Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Stephen Hemminger | 4452 | 35.81% | 83 | 27.04% |
Haiyang Zhang | 2825 | 22.72% | 68 | 22.15% |
K. Y. Srinivasan | 1560 | 12.55% | 42 | 13.68% |
Simon Xiao | 543 | 4.37% | 8 | 2.61% |
Yidong Ren | 501 | 4.03% | 1 | 0.33% |
Hank Janssen | 478 | 3.84% | 4 | 1.30% |
Greg Kroah-Hartman | 356 | 2.86% | 8 | 2.61% |
Vitaly Kuznetsov | 335 | 2.69% | 13 | 4.23% |
Dexuan Cui | 202 | 1.62% | 8 | 2.61% |
Shradha Gupta | 145 | 1.17% | 2 | 0.65% |
Andrea Parri | 122 | 0.98% | 3 | 0.98% |
Sriram Krishnan | 119 | 0.96% | 1 | 0.33% |
Chi Song | 83 | 0.67% | 1 | 0.33% |
Gaurav Kohli | 80 | 0.64% | 1 | 0.33% |
Long Li | 78 | 0.63% | 3 | 0.98% |
Andrew Schwartzmeyer | 71 | 0.57% | 3 | 0.98% |
Cris Forno | 56 | 0.45% | 1 | 0.33% |
Ahmed Zaki | 39 | 0.31% | 1 | 0.33% |
Jarod Wilson | 36 | 0.29% | 1 | 0.33% |
Sridhar Samudrala | 27 | 0.22% | 1 | 0.33% |
Philippe Reynes | 25 | 0.20% | 1 | 0.33% |
Michał Mirosław | 24 | 0.19% | 1 | 0.33% |
Boqun Feng | 24 | 0.19% | 1 | 0.33% |
Andres Beltran | 23 | 0.18% | 1 | 0.33% |
Alexander Duyck | 20 | 0.16% | 3 | 0.98% |
Thomas Gleixner | 18 | 0.14% | 2 | 0.65% |
Yongzhi Liu | 17 | 0.14% | 1 | 0.33% |
David S. Miller | 13 | 0.10% | 1 | 0.33% |
Colin Ian King | 12 | 0.10% | 1 | 0.33% |
Michael Kelley | 11 | 0.09% | 2 | 0.65% |
Petr Machata | 10 | 0.08% | 3 | 0.98% |
Florian Fainelli | 10 | 0.08% | 1 | 0.33% |
Hao Chen | 10 | 0.08% | 1 | 0.33% |
Arjan van de Ven | 9 | 0.07% | 1 | 0.33% |
Marek Majtyka | 8 | 0.06% | 1 | 0.33% |
Eric Dumazet | 8 | 0.06% | 1 | 0.33% |
Wenqi Ma | 7 | 0.06% | 1 | 0.33% |
Jiasheng Jiang | 7 | 0.06% | 2 | 0.65% |
Jonathan Lemon | 6 | 0.05% | 1 | 0.33% |
Lan Tianyu | 6 | 0.05% | 1 | 0.33% |
Alex Ng | 6 | 0.05% | 1 | 0.33% |
Nicolas Palix | 5 | 0.04% | 2 | 0.65% |
Américo Wang | 5 | 0.04% | 1 | 0.33% |
Lijun Pan | 4 | 0.03% | 1 | 0.33% |
Jiri Pirko | 3 | 0.02% | 1 | 0.33% |
Jesper Dangaard Brouer | 3 | 0.02% | 1 | 0.33% |
Patrick McHardy | 3 | 0.02% | 1 | 0.33% |
Linus Torvalds (pre-git) | 2 | 0.02% | 1 | 0.33% |
Wilfried Klaebe | 2 | 0.02% | 1 | 0.33% |
Wolfram Sang | 2 | 0.02% | 1 | 0.33% |
Juhee Kang | 2 | 0.02% | 1 | 0.33% |
Joe Perches | 2 | 0.02% | 1 | 0.33% |
Justin Stitt | 2 | 0.02% | 1 | 0.33% |
Paolo Abeni | 2 | 0.02% | 1 | 0.33% |
Lorenzo Bianconi | 2 | 0.02% | 1 | 0.33% |
Dawei Li | 2 | 0.02% | 1 | 0.33% |
Adrian Vladu | 1 | 0.01% | 1 | 0.33% |
Bill Pemberton | 1 | 0.01% | 1 | 0.33% |
Johannes Berg | 1 | 0.01% | 1 | 0.33% |
Richard Weinberger | 1 | 0.01% | 1 | 0.33% |
Linus Torvalds | 1 | 0.01% | 1 | 0.33% |
Nathan Chancellor | 1 | 0.01% | 1 | 0.33% |
Pankaj Bharadiya | 1 | 0.01% | 1 | 0.33% |
Heiner Kallweit | 1 | 0.01% | 1 | 0.33% |
Jakub Kiciński | 1 | 0.01% | 1 | 0.33% |
Mohammed Gamal | 1 | 0.01% | 1 | 0.33% |
Total | 12433 | 307 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2009, Microsoft Corporation. * * Authors: * Haiyang Zhang <haiyangz@microsoft.com> * Hank Janssen <hjanssen@microsoft.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/init.h> #include <linux/atomic.h> #include <linux/ethtool.h> #include <linux/module.h> #include <linux/highmem.h> #include <linux/device.h> #include <linux/io.h> #include <linux/delay.h> #include <linux/netdevice.h> #include <linux/inetdevice.h> #include <linux/etherdevice.h> #include <linux/pci.h> #include <linux/skbuff.h> #include <linux/if_vlan.h> #include <linux/in.h> #include <linux/slab.h> #include <linux/rtnetlink.h> #include <linux/netpoll.h> #include <linux/bpf.h> #include <net/arp.h> #include <net/route.h> #include <net/sock.h> #include <net/pkt_sched.h> #include <net/checksum.h> #include <net/ip6_checksum.h> #include "hyperv_net.h" #define RING_SIZE_MIN 64 #define LINKCHANGE_INT (2 * HZ) #define VF_TAKEOVER_INT (HZ / 10) /* Macros to define the context of vf registration */ #define VF_REG_IN_PROBE 1 #define VF_REG_IN_NOTIFIER 2 static unsigned int ring_size __ro_after_init = 128; module_param(ring_size, uint, 0444); MODULE_PARM_DESC(ring_size, "Ring buffer size (# of 4K pages)"); unsigned int netvsc_ring_bytes __ro_after_init; static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR; static int debug = -1; module_param(debug, int, 0444); MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); static LIST_HEAD(netvsc_dev_list); static void netvsc_change_rx_flags(struct net_device *net, int change) { struct net_device_context *ndev_ctx = netdev_priv(net); struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); int inc; if (!vf_netdev) return; if (change & IFF_PROMISC) { inc = (net->flags & IFF_PROMISC) ? 1 : -1; dev_set_promiscuity(vf_netdev, inc); } if (change & IFF_ALLMULTI) { inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; dev_set_allmulti(vf_netdev, inc); } } static void netvsc_set_rx_mode(struct net_device *net) { struct net_device_context *ndev_ctx = netdev_priv(net); struct net_device *vf_netdev; struct netvsc_device *nvdev; rcu_read_lock(); vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); if (vf_netdev) { dev_uc_sync(vf_netdev, net); dev_mc_sync(vf_netdev, net); } nvdev = rcu_dereference(ndev_ctx->nvdev); if (nvdev) rndis_filter_update(nvdev); rcu_read_unlock(); } static void netvsc_tx_enable(struct netvsc_device *nvscdev, struct net_device *ndev) { nvscdev->tx_disable = false; virt_wmb(); /* ensure queue wake up mechanism is on */ netif_tx_wake_all_queues(ndev); } static int netvsc_open(struct net_device *net) { struct net_device_context *ndev_ctx = netdev_priv(net); struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); struct rndis_device *rdev; int ret = 0; netif_carrier_off(net); /* Open up the device */ ret = rndis_filter_open(nvdev); if (ret != 0) { netdev_err(net, "unable to open device (ret %d).\n", ret); return ret; } rdev = nvdev->extension; if (!rdev->link_state) { netif_carrier_on(net); netvsc_tx_enable(nvdev, net); } if (vf_netdev) { /* Setting synthetic device up transparently sets * slave as up. If open fails, then slave will be * still be offline (and not used). */ ret = dev_open(vf_netdev, NULL); if (ret) netdev_warn(net, "unable to open slave: %s: %d\n", vf_netdev->name, ret); } return 0; } static int netvsc_wait_until_empty(struct netvsc_device *nvdev) { unsigned int retry = 0; int i; /* Ensure pending bytes in ring are read */ for (;;) { u32 aread = 0; for (i = 0; i < nvdev->num_chn; i++) { struct vmbus_channel *chn = nvdev->chan_table[i].channel; if (!chn) continue; /* make sure receive not running now */ napi_synchronize(&nvdev->chan_table[i].napi); aread = hv_get_bytes_to_read(&chn->inbound); if (aread) break; aread = hv_get_bytes_to_read(&chn->outbound); if (aread) break; } if (aread == 0) return 0; if (++retry > RETRY_MAX) return -ETIMEDOUT; usleep_range(RETRY_US_LO, RETRY_US_HI); } } static void netvsc_tx_disable(struct netvsc_device *nvscdev, struct net_device *ndev) { if (nvscdev) { nvscdev->tx_disable = true; virt_wmb(); /* ensure txq will not wake up after stop */ } netif_tx_disable(ndev); } static int netvsc_close(struct net_device *net) { struct net_device_context *net_device_ctx = netdev_priv(net); struct net_device *vf_netdev = rtnl_dereference(net_device_ctx->vf_netdev); struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); int ret; netvsc_tx_disable(nvdev, net); /* No need to close rndis filter if it is removed already */ if (!nvdev) return 0; ret = rndis_filter_close(nvdev); if (ret != 0) { netdev_err(net, "unable to close device (ret %d).\n", ret); return ret; } ret = netvsc_wait_until_empty(nvdev); if (ret) netdev_err(net, "Ring buffer not empty after closing rndis\n"); if (vf_netdev) dev_close(vf_netdev); return ret; } static inline void *init_ppi_data(struct rndis_message *msg, u32 ppi_size, u32 pkt_type) { struct rndis_packet *rndis_pkt = &msg->msg.pkt; struct rndis_per_packet_info *ppi; rndis_pkt->data_offset += ppi_size; ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset + rndis_pkt->per_pkt_info_len; ppi->size = ppi_size; ppi->type = pkt_type; ppi->internal = 0; ppi->ppi_offset = sizeof(struct rndis_per_packet_info); rndis_pkt->per_pkt_info_len += ppi_size; return ppi + 1; } static inline int netvsc_get_tx_queue(struct net_device *ndev, struct sk_buff *skb, int old_idx) { const struct net_device_context *ndc = netdev_priv(ndev); struct sock *sk = skb->sk; int q_idx; q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & (VRSS_SEND_TAB_SIZE - 1)]; /* If queue index changed record the new value */ if (q_idx != old_idx && sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) sk_tx_queue_set(sk, q_idx); return q_idx; } /* * Select queue for transmit. * * If a valid queue has already been assigned, then use that. * Otherwise compute tx queue based on hash and the send table. * * This is basically similar to default (netdev_pick_tx) with the added step * of using the host send_table when no other queue has been assigned. * * TODO support XPS - but get_xps_queue not exported */ static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) { int q_idx = sk_tx_queue_get(skb->sk); if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { /* If forwarding a packet, we use the recorded queue when * available for better cache locality. */ if (skb_rx_queue_recorded(skb)) q_idx = skb_get_rx_queue(skb); else q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); } return q_idx; } static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, struct net_device *sb_dev) { struct net_device_context *ndc = netdev_priv(ndev); struct net_device *vf_netdev; u16 txq; rcu_read_lock(); vf_netdev = rcu_dereference(ndc->vf_netdev); if (vf_netdev) { const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; if (vf_ops->ndo_select_queue) txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev); else txq = netdev_pick_tx(vf_netdev, skb, NULL); /* Record the queue selected by VF so that it can be * used for common case where VF has more queues than * the synthetic device. */ qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; } else { txq = netvsc_pick_tx(ndev, skb); } rcu_read_unlock(); while (txq >= ndev->real_num_tx_queues) txq -= ndev->real_num_tx_queues; return txq; } static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len, struct hv_page_buffer *pb) { int j = 0; hvpfn += offset >> HV_HYP_PAGE_SHIFT; offset = offset & ~HV_HYP_PAGE_MASK; while (len > 0) { unsigned long bytes; bytes = HV_HYP_PAGE_SIZE - offset; if (bytes > len) bytes = len; pb[j].pfn = hvpfn; pb[j].offset = offset; pb[j].len = bytes; offset += bytes; len -= bytes; if (offset == HV_HYP_PAGE_SIZE && len) { hvpfn++; offset = 0; j++; } } return j + 1; } static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, struct hv_netvsc_packet *packet, struct hv_page_buffer *pb) { u32 slots_used = 0; char *data = skb->data; int frags = skb_shinfo(skb)->nr_frags; int i; /* The packet is laid out thus: * 1. hdr: RNDIS header and PPI * 2. skb linear data * 3. skb fragment data */ slots_used += fill_pg_buf(virt_to_hvpfn(hdr), offset_in_hvpage(hdr), len, &pb[slots_used]); packet->rmsg_size = len; packet->rmsg_pgcnt = slots_used; slots_used += fill_pg_buf(virt_to_hvpfn(data), offset_in_hvpage(data), skb_headlen(skb), &pb[slots_used]); for (i = 0; i < frags; i++) { skb_frag_t *frag = skb_shinfo(skb)->frags + i; slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)), skb_frag_off(frag), skb_frag_size(frag), &pb[slots_used]); } return slots_used; } static int count_skb_frag_slots(struct sk_buff *skb) { int i, frags = skb_shinfo(skb)->nr_frags; int pages = 0; for (i = 0; i < frags; i++) { skb_frag_t *frag = skb_shinfo(skb)->frags + i; unsigned long size = skb_frag_size(frag); unsigned long offset = skb_frag_off(frag); /* Skip unused frames from start of page */ offset &= ~HV_HYP_PAGE_MASK; pages += HVPFN_UP(offset + size); } return pages; } static int netvsc_get_slots(struct sk_buff *skb) { char *data = skb->data; unsigned int offset = offset_in_hvpage(data); unsigned int len = skb_headlen(skb); int slots; int frag_slots; slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE); frag_slots = count_skb_frag_slots(skb); return slots + frag_slots; } static u32 net_checksum_info(struct sk_buff *skb) { if (skb->protocol == htons(ETH_P_IP)) { struct iphdr *ip = ip_hdr(skb); if (ip->protocol == IPPROTO_TCP) return TRANSPORT_INFO_IPV4_TCP; else if (ip->protocol == IPPROTO_UDP) return TRANSPORT_INFO_IPV4_UDP; } else { struct ipv6hdr *ip6 = ipv6_hdr(skb); if (ip6->nexthdr == IPPROTO_TCP) return TRANSPORT_INFO_IPV6_TCP; else if (ip6->nexthdr == IPPROTO_UDP) return TRANSPORT_INFO_IPV6_UDP; } return TRANSPORT_INFO_NOT_IP; } /* Send skb on the slave VF device. */ static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, struct sk_buff *skb) { struct net_device_context *ndev_ctx = netdev_priv(net); unsigned int len = skb->len; int rc; skb->dev = vf_netdev; skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping); rc = dev_queue_xmit(skb); if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { struct netvsc_vf_pcpu_stats *pcpu_stats = this_cpu_ptr(ndev_ctx->vf_stats); u64_stats_update_begin(&pcpu_stats->syncp); pcpu_stats->tx_packets++; pcpu_stats->tx_bytes += len; u64_stats_update_end(&pcpu_stats->syncp); } else { this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); } return rc; } static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx) { struct net_device_context *net_device_ctx = netdev_priv(net); struct hv_netvsc_packet *packet = NULL; int ret; unsigned int num_data_pgs; struct rndis_message *rndis_msg; struct net_device *vf_netdev; u32 rndis_msg_size; u32 hash; struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; /* If VF is present and up then redirect packets to it. * Skip the VF if it is marked down or has no carrier. * If netpoll is in uses, then VF can not be used either. */ vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); if (vf_netdev && netif_running(vf_netdev) && netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net) && net_device_ctx->data_path_is_vf) return netvsc_vf_xmit(net, vf_netdev, skb); /* We will atmost need two pages to describe the rndis * header. We can only transmit MAX_PAGE_BUFFER_COUNT number * of pages in a single packet. If skb is scattered around * more pages we try linearizing it. */ num_data_pgs = netvsc_get_slots(skb) + 2; if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { ++net_device_ctx->eth_stats.tx_scattered; if (skb_linearize(skb)) goto no_memory; num_data_pgs = netvsc_get_slots(skb) + 2; if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { ++net_device_ctx->eth_stats.tx_too_big; goto drop; } } /* * Place the rndis header in the skb head room and * the skb->cb will be used for hv_netvsc_packet * structure. */ ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); if (ret) goto no_memory; /* Use the skb control buffer for building up the packet */ BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > sizeof_field(struct sk_buff, cb)); packet = (struct hv_netvsc_packet *)skb->cb; packet->q_idx = skb_get_queue_mapping(skb); packet->total_data_buflen = skb->len; packet->total_bytes = skb->len; packet->total_packets = 1; rndis_msg = (struct rndis_message *)skb->head; /* Add the rndis header */ rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; rndis_msg->msg_len = packet->total_data_buflen; rndis_msg->msg.pkt = (struct rndis_packet) { .data_offset = sizeof(struct rndis_packet), .data_len = packet->total_data_buflen, .per_pkt_info_offset = sizeof(struct rndis_packet), }; rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); hash = skb_get_hash_raw(skb); if (hash != 0 && net->real_num_tx_queues > 1) { u32 *hash_info; rndis_msg_size += NDIS_HASH_PPI_SIZE; hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, NBL_HASH_VALUE); *hash_info = hash; } /* When using AF_PACKET we need to drop VLAN header from * the frame and update the SKB to allow the HOST OS * to transmit the 802.1Q packet */ if (skb->protocol == htons(ETH_P_8021Q)) { u16 vlan_tci; skb_reset_mac_header(skb); if (eth_type_vlan(eth_hdr(skb)->h_proto)) { if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) { ++net_device_ctx->eth_stats.vlan_error; goto drop; } __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); /* Update the NDIS header pkt lengths */ packet->total_data_buflen -= VLAN_HLEN; packet->total_bytes -= VLAN_HLEN; rndis_msg->msg_len = packet->total_data_buflen; rndis_msg->msg.pkt.data_len = packet->total_data_buflen; } } if (skb_vlan_tag_present(skb)) { struct ndis_pkt_8021q_info *vlan; rndis_msg_size += NDIS_VLAN_PPI_SIZE; vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, IEEE_8021Q_INFO); vlan->value = 0; vlan->vlanid = skb_vlan_tag_get_id(skb); vlan->cfi = skb_vlan_tag_get_cfi(skb); vlan->pri = skb_vlan_tag_get_prio(skb); } if (skb_is_gso(skb)) { struct ndis_tcp_lso_info *lso_info; rndis_msg_size += NDIS_LSO_PPI_SIZE; lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, TCP_LARGESEND_PKTINFO); lso_info->value = 0; lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; if (skb->protocol == htons(ETH_P_IP)) { lso_info->lso_v2_transmit.ip_version = NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; ip_hdr(skb)->tot_len = 0; ip_hdr(skb)->check = 0; tcp_hdr(skb)->check = ~csum_tcpudp_magic(ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); } else { lso_info->lso_v2_transmit.ip_version = NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; tcp_v6_gso_csum_prep(skb); } lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; } else if (skb->ip_summed == CHECKSUM_PARTIAL) { if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { struct ndis_tcp_ip_checksum_info *csum_info; rndis_msg_size += NDIS_CSUM_PPI_SIZE; csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, TCPIP_CHKSUM_PKTINFO); csum_info->value = 0; csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); if (skb->protocol == htons(ETH_P_IP)) { csum_info->transmit.is_ipv4 = 1; if (ip_hdr(skb)->protocol == IPPROTO_TCP) csum_info->transmit.tcp_checksum = 1; else csum_info->transmit.udp_checksum = 1; } else { csum_info->transmit.is_ipv6 = 1; if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) csum_info->transmit.tcp_checksum = 1; else csum_info->transmit.udp_checksum = 1; } } else { /* Can't do offload of this type of checksum */ if (skb_checksum_help(skb)) goto drop; } } /* Start filling in the page buffers with the rndis hdr */ rndis_msg->msg_len += rndis_msg_size; packet->total_data_buflen = rndis_msg->msg_len; packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, skb, packet, pb); /* timestamp packet in software */ skb_tx_timestamp(skb); ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx); if (likely(ret == 0)) return NETDEV_TX_OK; if (ret == -EAGAIN) { ++net_device_ctx->eth_stats.tx_busy; return NETDEV_TX_BUSY; } if (ret == -ENOSPC) ++net_device_ctx->eth_stats.tx_no_space; drop: dev_kfree_skb_any(skb); net->stats.tx_dropped++; return NETDEV_TX_OK; no_memory: ++net_device_ctx->eth_stats.tx_no_memory; goto drop; } static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb, struct net_device *ndev) { return netvsc_xmit(skb, ndev, false); } /* * netvsc_linkstatus_callback - Link up/down notification */ void netvsc_linkstatus_callback(struct net_device *net, struct rndis_message *resp, void *data, u32 data_buflen) { struct rndis_indicate_status *indicate = &resp->msg.indicate_status; struct net_device_context *ndev_ctx = netdev_priv(net); struct netvsc_reconfig *event; unsigned long flags; /* Ensure the packet is big enough to access its fields */ if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) { netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n", resp->msg_len); return; } /* Copy the RNDIS indicate status into nvchan->recv_buf */ memcpy(indicate, data + RNDIS_HEADER_SIZE, sizeof(*indicate)); /* Update the physical link speed when changing to another vSwitch */ if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { u32 speed; /* Validate status_buf_offset and status_buflen. * * Certain (pre-Fe) implementations of Hyper-V's vSwitch didn't account * for the status buffer field in resp->msg_len; perform the validation * using data_buflen (>= resp->msg_len). */ if (indicate->status_buflen < sizeof(speed) || indicate->status_buf_offset < sizeof(*indicate) || data_buflen - RNDIS_HEADER_SIZE < indicate->status_buf_offset || data_buflen - RNDIS_HEADER_SIZE - indicate->status_buf_offset < indicate->status_buflen) { netdev_err(net, "invalid rndis_indicate_status packet\n"); return; } speed = *(u32 *)(data + RNDIS_HEADER_SIZE + indicate->status_buf_offset) / 10000; ndev_ctx->speed = speed; return; } /* Handle these link change statuses below */ if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && indicate->status != RNDIS_STATUS_MEDIA_CONNECT && indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) return; if (net->reg_state != NETREG_REGISTERED) return; event = kzalloc(sizeof(*event), GFP_ATOMIC); if (!event) return; event->event = indicate->status; spin_lock_irqsave(&ndev_ctx->lock, flags); list_add_tail(&event->list, &ndev_ctx->reconfig_events); spin_unlock_irqrestore(&ndev_ctx->lock, flags); schedule_delayed_work(&ndev_ctx->dwork, 0); } /* This function should only be called after skb_record_rx_queue() */ void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev) { int rc; skb->queue_mapping = skb_get_rx_queue(skb); __skb_push(skb, ETH_HLEN); rc = netvsc_xmit(skb, ndev, true); if (dev_xmit_complete(rc)) return; dev_kfree_skb_any(skb); ndev->stats.tx_dropped++; } static void netvsc_comp_ipcsum(struct sk_buff *skb) { struct iphdr *iph = (struct iphdr *)skb->data; iph->check = 0; iph->check = ip_fast_csum(iph, iph->ihl); } static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, struct netvsc_channel *nvchan, struct xdp_buff *xdp) { struct napi_struct *napi = &nvchan->napi; const struct ndis_pkt_8021q_info *vlan = &nvchan->rsc.vlan; const struct ndis_tcp_ip_checksum_info *csum_info = &nvchan->rsc.csum_info; const u32 *hash_info = &nvchan->rsc.hash_info; u8 ppi_flags = nvchan->rsc.ppi_flags; struct sk_buff *skb; void *xbuf = xdp->data_hard_start; int i; if (xbuf) { unsigned int hdroom = xdp->data - xdp->data_hard_start; unsigned int xlen = xdp->data_end - xdp->data; unsigned int frag_size = xdp->frame_sz; skb = build_skb(xbuf, frag_size); if (!skb) { __free_page(virt_to_page(xbuf)); return NULL; } skb_reserve(skb, hdroom); skb_put(skb, xlen); skb->dev = napi->dev; } else { skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); if (!skb) return NULL; /* Copy to skb. This copy is needed here since the memory * pointed by hv_netvsc_packet cannot be deallocated. */ for (i = 0; i < nvchan->rsc.cnt; i++) skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]); } skb->protocol = eth_type_trans(skb, net); /* skb is already created with CHECKSUM_NONE */ skb_checksum_none_assert(skb); /* Incoming packets may have IP header checksum verified by the host. * They may not have IP header checksum computed after coalescing. * We compute it here if the flags are set, because on Linux, the IP * checksum is always checked. */ if ((ppi_flags & NVSC_RSC_CSUM_INFO) && csum_info->receive.ip_checksum_value_invalid && csum_info->receive.ip_checksum_succeeded && skb->protocol == htons(ETH_P_IP)) { /* Check that there is enough space to hold the IP header. */ if (skb_headlen(skb) < sizeof(struct iphdr)) { kfree_skb(skb); return NULL; } netvsc_comp_ipcsum(skb); } /* Do L4 checksum offload if enabled and present. */ if ((ppi_flags & NVSC_RSC_CSUM_INFO) && (net->features & NETIF_F_RXCSUM)) { if (csum_info->receive.tcp_checksum_succeeded || csum_info->receive.udp_checksum_succeeded) skb->ip_summed = CHECKSUM_UNNECESSARY; } if ((ppi_flags & NVSC_RSC_HASH_INFO) && (net->features & NETIF_F_RXHASH)) skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4); if (ppi_flags & NVSC_RSC_VLAN) { u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | (vlan->cfi ? VLAN_CFI_MASK : 0); __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci); } return skb; } /* * netvsc_recv_callback - Callback when we receive a packet from the * "wire" on the specified device. */ int netvsc_recv_callback(struct net_device *net, struct netvsc_device *net_device, struct netvsc_channel *nvchan) { struct net_device_context *net_device_ctx = netdev_priv(net); struct vmbus_channel *channel = nvchan->channel; u16 q_idx = channel->offermsg.offer.sub_channel_index; struct sk_buff *skb; struct netvsc_stats_rx *rx_stats = &nvchan->rx_stats; struct xdp_buff xdp; u32 act; if (net->reg_state != NETREG_REGISTERED) return NVSP_STAT_FAIL; act = netvsc_run_xdp(net, nvchan, &xdp); if (act == XDP_REDIRECT) return NVSP_STAT_SUCCESS; if (act != XDP_PASS && act != XDP_TX) { u64_stats_update_begin(&rx_stats->syncp); rx_stats->xdp_drop++; u64_stats_update_end(&rx_stats->syncp); return NVSP_STAT_SUCCESS; /* consumed by XDP */ } /* Allocate a skb - TODO direct I/O to pages? */ skb = netvsc_alloc_recv_skb(net, nvchan, &xdp); if (unlikely(!skb)) { ++net_device_ctx->eth_stats.rx_no_memory; return NVSP_STAT_FAIL; } skb_record_rx_queue(skb, q_idx); /* * Even if injecting the packet, record the statistics * on the synthetic device because modifying the VF device * statistics will not work correctly. */ u64_stats_update_begin(&rx_stats->syncp); if (act == XDP_TX) rx_stats->xdp_tx++; rx_stats->packets++; rx_stats->bytes += nvchan->rsc.pktlen; if (skb->pkt_type == PACKET_BROADCAST) ++rx_stats->broadcast; else if (skb->pkt_type == PACKET_MULTICAST) ++rx_stats->multicast; u64_stats_update_end(&rx_stats->syncp); if (act == XDP_TX) { netvsc_xdp_xmit(skb, net); return NVSP_STAT_SUCCESS; } napi_gro_receive(&nvchan->napi, skb); return NVSP_STAT_SUCCESS; } static void netvsc_get_drvinfo(struct net_device *net, struct ethtool_drvinfo *info) { strscpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); strscpy(info->fw_version, "N/A", sizeof(info->fw_version)); } static void netvsc_get_channels(struct net_device *net, struct ethtool_channels *channel) { struct net_device_context *net_device_ctx = netdev_priv(net); struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); if (nvdev) { channel->max_combined = nvdev->max_chn; channel->combined_count = nvdev->num_chn; } } /* Alloc struct netvsc_device_info, and initialize it from either existing * struct netvsc_device, or from default values. */ static struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev) { struct netvsc_device_info *dev_info; struct bpf_prog *prog; dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC); if (!dev_info) return NULL; if (nvdev) { ASSERT_RTNL(); dev_info->num_chn = nvdev->num_chn; dev_info->send_sections = nvdev->send_section_cnt; dev_info->send_section_size = nvdev->send_section_size; dev_info->recv_sections = nvdev->recv_section_cnt; dev_info->recv_section_size = nvdev->recv_section_size; memcpy(dev_info->rss_key, nvdev->extension->rss_key, NETVSC_HASH_KEYLEN); prog = netvsc_xdp_get(nvdev); if (prog) { bpf_prog_inc(prog); dev_info->bprog = prog; } } else { dev_info->num_chn = VRSS_CHANNEL_DEFAULT; dev_info->send_sections = NETVSC_DEFAULT_TX; dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE; dev_info->recv_sections = NETVSC_DEFAULT_RX; dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE; } return dev_info; } /* Free struct netvsc_device_info */ static void netvsc_devinfo_put(struct netvsc_device_info *dev_info) { if (dev_info->bprog) { ASSERT_RTNL(); bpf_prog_put(dev_info->bprog); } kfree(dev_info); } static int netvsc_detach(struct net_device *ndev, struct netvsc_device *nvdev) { struct net_device_context *ndev_ctx = netdev_priv(ndev); struct hv_device *hdev = ndev_ctx->device_ctx; int ret; /* Don't try continuing to try and setup sub channels */ if (cancel_work_sync(&nvdev->subchan_work)) nvdev->num_chn = 1; netvsc_xdp_set(ndev, NULL, NULL, nvdev); /* If device was up (receiving) then shutdown */ if (netif_running(ndev)) { netvsc_tx_disable(nvdev, ndev); ret = rndis_filter_close(nvdev); if (ret) { netdev_err(ndev, "unable to close device (ret %d).\n", ret); return ret; } ret = netvsc_wait_until_empty(nvdev); if (ret) { netdev_err(ndev, "Ring buffer not empty after closing rndis\n"); return ret; } } netif_device_detach(ndev); rndis_filter_device_remove(hdev, nvdev); return 0; } static int netvsc_attach(struct net_device *ndev, struct netvsc_device_info *dev_info) { struct net_device_context *ndev_ctx = netdev_priv(ndev); struct hv_device *hdev = ndev_ctx->device_ctx; struct netvsc_device *nvdev; struct rndis_device *rdev; struct bpf_prog *prog; int ret = 0; nvdev = rndis_filter_device_add(hdev, dev_info); if (IS_ERR(nvdev)) return PTR_ERR(nvdev); if (nvdev->num_chn > 1) { ret = rndis_set_subchannel(ndev, nvdev, dev_info); /* if unavailable, just proceed with one queue */ if (ret) { nvdev->max_chn = 1; nvdev->num_chn = 1; } } prog = dev_info->bprog; if (prog) { bpf_prog_inc(prog); ret = netvsc_xdp_set(ndev, prog, NULL, nvdev); if (ret) { bpf_prog_put(prog); goto err1; } } /* In any case device is now ready */ nvdev->tx_disable = false; netif_device_attach(ndev); /* Note: enable and attach happen when sub-channels setup */ netif_carrier_off(ndev); if (netif_running(ndev)) { ret = rndis_filter_open(nvdev); if (ret) goto err2; rdev = nvdev->extension; if (!rdev->link_state) netif_carrier_on(ndev); } return 0; err2: netif_device_detach(ndev); err1: rndis_filter_device_remove(hdev, nvdev); return ret; } static int netvsc_set_channels(struct net_device *net, struct ethtool_channels *channels) { struct net_device_context *net_device_ctx = netdev_priv(net); struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); unsigned int orig, count = channels->combined_count; struct netvsc_device_info *device_info; int ret; /* We do not support separate count for rx, tx, or other */ if (count == 0 || channels->rx_count || channels->tx_count || channels->other_count) return -EINVAL; if (!nvdev || nvdev->destroy) return -ENODEV; if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) return -EINVAL; if (count > nvdev->max_chn) return -EINVAL; orig = nvdev->num_chn; device_info = netvsc_devinfo_get(nvdev); if (!device_info) return -ENOMEM; device_info->num_chn = count; ret = netvsc_detach(net, nvdev); if (ret) goto out; ret = netvsc_attach(net, device_info); if (ret) { device_info->num_chn = orig; if (netvsc_attach(net, device_info)) netdev_err(net, "restoring channel setting failed\n"); } out: netvsc_devinfo_put(device_info); return ret; } static void netvsc_init_settings(struct net_device *dev) { struct net_device_context *ndc = netdev_priv(dev); ndc->l4_hash = HV_DEFAULT_L4HASH; ndc->speed = SPEED_UNKNOWN; ndc->duplex = DUPLEX_FULL; dev->features = NETIF_F_LRO; } static int netvsc_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct net_device_context *ndc = netdev_priv(dev); struct net_device *vf_netdev; vf_netdev = rtnl_dereference(ndc->vf_netdev); if (vf_netdev) return __ethtool_get_link_ksettings(vf_netdev, cmd); cmd->base.speed = ndc->speed; cmd->base.duplex = ndc->duplex; cmd->base.port = PORT_OTHER; return 0; } static int netvsc_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct net_device_context *ndc = netdev_priv(dev); struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); if (vf_netdev) { if (!vf_netdev->ethtool_ops->set_link_ksettings) return -EOPNOTSUPP; return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev, cmd); } return ethtool_virtdev_set_link_ksettings(dev, cmd, &ndc->speed, &ndc->duplex); } static int netvsc_change_mtu(struct net_device *ndev, int mtu) { struct net_device_context *ndevctx = netdev_priv(ndev); struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); int orig_mtu = ndev->mtu; struct netvsc_device_info *device_info; int ret = 0; if (!nvdev || nvdev->destroy) return -ENODEV; device_info = netvsc_devinfo_get(nvdev); if (!device_info) return -ENOMEM; /* Change MTU of underlying VF netdev first. */ if (vf_netdev) { ret = dev_set_mtu(vf_netdev, mtu); if (ret) goto out; } ret = netvsc_detach(ndev, nvdev); if (ret) goto rollback_vf; WRITE_ONCE(ndev->mtu, mtu); ret = netvsc_attach(ndev, device_info); if (!ret) goto out; /* Attempt rollback to original MTU */ WRITE_ONCE(ndev->mtu, orig_mtu); if (netvsc_attach(ndev, device_info)) netdev_err(ndev, "restoring mtu failed\n"); rollback_vf: if (vf_netdev) dev_set_mtu(vf_netdev, orig_mtu); out: netvsc_devinfo_put(device_info); return ret; } static void netvsc_get_vf_stats(struct net_device *net, struct netvsc_vf_pcpu_stats *tot) { struct net_device_context *ndev_ctx = netdev_priv(net); int i; memset(tot, 0, sizeof(*tot)); for_each_possible_cpu(i) { const struct netvsc_vf_pcpu_stats *stats = per_cpu_ptr(ndev_ctx->vf_stats, i); u64 rx_packets, rx_bytes, tx_packets, tx_bytes; unsigned int start; do { start = u64_stats_fetch_begin(&stats->syncp); rx_packets = stats->rx_packets; tx_packets = stats->tx_packets; rx_bytes = stats->rx_bytes; tx_bytes = stats->tx_bytes; } while (u64_stats_fetch_retry(&stats->syncp, start)); tot->rx_packets += rx_packets; tot->tx_packets += tx_packets; tot->rx_bytes += rx_bytes; tot->tx_bytes += tx_bytes; tot->tx_dropped += stats->tx_dropped; } } static void netvsc_get_pcpu_stats(struct net_device *net, struct netvsc_ethtool_pcpu_stats *pcpu_tot) { struct net_device_context *ndev_ctx = netdev_priv(net); struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); int i; /* fetch percpu stats of vf */ for_each_possible_cpu(i) { const struct netvsc_vf_pcpu_stats *stats = per_cpu_ptr(ndev_ctx->vf_stats, i); struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; unsigned int start; do { start = u64_stats_fetch_begin(&stats->syncp); this_tot->vf_rx_packets = stats->rx_packets; this_tot->vf_tx_packets = stats->tx_packets; this_tot->vf_rx_bytes = stats->rx_bytes; this_tot->vf_tx_bytes = stats->tx_bytes; } while (u64_stats_fetch_retry(&stats->syncp, start)); this_tot->rx_packets = this_tot->vf_rx_packets; this_tot->tx_packets = this_tot->vf_tx_packets; this_tot->rx_bytes = this_tot->vf_rx_bytes; this_tot->tx_bytes = this_tot->vf_tx_bytes; } /* fetch percpu stats of netvsc */ for (i = 0; i < nvdev->num_chn; i++) { const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; const struct netvsc_stats_tx *tx_stats; const struct netvsc_stats_rx *rx_stats; struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[nvchan->channel->target_cpu]; u64 packets, bytes; unsigned int start; tx_stats = &nvchan->tx_stats; do { start = u64_stats_fetch_begin(&tx_stats->syncp); packets = tx_stats->packets; bytes = tx_stats->bytes; } while (u64_stats_fetch_retry(&tx_stats->syncp, start)); this_tot->tx_bytes += bytes; this_tot->tx_packets += packets; rx_stats = &nvchan->rx_stats; do { start = u64_stats_fetch_begin(&rx_stats->syncp); packets = rx_stats->packets; bytes = rx_stats->bytes; } while (u64_stats_fetch_retry(&rx_stats->syncp, start)); this_tot->rx_bytes += bytes; this_tot->rx_packets += packets; } } static void netvsc_get_stats64(struct net_device *net, struct rtnl_link_stats64 *t) { struct net_device_context *ndev_ctx = netdev_priv(net); struct netvsc_device *nvdev; struct netvsc_vf_pcpu_stats vf_tot; int i; rcu_read_lock(); nvdev = rcu_dereference(ndev_ctx->nvdev); if (!nvdev) goto out; netdev_stats_to_stats64(t, &net->stats); netvsc_get_vf_stats(net, &vf_tot); t->rx_packets += vf_tot.rx_packets; t->tx_packets += vf_tot.tx_packets; t->rx_bytes += vf_tot.rx_bytes; t->tx_bytes += vf_tot.tx_bytes; t->tx_dropped += vf_tot.tx_dropped; for (i = 0; i < nvdev->num_chn; i++) { const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; const struct netvsc_stats_tx *tx_stats; const struct netvsc_stats_rx *rx_stats; u64 packets, bytes, multicast; unsigned int start; tx_stats = &nvchan->tx_stats; do { start = u64_stats_fetch_begin(&tx_stats->syncp); packets = tx_stats->packets; bytes = tx_stats->bytes; } while (u64_stats_fetch_retry(&tx_stats->syncp, start)); t->tx_bytes += bytes; t->tx_packets += packets; rx_stats = &nvchan->rx_stats; do { start = u64_stats_fetch_begin(&rx_stats->syncp); packets = rx_stats->packets; bytes = rx_stats->bytes; multicast = rx_stats->multicast + rx_stats->broadcast; } while (u64_stats_fetch_retry(&rx_stats->syncp, start)); t->rx_bytes += bytes; t->rx_packets += packets; t->multicast += multicast; } out: rcu_read_unlock(); } static int netvsc_set_mac_addr(struct net_device *ndev, void *p) { struct net_device_context *ndc = netdev_priv(ndev); struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); struct sockaddr *addr = p; int err; err = eth_prepare_mac_addr_change(ndev, p); if (err) return err; if (!nvdev) return -ENODEV; if (vf_netdev) { err = dev_set_mac_address(vf_netdev, addr, NULL); if (err) return err; } err = rndis_filter_set_device_mac(nvdev, addr->sa_data); if (!err) { eth_commit_mac_addr_change(ndev, p); } else if (vf_netdev) { /* rollback change on VF */ memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); dev_set_mac_address(vf_netdev, addr, NULL); } return err; } static const struct { char name[ETH_GSTRING_LEN]; u16 offset; } netvsc_stats[] = { { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, { "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) }, }, pcpu_stats[] = { { "cpu%u_rx_packets", offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, { "cpu%u_rx_bytes", offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, { "cpu%u_tx_packets", offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, { "cpu%u_tx_bytes", offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, { "cpu%u_vf_rx_packets", offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, { "cpu%u_vf_rx_bytes", offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, { "cpu%u_vf_tx_packets", offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, { "cpu%u_vf_tx_bytes", offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, }, vf_stats[] = { { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, }; #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) /* statistics per queue (rx/tx packets/bytes) */ #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) /* 8 statistics per queue (rx/tx packets/bytes, XDP actions) */ #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 8) static int netvsc_get_sset_count(struct net_device *dev, int string_set) { struct net_device_context *ndc = netdev_priv(dev); struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); if (!nvdev) return -ENODEV; switch (string_set) { case ETH_SS_STATS: return NETVSC_GLOBAL_STATS_LEN + NETVSC_VF_STATS_LEN + NETVSC_QUEUE_STATS_LEN(nvdev) + NETVSC_PCPU_STATS_LEN; default: return -EINVAL; } } static void netvsc_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct net_device_context *ndc = netdev_priv(dev); struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); const void *nds = &ndc->eth_stats; const struct netvsc_stats_tx *tx_stats; const struct netvsc_stats_rx *rx_stats; struct netvsc_vf_pcpu_stats sum; struct netvsc_ethtool_pcpu_stats *pcpu_sum; unsigned int start; u64 packets, bytes; u64 xdp_drop; u64 xdp_redirect; u64 xdp_tx; u64 xdp_xmit; int i, j, cpu; if (!nvdev) return; for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); netvsc_get_vf_stats(dev, &sum); for (j = 0; j < NETVSC_VF_STATS_LEN; j++) data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); for (j = 0; j < nvdev->num_chn; j++) { tx_stats = &nvdev->chan_table[j].tx_stats; do { start = u64_stats_fetch_begin(&tx_stats->syncp); packets = tx_stats->packets; bytes = tx_stats->bytes; xdp_xmit = tx_stats->xdp_xmit; } while (u64_stats_fetch_retry(&tx_stats->syncp, start)); data[i++] = packets; data[i++] = bytes; data[i++] = xdp_xmit; rx_stats = &nvdev->chan_table[j].rx_stats; do { start = u64_stats_fetch_begin(&rx_stats->syncp); packets = rx_stats->packets; bytes = rx_stats->bytes; xdp_drop = rx_stats->xdp_drop; xdp_redirect = rx_stats->xdp_redirect; xdp_tx = rx_stats->xdp_tx; } while (u64_stats_fetch_retry(&rx_stats->syncp, start)); data[i++] = packets; data[i++] = bytes; data[i++] = xdp_drop; data[i++] = xdp_redirect; data[i++] = xdp_tx; } pcpu_sum = kvmalloc_array(num_possible_cpus(), sizeof(struct netvsc_ethtool_pcpu_stats), GFP_KERNEL); if (!pcpu_sum) return; netvsc_get_pcpu_stats(dev, pcpu_sum); for_each_present_cpu(cpu) { struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) data[i++] = *(u64 *)((void *)this_sum + pcpu_stats[j].offset); } kvfree(pcpu_sum); } static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) { struct net_device_context *ndc = netdev_priv(dev); struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); u8 *p = data; int i, cpu; if (!nvdev) return; switch (stringset) { case ETH_SS_STATS: for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) ethtool_puts(&p, netvsc_stats[i].name); for (i = 0; i < ARRAY_SIZE(vf_stats); i++) ethtool_puts(&p, vf_stats[i].name); for (i = 0; i < nvdev->num_chn; i++) { ethtool_sprintf(&p, "tx_queue_%u_packets", i); ethtool_sprintf(&p, "tx_queue_%u_bytes", i); ethtool_sprintf(&p, "tx_queue_%u_xdp_xmit", i); ethtool_sprintf(&p, "rx_queue_%u_packets", i); ethtool_sprintf(&p, "rx_queue_%u_bytes", i); ethtool_sprintf(&p, "rx_queue_%u_xdp_drop", i); ethtool_sprintf(&p, "rx_queue_%u_xdp_redirect", i); ethtool_sprintf(&p, "rx_queue_%u_xdp_tx", i); } for_each_present_cpu(cpu) { for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) ethtool_sprintf(&p, pcpu_stats[i].name, cpu); } break; } } static int netvsc_get_rss_hash_opts(struct net_device_context *ndc, struct ethtool_rxnfc *info) { const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; info->data = RXH_IP_SRC | RXH_IP_DST; switch (info->flow_type) { case TCP_V4_FLOW: if (ndc->l4_hash & HV_TCP4_L4HASH) info->data |= l4_flag; break; case TCP_V6_FLOW: if (ndc->l4_hash & HV_TCP6_L4HASH) info->data |= l4_flag; break; case UDP_V4_FLOW: if (ndc->l4_hash & HV_UDP4_L4HASH) info->data |= l4_flag; break; case UDP_V6_FLOW: if (ndc->l4_hash & HV_UDP6_L4HASH) info->data |= l4_flag; break; case IPV4_FLOW: case IPV6_FLOW: break; default: info->data = 0; break; } return 0; } static int netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, u32 *rules) { struct net_device_context *ndc = netdev_priv(dev); struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); if (!nvdev) return -ENODEV; switch (info->cmd) { case ETHTOOL_GRXRINGS: info->data = nvdev->num_chn; return 0; case ETHTOOL_GRXFH: return netvsc_get_rss_hash_opts(ndc, info); } return -EOPNOTSUPP; } static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, struct ethtool_rxnfc *info) { if (info->data == (RXH_IP_SRC | RXH_IP_DST | RXH_L4_B_0_1 | RXH_L4_B_2_3)) { switch (info->flow_type) { case TCP_V4_FLOW: ndc->l4_hash |= HV_TCP4_L4HASH; break; case TCP_V6_FLOW: ndc->l4_hash |= HV_TCP6_L4HASH; break; case UDP_V4_FLOW: ndc->l4_hash |= HV_UDP4_L4HASH; break; case UDP_V6_FLOW: ndc->l4_hash |= HV_UDP6_L4HASH; break; default: return -EOPNOTSUPP; } return 0; } if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { switch (info->flow_type) { case TCP_V4_FLOW: ndc->l4_hash &= ~HV_TCP4_L4HASH; break; case TCP_V6_FLOW: ndc->l4_hash &= ~HV_TCP6_L4HASH; break; case UDP_V4_FLOW: ndc->l4_hash &= ~HV_UDP4_L4HASH; break; case UDP_V6_FLOW: ndc->l4_hash &= ~HV_UDP6_L4HASH; break; default: return -EOPNOTSUPP; } return 0; } return -EOPNOTSUPP; } static int netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) { struct net_device_context *ndc = netdev_priv(ndev); if (info->cmd == ETHTOOL_SRXFH) return netvsc_set_rss_hash_opts(ndc, info); return -EOPNOTSUPP; } static u32 netvsc_get_rxfh_key_size(struct net_device *dev) { return NETVSC_HASH_KEYLEN; } static u32 netvsc_rss_indir_size(struct net_device *dev) { struct net_device_context *ndc = netdev_priv(dev); return ndc->rx_table_sz; } static int netvsc_get_rxfh(struct net_device *dev, struct ethtool_rxfh_param *rxfh) { struct net_device_context *ndc = netdev_priv(dev); struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); struct rndis_device *rndis_dev; int i; if (!ndev) return -ENODEV; rxfh->hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ rndis_dev = ndev->extension; if (rxfh->indir) { for (i = 0; i < ndc->rx_table_sz; i++) rxfh->indir[i] = ndc->rx_table[i]; } if (rxfh->key) memcpy(rxfh->key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); return 0; } static int netvsc_set_rxfh(struct net_device *dev, struct ethtool_rxfh_param *rxfh, struct netlink_ext_ack *extack) { struct net_device_context *ndc = netdev_priv(dev); struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); struct rndis_device *rndis_dev; u8 *key = rxfh->key; int i; if (!ndev) return -ENODEV; if (rxfh->hfunc != ETH_RSS_HASH_NO_CHANGE && rxfh->hfunc != ETH_RSS_HASH_TOP) return -EOPNOTSUPP; rndis_dev = ndev->extension; if (rxfh->indir) { for (i = 0; i < ndc->rx_table_sz; i++) if (rxfh->indir[i] >= ndev->num_chn) return -EINVAL; for (i = 0; i < ndc->rx_table_sz; i++) ndc->rx_table[i] = rxfh->indir[i]; } if (!key) { if (!rxfh->indir) return 0; key = rndis_dev->rss_key; } return rndis_filter_set_rss_param(rndis_dev, key); } /* Hyper-V RNDIS protocol does not have ring in the HW sense. * It does have pre-allocated receive area which is divided into sections. */ static void __netvsc_get_ringparam(struct netvsc_device *nvdev, struct ethtool_ringparam *ring) { u32 max_buf_size; ring->rx_pending = nvdev->recv_section_cnt; ring->tx_pending = nvdev->send_section_cnt; if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; else max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE / nvdev->send_section_size; } static void netvsc_get_ringparam(struct net_device *ndev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kernel_ring, struct netlink_ext_ack *extack) { struct net_device_context *ndevctx = netdev_priv(ndev); struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); if (!nvdev) return; __netvsc_get_ringparam(nvdev, ring); } static int netvsc_set_ringparam(struct net_device *ndev, struct ethtool_ringparam *ring, struct kernel_ethtool_ringparam *kernel_ring, struct netlink_ext_ack *extack) { struct net_device_context *ndevctx = netdev_priv(ndev); struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); struct netvsc_device_info *device_info; struct ethtool_ringparam orig; u32 new_tx, new_rx; int ret = 0; if (!nvdev || nvdev->destroy) return -ENODEV; memset(&orig, 0, sizeof(orig)); __netvsc_get_ringparam(nvdev, &orig); new_tx = clamp_t(u32, ring->tx_pending, NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); new_rx = clamp_t(u32, ring->rx_pending, NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); if (new_tx == orig.tx_pending && new_rx == orig.rx_pending) return 0; /* no change */ device_info = netvsc_devinfo_get(nvdev); if (!device_info) return -ENOMEM; device_info->send_sections = new_tx; device_info->recv_sections = new_rx; ret = netvsc_detach(ndev, nvdev); if (ret) goto out; ret = netvsc_attach(ndev, device_info); if (ret) { device_info->send_sections = orig.tx_pending; device_info->recv_sections = orig.rx_pending; if (netvsc_attach(ndev, device_info)) netdev_err(ndev, "restoring ringparam failed"); } out: netvsc_devinfo_put(device_info); return ret; } static netdev_features_t netvsc_fix_features(struct net_device *ndev, netdev_features_t features) { struct net_device_context *ndevctx = netdev_priv(ndev); struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); if (!nvdev || nvdev->destroy) return features; if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) { features ^= NETIF_F_LRO; netdev_info(ndev, "Skip LRO - unsupported with XDP\n"); } return features; } static int netvsc_set_features(struct net_device *ndev, netdev_features_t features) { netdev_features_t change = features ^ ndev->features; struct net_device_context *ndevctx = netdev_priv(ndev); struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); struct ndis_offload_params offloads; int ret = 0; if (!nvdev || nvdev->destroy) return -ENODEV; if (!(change & NETIF_F_LRO)) goto syncvf; memset(&offloads, 0, sizeof(struct ndis_offload_params)); if (features & NETIF_F_LRO) { offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; } else { offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; } ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads); if (ret) { features ^= NETIF_F_LRO; ndev->features = features; } syncvf: if (!vf_netdev) return ret; vf_netdev->wanted_features = features; netdev_update_features(vf_netdev); return ret; } static int netvsc_get_regs_len(struct net_device *netdev) { return VRSS_SEND_TAB_SIZE * sizeof(u32); } static void netvsc_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p) { struct net_device_context *ndc = netdev_priv(netdev); u32 *regs_buff = p; /* increase the version, if buffer format is changed. */ regs->version = 1; memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32)); } static u32 netvsc_get_msglevel(struct net_device *ndev) { struct net_device_context *ndev_ctx = netdev_priv(ndev); return ndev_ctx->msg_enable; } static void netvsc_set_msglevel(struct net_device *ndev, u32 val) { struct net_device_context *ndev_ctx = netdev_priv(ndev); ndev_ctx->msg_enable = val; } static const struct ethtool_ops ethtool_ops = { .get_drvinfo = netvsc_get_drvinfo, .get_regs_len = netvsc_get_regs_len, .get_regs = netvsc_get_regs, .get_msglevel = netvsc_get_msglevel, .set_msglevel = netvsc_set_msglevel, .get_link = ethtool_op_get_link, .get_ethtool_stats = netvsc_get_ethtool_stats, .get_sset_count = netvsc_get_sset_count, .get_strings = netvsc_get_strings, .get_channels = netvsc_get_channels, .set_channels = netvsc_set_channels, .get_ts_info = ethtool_op_get_ts_info, .get_rxnfc = netvsc_get_rxnfc, .set_rxnfc = netvsc_set_rxnfc, .get_rxfh_key_size = netvsc_get_rxfh_key_size, .get_rxfh_indir_size = netvsc_rss_indir_size, .get_rxfh = netvsc_get_rxfh, .set_rxfh = netvsc_set_rxfh, .get_link_ksettings = netvsc_get_link_ksettings, .set_link_ksettings = netvsc_set_link_ksettings, .get_ringparam = netvsc_get_ringparam, .set_ringparam = netvsc_set_ringparam, }; static const struct net_device_ops device_ops = { .ndo_open = netvsc_open, .ndo_stop = netvsc_close, .ndo_start_xmit = netvsc_start_xmit, .ndo_change_rx_flags = netvsc_change_rx_flags, .ndo_set_rx_mode = netvsc_set_rx_mode, .ndo_fix_features = netvsc_fix_features, .ndo_set_features = netvsc_set_features, .ndo_change_mtu = netvsc_change_mtu, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = netvsc_set_mac_addr, .ndo_select_queue = netvsc_select_queue, .ndo_get_stats64 = netvsc_get_stats64, .ndo_bpf = netvsc_bpf, .ndo_xdp_xmit = netvsc_ndoxdp_xmit, }; /* * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is * present send GARP packet to network peers with netif_notify_peers(). */ static void netvsc_link_change(struct work_struct *w) { struct net_device_context *ndev_ctx = container_of(w, struct net_device_context, dwork.work); struct hv_device *device_obj = ndev_ctx->device_ctx; struct net_device *net = hv_get_drvdata(device_obj); unsigned long flags, next_reconfig, delay; struct netvsc_reconfig *event = NULL; struct netvsc_device *net_device; struct rndis_device *rdev; bool reschedule = false; /* if changes are happening, comeback later */ if (!rtnl_trylock()) { schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); return; } net_device = rtnl_dereference(ndev_ctx->nvdev); if (!net_device) goto out_unlock; rdev = net_device->extension; next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; if (time_is_after_jiffies(next_reconfig)) { /* link_watch only sends one notification with current state * per second, avoid doing reconfig more frequently. Handle * wrap around. */ delay = next_reconfig - jiffies; delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; schedule_delayed_work(&ndev_ctx->dwork, delay); goto out_unlock; } ndev_ctx->last_reconfig = jiffies; spin_lock_irqsave(&ndev_ctx->lock, flags); if (!list_empty(&ndev_ctx->reconfig_events)) { event = list_first_entry(&ndev_ctx->reconfig_events, struct netvsc_reconfig, list); list_del(&event->list); reschedule = !list_empty(&ndev_ctx->reconfig_events); } spin_unlock_irqrestore(&ndev_ctx->lock, flags); if (!event) goto out_unlock; switch (event->event) { /* Only the following events are possible due to the check in * netvsc_linkstatus_callback() */ case RNDIS_STATUS_MEDIA_CONNECT: if (rdev->link_state) { rdev->link_state = false; netif_carrier_on(net); netvsc_tx_enable(net_device, net); } else { __netdev_notify_peers(net); } kfree(event); break; case RNDIS_STATUS_MEDIA_DISCONNECT: if (!rdev->link_state) { rdev->link_state = true; netif_carrier_off(net); netvsc_tx_disable(net_device, net); } kfree(event); break; case RNDIS_STATUS_NETWORK_CHANGE: /* Only makes sense if carrier is present */ if (!rdev->link_state) { rdev->link_state = true; netif_carrier_off(net); netvsc_tx_disable(net_device, net); event->event = RNDIS_STATUS_MEDIA_CONNECT; spin_lock_irqsave(&ndev_ctx->lock, flags); list_add(&event->list, &ndev_ctx->reconfig_events); spin_unlock_irqrestore(&ndev_ctx->lock, flags); reschedule = true; } break; } rtnl_unlock(); /* link_watch only sends one notification with current state per * second, handle next reconfig event in 2 seconds. */ if (reschedule) schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); return; out_unlock: rtnl_unlock(); } static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) { struct net_device_context *net_device_ctx; struct net_device *dev; dev = netdev_master_upper_dev_get(vf_netdev); if (!dev || dev->netdev_ops != &device_ops) return NULL; /* not a netvsc device */ net_device_ctx = netdev_priv(dev); if (!rtnl_dereference(net_device_ctx->nvdev)) return NULL; /* device is removed */ return dev; } /* Called when VF is injecting data into network stack. * Change the associated network device from VF to netvsc. * note: already called with rcu_read_lock */ static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) { struct sk_buff *skb = *pskb; struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); struct net_device_context *ndev_ctx = netdev_priv(ndev); struct netvsc_vf_pcpu_stats *pcpu_stats = this_cpu_ptr(ndev_ctx->vf_stats); skb = skb_share_check(skb, GFP_ATOMIC); if (unlikely(!skb)) return RX_HANDLER_CONSUMED; *pskb = skb; skb->dev = ndev; u64_stats_update_begin(&pcpu_stats->syncp); pcpu_stats->rx_packets++; pcpu_stats->rx_bytes += skb->len; u64_stats_update_end(&pcpu_stats->syncp); return RX_HANDLER_ANOTHER; } static int netvsc_vf_join(struct net_device *vf_netdev, struct net_device *ndev, int context) { struct net_device_context *ndev_ctx = netdev_priv(ndev); int ret; ret = netdev_rx_handler_register(vf_netdev, netvsc_vf_handle_frame, ndev); if (ret != 0) { netdev_err(vf_netdev, "can not register netvsc VF receive handler (err = %d)\n", ret); goto rx_handler_failed; } ret = netdev_master_upper_dev_link(vf_netdev, ndev, NULL, NULL, NULL); if (ret != 0) { netdev_err(vf_netdev, "can not set master device %s (err = %d)\n", ndev->name, ret); goto upper_link_failed; } /* If this registration is called from probe context vf_takeover * is taken care of later in probe itself. */ if (context == VF_REG_IN_NOTIFIER) schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); netdev_info(vf_netdev, "joined to %s\n", ndev->name); return 0; upper_link_failed: netdev_rx_handler_unregister(vf_netdev); rx_handler_failed: return ret; } static void __netvsc_vf_setup(struct net_device *ndev, struct net_device *vf_netdev) { int ret; /* Align MTU of VF with master */ ret = dev_set_mtu(vf_netdev, ndev->mtu); if (ret) netdev_warn(vf_netdev, "unable to change mtu to %u\n", ndev->mtu); /* set multicast etc flags on VF */ dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); /* sync address list from ndev to VF */ netif_addr_lock_bh(ndev); dev_uc_sync(vf_netdev, ndev); dev_mc_sync(vf_netdev, ndev); netif_addr_unlock_bh(ndev); if (netif_running(ndev)) { ret = dev_open(vf_netdev, NULL); if (ret) netdev_warn(vf_netdev, "unable to open: %d\n", ret); } } /* Setup VF as slave of the synthetic device. * Runs in workqueue to avoid recursion in netlink callbacks. */ static void netvsc_vf_setup(struct work_struct *w) { struct net_device_context *ndev_ctx = container_of(w, struct net_device_context, vf_takeover.work); struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); struct net_device *vf_netdev; if (!rtnl_trylock()) { schedule_delayed_work(&ndev_ctx->vf_takeover, 0); return; } vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); if (vf_netdev) __netvsc_vf_setup(ndev, vf_netdev); rtnl_unlock(); } /* Find netvsc by VF serial number. * The PCI hyperv controller records the serial number as the slot kobj name. */ static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) { struct device *parent = vf_netdev->dev.parent; struct net_device_context *ndev_ctx; struct net_device *ndev; struct pci_dev *pdev; u32 serial; if (!parent || !dev_is_pci(parent)) return NULL; /* not a PCI device */ pdev = to_pci_dev(parent); if (!pdev->slot) { netdev_notice(vf_netdev, "no PCI slot information\n"); return NULL; } if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { netdev_notice(vf_netdev, "Invalid vf serial:%s\n", pci_slot_name(pdev->slot)); return NULL; } list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { if (!ndev_ctx->vf_alloc) continue; if (ndev_ctx->vf_serial != serial) continue; ndev = hv_get_drvdata(ndev_ctx->device_ctx); if (ndev->addr_len != vf_netdev->addr_len || memcmp(ndev->perm_addr, vf_netdev->perm_addr, ndev->addr_len) != 0) continue; return ndev; } /* Fallback path to check synthetic vf with help of mac addr. * Because this function can be called before vf_netdev is * initialized (NETDEV_POST_INIT) when its perm_addr has not been copied * from dev_addr, also try to match to its dev_addr. * Note: On Hyper-V and Azure, it's not possible to set a MAC address * on a VF that matches to the MAC of a unrelated NETVSC device. */ list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { ndev = hv_get_drvdata(ndev_ctx->device_ctx); if (ether_addr_equal(vf_netdev->perm_addr, ndev->perm_addr) || ether_addr_equal(vf_netdev->dev_addr, ndev->perm_addr)) return ndev; } netdev_notice(vf_netdev, "no netdev found for vf serial:%u\n", serial); return NULL; } static int netvsc_prepare_bonding(struct net_device *vf_netdev) { struct net_device *ndev; ndev = get_netvsc_byslot(vf_netdev); if (!ndev) return NOTIFY_DONE; /* set slave flag before open to prevent IPv6 addrconf */ vf_netdev->flags |= IFF_SLAVE; return NOTIFY_DONE; } static int netvsc_register_vf(struct net_device *vf_netdev, int context) { struct net_device_context *net_device_ctx; struct netvsc_device *netvsc_dev; struct bpf_prog *prog; struct net_device *ndev; int ret; if (vf_netdev->addr_len != ETH_ALEN) return NOTIFY_DONE; ndev = get_netvsc_byslot(vf_netdev); if (!ndev) return NOTIFY_DONE; net_device_ctx = netdev_priv(ndev); netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) return NOTIFY_DONE; /* if synthetic interface is a different namespace, * then move the VF to that namespace; join will be * done again in that context. */ if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { ret = dev_change_net_namespace(vf_netdev, dev_net(ndev), "eth%d"); if (ret) netdev_err(vf_netdev, "could not move to same namespace as %s: %d\n", ndev->name, ret); else netdev_info(vf_netdev, "VF moved to namespace with: %s\n", ndev->name); return NOTIFY_DONE; } netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); if (netvsc_vf_join(vf_netdev, ndev, context) != 0) return NOTIFY_DONE; dev_hold(vf_netdev); rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); if (ndev->needed_headroom < vf_netdev->needed_headroom) ndev->needed_headroom = vf_netdev->needed_headroom; vf_netdev->wanted_features = ndev->features; netdev_update_features(vf_netdev); prog = netvsc_xdp_get(netvsc_dev); netvsc_vf_setxdp(vf_netdev, prog); return NOTIFY_OK; } /* Change the data path when VF UP/DOWN/CHANGE are detected. * * Typically a UP or DOWN event is followed by a CHANGE event, so * net_device_ctx->data_path_is_vf is used to cache the current data path * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate * message. * * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network * interface, there is only the CHANGE event and no UP or DOWN event. */ static int netvsc_vf_changed(struct net_device *vf_netdev, unsigned long event) { struct net_device_context *net_device_ctx; struct netvsc_device *netvsc_dev; struct net_device *ndev; bool vf_is_up = false; int ret; if (event != NETDEV_GOING_DOWN) vf_is_up = netif_running(vf_netdev); ndev = get_netvsc_byref(vf_netdev); if (!ndev) return NOTIFY_DONE; net_device_ctx = netdev_priv(ndev); netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); if (!netvsc_dev) return NOTIFY_DONE; if (net_device_ctx->data_path_is_vf == vf_is_up) return NOTIFY_OK; if (vf_is_up && !net_device_ctx->vf_alloc) { netdev_info(ndev, "Waiting for the VF association from host\n"); wait_for_completion(&net_device_ctx->vf_add); } ret = netvsc_switch_datapath(ndev, vf_is_up); if (ret) { netdev_err(ndev, "Data path failed to switch %s VF: %s, err: %d\n", vf_is_up ? "to" : "from", vf_netdev->name, ret); return NOTIFY_DONE; } else { netdev_info(ndev, "Data path switched %s VF: %s\n", vf_is_up ? "to" : "from", vf_netdev->name); } return NOTIFY_OK; } static int netvsc_unregister_vf(struct net_device *vf_netdev) { struct net_device *ndev; struct net_device_context *net_device_ctx; ndev = get_netvsc_byref(vf_netdev); if (!ndev) return NOTIFY_DONE; net_device_ctx = netdev_priv(ndev); cancel_delayed_work_sync(&net_device_ctx->vf_takeover); netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); netvsc_vf_setxdp(vf_netdev, NULL); reinit_completion(&net_device_ctx->vf_add); netdev_rx_handler_unregister(vf_netdev); netdev_upper_dev_unlink(vf_netdev, ndev); RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); dev_put(vf_netdev); ndev->needed_headroom = RNDIS_AND_PPI_SIZE; return NOTIFY_OK; } static int check_dev_is_matching_vf(struct net_device *event_ndev) { /* Skip NetVSC interfaces */ if (event_ndev->netdev_ops == &device_ops) return -ENODEV; /* Avoid non-Ethernet type devices */ if (event_ndev->type != ARPHRD_ETHER) return -ENODEV; /* Avoid Vlan dev with same MAC registering as VF */ if (is_vlan_dev(event_ndev)) return -ENODEV; /* Avoid Bonding master dev with same MAC registering as VF */ if (netif_is_bond_master(event_ndev)) return -ENODEV; return 0; } static int netvsc_probe(struct hv_device *dev, const struct hv_vmbus_device_id *dev_id) { struct net_device *net = NULL, *vf_netdev; struct net_device_context *net_device_ctx; struct netvsc_device_info *device_info = NULL; struct netvsc_device *nvdev; int ret = -ENOMEM; net = alloc_etherdev_mq(sizeof(struct net_device_context), VRSS_CHANNEL_MAX); if (!net) goto no_net; netif_carrier_off(net); netvsc_init_settings(net); net_device_ctx = netdev_priv(net); net_device_ctx->device_ctx = dev; net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); if (netif_msg_probe(net_device_ctx)) netdev_dbg(net, "netvsc msg_enable: %d\n", net_device_ctx->msg_enable); hv_set_drvdata(dev, net); INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); init_completion(&net_device_ctx->vf_add); spin_lock_init(&net_device_ctx->lock); INIT_LIST_HEAD(&net_device_ctx->reconfig_events); INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); net_device_ctx->vf_stats = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); if (!net_device_ctx->vf_stats) goto no_stats; net->netdev_ops = &device_ops; net->ethtool_ops = ðtool_ops; SET_NETDEV_DEV(net, &dev->device); dma_set_min_align_mask(&dev->device, HV_HYP_PAGE_SIZE - 1); /* We always need headroom for rndis header */ net->needed_headroom = RNDIS_AND_PPI_SIZE; /* Initialize the number of queues to be 1, we may change it if more * channels are offered later. */ netif_set_real_num_tx_queues(net, 1); netif_set_real_num_rx_queues(net, 1); /* Notify the netvsc driver of the new device */ device_info = netvsc_devinfo_get(NULL); if (!device_info) { ret = -ENOMEM; goto devinfo_failed; } /* We must get rtnl lock before scheduling nvdev->subchan_work, * otherwise netvsc_subchan_work() can get rtnl lock first and wait * all subchannels to show up, but that may not happen because * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() * -> ... -> device_add() -> ... -> __device_attach() can't get * the device lock, so all the subchannels can't be processed -- * finally netvsc_subchan_work() hangs forever. * * The rtnl lock also needs to be held before rndis_filter_device_add() * which advertises nvsp_2_vsc_capability / sriov bit, and triggers * VF NIC offering and registering. If VF NIC finished register_netdev() * earlier it may cause name based config failure. */ rtnl_lock(); nvdev = rndis_filter_device_add(dev, device_info); if (IS_ERR(nvdev)) { ret = PTR_ERR(nvdev); netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); goto rndis_failed; } eth_hw_addr_set(net, device_info->mac_adr); if (nvdev->num_chn > 1) schedule_work(&nvdev->subchan_work); /* hw_features computed in rndis_netdev_set_hwcaps() */ net->features = net->hw_features | NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; net->vlan_features = net->features; netdev_lockdep_set_classes(net); net->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | NETDEV_XDP_ACT_NDO_XMIT; /* MTU range: 68 - 1500 or 65521 */ net->min_mtu = NETVSC_MTU_MIN; if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) net->max_mtu = NETVSC_MTU - ETH_HLEN; else net->max_mtu = ETH_DATA_LEN; nvdev->tx_disable = false; ret = register_netdevice(net); if (ret != 0) { pr_err("Unable to register netdev.\n"); goto register_failed; } list_add(&net_device_ctx->list, &netvsc_dev_list); /* When the hv_netvsc driver is unloaded and reloaded, the * NET_DEVICE_REGISTER for the vf device is replayed before probe * is complete. This is because register_netdevice_notifier() gets * registered before vmbus_driver_register() so that callback func * is set before probe and we don't miss events like NETDEV_POST_INIT * So, in this section we try to register the matching vf device that * is present as a netdevice, knowing that its register call is not * processed in the netvsc_netdev_notifier(as probing is progress and * get_netvsc_byslot fails). */ for_each_netdev(dev_net(net), vf_netdev) { ret = check_dev_is_matching_vf(vf_netdev); if (ret != 0) continue; if (net != get_netvsc_byslot(vf_netdev)) continue; netvsc_prepare_bonding(vf_netdev); netvsc_register_vf(vf_netdev, VF_REG_IN_PROBE); __netvsc_vf_setup(net, vf_netdev); break; } rtnl_unlock(); netvsc_devinfo_put(device_info); return 0; register_failed: rndis_filter_device_remove(dev, nvdev); rndis_failed: rtnl_unlock(); netvsc_devinfo_put(device_info); devinfo_failed: free_percpu(net_device_ctx->vf_stats); no_stats: hv_set_drvdata(dev, NULL); free_netdev(net); no_net: return ret; } static void netvsc_remove(struct hv_device *dev) { struct net_device_context *ndev_ctx; struct net_device *vf_netdev, *net; struct netvsc_device *nvdev; net = hv_get_drvdata(dev); if (net == NULL) { dev_err(&dev->device, "No net device to remove\n"); return; } ndev_ctx = netdev_priv(net); cancel_delayed_work_sync(&ndev_ctx->dwork); rtnl_lock(); nvdev = rtnl_dereference(ndev_ctx->nvdev); if (nvdev) { cancel_work_sync(&nvdev->subchan_work); netvsc_xdp_set(net, NULL, NULL, nvdev); } /* * Call to the vsc driver to let it know that the device is being * removed. Also blocks mtu and channel changes. */ vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); if (vf_netdev) netvsc_unregister_vf(vf_netdev); if (nvdev) rndis_filter_device_remove(dev, nvdev); unregister_netdevice(net); list_del(&ndev_ctx->list); rtnl_unlock(); hv_set_drvdata(dev, NULL); free_percpu(ndev_ctx->vf_stats); free_netdev(net); } static int netvsc_suspend(struct hv_device *dev) { struct net_device_context *ndev_ctx; struct netvsc_device *nvdev; struct net_device *net; int ret; net = hv_get_drvdata(dev); ndev_ctx = netdev_priv(net); cancel_delayed_work_sync(&ndev_ctx->dwork); rtnl_lock(); nvdev = rtnl_dereference(ndev_ctx->nvdev); if (nvdev == NULL) { ret = -ENODEV; goto out; } /* Save the current config info */ ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev); if (!ndev_ctx->saved_netvsc_dev_info) { ret = -ENOMEM; goto out; } ret = netvsc_detach(net, nvdev); out: rtnl_unlock(); return ret; } static int netvsc_resume(struct hv_device *dev) { struct net_device *net = hv_get_drvdata(dev); struct net_device_context *net_device_ctx; struct netvsc_device_info *device_info; int ret; rtnl_lock(); net_device_ctx = netdev_priv(net); /* Reset the data path to the netvsc NIC before re-opening the vmbus * channel. Later netvsc_netdev_event() will switch the data path to * the VF upon the UP or CHANGE event. */ net_device_ctx->data_path_is_vf = false; device_info = net_device_ctx->saved_netvsc_dev_info; ret = netvsc_attach(net, device_info); netvsc_devinfo_put(device_info); net_device_ctx->saved_netvsc_dev_info = NULL; rtnl_unlock(); return ret; } static const struct hv_vmbus_device_id id_table[] = { /* Network guid */ { HV_NIC_GUID, }, { }, }; MODULE_DEVICE_TABLE(vmbus, id_table); /* The one and only one */ static struct hv_driver netvsc_drv = { .name = KBUILD_MODNAME, .id_table = id_table, .probe = netvsc_probe, .remove = netvsc_remove, .suspend = netvsc_suspend, .resume = netvsc_resume, .driver = { .probe_type = PROBE_FORCE_SYNCHRONOUS, }, }; /* * On Hyper-V, every VF interface is matched with a corresponding * synthetic interface. The synthetic interface is presented first * to the guest. When the corresponding VF instance is registered, * we will take care of switching the data path. */ static int netvsc_netdev_event(struct notifier_block *this, unsigned long event, void *ptr) { struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); int ret = 0; ret = check_dev_is_matching_vf(event_dev); if (ret != 0) return NOTIFY_DONE; switch (event) { case NETDEV_POST_INIT: return netvsc_prepare_bonding(event_dev); case NETDEV_REGISTER: return netvsc_register_vf(event_dev, VF_REG_IN_NOTIFIER); case NETDEV_UNREGISTER: return netvsc_unregister_vf(event_dev); case NETDEV_UP: case NETDEV_DOWN: case NETDEV_CHANGE: case NETDEV_GOING_DOWN: return netvsc_vf_changed(event_dev, event); default: return NOTIFY_DONE; } } static struct notifier_block netvsc_netdev_notifier = { .notifier_call = netvsc_netdev_event, }; static void __exit netvsc_drv_exit(void) { unregister_netdevice_notifier(&netvsc_netdev_notifier); vmbus_driver_unregister(&netvsc_drv); } static int __init netvsc_drv_init(void) { int ret; if (ring_size < RING_SIZE_MIN) { ring_size = RING_SIZE_MIN; pr_info("Increased ring_size to %u (min allowed)\n", ring_size); } netvsc_ring_bytes = VMBUS_RING_SIZE(ring_size * 4096); register_netdevice_notifier(&netvsc_netdev_notifier); ret = vmbus_driver_register(&netvsc_drv); if (ret) goto err_vmbus_reg; return 0; err_vmbus_reg: unregister_netdevice_notifier(&netvsc_netdev_notifier); return ret; } MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); module_init(netvsc_drv_init); module_exit(netvsc_drv_exit);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1