Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Alex Elder | 2513 | 99.64% | 42 | 93.33% |
Christophe Jaillet | 4 | 0.16% | 1 | 2.22% |
Jason Gunthorpe | 4 | 0.16% | 1 | 2.22% |
Rob Herring | 1 | 0.04% | 1 | 2.22% |
Total | 2522 | 45 |
// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved. * Copyright (C) 2019-2024 Linaro Ltd. */ #include <linux/dma-mapping.h> #include <linux/io.h> #include <linux/iommu.h> #include <linux/platform_device.h> #include <linux/types.h> #include <linux/soc/qcom/smem.h> #include "gsi_trans.h" #include "ipa.h" #include "ipa_cmd.h" #include "ipa_data.h" #include "ipa_mem.h" #include "ipa_reg.h" #include "ipa_table.h" /* "Canary" value placed between memory regions to detect overflow */ #define IPA_MEM_CANARY_VAL cpu_to_le32(0xdeadbeef) /* SMEM host id representing the modem. */ #define QCOM_SMEM_HOST_MODEM 1 const struct ipa_mem *ipa_mem_find(struct ipa *ipa, enum ipa_mem_id mem_id) { u32 i; for (i = 0; i < ipa->mem_count; i++) { const struct ipa_mem *mem = &ipa->mem[i]; if (mem->id == mem_id) return mem; } return NULL; } /* Add an immediate command to a transaction that zeroes a memory region */ static void ipa_mem_zero_region_add(struct gsi_trans *trans, enum ipa_mem_id mem_id) { struct ipa *ipa = container_of(trans->gsi, struct ipa, gsi); const struct ipa_mem *mem = ipa_mem_find(ipa, mem_id); dma_addr_t addr = ipa->zero_addr; if (!mem->size) return; ipa_cmd_dma_shared_mem_add(trans, mem->offset, mem->size, addr, true); } /** * ipa_mem_setup() - Set up IPA AP and modem shared memory areas * @ipa: IPA pointer * * Set up the shared memory regions in IPA local memory. This involves * zero-filling memory regions, and in the case of header memory, telling * the IPA where it's located. * * This function performs the initial setup of this memory. If the modem * crashes, its regions are re-zeroed in ipa_mem_zero_modem(). * * The AP informs the modem where its portions of memory are located * in a QMI exchange that occurs at modem startup. * * There is no need for a matching ipa_mem_teardown() function. * * Return: 0 if successful, or a negative error code */ int ipa_mem_setup(struct ipa *ipa) { dma_addr_t addr = ipa->zero_addr; const struct ipa_mem *mem; struct gsi_trans *trans; const struct reg *reg; u32 offset; u16 size; u32 val; /* Get a transaction to define the header memory region and to zero * the processing context and modem memory regions. */ trans = ipa_cmd_trans_alloc(ipa, 4); if (!trans) { dev_err(ipa->dev, "no transaction for memory setup\n"); return -EBUSY; } /* Initialize IPA-local header memory. The AP header region, if * present, is contiguous with and follows the modem header region, * and they are initialized together. */ mem = ipa_mem_find(ipa, IPA_MEM_MODEM_HEADER); offset = mem->offset; size = mem->size; mem = ipa_mem_find(ipa, IPA_MEM_AP_HEADER); if (mem) size += mem->size; ipa_cmd_hdr_init_local_add(trans, offset, size, addr); ipa_mem_zero_region_add(trans, IPA_MEM_MODEM_PROC_CTX); ipa_mem_zero_region_add(trans, IPA_MEM_AP_PROC_CTX); ipa_mem_zero_region_add(trans, IPA_MEM_MODEM); gsi_trans_commit_wait(trans); /* Tell the hardware where the processing context area is located */ mem = ipa_mem_find(ipa, IPA_MEM_MODEM_PROC_CTX); offset = ipa->mem_offset + mem->offset; reg = ipa_reg(ipa, LOCAL_PKT_PROC_CNTXT); val = reg_encode(reg, IPA_BASE_ADDR, offset); iowrite32(val, ipa->reg_virt + reg_offset(reg)); return 0; } /* Is the given memory region ID is valid for the current IPA version? */ static bool ipa_mem_id_valid(struct ipa *ipa, enum ipa_mem_id mem_id) { enum ipa_version version = ipa->version; switch (mem_id) { case IPA_MEM_UC_SHARED: case IPA_MEM_UC_INFO: case IPA_MEM_V4_FILTER_HASHED: case IPA_MEM_V4_FILTER: case IPA_MEM_V6_FILTER_HASHED: case IPA_MEM_V6_FILTER: case IPA_MEM_V4_ROUTE_HASHED: case IPA_MEM_V4_ROUTE: case IPA_MEM_V6_ROUTE_HASHED: case IPA_MEM_V6_ROUTE: case IPA_MEM_MODEM_HEADER: case IPA_MEM_AP_HEADER: case IPA_MEM_MODEM_PROC_CTX: case IPA_MEM_AP_PROC_CTX: case IPA_MEM_MODEM: case IPA_MEM_UC_EVENT_RING: case IPA_MEM_PDN_CONFIG: case IPA_MEM_STATS_QUOTA_MODEM: case IPA_MEM_STATS_QUOTA_AP: case IPA_MEM_END_MARKER: /* pseudo region */ break; case IPA_MEM_STATS_TETHERING: case IPA_MEM_STATS_DROP: if (version < IPA_VERSION_4_0) return false; break; case IPA_MEM_STATS_V4_FILTER: case IPA_MEM_STATS_V6_FILTER: case IPA_MEM_STATS_V4_ROUTE: case IPA_MEM_STATS_V6_ROUTE: if (version < IPA_VERSION_4_0 || version > IPA_VERSION_4_2) return false; break; case IPA_MEM_AP_V4_FILTER: case IPA_MEM_AP_V6_FILTER: if (version < IPA_VERSION_5_0) return false; break; case IPA_MEM_NAT_TABLE: case IPA_MEM_STATS_FILTER_ROUTE: if (version < IPA_VERSION_4_5) return false; break; default: return false; } return true; } /* Must the given memory region be present in the configuration? */ static bool ipa_mem_id_required(struct ipa *ipa, enum ipa_mem_id mem_id) { switch (mem_id) { case IPA_MEM_UC_SHARED: case IPA_MEM_UC_INFO: case IPA_MEM_V4_FILTER_HASHED: case IPA_MEM_V4_FILTER: case IPA_MEM_V6_FILTER_HASHED: case IPA_MEM_V6_FILTER: case IPA_MEM_V4_ROUTE_HASHED: case IPA_MEM_V4_ROUTE: case IPA_MEM_V6_ROUTE_HASHED: case IPA_MEM_V6_ROUTE: case IPA_MEM_MODEM_HEADER: case IPA_MEM_MODEM_PROC_CTX: case IPA_MEM_AP_PROC_CTX: case IPA_MEM_MODEM: return true; case IPA_MEM_PDN_CONFIG: case IPA_MEM_STATS_QUOTA_MODEM: return ipa->version >= IPA_VERSION_4_0; case IPA_MEM_STATS_TETHERING: return ipa->version >= IPA_VERSION_4_0 && ipa->version != IPA_VERSION_5_0; default: return false; /* Anything else is optional */ } } static bool ipa_mem_valid_one(struct ipa *ipa, const struct ipa_mem *mem) { enum ipa_mem_id mem_id = mem->id; struct device *dev = ipa->dev; u16 size_multiple; /* Make sure the memory region is valid for this version of IPA */ if (!ipa_mem_id_valid(ipa, mem_id)) { dev_err(dev, "region id %u not valid\n", mem_id); return false; } if (!mem->size && !mem->canary_count) { dev_err(dev, "empty memory region %u\n", mem_id); return false; } /* Other than modem memory, sizes must be a multiple of 8 */ size_multiple = mem_id == IPA_MEM_MODEM ? 4 : 8; if (mem->size % size_multiple) dev_err(dev, "region %u size not a multiple of %u bytes\n", mem_id, size_multiple); else if (mem->offset % 8) dev_err(dev, "region %u offset not 8-byte aligned\n", mem_id); else if (mem->offset < mem->canary_count * sizeof(__le32)) dev_err(dev, "region %u offset too small for %hu canaries\n", mem_id, mem->canary_count); else if (mem_id == IPA_MEM_END_MARKER && mem->size) dev_err(dev, "non-zero end marker region size\n"); else return true; return false; } /* Verify each defined memory region is valid. */ static bool ipa_mem_valid(struct ipa *ipa, const struct ipa_mem_data *mem_data) { DECLARE_BITMAP(regions, IPA_MEM_COUNT) = { }; struct device *dev = ipa->dev; enum ipa_mem_id mem_id; u32 i; if (mem_data->local_count > IPA_MEM_COUNT) { dev_err(dev, "too many memory regions (%u > %u)\n", mem_data->local_count, IPA_MEM_COUNT); return false; } for (i = 0; i < mem_data->local_count; i++) { const struct ipa_mem *mem = &mem_data->local[i]; if (__test_and_set_bit(mem->id, regions)) { dev_err(dev, "duplicate memory region %u\n", mem->id); return false; } /* Defined regions have non-zero size and/or canary count */ if (!ipa_mem_valid_one(ipa, mem)) return false; } /* Now see if any required regions are not defined */ for_each_clear_bit(mem_id, regions, IPA_MEM_COUNT) { if (ipa_mem_id_required(ipa, mem_id)) dev_err(dev, "required memory region %u missing\n", mem_id); } return true; } /* Do all memory regions fit within the IPA local memory? */ static bool ipa_mem_size_valid(struct ipa *ipa) { struct device *dev = ipa->dev; u32 limit = ipa->mem_size; u32 i; for (i = 0; i < ipa->mem_count; i++) { const struct ipa_mem *mem = &ipa->mem[i]; if (mem->offset + mem->size <= limit) continue; dev_err(dev, "region %u ends beyond memory limit (0x%08x)\n", mem->id, limit); return false; } return true; } /** * ipa_mem_config() - Configure IPA shared memory * @ipa: IPA pointer * * Return: 0 if successful, or a negative error code */ int ipa_mem_config(struct ipa *ipa) { struct device *dev = ipa->dev; const struct ipa_mem *mem; const struct reg *reg; dma_addr_t addr; u32 mem_size; void *virt; u32 val; u32 i; /* Check the advertised location and size of the shared memory area */ reg = ipa_reg(ipa, SHARED_MEM_SIZE); val = ioread32(ipa->reg_virt + reg_offset(reg)); /* The fields in the register are in 8 byte units */ ipa->mem_offset = 8 * reg_decode(reg, MEM_BADDR, val); /* Make sure the end is within the region's mapped space */ mem_size = 8 * reg_decode(reg, MEM_SIZE, val); /* If the sizes don't match, issue a warning */ if (ipa->mem_offset + mem_size < ipa->mem_size) { dev_warn(dev, "limiting IPA memory size to 0x%08x\n", mem_size); ipa->mem_size = mem_size; } else if (ipa->mem_offset + mem_size > ipa->mem_size) { dev_dbg(dev, "ignoring larger reported memory size: 0x%08x\n", mem_size); } /* We know our memory size; make sure regions are all in range */ if (!ipa_mem_size_valid(ipa)) return -EINVAL; /* Prealloc DMA memory for zeroing regions */ virt = dma_alloc_coherent(dev, IPA_MEM_MAX, &addr, GFP_KERNEL); if (!virt) return -ENOMEM; ipa->zero_addr = addr; ipa->zero_virt = virt; ipa->zero_size = IPA_MEM_MAX; /* For each defined region, write "canary" values in the * space prior to the region's base address if indicated. */ for (i = 0; i < ipa->mem_count; i++) { u16 canary_count = ipa->mem[i].canary_count; __le32 *canary; if (!canary_count) continue; /* Write canary values in the space before the region */ canary = ipa->mem_virt + ipa->mem_offset + ipa->mem[i].offset; do *--canary = IPA_MEM_CANARY_VAL; while (--canary_count); } /* Verify the microcontroller ring alignment (if defined) */ mem = ipa_mem_find(ipa, IPA_MEM_UC_EVENT_RING); if (mem && mem->offset % 1024) { dev_err(dev, "microcontroller ring not 1024-byte aligned\n"); goto err_dma_free; } return 0; err_dma_free: dma_free_coherent(dev, IPA_MEM_MAX, ipa->zero_virt, ipa->zero_addr); return -EINVAL; } /* Inverse of ipa_mem_config() */ void ipa_mem_deconfig(struct ipa *ipa) { struct device *dev = ipa->dev; dma_free_coherent(dev, ipa->zero_size, ipa->zero_virt, ipa->zero_addr); ipa->zero_size = 0; ipa->zero_virt = NULL; ipa->zero_addr = 0; } /** * ipa_mem_zero_modem() - Zero IPA-local memory regions owned by the modem * @ipa: IPA pointer * * Zero regions of IPA-local memory used by the modem. These are configured * (and initially zeroed) by ipa_mem_setup(), but if the modem crashes and * restarts via SSR we need to re-initialize them. A QMI message tells the * modem where to find regions of IPA local memory it needs to know about * (these included). */ int ipa_mem_zero_modem(struct ipa *ipa) { struct gsi_trans *trans; /* Get a transaction to zero the modem memory, modem header, * and modem processing context regions. */ trans = ipa_cmd_trans_alloc(ipa, 3); if (!trans) { dev_err(ipa->dev, "no transaction to zero modem memory\n"); return -EBUSY; } ipa_mem_zero_region_add(trans, IPA_MEM_MODEM_HEADER); ipa_mem_zero_region_add(trans, IPA_MEM_MODEM_PROC_CTX); ipa_mem_zero_region_add(trans, IPA_MEM_MODEM); gsi_trans_commit_wait(trans); return 0; } /** * ipa_imem_init() - Initialize IMEM memory used by the IPA * @ipa: IPA pointer * @addr: Physical address of the IPA region in IMEM * @size: Size (bytes) of the IPA region in IMEM * * IMEM is a block of shared memory separate from system DRAM, and * a portion of this memory is available for the IPA to use. The * modem accesses this memory directly, but the IPA accesses it * via the IOMMU, using the AP's credentials. * * If this region exists (size > 0) we map it for read/write access * through the IOMMU using the IPA device. * * Note: @addr and @size are not guaranteed to be page-aligned. */ static int ipa_imem_init(struct ipa *ipa, unsigned long addr, size_t size) { struct device *dev = ipa->dev; struct iommu_domain *domain; unsigned long iova; phys_addr_t phys; int ret; if (!size) return 0; /* IMEM memory not used */ domain = iommu_get_domain_for_dev(dev); if (!domain) { dev_err(dev, "no IOMMU domain found for IMEM\n"); return -EINVAL; } /* Align the address down and the size up to page boundaries */ phys = addr & PAGE_MASK; size = PAGE_ALIGN(size + addr - phys); iova = phys; /* We just want a direct mapping */ ret = iommu_map(domain, iova, phys, size, IOMMU_READ | IOMMU_WRITE, GFP_KERNEL); if (ret) return ret; ipa->imem_iova = iova; ipa->imem_size = size; return 0; } static void ipa_imem_exit(struct ipa *ipa) { struct device *dev = ipa->dev; struct iommu_domain *domain; if (!ipa->imem_size) return; domain = iommu_get_domain_for_dev(dev); if (domain) { size_t size; size = iommu_unmap(domain, ipa->imem_iova, ipa->imem_size); if (size != ipa->imem_size) dev_warn(dev, "unmapped %zu IMEM bytes, expected %zu\n", size, ipa->imem_size); } else { dev_err(dev, "couldn't get IPA IOMMU domain for IMEM\n"); } ipa->imem_size = 0; ipa->imem_iova = 0; } /** * ipa_smem_init() - Initialize SMEM memory used by the IPA * @ipa: IPA pointer * @item: Item ID of SMEM memory * @size: Size (bytes) of SMEM memory region * * SMEM is a managed block of shared DRAM, from which numbered "items" * can be allocated. One item is designated for use by the IPA. * * The modem accesses SMEM memory directly, but the IPA accesses it * via the IOMMU, using the AP's credentials. * * If size provided is non-zero, we allocate it and map it for * access through the IOMMU. * * Note: @size and the item address are is not guaranteed to be page-aligned. */ static int ipa_smem_init(struct ipa *ipa, u32 item, size_t size) { struct device *dev = ipa->dev; struct iommu_domain *domain; unsigned long iova; phys_addr_t phys; phys_addr_t addr; size_t actual; void *virt; int ret; if (!size) return 0; /* SMEM memory not used */ /* SMEM is memory shared between the AP and another system entity * (in this case, the modem). An allocation from SMEM is persistent * until the AP reboots; there is no way to free an allocated SMEM * region. Allocation only reserves the space; to use it you need * to "get" a pointer it (this does not imply reference counting). * The item might have already been allocated, in which case we * use it unless the size isn't what we expect. */ ret = qcom_smem_alloc(QCOM_SMEM_HOST_MODEM, item, size); if (ret && ret != -EEXIST) { dev_err(dev, "error %d allocating size %zu SMEM item %u\n", ret, size, item); return ret; } /* Now get the address of the SMEM memory region */ virt = qcom_smem_get(QCOM_SMEM_HOST_MODEM, item, &actual); if (IS_ERR(virt)) { ret = PTR_ERR(virt); dev_err(dev, "error %d getting SMEM item %u\n", ret, item); return ret; } /* In case the region was already allocated, verify the size */ if (ret && actual != size) { dev_err(dev, "SMEM item %u has size %zu, expected %zu\n", item, actual, size); return -EINVAL; } domain = iommu_get_domain_for_dev(dev); if (!domain) { dev_err(dev, "no IOMMU domain found for SMEM\n"); return -EINVAL; } /* Align the address down and the size up to a page boundary */ addr = qcom_smem_virt_to_phys(virt); phys = addr & PAGE_MASK; size = PAGE_ALIGN(size + addr - phys); iova = phys; /* We just want a direct mapping */ ret = iommu_map(domain, iova, phys, size, IOMMU_READ | IOMMU_WRITE, GFP_KERNEL); if (ret) return ret; ipa->smem_iova = iova; ipa->smem_size = size; return 0; } static void ipa_smem_exit(struct ipa *ipa) { struct device *dev = ipa->dev; struct iommu_domain *domain; domain = iommu_get_domain_for_dev(dev); if (domain) { size_t size; size = iommu_unmap(domain, ipa->smem_iova, ipa->smem_size); if (size != ipa->smem_size) dev_warn(dev, "unmapped %zu SMEM bytes, expected %zu\n", size, ipa->smem_size); } else { dev_err(dev, "couldn't get IPA IOMMU domain for SMEM\n"); } ipa->smem_size = 0; ipa->smem_iova = 0; } /* Perform memory region-related initialization */ int ipa_mem_init(struct ipa *ipa, struct platform_device *pdev, const struct ipa_mem_data *mem_data) { struct device *dev = &pdev->dev; struct resource *res; int ret; /* Make sure the set of defined memory regions is valid */ if (!ipa_mem_valid(ipa, mem_data)) return -EINVAL; ipa->mem_count = mem_data->local_count; ipa->mem = mem_data->local; /* Check the route and filter table memory regions */ if (!ipa_table_mem_valid(ipa, false)) return -EINVAL; if (!ipa_table_mem_valid(ipa, true)) return -EINVAL; ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64)); if (ret) { dev_err(dev, "error %d setting DMA mask\n", ret); return ret; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "ipa-shared"); if (!res) { dev_err(dev, "DT error getting \"ipa-shared\" memory property\n"); return -ENODEV; } ipa->mem_virt = memremap(res->start, resource_size(res), MEMREMAP_WC); if (!ipa->mem_virt) { dev_err(dev, "unable to remap \"ipa-shared\" memory\n"); return -ENOMEM; } ipa->mem_addr = res->start; ipa->mem_size = resource_size(res); ret = ipa_imem_init(ipa, mem_data->imem_addr, mem_data->imem_size); if (ret) goto err_unmap; ret = ipa_smem_init(ipa, mem_data->smem_id, mem_data->smem_size); if (ret) goto err_imem_exit; return 0; err_imem_exit: ipa_imem_exit(ipa); err_unmap: memunmap(ipa->mem_virt); return ret; } /* Inverse of ipa_mem_init() */ void ipa_mem_exit(struct ipa *ipa) { ipa_smem_exit(ipa); ipa_imem_exit(ipa); memunmap(ipa->mem_virt); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1