%x\n", net_device->nvsp_version); /* Send the ndis version */ memset(init_packet, 0, sizeof(struct nvsp_message)); if (net_device->nvsp_version <= NVSP_PROTOCOL_VERSION_4) ndis_version = 0x00060001; else ndis_version = 0x0006001e; init_packet->hdr.msg_type = NVSP_MSG1_TYPE_SEND_NDIS_VER; init_packet->msg.v1_msg. send_ndis_ver.ndis_major_ver = (ndis_version & 0xFFFF0000) >> 16; init_packet->msg.v1_msg. send_ndis_ver.ndis_minor_ver = ndis_version & 0xFFFF; trace_nvsp_send(ndev, init_packet); /* Send the init request */ ret = vmbus_sendpacket(device->channel, init_packet, sizeof(struct nvsp_message), VMBUS_RQST_ID_NO_RESPONSE, VM_PKT_DATA_INBAND, 0); if (ret != 0) goto cleanup; ret = netvsc_init_buf(device, net_device, device_info); cleanup: return ret; } /* * netvsc_device_remove - Callback when the root bus device is removed */ void netvsc_device_remove(struct hv_device *device) { struct net_device *ndev = hv_get_drvdata(device); struct net_device_context *net_device_ctx = netdev_priv(ndev); struct netvsc_device *net_device = rtnl_dereference(net_device_ctx->nvdev); int i; /* * Revoke receive buffer. If host is pre-Win2016 then tear down * receive buffer GPADL. Do the same for send buffer. */ netvsc_revoke_recv_buf(device, net_device, ndev); if (vmbus_proto_version < VERSION_WIN10) netvsc_teardown_recv_gpadl(device, net_device, ndev); netvsc_revoke_send_buf(device, net_device, ndev); if (vmbus_proto_version < VERSION_WIN10) netvsc_teardown_send_gpadl(device, net_device, ndev); RCU_INIT_POINTER(net_device_ctx->nvdev, NULL); /* Disable NAPI and disassociate its context from the device. */ for (i = 0; i < net_device->num_chn; i++) { /* See also vmbus_reset_channel_cb(). */ /* only disable enabled NAPI channel */ if (i < ndev->real_num_rx_queues) napi_disable(&net_device->chan_table[i].napi); netif_napi_del(&net_device->chan_table[i].napi); } /* * At this point, no one should be accessing net_device * except in here */ netdev_dbg(ndev, "net device safe to remove\n"); /* Now, we can close the channel safely */ vmbus_close(device->channel); /* * If host is Win2016 or higher then we do the GPADL tear down * here after VMBus is closed. */ if (vmbus_proto_version >= VERSION_WIN10) { netvsc_teardown_recv_gpadl(device, net_device, ndev); netvsc_teardown_send_gpadl(device, net_device, ndev); } /* Release all resources */ free_netvsc_device_rcu(net_device); } #define RING_AVAIL_PERCENT_HIWATER 20 #define RING_AVAIL_PERCENT_LOWATER 10 static inline void netvsc_free_send_slot(struct netvsc_device *net_device, u32 index) { sync_change_bit(index, net_device->send_section_map); } static void netvsc_send_tx_complete(struct net_device *ndev, struct netvsc_device *net_device, struct vmbus_channel *channel, const struct vmpacket_descriptor *desc, int budget) { struct net_device_context *ndev_ctx = netdev_priv(ndev); struct sk_buff *skb; u16 q_idx = 0; int queue_sends; u64 cmd_rqst; cmd_rqst = channel->request_addr_callback(channel, desc->trans_id); if (cmd_rqst == VMBUS_RQST_ERROR) { netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id); return; } skb = (struct sk_buff *)(unsigned long)cmd_rqst; /* Notify the layer above us */ if (likely(skb)) { struct hv_netvsc_packet *packet = (struct hv_netvsc_packet *)skb->cb; u32 send_index = packet->send_buf_index; struct netvsc_stats_tx *tx_stats; if (send_index != NETVSC_INVALID_INDEX) netvsc_free_send_slot(net_device, send_index); q_idx = packet->q_idx; tx_stats = &net_device->chan_table[q_idx].tx_stats; u64_stats_update_begin(&tx_stats->syncp); tx_stats->packets += packet->total_packets; tx_stats->bytes += packet->total_bytes; u64_stats_update_end(&tx_stats->syncp); netvsc_dma_unmap(ndev_ctx->device_ctx, packet); napi_consume_skb(skb, budget); } queue_sends = atomic_dec_return(&net_device->chan_table[q_idx].queue_sends); if (unlikely(net_device->destroy)) { if (queue_sends == 0) wake_up(&net_device->wait_drain); } else { struct netdev_queue *txq = netdev_get_tx_queue(ndev, q_idx); if (netif_tx_queue_stopped(txq) && !net_device->tx_disable && (hv_get_avail_to_write_percent(&channel->outbound) > RING_AVAIL_PERCENT_HIWATER || queue_sends < 1)) { netif_tx_wake_queue(txq); ndev_ctx->eth_stats.wake_queue++; } } } static void netvsc_send_completion(struct net_device *ndev, struct netvsc_device *net_device, struct vmbus_channel *incoming_channel, const struct vmpacket_descriptor *desc, int budget) { const struct nvsp_message *nvsp_packet; u32 msglen = hv_pkt_datalen(desc); struct nvsp_message *pkt_rqst; u64 cmd_rqst; u32 status; /* First check if this is a VMBUS completion without data payload */ if (!msglen) { cmd_rqst = incoming_channel->request_addr_callback(incoming_channel, desc->trans_id); if (cmd_rqst == VMBUS_RQST_ERROR) { netdev_err(ndev, "Invalid transaction ID %llx\n", desc->trans_id); return; } pkt_rqst = (struct nvsp_message *)(uintptr_t)cmd_rqst; switch (pkt_rqst->hdr.msg_type) { case NVSP_MSG4_TYPE_SWITCH_DATA_PATH: complete(&net_device->channel_init_wait); break; default: netdev_err(ndev, "Unexpected VMBUS completion!!\n"); } return; } /* Ensure packet is big enough to read header fields */ if (msglen < sizeof(struct nvsp_message_header)) { netdev_err(ndev, "nvsp_message length too small: %u\n", msglen); return; } nvsp_packet = hv_pkt_data(desc); switch (nvsp_packet->hdr.msg_type) { case NVSP_MSG_TYPE_INIT_COMPLETE: if (msglen < sizeof(struct nvsp_message_header) + sizeof(struct nvsp_message_init_complete)) { netdev_err(ndev, "nvsp_msg length too small: %u\n", msglen); return; } break; case NVSP_MSG1_TYPE_SEND_RECV_BUF_COMPLETE: if (msglen < sizeof(struct nvsp_message_header) + sizeof(struct nvsp_1_message_send_receive_buffer_complete)) { netdev_err(ndev, "nvsp_msg1 length too small: %u\n", msglen); return; } break; case NVSP_MSG1_TYPE_SEND_SEND_BUF_COMPLETE: if (msglen < sizeof(struct nvsp_message_header) + sizeof(struct nvsp_1_message_send_send_buffer_complete)) { netdev_err(ndev, "nvsp_msg1 length too small: %u\n", msglen); return; } break; case NVSP_MSG5_TYPE_SUBCHANNEL: if (msglen < sizeof(struct nvsp_message_header) + sizeof(struct nvsp_5_subchannel_complete)) { netdev_err(ndev, "nvsp_msg5 length too small: %u\n", msglen); return; } break; case NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE: if (msglen < sizeof(struct nvsp_message_header) + sizeof(struct nvsp_1_message_send_rndis_packet_complete)) { if (net_ratelimit()) netdev_err(ndev, "nvsp_rndis_pkt_complete length too small: %u\n", msglen); return; } /* If status indicates an error, output a message so we know * there's a problem. But process the completion anyway so the * resources are released. */ status = nvsp_packet->msg.v1_msg.send_rndis_pkt_complete.status; if (status != NVSP_STAT_SUCCESS && net_ratelimit()) netdev_err(ndev, "nvsp_rndis_pkt_complete error status: %x\n", status); netvsc_send_tx_complete(ndev, net_device, incoming_channel, desc, budget); return; default: netdev_err(ndev, "Unknown send completion type %d received!!\n", nvsp_packet->hdr.msg_type); return; } /* Copy the response back */ memcpy(&net_device->channel_init_pkt, nvsp_packet, sizeof(struct nvsp_message)); complete(&net_device->channel_init_wait); } static u32 netvsc_get_next_send_section(struct netvsc_device *net_device) { unsigned long *map_addr = net_device->send_section_map; unsigned int i; for_each_clear_bit(i, map_addr, net_device->send_section_cnt) { if (sync_test_and_set_bit(i, map_addr) == 0) return i; } return NETVSC_INVALID_INDEX; } static void netvsc_copy_to_send_buf(struct netvsc_device *net_device, unsigned int section_index, u32 pend_size, struct hv_netvsc_packet *packet, struct rndis_message *rndis_msg, struct hv_page_buffer *pb, bool xmit_more) { char *start = net_device->send_buf; char *dest = start + (section_index * net_device->send_section_size) + pend_size; int i; u32 padding = 0; u32 page_count = packet->cp_partial ? packet->rmsg_pgcnt : packet->page_buf_cnt; u32 remain; /* Add padding */ remain = packet->total_data_buflen & (net_device->pkt_align - 1); if (xmit_more && remain) { padding = net_device->pkt_align - remain; rndis_msg->msg_len += padding; packet->total_data_buflen += padding; } for (i = 0; i < page_count; i++) { char *src = phys_to_virt(pb[i].pfn << HV_HYP_PAGE_SHIFT); u32 offset = pb[i].offset; u32 len = pb[i].len; memcpy(dest, (src + offset), len); dest += len; } if (padding) memset(dest, 0, padding); } void netvsc_dma_unmap(struct hv_device *hv_dev, struct hv_netvsc_packet *packet) { int i; if (!hv_is_isolation_supported()) return; if (!packet->dma_range) return; for (i = 0; i < packet->page_buf_cnt; i++) dma_unmap_single(&hv_dev->device, packet->dma_range[i].dma, packet->dma_range[i].mapping_size, DMA_TO_DEVICE); kfree(packet->dma_range); } /* netvsc_dma_map - Map swiotlb bounce buffer with data page of * packet sent by vmbus_sendpacket_pagebuffer() in the Isolation * VM. * * In isolation VM, netvsc send buffer has been marked visible to * host and so the data copied to send buffer doesn't need to use * bounce buffer. The data pages handled by vmbus_sendpacket_pagebuffer() * may not be copied to send buffer and so these pages need to be * mapped with swiotlb bounce buffer. netvsc_dma_map() is to do * that. The pfns in the struct hv_page_buffer need to be converted * to bounce buffer's pfn. The loop here is necessary because the * entries in the page buffer array are not necessarily full * pages of data. Each entry in the array has a separate offset and * len that may be non-zero, even for entries in the middle of the * array. And the entries are not physically contiguous. So each * entry must be individually mapped rather than as a contiguous unit. * So not use dma_map_sg() here. */ static int netvsc_dma_map(struct hv_device *hv_dev, struct hv_netvsc_packet *packet, struct hv_page_buffer *pb) { u32 page_count = packet->page_buf_cnt; dma_addr_t dma; int i; if (!hv_is_isolation_supported()) return 0; packet->dma_range = kcalloc(page_count, sizeof(*packet->dma_range), GFP_ATOMIC); if (!packet->dma_range) return -ENOMEM; for (i = 0; i < page_count; i++) { char *src = phys_to_virt((pb[i].pfn << HV_HYP_PAGE_SHIFT) + pb[i].offset); u32 len = pb[i].len; dma = dma_map_single(&hv_dev->device, src, len, DMA_TO_DEVICE); if (dma_mapping_error(&hv_dev->device, dma)) { kfree(packet->dma_range); return -ENOMEM; } /* pb[].offset and pb[].len are not changed during dma mapping * and so not reassign. */ packet->dma_range[i].dma = dma; packet->dma_range[i].mapping_size = len; pb[i].pfn = dma >> HV_HYP_PAGE_SHIFT; } return 0; } static inline int netvsc_send_pkt( struct hv_device *device, struct hv_netvsc_packet *packet, struct netvsc_device *net_device, struct hv_page_buffer *pb, struct sk_buff *skb) { struct nvsp_message nvmsg; struct nvsp_1_message_send_rndis_packet *rpkt = &nvmsg.msg.v1_msg.send_rndis_pkt; struct netvsc_channel * const nvchan = &net_device->chan_table[packet->q_idx]; struct vmbus_channel *out_channel = nvchan->channel; struct net_device *ndev = hv_get_drvdata(device); struct net_device_context *ndev_ctx = netdev_priv(ndev); struct netdev_queue *txq = netdev_get_tx_queue(ndev, packet->q_idx); u64 req_id; int ret; u32 ring_avail = hv_get_avail_to_write_percent(&out_channel->outbound); memset(&nvmsg, 0, sizeof(struct nvsp_message)); nvmsg.hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT; if (skb) rpkt->channel_type = 0; /* 0 is RMC_DATA */ else rpkt->channel_type = 1; /* 1 is RMC_CONTROL */ rpkt->send_buf_section_index = packet->send_buf_index; if (packet->send_buf_index == NETVSC_INVALID_INDEX) rpkt->send_buf_section_size = 0; else rpkt->send_buf_section_size = packet->total_data_buflen; req_id = (ulong)skb; if (out_channel->rescind) return -ENODEV; trace_nvsp_send_pkt(ndev, out_channel, rpkt); packet->dma_range = NULL; if (packet->page_buf_cnt) { if (packet->cp_partial) pb += packet->rmsg_pgcnt; ret = netvsc_dma_map(ndev_ctx->device_ctx, packet, pb); if (ret) { ret = -EAGAIN; goto exit; } ret = vmbus_sendpacket_pagebuffer(out_channel, pb, packet->page_buf_cnt, &nvmsg, sizeof(nvmsg), req_id); if (ret) netvsc_dma_unmap(ndev_ctx->device_ctx, packet); } else { ret = vmbus_sendpacket(out_channel, &nvmsg, sizeof(nvmsg), req_id, VM_PKT_DATA_INBAND, VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); } exit: if (ret == 0) { atomic_inc_return(&nvchan->queue_sends); if (ring_avail < RING_AVAIL_PERCENT_LOWATER) { netif_tx_stop_queue(txq); ndev_ctx->eth_stats.stop_queue++; } } else if (ret == -EAGAIN) { netif_tx_stop_queue(txq); ndev_ctx->eth_stats.stop_queue++; } else { netdev_err(ndev, "Unable to send packet pages %u len %u, ret %d\n", packet->page_buf_cnt, packet->total_data_buflen, ret); } if (netif_tx_queue_stopped(txq) && atomic_read(&nvchan->queue_sends) < 1 && !net_device->tx_disable) { netif_tx_wake_queue(txq); ndev_ctx->eth_stats.wake_queue++; if (ret == -EAGAIN) ret = -ENOSPC; } return ret; } /* Move packet out of multi send data (msd), and clear msd */ static inline void move_pkt_msd(struct hv_netvsc_packet **msd_send, struct sk_buff **msd_skb, struct multi_send_data *msdp) { *msd_skb = msdp->skb; *msd_send = msdp->pkt; msdp->skb = NULL; msdp->pkt = NULL; msdp->count = 0; } /* RCU already held by caller */ /* Batching/bouncing logic is designed to attempt to optimize * performance. * * For small, non-LSO packets we copy the packet to a send buffer * which is pre-registered with the Hyper-V side. This enables the * hypervisor to avoid remapping the aperture to access the packet * descriptor and data. * * If we already started using a buffer and the netdev is transmitting * a burst of packets, keep on copying into the buffer until it is * full or we are done collecting a burst. If there is an existing * buffer with space for the RNDIS descriptor but not the packet, copy * the RNDIS descriptor to the buffer, keeping the packet in place. * * If we do batching and send more than one packet using a single * NetVSC message, free the SKBs of the packets copied, except for the * last packet. This is done to streamline the handling of the case * where the last packet only had the RNDIS descriptor copied to the * send buffer, with the data pointers included in the NetVSC message. */ int netvsc_send(struct net_device *ndev, struct hv_netvsc_packet *packet, struct rndis_message *rndis_msg, struct hv_page_buffer *pb, struct sk_buff *skb, bool xdp_tx) { struct net_device_context *ndev_ctx = netdev_priv(ndev); struct netvsc_device *net_device = rcu_dereference_bh(ndev_ctx->nvdev); struct hv_device *device = ndev_ctx->device_ctx; int ret = 0; struct netvsc_channel *nvchan; u32 pktlen = packet->total_data_buflen, msd_len = 0; unsigned int section_index = NETVSC_INVALID_INDEX; struct multi_send_data *msdp; struct hv_netvsc_packet *msd_send = NULL, *cur_send = NULL; struct sk_buff *msd_skb = NULL; bool try_batch, xmit_more; /* If device is rescinded, return error and packet will get dropped. */ if (unlikely(!net_device || net_device->destroy)) return -ENODEV; nvchan = &net_device->chan_table[packet->q_idx]; packet->send_buf_index = NETVSC_INVALID_INDEX; packet->cp_partial = false; /* Send a control message or XDP packet directly without accessing * msd (Multi-Send Data) field which may be changed during data packet * processing. */ if (!skb || xdp_tx) return netvsc_send_pkt(device, packet, net_device, pb, skb); /* batch packets in send buffer if possible */ msdp = &nvchan->msd; if (msdp->pkt) msd_len = msdp->pkt->total_data_buflen; try_batch = msd_len > 0 && msdp->count < net_device->max_pkt; if (try_batch && msd_len + pktlen + net_device->pkt_align < net_device->send_section_size) { section_index = msdp->pkt->send_buf_index; } else if (try_batch && msd_len + packet->rmsg_size < net_device->send_section_size) { section_index = msdp->pkt->send_buf_index; packet->cp_partial = true; } else if (pktlen + net_device->pkt_align < net_device->send_section_size) { section_index = netvsc_get_next_send_section(net_device); if (unlikely(section_index == NETVSC_INVALID_INDEX)) { ++ndev_ctx->eth_stats.tx_send_full; } else { move_pkt_msd(&msd_send, &msd_skb, msdp); msd_len = 0; } } /* Keep aggregating only if stack says more data is coming * and not doing mixed modes send and not flow blocked */ xmit_more = netdev_xmit_more() && !packet->cp_partial && !netif_xmit_stopped(netdev_get_tx_queue(ndev, packet->q_idx)); if (section_index != NETVSC_INVALID_INDEX) { netvsc_copy_to_send_buf(net_device, section_index, msd_len, packet, rndis_msg, pb, xmit_more); packet->send_buf_index = section_index; if (packet->cp_partial) { packet->page_buf_cnt -= packet->rmsg_pgcnt; packet->total_data_buflen = msd_len + packet->rmsg_size; } else { packet->page_buf_cnt = 0; packet->total_data_buflen += msd_len; } if (msdp->pkt) { packet->total_packets += msdp->pkt->total_packets; packet->total_bytes += msdp->pkt->total_bytes; } if (msdp->skb) dev_consume_skb_any(msdp->skb); if (xmit_more) { msdp->skb = skb; msdp->pkt = packet; msdp->count++; } else { cur_send = packet; msdp->skb = NULL; msdp->pkt = NULL; msdp->count = 0; } } else { move_pkt_msd(&msd_send, &msd_skb, msdp); cur_send = packet; } if (msd_send) { int m_ret = netvsc_send_pkt(device, msd_send, net_device, NULL, msd_skb); if (m_ret != 0) { netvsc_free_send_slot(net_device, msd_send->send_buf_index); dev_kfree_skb_any(msd_skb); } } if (cur_send) ret = netvsc_send_pkt(device, cur_send, net_device, pb, skb); if (ret != 0 && section_index != NETVSC_INVALID_INDEX) netvsc_free_send_slot(net_device, section_index); return ret; } /* Send pending recv completions */ static int send_recv_completions(struct net_device *ndev, struct netvsc_device *nvdev, struct netvsc_channel *nvchan) { struct multi_recv_comp *mrc = &nvchan->mrc; struct recv_comp_msg { struct nvsp_message_header hdr; u32 status; } __packed; struct recv_comp_msg msg = { .hdr.msg_type = NVSP_MSG1_TYPE_SEND_RNDIS_PKT_COMPLETE, }; int ret; while (mrc->first != mrc->next) { const struct recv_comp_data *rcd = mrc->slots + mrc->first; msg.status = rcd->status; ret = vmbus_sendpacket(nvchan->channel, &msg, sizeof(msg), rcd->tid, VM_PKT_COMP, 0); if (unlikely(ret)) { struct net_device_context *ndev_ctx = netdev_priv(ndev); ++ndev_ctx->eth_stats.rx_comp_busy; return ret; } if (++mrc->first == nvdev->recv_completion_cnt) mrc->first = 0; } /* receive completion ring has been emptied */ if (unlikely(nvdev->destroy)) wake_up(&nvdev->wait_drain); return 0; } /* Count how many receive completions are outstanding */ static void recv_comp_slot_avail(const struct netvsc_device *nvdev, const struct multi_recv_comp *mrc, u32 *filled, u32 *avail) { u32 count = nvdev->recv_completion_cnt; if (mrc->next >= mrc->first) *filled = mrc->next - mrc->first; else *filled = (count - mrc->first) + mrc->next; *avail = count - *filled - 1; } /* Add receive complete to ring to send to host. */ static void enq_receive_complete(struct net_device *ndev, struct netvsc_device *nvdev, u16 q_idx, u64 tid, u32 status) { struct netvsc_channel *nvchan = &nvdev->chan_table[q_idx]; struct multi_recv_comp *mrc = &nvchan->mrc; struct recv_comp_data *rcd; u32 filled, avail; recv_comp_slot_avail(nvdev, mrc, &filled, &avail); if (unlikely(filled > NAPI_POLL_WEIGHT)) { send_recv_completions(ndev, nvdev, nvchan); recv_comp_slot_avail(nvdev, mrc, &filled, &avail); } if (unlikely(!avail)) { netdev_err(ndev, "Recv_comp full buf q:%hd, tid:%llx\n", q_idx, tid); return; } rcd = mrc->slots + mrc->next; rcd->tid = tid; rcd->status = status; if (++mrc->next == nvdev->recv_completion_cnt) mrc->next = 0; } static int netvsc_receive(struct net_device *ndev, struct netvsc_device *net_device, struct netvsc_channel *nvchan, const struct vmpacket_descriptor *desc) { struct net_device_context *net_device_ctx = netdev_priv(ndev); struct vmbus_channel *channel = nvchan->channel; const struct vmtransfer_page_packet_header *vmxferpage_packet = container_of(desc, const struct vmtransfer_page_packet_header, d); const struct nvsp_message *nvsp = hv_pkt_data(desc); u32 msglen = hv_pkt_datalen(desc); u16 q_idx = channel->offermsg.offer.sub_channel_index; char *recv_buf = net_device->recv_buf; u32 status = NVSP_STAT_SUCCESS; int i; int count = 0; /* Ensure packet is big enough to read header fields */ if (msglen < sizeof(struct nvsp_message_header)) { netif_err(net_device_ctx, rx_err, ndev, "invalid nvsp header, length too small: %u\n", msglen); return 0; } /* Make sure this is a valid nvsp packet */ if (unlikely(nvsp->hdr.msg_type != NVSP_MSG1_TYPE_SEND_RNDIS_PKT)) { netif_err(net_device_ctx, rx_err, ndev, "Unknown nvsp packet type received %u\n", nvsp->hdr.msg_type); return 0; } /* Validate xfer page pkt header */ if ((desc->offset8 << 3) < sizeof(struct vmtransfer_page_packet_header)) { netif_err(net_device_ctx, rx_err, ndev, "Invalid xfer page pkt, offset too small: %u\n", desc->offset8 << 3); return 0; } if (unlikely(vmxferpage_packet->xfer_pageset_id != NETVSC_RECEIVE_BUFFER_ID)) { netif_err(net_device_ctx, rx_err, ndev, "Invalid xfer page set id - expecting %x got %x\n", NETVSC_RECEIVE_BUFFER_ID, vmxferpage_packet->xfer_pageset_id); return 0; } count = vmxferpage_packet->range_cnt; /* Check count for a valid value */ if (NETVSC_XFER_HEADER_SIZE(count) > desc->offset8 << 3) { netif_err(net_device_ctx, rx_err, ndev, "Range count is not valid: %d\n", count); return 0; } /* Each range represents 1 RNDIS pkt that contains 1 ethernet frame */ for (i = 0; i < count; i++) { u32 offset = vmxferpage_packet->ranges[i].byte_offset; u32 buflen = vmxferpage_packet->ranges[i].byte_count; void *data; int ret; if (unlikely(offset > net_device->recv_buf_size || buflen > net_device->recv_buf_size - offset)) { nvchan->rsc.cnt = 0; status = NVSP_STAT_FAIL; netif_err(net_device_ctx, rx_err, ndev, "Packet offset:%u + len:%u too big\n", offset, buflen); continue; } /* We're going to copy (sections of) the packet into nvchan->recv_buf; * make sure that nvchan->recv_buf is large enough to hold the packet. */ if (unlikely(buflen > net_device->recv_section_size)) { nvchan->rsc.cnt = 0; status = NVSP_STAT_FAIL; netif_err(net_device_ctx, rx_err, ndev, "Packet too big: buflen=%u recv_section_size=%u\n", buflen, net_device->recv_section_size); continue; } data = recv_buf + offset; nvchan->rsc.is_last = (i == count - 1); trace_rndis_recv(ndev, q_idx, data); /* Pass it to the upper layer */ ret = rndis_filter_receive(ndev, net_device, nvchan, data, buflen); if (unlikely(ret != NVSP_STAT_SUCCESS)) { /* Drop incomplete packet */ nvchan->rsc.cnt = 0; status = NVSP_STAT_FAIL; } } enq_receive_complete(ndev, net_device, q_idx, vmxferpage_packet->d.trans_id, status); return count; } static void netvsc_send_table(struct net_device *ndev, struct netvsc_device *nvscdev, const struct nvsp_message *nvmsg, u32 msglen) { struct net_device_context *net_device_ctx = netdev_priv(ndev); u32 count, offset, *tab; int i; /* Ensure packet is big enough to read send_table fields */ if (msglen < sizeof(struct nvsp_message_header) + sizeof(struct nvsp_5_send_indirect_table)) { netdev_err(ndev, "nvsp_v5_msg length too small: %u\n", msglen); return; } count = nvmsg->msg.v5_msg.send_table.count; offset = nvmsg->msg.v5_msg.send_table.offset; if (count != VRSS_SEND_TAB_SIZE) { netdev_err(ndev, "Received wrong send-table size:%u\n", count); return; } /* If negotiated version <= NVSP_PROTOCOL_VERSION_6, the offset may be * wrong due to a host bug. So fix the offset here. */ if (nvscdev->nvsp_version <= NVSP_PROTOCOL_VERSION_6 && msglen >= sizeof(struct nvsp_message_header) + sizeof(union nvsp_6_message_uber) + count * sizeof(u32)) offset = sizeof(struct nvsp_message_header) + sizeof(union nvsp_6_message_uber); /* Boundary check for all versions */ if (msglen < count * sizeof(u32) || offset > msglen - count * sizeof(u32)) { netdev_err(ndev, "Received send-table offset too big:%u\n", offset); return; } tab = (void *)nvmsg + offset; for (i = 0; i < count; i++) net_device_ctx->tx_table[i] = tab[i]; } static void netvsc_send_vf(struct net_device *ndev, const struct nvsp_message *nvmsg, u32 msglen) { struct net_device_context *net_device_ctx = netdev_priv(ndev); /* Ensure packet is big enough to read its fields */ if (msglen < sizeof(struct nvsp_message_header) + sizeof(struct nvsp_4_send_vf_association)) { netdev_err(ndev, "nvsp_v4_msg length too small: %u\n", msglen); return; } net_device_ctx->vf_alloc = nvmsg->msg.v4_msg.vf_assoc.allocated; net_device_ctx->vf_serial = nvmsg->msg.v4_msg.vf_assoc.serial; if (net_device_ctx->vf_alloc) complete(&net_device_ctx->vf_add); netdev_info(ndev, "VF slot %u %s\n", net_device_ctx->vf_serial, net_device_ctx->vf_alloc ? "added" : "removed"); } static void netvsc_receive_inband(struct net_device *ndev, struct netvsc_device *nvscdev, const struct vmpacket_descriptor *desc) { const struct nvsp_message *nvmsg = hv_pkt_data(desc); u32 msglen = hv_pkt_datalen(desc); /* Ensure packet is big enough to read header fields */ if (msglen < sizeof(struct nvsp_message_header)) { netdev_err(ndev, "inband nvsp_message length too small: %u\n", msglen); return; } switch (nvmsg->hdr.msg_type) { case NVSP_MSG5_TYPE_SEND_INDIRECTION_TABLE: netvsc_send_table(ndev, nvscdev, nvmsg, msglen); break; case NVSP_MSG4_TYPE_SEND_VF_ASSOCIATION: if (hv_is_isolation_supported()) netdev_err(ndev, "Ignore VF_ASSOCIATION msg from the host supporting isolation\n"); else netvsc_send_vf(ndev, nvmsg, msglen); break; } } static int netvsc_process_raw_pkt(struct hv_device *device, struct netvsc_channel *nvchan, struct netvsc_device *net_device, struct net_device *ndev, const struct vmpacket_descriptor *desc, int budget) { struct vmbus_channel *channel = nvchan->channel; const struct nvsp_message *nvmsg = hv_pkt_data(desc); trace_nvsp_recv(ndev, channel, nvmsg); switch (desc->type) { case VM_PKT_COMP: netvsc_send_completion(ndev, net_device, channel, desc, budget); break; case VM_PKT_DATA_USING_XFER_PAGES: return netvsc_receive(ndev, net_device, nvchan, desc); case VM_PKT_DATA_INBAND: netvsc_receive_inband(ndev, net_device, desc); break; default: netdev_err(ndev, "unhandled packet type %d, tid %llx\n", desc->type, desc->trans_id); break; } return 0; } static struct hv_device *netvsc_channel_to_device(struct vmbus_channel *channel) { struct vmbus_channel *primary = channel->primary_channel; return primary ? primary->device_obj : channel->device_obj; } /* Network processing softirq * Process data in incoming ring buffer from host * Stops when ring is empty or budget is met or exceeded. */ int netvsc_poll(struct napi_struct *napi, int budget) { struct netvsc_channel *nvchan = container_of(napi, struct netvsc_channel, napi); struct netvsc_device *net_device = nvchan->net_device; struct vmbus_channel *channel = nvchan->channel; struct hv_device *device = netvsc_channel_to_device(channel); struct net_device *ndev = hv_get_drvdata(device); int work_done = 0; int ret; /* If starting a new interval */ if (!nvchan->desc) nvchan->desc = hv_pkt_iter_first(channel); nvchan->xdp_flush = false; while (nvchan->desc && work_done < budget) { work_done += netvsc_process_raw_pkt(device, nvchan, net_device, ndev, nvchan->desc, budget); nvchan->desc = hv_pkt_iter_next(channel, nvchan->desc); } if (nvchan->xdp_flush) xdp_do_flush(); /* Send any pending receive completions */ ret = send_recv_completions(ndev, net_device, nvchan); /* If it did not exhaust NAPI budget this time * and not doing busy poll * then re-enable host interrupts * and reschedule if ring is not empty * or sending receive completion failed. */ if (work_done < budget && napi_complete_done(napi, work_done) && (ret || hv_end_read(&channel->inbound)) && napi_schedule_prep(napi)) { hv_begin_read(&channel->inbound); __napi_schedule(napi); } /* Driver may overshoot since multiple packets per descriptor */ return min(work_done, budget); } /* Call back when data is available in host ring buffer. * Processing is deferred until network softirq (NAPI) */ void netvsc_channel_cb(void *context) { struct netvsc_channel *nvchan = context; struct vmbus_channel *channel = nvchan->channel; struct hv_ring_buffer_info *rbi = &channel->inbound; /* preload first vmpacket descriptor */ prefetch(hv_get_ring_buffer(rbi) + rbi->priv_read_index); if (napi_schedule_prep(&nvchan->napi)) { /* disable interrupts from host */ hv_begin_read(rbi); __napi_schedule_irqoff(&nvchan->napi); } } /* * netvsc_device_add - Callback when the device belonging to this * driver is added */ struct netvsc_device *netvsc_device_add(struct hv_device *device, const struct netvsc_device_info *device_info) { int i, ret = 0; struct netvsc_device *net_device; struct net_device *ndev = hv_get_drvdata(device); struct net_device_context *net_device_ctx = netdev_priv(ndev); net_device = alloc_net_device(); if (!net_device) return ERR_PTR(-ENOMEM); for (i = 0; i < VRSS_SEND_TAB_SIZE; i++) net_device_ctx->tx_table[i] = 0; /* Because the device uses NAPI, all the interrupt batching and * control is done via Net softirq, not the channel handling */ set_channel_read_mode(device->channel, HV_CALL_ISR); /* If we're reopening the device we may have multiple queues, fill the * chn_table with the default channel to use it before subchannels are * opened. * Initialize the channel state before we open; * we can be interrupted as soon as we open the channel. */ for (i = 0; i < VRSS_CHANNEL_MAX; i++) { struct netvsc_channel *nvchan = &net_device->chan_table[i]; nvchan->channel = device->channel; nvchan->net_device = net_device; u64_stats_init(&nvchan->tx_stats.syncp); u64_stats_init(&nvchan->rx_stats.syncp); ret = xdp_rxq_info_reg(&nvchan->xdp_rxq, ndev, i, 0); if (ret) { netdev_err(ndev, "xdp_rxq_info_reg fail: %d\n", ret); goto cleanup2; } ret = xdp_rxq_info_reg_mem_model(&nvchan->xdp_rxq, MEM_TYPE_PAGE_SHARED, NULL); if (ret) { netdev_err(ndev, "xdp reg_mem_model fail: %d\n", ret); goto cleanup2; } } /* Enable NAPI handler before init callbacks */ netif_napi_add(ndev, &net_device->chan_table[0].napi, netvsc_poll); /* Open the channel */ device->channel->next_request_id_callback = vmbus_next_request_id; device->channel->request_addr_callback = vmbus_request_addr; device->channel->rqstor_size = netvsc_rqstor_size(netvsc_ring_bytes); device->channel->max_pkt_size = NETVSC_MAX_PKT_SIZE; ret = vmbus_open(device->channel, netvsc_ring_bytes, netvsc_ring_bytes, NULL, 0, netvsc_channel_cb, net_device->chan_table); if (ret != 0) { netdev_err(ndev, "unable to open channel: %d\n", ret); goto cleanup; } /* Channel is opened */ netdev_dbg(ndev, "hv_netvsc channel opened successfully\n"); napi_enable(&net_device->chan_table[0].napi); /* Connect with the NetVsp */ ret = netvsc_connect_vsp(device, net_device, device_info); if (ret != 0) { netdev_err(ndev, "unable to connect to NetVSP - %d\n", ret); goto close; } /* Writing nvdev pointer unlocks netvsc_send(), make sure chn_table is * populated. */ rcu_assign_pointer(net_device_ctx->nvdev, net_device); return net_device; close: RCU_INIT_POINTER(net_device_ctx->nvdev, NULL); napi_disable(&net_device->chan_table[0].napi); /* Now, we can close the channel safely */ vmbus_close(device->channel); cleanup: netif_napi_del(&net_device->chan_table[0].napi); cleanup2: free_netvsc_device(&net_device->rcu); return ERR_PTR(ret); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1