Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Hennerich | 6521 | 99.06% | 8 | 38.10% |
Kangjie Lu | 19 | 0.29% | 1 | 4.76% |
Tom Rix | 9 | 0.14% | 1 | 4.76% |
Christophe Jaillet | 8 | 0.12% | 1 | 4.76% |
Lin Ma | 7 | 0.11% | 1 | 4.76% |
Juerg Haefliger | 5 | 0.08% | 1 | 4.76% |
Stefan Schmidt | 4 | 0.06% | 1 | 4.76% |
LiuJian | 3 | 0.05% | 1 | 4.76% |
Heinrich Schuchardt | 2 | 0.03% | 1 | 4.76% |
Uwe Kleine-König | 1 | 0.02% | 1 | 4.76% |
Greg Kroah-Hartman | 1 | 0.02% | 1 | 4.76% |
Thomas Gleixner | 1 | 0.02% | 1 | 4.76% |
Bhumika Goyal | 1 | 0.02% | 1 | 4.76% |
Alexander A. Klimov | 1 | 0.02% | 1 | 4.76% |
Total | 6583 | 21 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Analog Devices ADF7242 Low-Power IEEE 802.15.4 Transceiver * * Copyright 2009-2017 Analog Devices Inc. * * https://www.analog.com/ADF7242 */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <linux/mutex.h> #include <linux/workqueue.h> #include <linux/spinlock.h> #include <linux/firmware.h> #include <linux/spi/spi.h> #include <linux/skbuff.h> #include <linux/of.h> #include <linux/irq.h> #include <linux/debugfs.h> #include <linux/bitops.h> #include <linux/ieee802154.h> #include <net/mac802154.h> #include <net/cfg802154.h> #define FIRMWARE "adf7242_firmware.bin" #define MAX_POLL_LOOPS 200 /* All Registers */ #define REG_EXT_CTRL 0x100 /* RW External LNA/PA and internal PA control */ #define REG_TX_FSK_TEST 0x101 /* RW TX FSK test mode configuration */ #define REG_CCA1 0x105 /* RW RSSI threshold for CCA */ #define REG_CCA2 0x106 /* RW CCA mode configuration */ #define REG_BUFFERCFG 0x107 /* RW RX_BUFFER overwrite control */ #define REG_PKT_CFG 0x108 /* RW FCS evaluation configuration */ #define REG_DELAYCFG0 0x109 /* RW RC_RX command to SFD or sync word delay */ #define REG_DELAYCFG1 0x10A /* RW RC_TX command to TX state */ #define REG_DELAYCFG2 0x10B /* RW Mac delay extension */ #define REG_SYNC_WORD0 0x10C /* RW sync word bits [7:0] of [23:0] */ #define REG_SYNC_WORD1 0x10D /* RW sync word bits [15:8] of [23:0] */ #define REG_SYNC_WORD2 0x10E /* RW sync word bits [23:16] of [23:0] */ #define REG_SYNC_CONFIG 0x10F /* RW sync word configuration */ #define REG_RC_CFG 0x13E /* RW RX / TX packet configuration */ #define REG_RC_VAR44 0x13F /* RW RESERVED */ #define REG_CH_FREQ0 0x300 /* RW Channel Frequency Settings - Low */ #define REG_CH_FREQ1 0x301 /* RW Channel Frequency Settings - Middle */ #define REG_CH_FREQ2 0x302 /* RW Channel Frequency Settings - High */ #define REG_TX_FD 0x304 /* RW TX Frequency Deviation Register */ #define REG_DM_CFG0 0x305 /* RW RX Discriminator BW Register */ #define REG_TX_M 0x306 /* RW TX Mode Register */ #define REG_RX_M 0x307 /* RW RX Mode Register */ #define REG_RRB 0x30C /* R RSSI Readback Register */ #define REG_LRB 0x30D /* R Link Quality Readback Register */ #define REG_DR0 0x30E /* RW bits [15:8] of [15:0] data rate setting */ #define REG_DR1 0x30F /* RW bits [7:0] of [15:0] data rate setting */ #define REG_PRAMPG 0x313 /* RW RESERVED */ #define REG_TXPB 0x314 /* RW TX Packet Storage Base Address */ #define REG_RXPB 0x315 /* RW RX Packet Storage Base Address */ #define REG_TMR_CFG0 0x316 /* RW Wake up Timer Conf Register - High */ #define REG_TMR_CFG1 0x317 /* RW Wake up Timer Conf Register - Low */ #define REG_TMR_RLD0 0x318 /* RW Wake up Timer Value Register - High */ #define REG_TMR_RLD1 0x319 /* RW Wake up Timer Value Register - Low */ #define REG_TMR_CTRL 0x31A /* RW Wake up Timer Timeout flag */ #define REG_PD_AUX 0x31E /* RW Battmon enable */ #define REG_GP_CFG 0x32C /* RW GPIO Configuration */ #define REG_GP_OUT 0x32D /* RW GPIO Configuration */ #define REG_GP_IN 0x32E /* R GPIO Configuration */ #define REG_SYNT 0x335 /* RW bandwidth calibration timers */ #define REG_CAL_CFG 0x33D /* RW Calibration Settings */ #define REG_PA_BIAS 0x36E /* RW PA BIAS */ #define REG_SYNT_CAL 0x371 /* RW Oscillator and Doubler Configuration */ #define REG_IIRF_CFG 0x389 /* RW BB Filter Decimation Rate */ #define REG_CDR_CFG 0x38A /* RW CDR kVCO */ #define REG_DM_CFG1 0x38B /* RW Postdemodulator Filter */ #define REG_AGCSTAT 0x38E /* R RXBB Ref Osc Calibration Engine Readback */ #define REG_RXCAL0 0x395 /* RW RX BB filter tuning, LSB */ #define REG_RXCAL1 0x396 /* RW RX BB filter tuning, MSB */ #define REG_RXFE_CFG 0x39B /* RW RXBB Ref Osc & RXFE Calibration */ #define REG_PA_RR 0x3A7 /* RW Set PA ramp rate */ #define REG_PA_CFG 0x3A8 /* RW PA enable */ #define REG_EXTPA_CFG 0x3A9 /* RW External PA BIAS DAC */ #define REG_EXTPA_MSC 0x3AA /* RW PA Bias Mode */ #define REG_ADC_RBK 0x3AE /* R Readback temp */ #define REG_AGC_CFG1 0x3B2 /* RW GC Parameters */ #define REG_AGC_MAX 0x3B4 /* RW Slew rate */ #define REG_AGC_CFG2 0x3B6 /* RW RSSI Parameters */ #define REG_AGC_CFG3 0x3B7 /* RW RSSI Parameters */ #define REG_AGC_CFG4 0x3B8 /* RW RSSI Parameters */ #define REG_AGC_CFG5 0x3B9 /* RW RSSI & NDEC Parameters */ #define REG_AGC_CFG6 0x3BA /* RW NDEC Parameters */ #define REG_OCL_CFG1 0x3C4 /* RW OCL System Parameters */ #define REG_IRQ1_EN0 0x3C7 /* RW Interrupt Mask set bits for IRQ1 */ #define REG_IRQ1_EN1 0x3C8 /* RW Interrupt Mask set bits for IRQ1 */ #define REG_IRQ2_EN0 0x3C9 /* RW Interrupt Mask set bits for IRQ2 */ #define REG_IRQ2_EN1 0x3CA /* RW Interrupt Mask set bits for IRQ2 */ #define REG_IRQ1_SRC0 0x3CB /* RW Interrupt Source bits for IRQ */ #define REG_IRQ1_SRC1 0x3CC /* RW Interrupt Source bits for IRQ */ #define REG_OCL_BW0 0x3D2 /* RW OCL System Parameters */ #define REG_OCL_BW1 0x3D3 /* RW OCL System Parameters */ #define REG_OCL_BW2 0x3D4 /* RW OCL System Parameters */ #define REG_OCL_BW3 0x3D5 /* RW OCL System Parameters */ #define REG_OCL_BW4 0x3D6 /* RW OCL System Parameters */ #define REG_OCL_BWS 0x3D7 /* RW OCL System Parameters */ #define REG_OCL_CFG13 0x3E0 /* RW OCL System Parameters */ #define REG_GP_DRV 0x3E3 /* RW I/O pads Configuration and bg trim */ #define REG_BM_CFG 0x3E6 /* RW Batt. Monitor Threshold Voltage setting */ #define REG_SFD_15_4 0x3F4 /* RW Option to set non standard SFD */ #define REG_AFC_CFG 0x3F7 /* RW AFC mode and polarity */ #define REG_AFC_KI_KP 0x3F8 /* RW AFC ki and kp */ #define REG_AFC_RANGE 0x3F9 /* RW AFC range */ #define REG_AFC_READ 0x3FA /* RW Readback frequency error */ /* REG_EXTPA_MSC */ #define PA_PWR(x) (((x) & 0xF) << 4) #define EXTPA_BIAS_SRC BIT(3) #define EXTPA_BIAS_MODE(x) (((x) & 0x7) << 0) /* REG_PA_CFG */ #define PA_BRIDGE_DBIAS(x) (((x) & 0x1F) << 0) #define PA_DBIAS_HIGH_POWER 21 #define PA_DBIAS_LOW_POWER 13 /* REG_PA_BIAS */ #define PA_BIAS_CTRL(x) (((x) & 0x1F) << 1) #define REG_PA_BIAS_DFL BIT(0) #define PA_BIAS_HIGH_POWER 63 #define PA_BIAS_LOW_POWER 55 #define REG_PAN_ID0 0x112 #define REG_PAN_ID1 0x113 #define REG_SHORT_ADDR_0 0x114 #define REG_SHORT_ADDR_1 0x115 #define REG_IEEE_ADDR_0 0x116 #define REG_IEEE_ADDR_1 0x117 #define REG_IEEE_ADDR_2 0x118 #define REG_IEEE_ADDR_3 0x119 #define REG_IEEE_ADDR_4 0x11A #define REG_IEEE_ADDR_5 0x11B #define REG_IEEE_ADDR_6 0x11C #define REG_IEEE_ADDR_7 0x11D #define REG_FFILT_CFG 0x11E #define REG_AUTO_CFG 0x11F #define REG_AUTO_TX1 0x120 #define REG_AUTO_TX2 0x121 #define REG_AUTO_STATUS 0x122 /* REG_FFILT_CFG */ #define ACCEPT_BEACON_FRAMES BIT(0) #define ACCEPT_DATA_FRAMES BIT(1) #define ACCEPT_ACK_FRAMES BIT(2) #define ACCEPT_MACCMD_FRAMES BIT(3) #define ACCEPT_RESERVED_FRAMES BIT(4) #define ACCEPT_ALL_ADDRESS BIT(5) /* REG_AUTO_CFG */ #define AUTO_ACK_FRAMEPEND BIT(0) #define IS_PANCOORD BIT(1) #define RX_AUTO_ACK_EN BIT(3) #define CSMA_CA_RX_TURNAROUND BIT(4) /* REG_AUTO_TX1 */ #define MAX_FRAME_RETRIES(x) ((x) & 0xF) #define MAX_CCA_RETRIES(x) (((x) & 0x7) << 4) /* REG_AUTO_TX2 */ #define CSMA_MAX_BE(x) ((x) & 0xF) #define CSMA_MIN_BE(x) (((x) & 0xF) << 4) #define CMD_SPI_NOP 0xFF /* No operation. Use for dummy writes */ #define CMD_SPI_PKT_WR 0x10 /* Write telegram to the Packet RAM * starting from the TX packet base address * pointer tx_packet_base */ #define CMD_SPI_PKT_RD 0x30 /* Read telegram from the Packet RAM * starting from RX packet base address * pointer rxpb.rx_packet_base */ #define CMD_SPI_MEM_WR(x) (0x18 + (x >> 8)) /* Write data to MCR or * Packet RAM sequentially */ #define CMD_SPI_MEM_RD(x) (0x38 + (x >> 8)) /* Read data from MCR or * Packet RAM sequentially */ #define CMD_SPI_MEMR_WR(x) (0x08 + (x >> 8)) /* Write data to MCR or Packet * RAM as random block */ #define CMD_SPI_MEMR_RD(x) (0x28 + (x >> 8)) /* Read data from MCR or * Packet RAM random block */ #define CMD_SPI_PRAM_WR 0x1E /* Write data sequentially to current * PRAM page selected */ #define CMD_SPI_PRAM_RD 0x3E /* Read data sequentially from current * PRAM page selected */ #define CMD_RC_SLEEP 0xB1 /* Invoke transition of radio controller * into SLEEP state */ #define CMD_RC_IDLE 0xB2 /* Invoke transition of radio controller * into IDLE state */ #define CMD_RC_PHY_RDY 0xB3 /* Invoke transition of radio controller * into PHY_RDY state */ #define CMD_RC_RX 0xB4 /* Invoke transition of radio controller * into RX state */ #define CMD_RC_TX 0xB5 /* Invoke transition of radio controller * into TX state */ #define CMD_RC_MEAS 0xB6 /* Invoke transition of radio controller * into MEAS state */ #define CMD_RC_CCA 0xB7 /* Invoke Clear channel assessment */ #define CMD_RC_CSMACA 0xC1 /* initiates CSMA-CA channel access * sequence and frame transmission */ #define CMD_RC_PC_RESET 0xC7 /* Program counter reset */ #define CMD_RC_RESET 0xC8 /* Resets the ADF7242 and puts it in * the sleep state */ #define CMD_RC_PC_RESET_NO_WAIT (CMD_RC_PC_RESET | BIT(31)) /* STATUS */ #define STAT_SPI_READY BIT(7) #define STAT_IRQ_STATUS BIT(6) #define STAT_RC_READY BIT(5) #define STAT_CCA_RESULT BIT(4) #define RC_STATUS_IDLE 1 #define RC_STATUS_MEAS 2 #define RC_STATUS_PHY_RDY 3 #define RC_STATUS_RX 4 #define RC_STATUS_TX 5 #define RC_STATUS_MASK 0xF /* AUTO_STATUS */ #define SUCCESS 0 #define SUCCESS_DATPEND 1 #define FAILURE_CSMACA 2 #define FAILURE_NOACK 3 #define AUTO_STATUS_MASK 0x3 #define PRAM_PAGESIZE 256 /* IRQ1 */ #define IRQ_CCA_COMPLETE BIT(0) #define IRQ_SFD_RX BIT(1) #define IRQ_SFD_TX BIT(2) #define IRQ_RX_PKT_RCVD BIT(3) #define IRQ_TX_PKT_SENT BIT(4) #define IRQ_FRAME_VALID BIT(5) #define IRQ_ADDRESS_VALID BIT(6) #define IRQ_CSMA_CA BIT(7) #define AUTO_TX_TURNAROUND BIT(3) #define ADDON_EN BIT(4) #define FLAG_XMIT 0 #define FLAG_START 1 #define ADF7242_REPORT_CSMA_CA_STAT 0 /* framework doesn't handle yet */ struct adf7242_local { struct spi_device *spi; struct completion tx_complete; struct ieee802154_hw *hw; struct mutex bmux; /* protect SPI messages */ struct spi_message stat_msg; struct spi_transfer stat_xfer; struct dentry *debugfs_root; struct delayed_work work; struct workqueue_struct *wqueue; unsigned long flags; int tx_stat; bool promiscuous; s8 rssi; u8 max_frame_retries; u8 max_cca_retries; u8 max_be; u8 min_be; /* DMA (thus cache coherency maintenance) requires the * transfer buffers to live in their own cache lines. */ u8 buf[3] ____cacheline_aligned; u8 buf_reg_tx[3]; u8 buf_read_tx[4]; u8 buf_read_rx[4]; u8 buf_stat_rx; u8 buf_stat_tx; u8 buf_cmd; }; static int adf7242_soft_reset(struct adf7242_local *lp, int line); static int adf7242_status(struct adf7242_local *lp, u8 *stat) { int status; mutex_lock(&lp->bmux); status = spi_sync(lp->spi, &lp->stat_msg); *stat = lp->buf_stat_rx; mutex_unlock(&lp->bmux); return status; } static int adf7242_wait_status(struct adf7242_local *lp, unsigned int status, unsigned int mask, int line) { int cnt = 0, ret = 0; u8 stat; do { adf7242_status(lp, &stat); cnt++; } while (((stat & mask) != status) && (cnt < MAX_POLL_LOOPS)); if (cnt >= MAX_POLL_LOOPS) { ret = -ETIMEDOUT; if (!(stat & STAT_RC_READY)) { adf7242_soft_reset(lp, line); adf7242_status(lp, &stat); if ((stat & mask) == status) ret = 0; } if (ret < 0) dev_warn(&lp->spi->dev, "%s:line %d Timeout status 0x%x (%d)\n", __func__, line, stat, cnt); } dev_vdbg(&lp->spi->dev, "%s : loops=%d line %d\n", __func__, cnt, line); return ret; } static int adf7242_wait_rc_ready(struct adf7242_local *lp, int line) { return adf7242_wait_status(lp, STAT_RC_READY | STAT_SPI_READY, STAT_RC_READY | STAT_SPI_READY, line); } static int adf7242_wait_spi_ready(struct adf7242_local *lp, int line) { return adf7242_wait_status(lp, STAT_SPI_READY, STAT_SPI_READY, line); } static int adf7242_write_fbuf(struct adf7242_local *lp, u8 *data, u8 len) { u8 *buf = lp->buf; int status; struct spi_message msg; struct spi_transfer xfer_head = { .len = 2, .tx_buf = buf, }; struct spi_transfer xfer_buf = { .len = len, .tx_buf = data, }; spi_message_init(&msg); spi_message_add_tail(&xfer_head, &msg); spi_message_add_tail(&xfer_buf, &msg); adf7242_wait_spi_ready(lp, __LINE__); mutex_lock(&lp->bmux); buf[0] = CMD_SPI_PKT_WR; buf[1] = len + 2; status = spi_sync(lp->spi, &msg); mutex_unlock(&lp->bmux); return status; } static int adf7242_read_fbuf(struct adf7242_local *lp, u8 *data, size_t len, bool packet_read) { u8 *buf = lp->buf; int status; struct spi_message msg; struct spi_transfer xfer_head = { .len = 3, .tx_buf = buf, .rx_buf = buf, }; struct spi_transfer xfer_buf = { .len = len, .rx_buf = data, }; spi_message_init(&msg); spi_message_add_tail(&xfer_head, &msg); spi_message_add_tail(&xfer_buf, &msg); adf7242_wait_spi_ready(lp, __LINE__); mutex_lock(&lp->bmux); if (packet_read) { buf[0] = CMD_SPI_PKT_RD; buf[1] = CMD_SPI_NOP; buf[2] = 0; /* PHR */ } else { buf[0] = CMD_SPI_PRAM_RD; buf[1] = 0; buf[2] = CMD_SPI_NOP; } status = spi_sync(lp->spi, &msg); mutex_unlock(&lp->bmux); return status; } static int adf7242_read_reg(struct adf7242_local *lp, u16 addr, u8 *data) { int status; struct spi_message msg; struct spi_transfer xfer = { .len = 4, .tx_buf = lp->buf_read_tx, .rx_buf = lp->buf_read_rx, }; adf7242_wait_spi_ready(lp, __LINE__); mutex_lock(&lp->bmux); lp->buf_read_tx[0] = CMD_SPI_MEM_RD(addr); lp->buf_read_tx[1] = addr; lp->buf_read_tx[2] = CMD_SPI_NOP; lp->buf_read_tx[3] = CMD_SPI_NOP; spi_message_init(&msg); spi_message_add_tail(&xfer, &msg); status = spi_sync(lp->spi, &msg); if (msg.status) status = msg.status; if (!status) *data = lp->buf_read_rx[3]; mutex_unlock(&lp->bmux); dev_vdbg(&lp->spi->dev, "%s : REG 0x%X, VAL 0x%X\n", __func__, addr, *data); return status; } static int adf7242_write_reg(struct adf7242_local *lp, u16 addr, u8 data) { int status; adf7242_wait_spi_ready(lp, __LINE__); mutex_lock(&lp->bmux); lp->buf_reg_tx[0] = CMD_SPI_MEM_WR(addr); lp->buf_reg_tx[1] = addr; lp->buf_reg_tx[2] = data; status = spi_write(lp->spi, lp->buf_reg_tx, 3); mutex_unlock(&lp->bmux); dev_vdbg(&lp->spi->dev, "%s : REG 0x%X, VAL 0x%X\n", __func__, addr, data); return status; } static int adf7242_cmd(struct adf7242_local *lp, unsigned int cmd) { int status; dev_vdbg(&lp->spi->dev, "%s : CMD=0x%X\n", __func__, cmd); if (cmd != CMD_RC_PC_RESET_NO_WAIT) adf7242_wait_rc_ready(lp, __LINE__); mutex_lock(&lp->bmux); lp->buf_cmd = cmd; status = spi_write(lp->spi, &lp->buf_cmd, 1); mutex_unlock(&lp->bmux); return status; } static int adf7242_upload_firmware(struct adf7242_local *lp, u8 *data, u16 len) { struct spi_message msg; struct spi_transfer xfer_buf = { }; int status, i, page = 0; u8 *buf = lp->buf; struct spi_transfer xfer_head = { .len = 2, .tx_buf = buf, }; buf[0] = CMD_SPI_PRAM_WR; buf[1] = 0; spi_message_init(&msg); spi_message_add_tail(&xfer_head, &msg); spi_message_add_tail(&xfer_buf, &msg); for (i = len; i >= 0; i -= PRAM_PAGESIZE) { adf7242_write_reg(lp, REG_PRAMPG, page); xfer_buf.len = (i >= PRAM_PAGESIZE) ? PRAM_PAGESIZE : i; xfer_buf.tx_buf = &data[page * PRAM_PAGESIZE]; mutex_lock(&lp->bmux); status = spi_sync(lp->spi, &msg); mutex_unlock(&lp->bmux); page++; } return status; } static int adf7242_verify_firmware(struct adf7242_local *lp, const u8 *data, size_t len) { #ifdef DEBUG int i, j; unsigned int page; u8 *buf = kmalloc(PRAM_PAGESIZE, GFP_KERNEL); if (!buf) return -ENOMEM; for (page = 0, i = len; i >= 0; i -= PRAM_PAGESIZE, page++) { size_t nb = (i >= PRAM_PAGESIZE) ? PRAM_PAGESIZE : i; adf7242_write_reg(lp, REG_PRAMPG, page); adf7242_read_fbuf(lp, buf, nb, false); for (j = 0; j < nb; j++) { if (buf[j] != data[page * PRAM_PAGESIZE + j]) { kfree(buf); return -EIO; } } } kfree(buf); #endif return 0; } static void adf7242_clear_irqstat(struct adf7242_local *lp) { adf7242_write_reg(lp, REG_IRQ1_SRC1, IRQ_CCA_COMPLETE | IRQ_SFD_RX | IRQ_SFD_TX | IRQ_RX_PKT_RCVD | IRQ_TX_PKT_SENT | IRQ_FRAME_VALID | IRQ_ADDRESS_VALID | IRQ_CSMA_CA); } static int adf7242_cmd_rx(struct adf7242_local *lp) { /* Wait until the ACK is sent */ adf7242_wait_status(lp, RC_STATUS_PHY_RDY, RC_STATUS_MASK, __LINE__); adf7242_clear_irqstat(lp); mod_delayed_work(lp->wqueue, &lp->work, msecs_to_jiffies(400)); return adf7242_cmd(lp, CMD_RC_RX); } static void adf7242_rx_cal_work(struct work_struct *work) { struct adf7242_local *lp = container_of(work, struct adf7242_local, work.work); /* Reissuing RC_RX every 400ms - to adjust for offset * drift in receiver (datasheet page 61, OCL section) */ if (!test_bit(FLAG_XMIT, &lp->flags)) { adf7242_cmd(lp, CMD_RC_PHY_RDY); adf7242_cmd_rx(lp); } } static int adf7242_set_txpower(struct ieee802154_hw *hw, int mbm) { struct adf7242_local *lp = hw->priv; u8 pwr, bias_ctrl, dbias, tmp; int db = mbm / 100; dev_vdbg(&lp->spi->dev, "%s : Power %d dB\n", __func__, db); if (db > 5 || db < -26) return -EINVAL; db = DIV_ROUND_CLOSEST(db + 29, 2); if (db > 15) { dbias = PA_DBIAS_HIGH_POWER; bias_ctrl = PA_BIAS_HIGH_POWER; } else { dbias = PA_DBIAS_LOW_POWER; bias_ctrl = PA_BIAS_LOW_POWER; } pwr = clamp_t(u8, db, 3, 15); adf7242_read_reg(lp, REG_PA_CFG, &tmp); tmp &= ~PA_BRIDGE_DBIAS(~0); tmp |= PA_BRIDGE_DBIAS(dbias); adf7242_write_reg(lp, REG_PA_CFG, tmp); adf7242_read_reg(lp, REG_PA_BIAS, &tmp); tmp &= ~PA_BIAS_CTRL(~0); tmp |= PA_BIAS_CTRL(bias_ctrl); adf7242_write_reg(lp, REG_PA_BIAS, tmp); adf7242_read_reg(lp, REG_EXTPA_MSC, &tmp); tmp &= ~PA_PWR(~0); tmp |= PA_PWR(pwr); return adf7242_write_reg(lp, REG_EXTPA_MSC, tmp); } static int adf7242_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be, u8 retries) { struct adf7242_local *lp = hw->priv; int ret; dev_vdbg(&lp->spi->dev, "%s : min_be=%d max_be=%d retries=%d\n", __func__, min_be, max_be, retries); if (min_be > max_be || max_be > 8 || retries > 5) return -EINVAL; ret = adf7242_write_reg(lp, REG_AUTO_TX1, MAX_FRAME_RETRIES(lp->max_frame_retries) | MAX_CCA_RETRIES(retries)); if (ret) return ret; lp->max_cca_retries = retries; lp->max_be = max_be; lp->min_be = min_be; return adf7242_write_reg(lp, REG_AUTO_TX2, CSMA_MAX_BE(max_be) | CSMA_MIN_BE(min_be)); } static int adf7242_set_frame_retries(struct ieee802154_hw *hw, s8 retries) { struct adf7242_local *lp = hw->priv; int ret = 0; dev_vdbg(&lp->spi->dev, "%s : Retries = %d\n", __func__, retries); if (retries < -1 || retries > 15) return -EINVAL; if (retries >= 0) ret = adf7242_write_reg(lp, REG_AUTO_TX1, MAX_FRAME_RETRIES(retries) | MAX_CCA_RETRIES(lp->max_cca_retries)); lp->max_frame_retries = retries; return ret; } static int adf7242_ed(struct ieee802154_hw *hw, u8 *level) { struct adf7242_local *lp = hw->priv; *level = lp->rssi; dev_vdbg(&lp->spi->dev, "%s :Exit level=%d\n", __func__, *level); return 0; } static int adf7242_start(struct ieee802154_hw *hw) { struct adf7242_local *lp = hw->priv; adf7242_cmd(lp, CMD_RC_PHY_RDY); adf7242_clear_irqstat(lp); enable_irq(lp->spi->irq); set_bit(FLAG_START, &lp->flags); return adf7242_cmd_rx(lp); } static void adf7242_stop(struct ieee802154_hw *hw) { struct adf7242_local *lp = hw->priv; disable_irq(lp->spi->irq); cancel_delayed_work_sync(&lp->work); adf7242_cmd(lp, CMD_RC_IDLE); clear_bit(FLAG_START, &lp->flags); adf7242_clear_irqstat(lp); } static int adf7242_channel(struct ieee802154_hw *hw, u8 page, u8 channel) { struct adf7242_local *lp = hw->priv; unsigned long freq; dev_dbg(&lp->spi->dev, "%s :Channel=%d\n", __func__, channel); might_sleep(); WARN_ON(page != 0); WARN_ON(channel < 11); WARN_ON(channel > 26); freq = (2405 + 5 * (channel - 11)) * 100; adf7242_cmd(lp, CMD_RC_PHY_RDY); adf7242_write_reg(lp, REG_CH_FREQ0, freq); adf7242_write_reg(lp, REG_CH_FREQ1, freq >> 8); adf7242_write_reg(lp, REG_CH_FREQ2, freq >> 16); if (test_bit(FLAG_START, &lp->flags)) return adf7242_cmd_rx(lp); else return adf7242_cmd(lp, CMD_RC_PHY_RDY); } static int adf7242_set_hw_addr_filt(struct ieee802154_hw *hw, struct ieee802154_hw_addr_filt *filt, unsigned long changed) { struct adf7242_local *lp = hw->priv; u8 reg; dev_dbg(&lp->spi->dev, "%s :Changed=0x%lX\n", __func__, changed); might_sleep(); if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) { u8 addr[8], i; memcpy(addr, &filt->ieee_addr, 8); for (i = 0; i < 8; i++) adf7242_write_reg(lp, REG_IEEE_ADDR_0 + i, addr[i]); } if (changed & IEEE802154_AFILT_SADDR_CHANGED) { u16 saddr = le16_to_cpu(filt->short_addr); adf7242_write_reg(lp, REG_SHORT_ADDR_0, saddr); adf7242_write_reg(lp, REG_SHORT_ADDR_1, saddr >> 8); } if (changed & IEEE802154_AFILT_PANID_CHANGED) { u16 pan_id = le16_to_cpu(filt->pan_id); adf7242_write_reg(lp, REG_PAN_ID0, pan_id); adf7242_write_reg(lp, REG_PAN_ID1, pan_id >> 8); } if (changed & IEEE802154_AFILT_PANC_CHANGED) { adf7242_read_reg(lp, REG_AUTO_CFG, ®); if (filt->pan_coord) reg |= IS_PANCOORD; else reg &= ~IS_PANCOORD; adf7242_write_reg(lp, REG_AUTO_CFG, reg); } return 0; } static int adf7242_set_promiscuous_mode(struct ieee802154_hw *hw, bool on) { struct adf7242_local *lp = hw->priv; dev_dbg(&lp->spi->dev, "%s : mode %d\n", __func__, on); lp->promiscuous = on; if (on) { adf7242_write_reg(lp, REG_AUTO_CFG, 0); return adf7242_write_reg(lp, REG_FFILT_CFG, ACCEPT_BEACON_FRAMES | ACCEPT_DATA_FRAMES | ACCEPT_MACCMD_FRAMES | ACCEPT_ALL_ADDRESS | ACCEPT_ACK_FRAMES | ACCEPT_RESERVED_FRAMES); } else { adf7242_write_reg(lp, REG_FFILT_CFG, ACCEPT_BEACON_FRAMES | ACCEPT_DATA_FRAMES | ACCEPT_MACCMD_FRAMES | ACCEPT_RESERVED_FRAMES); return adf7242_write_reg(lp, REG_AUTO_CFG, RX_AUTO_ACK_EN); } } static int adf7242_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm) { struct adf7242_local *lp = hw->priv; s8 level = clamp_t(s8, mbm / 100, S8_MIN, S8_MAX); dev_dbg(&lp->spi->dev, "%s : level %d\n", __func__, level); return adf7242_write_reg(lp, REG_CCA1, level); } static int adf7242_xmit(struct ieee802154_hw *hw, struct sk_buff *skb) { struct adf7242_local *lp = hw->priv; int ret; /* ensure existing instances of the IRQ handler have completed */ disable_irq(lp->spi->irq); set_bit(FLAG_XMIT, &lp->flags); cancel_delayed_work_sync(&lp->work); reinit_completion(&lp->tx_complete); adf7242_cmd(lp, CMD_RC_PHY_RDY); adf7242_clear_irqstat(lp); ret = adf7242_write_fbuf(lp, skb->data, skb->len); if (ret) goto err; ret = adf7242_cmd(lp, CMD_RC_CSMACA); if (ret) goto err; enable_irq(lp->spi->irq); ret = wait_for_completion_interruptible_timeout(&lp->tx_complete, HZ / 10); if (ret < 0) goto err; if (ret == 0) { dev_dbg(&lp->spi->dev, "Timeout waiting for TX interrupt\n"); ret = -ETIMEDOUT; goto err; } if (lp->tx_stat != SUCCESS) { dev_dbg(&lp->spi->dev, "Error xmit: Retry count exceeded Status=0x%x\n", lp->tx_stat); ret = -ECOMM; } else { ret = 0; } err: clear_bit(FLAG_XMIT, &lp->flags); adf7242_cmd_rx(lp); return ret; } static int adf7242_rx(struct adf7242_local *lp) { struct sk_buff *skb; size_t len; int ret; u8 lqi, len_u8, *data; ret = adf7242_read_reg(lp, 0, &len_u8); if (ret) return ret; len = len_u8; if (!ieee802154_is_valid_psdu_len(len)) { dev_dbg(&lp->spi->dev, "corrupted frame received len %d\n", (int)len); len = IEEE802154_MTU; } skb = dev_alloc_skb(len); if (!skb) { adf7242_cmd_rx(lp); return -ENOMEM; } data = skb_put(skb, len); ret = adf7242_read_fbuf(lp, data, len, true); if (ret < 0) { kfree_skb(skb); adf7242_cmd_rx(lp); return ret; } lqi = data[len - 2]; lp->rssi = data[len - 1]; ret = adf7242_cmd_rx(lp); skb_trim(skb, len - 2); /* Don't put RSSI/LQI or CRC into the frame */ ieee802154_rx_irqsafe(lp->hw, skb, lqi); dev_dbg(&lp->spi->dev, "%s: ret=%d len=%d lqi=%d rssi=%d\n", __func__, ret, (int)len, (int)lqi, lp->rssi); return ret; } static const struct ieee802154_ops adf7242_ops = { .owner = THIS_MODULE, .xmit_sync = adf7242_xmit, .ed = adf7242_ed, .set_channel = adf7242_channel, .set_hw_addr_filt = adf7242_set_hw_addr_filt, .start = adf7242_start, .stop = adf7242_stop, .set_csma_params = adf7242_set_csma_params, .set_frame_retries = adf7242_set_frame_retries, .set_txpower = adf7242_set_txpower, .set_promiscuous_mode = adf7242_set_promiscuous_mode, .set_cca_ed_level = adf7242_set_cca_ed_level, }; static void adf7242_debug(struct adf7242_local *lp, u8 irq1) { #ifdef DEBUG u8 stat; adf7242_status(lp, &stat); dev_dbg(&lp->spi->dev, "%s IRQ1 = %X:\n%s%s%s%s%s%s%s%s\n", __func__, irq1, irq1 & IRQ_CCA_COMPLETE ? "IRQ_CCA_COMPLETE\n" : "", irq1 & IRQ_SFD_RX ? "IRQ_SFD_RX\n" : "", irq1 & IRQ_SFD_TX ? "IRQ_SFD_TX\n" : "", irq1 & IRQ_RX_PKT_RCVD ? "IRQ_RX_PKT_RCVD\n" : "", irq1 & IRQ_TX_PKT_SENT ? "IRQ_TX_PKT_SENT\n" : "", irq1 & IRQ_CSMA_CA ? "IRQ_CSMA_CA\n" : "", irq1 & IRQ_FRAME_VALID ? "IRQ_FRAME_VALID\n" : "", irq1 & IRQ_ADDRESS_VALID ? "IRQ_ADDRESS_VALID\n" : ""); dev_dbg(&lp->spi->dev, "%s STATUS = %X:\n%s\n%s\n%s\n%s\n%s%s%s%s%s\n", __func__, stat, stat & STAT_SPI_READY ? "SPI_READY" : "SPI_BUSY", stat & STAT_IRQ_STATUS ? "IRQ_PENDING" : "IRQ_CLEAR", stat & STAT_RC_READY ? "RC_READY" : "RC_BUSY", stat & STAT_CCA_RESULT ? "CHAN_IDLE" : "CHAN_BUSY", (stat & 0xf) == RC_STATUS_IDLE ? "RC_STATUS_IDLE" : "", (stat & 0xf) == RC_STATUS_MEAS ? "RC_STATUS_MEAS" : "", (stat & 0xf) == RC_STATUS_PHY_RDY ? "RC_STATUS_PHY_RDY" : "", (stat & 0xf) == RC_STATUS_RX ? "RC_STATUS_RX" : "", (stat & 0xf) == RC_STATUS_TX ? "RC_STATUS_TX" : ""); #endif } static irqreturn_t adf7242_isr(int irq, void *data) { struct adf7242_local *lp = data; unsigned int xmit; u8 irq1; mod_delayed_work(lp->wqueue, &lp->work, msecs_to_jiffies(400)); adf7242_read_reg(lp, REG_IRQ1_SRC1, &irq1); if (!(irq1 & (IRQ_RX_PKT_RCVD | IRQ_CSMA_CA))) dev_err(&lp->spi->dev, "%s :ERROR IRQ1 = 0x%X\n", __func__, irq1); adf7242_debug(lp, irq1); xmit = test_bit(FLAG_XMIT, &lp->flags); if (xmit && (irq1 & IRQ_CSMA_CA)) { adf7242_wait_status(lp, RC_STATUS_PHY_RDY, RC_STATUS_MASK, __LINE__); if (ADF7242_REPORT_CSMA_CA_STAT) { u8 astat; adf7242_read_reg(lp, REG_AUTO_STATUS, &astat); astat &= AUTO_STATUS_MASK; dev_dbg(&lp->spi->dev, "AUTO_STATUS = %X:\n%s%s%s%s\n", astat, astat == SUCCESS ? "SUCCESS" : "", astat == SUCCESS_DATPEND ? "SUCCESS_DATPEND" : "", astat == FAILURE_CSMACA ? "FAILURE_CSMACA" : "", astat == FAILURE_NOACK ? "FAILURE_NOACK" : ""); /* save CSMA-CA completion status */ lp->tx_stat = astat; } else { lp->tx_stat = SUCCESS; } complete(&lp->tx_complete); adf7242_clear_irqstat(lp); } else if (!xmit && (irq1 & IRQ_RX_PKT_RCVD) && (irq1 & IRQ_FRAME_VALID)) { adf7242_rx(lp); } else if (!xmit && test_bit(FLAG_START, &lp->flags)) { /* Invalid packet received - drop it and restart */ dev_dbg(&lp->spi->dev, "%s:%d : ERROR IRQ1 = 0x%X\n", __func__, __LINE__, irq1); adf7242_cmd(lp, CMD_RC_PHY_RDY); adf7242_cmd_rx(lp); } else { /* This can only be xmit without IRQ, likely a RX packet. * we get an TX IRQ shortly - do nothing or let the xmit * timeout handle this */ dev_dbg(&lp->spi->dev, "%s:%d : ERROR IRQ1 = 0x%X, xmit %d\n", __func__, __LINE__, irq1, xmit); adf7242_wait_status(lp, RC_STATUS_PHY_RDY, RC_STATUS_MASK, __LINE__); complete(&lp->tx_complete); adf7242_clear_irqstat(lp); } return IRQ_HANDLED; } static int adf7242_soft_reset(struct adf7242_local *lp, int line) { dev_warn(&lp->spi->dev, "%s (line %d)\n", __func__, line); if (test_bit(FLAG_START, &lp->flags)) disable_irq_nosync(lp->spi->irq); adf7242_cmd(lp, CMD_RC_PC_RESET_NO_WAIT); usleep_range(200, 250); adf7242_write_reg(lp, REG_PKT_CFG, ADDON_EN | BIT(2)); adf7242_cmd(lp, CMD_RC_PHY_RDY); adf7242_set_promiscuous_mode(lp->hw, lp->promiscuous); adf7242_set_csma_params(lp->hw, lp->min_be, lp->max_be, lp->max_cca_retries); adf7242_clear_irqstat(lp); if (test_bit(FLAG_START, &lp->flags)) { enable_irq(lp->spi->irq); return adf7242_cmd(lp, CMD_RC_RX); } return 0; } static int adf7242_hw_init(struct adf7242_local *lp) { int ret; const struct firmware *fw; adf7242_cmd(lp, CMD_RC_RESET); adf7242_cmd(lp, CMD_RC_IDLE); /* get ADF7242 addon firmware * build this driver as module * and place under /lib/firmware/adf7242_firmware.bin * or compile firmware into the kernel. */ ret = request_firmware(&fw, FIRMWARE, &lp->spi->dev); if (ret) { dev_err(&lp->spi->dev, "request_firmware() failed with %d\n", ret); return ret; } ret = adf7242_upload_firmware(lp, (u8 *)fw->data, fw->size); if (ret) { dev_err(&lp->spi->dev, "upload firmware failed with %d\n", ret); release_firmware(fw); return ret; } ret = adf7242_verify_firmware(lp, (u8 *)fw->data, fw->size); if (ret) { dev_err(&lp->spi->dev, "verify firmware failed with %d\n", ret); release_firmware(fw); return ret; } adf7242_cmd(lp, CMD_RC_PC_RESET); release_firmware(fw); adf7242_write_reg(lp, REG_FFILT_CFG, ACCEPT_BEACON_FRAMES | ACCEPT_DATA_FRAMES | ACCEPT_MACCMD_FRAMES | ACCEPT_RESERVED_FRAMES); adf7242_write_reg(lp, REG_AUTO_CFG, RX_AUTO_ACK_EN); adf7242_write_reg(lp, REG_PKT_CFG, ADDON_EN | BIT(2)); adf7242_write_reg(lp, REG_EXTPA_MSC, 0xF1); adf7242_write_reg(lp, REG_RXFE_CFG, 0x1D); adf7242_write_reg(lp, REG_IRQ1_EN0, 0); adf7242_write_reg(lp, REG_IRQ1_EN1, IRQ_RX_PKT_RCVD | IRQ_CSMA_CA); adf7242_clear_irqstat(lp); adf7242_write_reg(lp, REG_IRQ1_SRC0, 0xFF); adf7242_cmd(lp, CMD_RC_IDLE); return 0; } static int adf7242_stats_show(struct seq_file *file, void *offset) { struct adf7242_local *lp = spi_get_drvdata(file->private); u8 stat, irq1; adf7242_status(lp, &stat); adf7242_read_reg(lp, REG_IRQ1_SRC1, &irq1); seq_printf(file, "IRQ1 = %X:\n%s%s%s%s%s%s%s%s\n", irq1, irq1 & IRQ_CCA_COMPLETE ? "IRQ_CCA_COMPLETE\n" : "", irq1 & IRQ_SFD_RX ? "IRQ_SFD_RX\n" : "", irq1 & IRQ_SFD_TX ? "IRQ_SFD_TX\n" : "", irq1 & IRQ_RX_PKT_RCVD ? "IRQ_RX_PKT_RCVD\n" : "", irq1 & IRQ_TX_PKT_SENT ? "IRQ_TX_PKT_SENT\n" : "", irq1 & IRQ_CSMA_CA ? "IRQ_CSMA_CA\n" : "", irq1 & IRQ_FRAME_VALID ? "IRQ_FRAME_VALID\n" : "", irq1 & IRQ_ADDRESS_VALID ? "IRQ_ADDRESS_VALID\n" : ""); seq_printf(file, "STATUS = %X:\n%s\n%s\n%s\n%s\n%s%s%s%s%s\n", stat, stat & STAT_SPI_READY ? "SPI_READY" : "SPI_BUSY", stat & STAT_IRQ_STATUS ? "IRQ_PENDING" : "IRQ_CLEAR", stat & STAT_RC_READY ? "RC_READY" : "RC_BUSY", stat & STAT_CCA_RESULT ? "CHAN_IDLE" : "CHAN_BUSY", (stat & 0xf) == RC_STATUS_IDLE ? "RC_STATUS_IDLE" : "", (stat & 0xf) == RC_STATUS_MEAS ? "RC_STATUS_MEAS" : "", (stat & 0xf) == RC_STATUS_PHY_RDY ? "RC_STATUS_PHY_RDY" : "", (stat & 0xf) == RC_STATUS_RX ? "RC_STATUS_RX" : "", (stat & 0xf) == RC_STATUS_TX ? "RC_STATUS_TX" : ""); seq_printf(file, "RSSI = %d\n", lp->rssi); return 0; } static void adf7242_debugfs_init(struct adf7242_local *lp) { char debugfs_dir_name[DNAME_INLINE_LEN + 1]; snprintf(debugfs_dir_name, sizeof(debugfs_dir_name), "adf7242-%s", dev_name(&lp->spi->dev)); lp->debugfs_root = debugfs_create_dir(debugfs_dir_name, NULL); debugfs_create_devm_seqfile(&lp->spi->dev, "status", lp->debugfs_root, adf7242_stats_show); } static const s32 adf7242_powers[] = { 500, 400, 300, 200, 100, 0, -100, -200, -300, -400, -500, -600, -700, -800, -900, -1000, -1100, -1200, -1300, -1400, -1500, -1600, -1700, -1800, -1900, -2000, -2100, -2200, -2300, -2400, -2500, -2600, }; static const s32 adf7242_ed_levels[] = { -9000, -8900, -8800, -8700, -8600, -8500, -8400, -8300, -8200, -8100, -8000, -7900, -7800, -7700, -7600, -7500, -7400, -7300, -7200, -7100, -7000, -6900, -6800, -6700, -6600, -6500, -6400, -6300, -6200, -6100, -6000, -5900, -5800, -5700, -5600, -5500, -5400, -5300, -5200, -5100, -5000, -4900, -4800, -4700, -4600, -4500, -4400, -4300, -4200, -4100, -4000, -3900, -3800, -3700, -3600, -3500, -3400, -3200, -3100, -3000 }; static int adf7242_probe(struct spi_device *spi) { struct ieee802154_hw *hw; struct adf7242_local *lp; int ret, irq_type; if (!spi->irq) { dev_err(&spi->dev, "no IRQ specified\n"); return -EINVAL; } hw = ieee802154_alloc_hw(sizeof(*lp), &adf7242_ops); if (!hw) return -ENOMEM; lp = hw->priv; lp->hw = hw; lp->spi = spi; hw->priv = lp; hw->parent = &spi->dev; hw->extra_tx_headroom = 0; /* We support only 2.4 Ghz */ hw->phy->supported.channels[0] = 0x7FFF800; hw->flags = IEEE802154_HW_OMIT_CKSUM | IEEE802154_HW_CSMA_PARAMS | IEEE802154_HW_FRAME_RETRIES | IEEE802154_HW_AFILT | IEEE802154_HW_PROMISCUOUS; hw->phy->flags = WPAN_PHY_FLAG_TXPOWER | WPAN_PHY_FLAG_CCA_ED_LEVEL | WPAN_PHY_FLAG_CCA_MODE; hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY); hw->phy->supported.cca_ed_levels = adf7242_ed_levels; hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(adf7242_ed_levels); hw->phy->cca.mode = NL802154_CCA_ENERGY; hw->phy->supported.tx_powers = adf7242_powers; hw->phy->supported.tx_powers_size = ARRAY_SIZE(adf7242_powers); hw->phy->supported.min_minbe = 0; hw->phy->supported.max_minbe = 8; hw->phy->supported.min_maxbe = 3; hw->phy->supported.max_maxbe = 8; hw->phy->supported.min_frame_retries = 0; hw->phy->supported.max_frame_retries = 15; hw->phy->supported.min_csma_backoffs = 0; hw->phy->supported.max_csma_backoffs = 5; ieee802154_random_extended_addr(&hw->phy->perm_extended_addr); mutex_init(&lp->bmux); init_completion(&lp->tx_complete); /* Setup Status Message */ lp->stat_xfer.len = 1; lp->stat_xfer.tx_buf = &lp->buf_stat_tx; lp->stat_xfer.rx_buf = &lp->buf_stat_rx; lp->buf_stat_tx = CMD_SPI_NOP; spi_message_init(&lp->stat_msg); spi_message_add_tail(&lp->stat_xfer, &lp->stat_msg); spi_set_drvdata(spi, lp); INIT_DELAYED_WORK(&lp->work, adf7242_rx_cal_work); lp->wqueue = alloc_ordered_workqueue(dev_name(&spi->dev), WQ_MEM_RECLAIM); if (unlikely(!lp->wqueue)) { ret = -ENOMEM; goto err_alloc_wq; } ret = adf7242_hw_init(lp); if (ret) goto err_hw_init; irq_type = irq_get_trigger_type(spi->irq); if (!irq_type) irq_type = IRQF_TRIGGER_HIGH; ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL, adf7242_isr, irq_type | IRQF_ONESHOT, dev_name(&spi->dev), lp); if (ret) goto err_hw_init; disable_irq(spi->irq); ret = ieee802154_register_hw(lp->hw); if (ret) goto err_hw_init; dev_set_drvdata(&spi->dev, lp); adf7242_debugfs_init(lp); dev_info(&spi->dev, "mac802154 IRQ-%d registered\n", spi->irq); return ret; err_hw_init: destroy_workqueue(lp->wqueue); err_alloc_wq: mutex_destroy(&lp->bmux); ieee802154_free_hw(lp->hw); return ret; } static void adf7242_remove(struct spi_device *spi) { struct adf7242_local *lp = spi_get_drvdata(spi); debugfs_remove_recursive(lp->debugfs_root); ieee802154_unregister_hw(lp->hw); cancel_delayed_work_sync(&lp->work); destroy_workqueue(lp->wqueue); mutex_destroy(&lp->bmux); ieee802154_free_hw(lp->hw); } static const struct of_device_id adf7242_of_match[] = { { .compatible = "adi,adf7242", }, { .compatible = "adi,adf7241", }, { }, }; MODULE_DEVICE_TABLE(of, adf7242_of_match); static const struct spi_device_id adf7242_device_id[] = { { .name = "adf7242", }, { .name = "adf7241", }, { }, }; MODULE_DEVICE_TABLE(spi, adf7242_device_id); static struct spi_driver adf7242_driver = { .id_table = adf7242_device_id, .driver = { .of_match_table = adf7242_of_match, .name = "adf7242", }, .probe = adf7242_probe, .remove = adf7242_remove, }; module_spi_driver(adf7242_driver); MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>"); MODULE_DESCRIPTION("ADF7242 IEEE802.15.4 Transceiver Driver"); MODULE_LICENSE("GPL"); MODULE_FIRMWARE(FIRMWARE);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1