Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Horatiu Vultur | 13593 | 57.66% | 26 | 17.81% |
Divya Koppera | 5191 | 22.02% | 7 | 4.79% |
David J. Choi | 982 | 4.17% | 3 | 2.05% |
Oleksij Rempel | 597 | 2.53% | 8 | 5.48% |
Johan Hovold | 585 | 2.48% | 13 | 8.90% |
Marek Vašut | 381 | 1.62% | 6 | 4.11% |
Tristram Ha | 329 | 1.40% | 2 | 1.37% |
Andrew Lunn | 300 | 1.27% | 7 | 4.79% |
Ioana Ciornei | 206 | 0.87% | 2 | 1.37% |
Raju Lakkaraju | 117 | 0.50% | 1 | 0.68% |
Patrice Vilchez | 105 | 0.45% | 1 | 0.68% |
Sean Cross | 105 | 0.45% | 1 | 0.68% |
Yuiko Oshino | 91 | 0.39% | 1 | 0.68% |
Michael Walle | 86 | 0.36% | 4 | 2.74% |
Hubert Chaumette | 61 | 0.26% | 1 | 0.68% |
Ben Dooks | 61 | 0.26% | 1 | 0.68% |
Jean-Christophe Plagniol-Villard | 60 | 0.25% | 1 | 0.68% |
Robert Hancock | 54 | 0.23% | 1 | 0.68% |
Sylvain Rochet | 54 | 0.23% | 1 | 0.68% |
Heiner Kallweit | 49 | 0.21% | 2 | 1.37% |
Nathan Sullivan | 43 | 0.18% | 1 | 0.68% |
Fabio Estevam | 40 | 0.17% | 4 | 2.74% |
Sascha Hauer | 40 | 0.17% | 1 | 0.68% |
Philippe Schenker | 34 | 0.14% | 1 | 0.68% |
David S. Miller | 32 | 0.14% | 2 | 1.37% |
Antoine Tenart | 32 | 0.14% | 2 | 1.37% |
Sergei Shtylyov | 29 | 0.12% | 2 | 1.37% |
Woojung Huh | 23 | 0.10% | 2 | 1.37% |
Grygorii Strashko | 23 | 0.10% | 2 | 1.37% |
Hector Palacios | 22 | 0.09% | 1 | 0.68% |
Wenyou Yang | 17 | 0.07% | 1 | 0.68% |
Alexandre Belloni | 17 | 0.07% | 1 | 0.68% |
Jaeden Amero | 16 | 0.07% | 2 | 1.37% |
Claudiu Beznea | 16 | 0.07% | 1 | 0.68% |
Aleksandr Mishin | 15 | 0.06% | 1 | 0.68% |
Markus Niebel | 15 | 0.06% | 1 | 0.68% |
Russell King | 15 | 0.06% | 2 | 1.37% |
Francesco Dolcini | 14 | 0.06% | 1 | 0.68% |
Heiko Stübner | 13 | 0.06% | 1 | 0.68% |
Mike Looijmans | 11 | 0.05% | 1 | 0.68% |
Rajasingh Thavamani | 9 | 0.04% | 1 | 0.68% |
Christian Hohnstaedt | 8 | 0.03% | 1 | 0.68% |
Sean Nyekjaer | 8 | 0.03% | 1 | 0.68% |
Zach Brown | 7 | 0.03% | 1 | 0.68% |
Kory Maincent | 7 | 0.03% | 1 | 0.68% |
Philipp Zabel | 6 | 0.03% | 1 | 0.68% |
Enguerrand de Ribaucourt | 6 | 0.03% | 1 | 0.68% |
Vladimir Oltean | 6 | 0.03% | 1 | 0.68% |
Leonard Crestez | 4 | 0.02% | 1 | 0.68% |
Hui Wang | 4 | 0.02% | 1 | 0.68% |
Lukasz Majewski | 4 | 0.02% | 1 | 0.68% |
Vince Bridgers | 4 | 0.02% | 1 | 0.68% |
Sebastian Andrzej Siewior | 3 | 0.01% | 1 | 0.68% |
Xander Huff | 3 | 0.01% | 1 | 0.68% |
Baruch Siach | 3 | 0.01% | 1 | 0.68% |
Wolfram Sang | 2 | 0.01% | 1 | 0.68% |
Steve Bennett | 2 | 0.01% | 1 | 0.68% |
Alexander Stein | 2 | 0.01% | 1 | 0.68% |
Henri Roosen | 2 | 0.01% | 1 | 0.68% |
Kevin Hao | 2 | 0.01% | 1 | 0.68% |
Stefan Agner | 2 | 0.01% | 1 | 0.68% |
Matthias Schiffer | 2 | 0.01% | 1 | 0.68% |
Maxim Uvarov | 1 | 0.00% | 1 | 0.68% |
Jingoo Han | 1 | 0.00% | 1 | 0.68% |
Colin Ian King | 1 | 0.00% | 1 | 0.68% |
Wan Jiabing | 1 | 0.00% | 1 | 0.68% |
Uwe Kleine-König | 1 | 0.00% | 1 | 0.68% |
Total | 23575 | 146 |
// SPDX-License-Identifier: GPL-2.0+ /* * drivers/net/phy/micrel.c * * Driver for Micrel PHYs * * Author: David J. Choi * * Copyright (c) 2010-2013 Micrel, Inc. * Copyright (c) 2014 Johan Hovold <johan@kernel.org> * * Support : Micrel Phys: * Giga phys: ksz9021, ksz9031, ksz9131, lan8841, lan8814 * 100/10 Phys : ksz8001, ksz8721, ksz8737, ksz8041 * ksz8021, ksz8031, ksz8051, * ksz8081, ksz8091, * ksz8061, * Switch : ksz8873, ksz886x * ksz9477, lan8804 */ #include <linux/bitfield.h> #include <linux/ethtool_netlink.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/phy.h> #include <linux/micrel_phy.h> #include <linux/of.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/ptp_clock_kernel.h> #include <linux/ptp_clock.h> #include <linux/ptp_classify.h> #include <linux/net_tstamp.h> #include <linux/gpio/consumer.h> /* Operation Mode Strap Override */ #define MII_KSZPHY_OMSO 0x16 #define KSZPHY_OMSO_FACTORY_TEST BIT(15) #define KSZPHY_OMSO_B_CAST_OFF BIT(9) #define KSZPHY_OMSO_NAND_TREE_ON BIT(5) #define KSZPHY_OMSO_RMII_OVERRIDE BIT(1) #define KSZPHY_OMSO_MII_OVERRIDE BIT(0) /* general Interrupt control/status reg in vendor specific block. */ #define MII_KSZPHY_INTCS 0x1B #define KSZPHY_INTCS_JABBER BIT(15) #define KSZPHY_INTCS_RECEIVE_ERR BIT(14) #define KSZPHY_INTCS_PAGE_RECEIVE BIT(13) #define KSZPHY_INTCS_PARELLEL BIT(12) #define KSZPHY_INTCS_LINK_PARTNER_ACK BIT(11) #define KSZPHY_INTCS_LINK_DOWN BIT(10) #define KSZPHY_INTCS_REMOTE_FAULT BIT(9) #define KSZPHY_INTCS_LINK_UP BIT(8) #define KSZPHY_INTCS_ALL (KSZPHY_INTCS_LINK_UP |\ KSZPHY_INTCS_LINK_DOWN) #define KSZPHY_INTCS_LINK_DOWN_STATUS BIT(2) #define KSZPHY_INTCS_LINK_UP_STATUS BIT(0) #define KSZPHY_INTCS_STATUS (KSZPHY_INTCS_LINK_DOWN_STATUS |\ KSZPHY_INTCS_LINK_UP_STATUS) /* LinkMD Control/Status */ #define KSZ8081_LMD 0x1d #define KSZ8081_LMD_ENABLE_TEST BIT(15) #define KSZ8081_LMD_STAT_NORMAL 0 #define KSZ8081_LMD_STAT_OPEN 1 #define KSZ8081_LMD_STAT_SHORT 2 #define KSZ8081_LMD_STAT_FAIL 3 #define KSZ8081_LMD_STAT_MASK GENMASK(14, 13) /* Short cable (<10 meter) has been detected by LinkMD */ #define KSZ8081_LMD_SHORT_INDICATOR BIT(12) #define KSZ8081_LMD_DELTA_TIME_MASK GENMASK(8, 0) #define KSZ9x31_LMD 0x12 #define KSZ9x31_LMD_VCT_EN BIT(15) #define KSZ9x31_LMD_VCT_DIS_TX BIT(14) #define KSZ9x31_LMD_VCT_PAIR(n) (((n) & 0x3) << 12) #define KSZ9x31_LMD_VCT_SEL_RESULT 0 #define KSZ9x31_LMD_VCT_SEL_THRES_HI BIT(10) #define KSZ9x31_LMD_VCT_SEL_THRES_LO BIT(11) #define KSZ9x31_LMD_VCT_SEL_MASK GENMASK(11, 10) #define KSZ9x31_LMD_VCT_ST_NORMAL 0 #define KSZ9x31_LMD_VCT_ST_OPEN 1 #define KSZ9x31_LMD_VCT_ST_SHORT 2 #define KSZ9x31_LMD_VCT_ST_FAIL 3 #define KSZ9x31_LMD_VCT_ST_MASK GENMASK(9, 8) #define KSZ9x31_LMD_VCT_DATA_REFLECTED_INVALID BIT(7) #define KSZ9x31_LMD_VCT_DATA_SIG_WAIT_TOO_LONG BIT(6) #define KSZ9x31_LMD_VCT_DATA_MASK100 BIT(5) #define KSZ9x31_LMD_VCT_DATA_NLP_FLP BIT(4) #define KSZ9x31_LMD_VCT_DATA_LO_PULSE_MASK GENMASK(3, 2) #define KSZ9x31_LMD_VCT_DATA_HI_PULSE_MASK GENMASK(1, 0) #define KSZ9x31_LMD_VCT_DATA_MASK GENMASK(7, 0) #define KSZPHY_WIRE_PAIR_MASK 0x3 #define LAN8814_CABLE_DIAG 0x12 #define LAN8814_CABLE_DIAG_STAT_MASK GENMASK(9, 8) #define LAN8814_CABLE_DIAG_VCT_DATA_MASK GENMASK(7, 0) #define LAN8814_PAIR_BIT_SHIFT 12 #define LAN8814_WIRE_PAIR_MASK 0xF /* Lan8814 general Interrupt control/status reg in GPHY specific block. */ #define LAN8814_INTC 0x18 #define LAN8814_INTS 0x1B #define LAN8814_INT_LINK_DOWN BIT(2) #define LAN8814_INT_LINK_UP BIT(0) #define LAN8814_INT_LINK (LAN8814_INT_LINK_UP |\ LAN8814_INT_LINK_DOWN) #define LAN8814_INTR_CTRL_REG 0x34 #define LAN8814_INTR_CTRL_REG_POLARITY BIT(1) #define LAN8814_INTR_CTRL_REG_INTR_ENABLE BIT(0) #define LAN8814_EEE_STATE 0x38 #define LAN8814_EEE_STATE_MASK2P5P BIT(10) #define LAN8814_PD_CONTROLS 0x9d #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK GENMASK(3, 0) #define LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL 0xb /* Represents 1ppm adjustment in 2^32 format with * each nsec contains 4 clock cycles. * The value is calculated as following: (1/1000000)/((2^-32)/4) */ #define LAN8814_1PPM_FORMAT 17179 /* Represents 1ppm adjustment in 2^32 format with * each nsec contains 8 clock cycles. * The value is calculated as following: (1/1000000)/((2^-32)/8) */ #define LAN8841_1PPM_FORMAT 34360 #define PTP_RX_VERSION 0x0248 #define PTP_TX_VERSION 0x0288 #define PTP_MAX_VERSION(x) (((x) & GENMASK(7, 0)) << 8) #define PTP_MIN_VERSION(x) ((x) & GENMASK(7, 0)) #define PTP_RX_MOD 0x024F #define PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) #define PTP_RX_TIMESTAMP_EN 0x024D #define PTP_TX_TIMESTAMP_EN 0x028D #define PTP_TIMESTAMP_EN_SYNC_ BIT(0) #define PTP_TIMESTAMP_EN_DREQ_ BIT(1) #define PTP_TIMESTAMP_EN_PDREQ_ BIT(2) #define PTP_TIMESTAMP_EN_PDRES_ BIT(3) #define PTP_TX_PARSE_L2_ADDR_EN 0x0284 #define PTP_RX_PARSE_L2_ADDR_EN 0x0244 #define PTP_TX_PARSE_IP_ADDR_EN 0x0285 #define PTP_RX_PARSE_IP_ADDR_EN 0x0245 #define LTC_HARD_RESET 0x023F #define LTC_HARD_RESET_ BIT(0) #define TSU_HARD_RESET 0x02C1 #define TSU_HARD_RESET_ BIT(0) #define PTP_CMD_CTL 0x0200 #define PTP_CMD_CTL_PTP_DISABLE_ BIT(0) #define PTP_CMD_CTL_PTP_ENABLE_ BIT(1) #define PTP_CMD_CTL_PTP_CLOCK_READ_ BIT(3) #define PTP_CMD_CTL_PTP_CLOCK_LOAD_ BIT(4) #define PTP_CMD_CTL_PTP_LTC_STEP_SEC_ BIT(5) #define PTP_CMD_CTL_PTP_LTC_STEP_NSEC_ BIT(6) #define PTP_COMMON_INT_ENA 0x0204 #define PTP_COMMON_INT_ENA_GPIO_CAP_EN BIT(2) #define PTP_CLOCK_SET_SEC_HI 0x0205 #define PTP_CLOCK_SET_SEC_MID 0x0206 #define PTP_CLOCK_SET_SEC_LO 0x0207 #define PTP_CLOCK_SET_NS_HI 0x0208 #define PTP_CLOCK_SET_NS_LO 0x0209 #define PTP_CLOCK_READ_SEC_HI 0x0229 #define PTP_CLOCK_READ_SEC_MID 0x022A #define PTP_CLOCK_READ_SEC_LO 0x022B #define PTP_CLOCK_READ_NS_HI 0x022C #define PTP_CLOCK_READ_NS_LO 0x022D #define PTP_GPIO_SEL 0x0230 #define PTP_GPIO_SEL_GPIO_SEL(pin) ((pin) << 8) #define PTP_GPIO_CAP_MAP_LO 0x0232 #define PTP_GPIO_CAP_EN 0x0233 #define PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) BIT(gpio) #define PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) #define PTP_GPIO_RE_LTC_SEC_HI_CAP 0x0235 #define PTP_GPIO_RE_LTC_SEC_LO_CAP 0x0236 #define PTP_GPIO_RE_LTC_NS_HI_CAP 0x0237 #define PTP_GPIO_RE_LTC_NS_LO_CAP 0x0238 #define PTP_GPIO_FE_LTC_SEC_HI_CAP 0x0239 #define PTP_GPIO_FE_LTC_SEC_LO_CAP 0x023A #define PTP_GPIO_FE_LTC_NS_HI_CAP 0x023B #define PTP_GPIO_FE_LTC_NS_LO_CAP 0x023C #define PTP_GPIO_CAP_STS 0x023D #define PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(gpio) BIT(gpio) #define PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(gpio) (BIT(gpio) << 8) #define PTP_OPERATING_MODE 0x0241 #define PTP_OPERATING_MODE_STANDALONE_ BIT(0) #define PTP_TX_MOD 0x028F #define PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ BIT(12) #define PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_ BIT(3) #define PTP_RX_PARSE_CONFIG 0x0242 #define PTP_RX_PARSE_CONFIG_LAYER2_EN_ BIT(0) #define PTP_RX_PARSE_CONFIG_IPV4_EN_ BIT(1) #define PTP_RX_PARSE_CONFIG_IPV6_EN_ BIT(2) #define PTP_TX_PARSE_CONFIG 0x0282 #define PTP_TX_PARSE_CONFIG_LAYER2_EN_ BIT(0) #define PTP_TX_PARSE_CONFIG_IPV4_EN_ BIT(1) #define PTP_TX_PARSE_CONFIG_IPV6_EN_ BIT(2) #define PTP_CLOCK_RATE_ADJ_HI 0x020C #define PTP_CLOCK_RATE_ADJ_LO 0x020D #define PTP_CLOCK_RATE_ADJ_DIR_ BIT(15) #define PTP_LTC_STEP_ADJ_HI 0x0212 #define PTP_LTC_STEP_ADJ_LO 0x0213 #define PTP_LTC_STEP_ADJ_DIR_ BIT(15) #define LAN8814_INTR_STS_REG 0x0033 #define LAN8814_INTR_STS_REG_1588_TSU0_ BIT(0) #define LAN8814_INTR_STS_REG_1588_TSU1_ BIT(1) #define LAN8814_INTR_STS_REG_1588_TSU2_ BIT(2) #define LAN8814_INTR_STS_REG_1588_TSU3_ BIT(3) #define PTP_CAP_INFO 0x022A #define PTP_CAP_INFO_TX_TS_CNT_GET_(reg_val) (((reg_val) & 0x0f00) >> 8) #define PTP_CAP_INFO_RX_TS_CNT_GET_(reg_val) ((reg_val) & 0x000f) #define PTP_TX_EGRESS_SEC_HI 0x0296 #define PTP_TX_EGRESS_SEC_LO 0x0297 #define PTP_TX_EGRESS_NS_HI 0x0294 #define PTP_TX_EGRESS_NS_LO 0x0295 #define PTP_TX_MSG_HEADER2 0x0299 #define PTP_RX_INGRESS_SEC_HI 0x0256 #define PTP_RX_INGRESS_SEC_LO 0x0257 #define PTP_RX_INGRESS_NS_HI 0x0254 #define PTP_RX_INGRESS_NS_LO 0x0255 #define PTP_RX_MSG_HEADER2 0x0259 #define PTP_TSU_INT_EN 0x0200 #define PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ BIT(3) #define PTP_TSU_INT_EN_PTP_TX_TS_EN_ BIT(2) #define PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_ BIT(1) #define PTP_TSU_INT_EN_PTP_RX_TS_EN_ BIT(0) #define PTP_TSU_INT_STS 0x0201 #define PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_ BIT(3) #define PTP_TSU_INT_STS_PTP_TX_TS_EN_ BIT(2) #define PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_ BIT(1) #define PTP_TSU_INT_STS_PTP_RX_TS_EN_ BIT(0) #define LAN8814_LED_CTRL_1 0x0 #define LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_ BIT(6) /* PHY Control 1 */ #define MII_KSZPHY_CTRL_1 0x1e #define KSZ8081_CTRL1_MDIX_STAT BIT(4) /* PHY Control 2 / PHY Control (if no PHY Control 1) */ #define MII_KSZPHY_CTRL_2 0x1f #define MII_KSZPHY_CTRL MII_KSZPHY_CTRL_2 /* bitmap of PHY register to set interrupt mode */ #define KSZ8081_CTRL2_HP_MDIX BIT(15) #define KSZ8081_CTRL2_MDI_MDI_X_SELECT BIT(14) #define KSZ8081_CTRL2_DISABLE_AUTO_MDIX BIT(13) #define KSZ8081_CTRL2_FORCE_LINK BIT(11) #define KSZ8081_CTRL2_POWER_SAVING BIT(10) #define KSZPHY_CTRL_INT_ACTIVE_HIGH BIT(9) #define KSZPHY_RMII_REF_CLK_SEL BIT(7) /* Write/read to/from extended registers */ #define MII_KSZPHY_EXTREG 0x0b #define KSZPHY_EXTREG_WRITE 0x8000 #define MII_KSZPHY_EXTREG_WRITE 0x0c #define MII_KSZPHY_EXTREG_READ 0x0d /* Extended registers */ #define MII_KSZPHY_CLK_CONTROL_PAD_SKEW 0x104 #define MII_KSZPHY_RX_DATA_PAD_SKEW 0x105 #define MII_KSZPHY_TX_DATA_PAD_SKEW 0x106 #define PS_TO_REG 200 #define FIFO_SIZE 8 #define LAN8814_PTP_GPIO_NUM 24 #define LAN8814_PTP_PEROUT_NUM 2 #define LAN8814_PTP_EXTTS_NUM 3 #define LAN8814_BUFFER_TIME 2 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 #define LAN8814_GPIO_EN1 0x20 #define LAN8814_GPIO_EN2 0x21 #define LAN8814_GPIO_DIR1 0x22 #define LAN8814_GPIO_DIR2 0x23 #define LAN8814_GPIO_BUF1 0x24 #define LAN8814_GPIO_BUF2 0x25 #define LAN8814_GPIO_EN_ADDR(pin) \ ((pin) > 15 ? LAN8814_GPIO_EN1 : LAN8814_GPIO_EN2) #define LAN8814_GPIO_EN_BIT(pin) BIT(pin) #define LAN8814_GPIO_DIR_ADDR(pin) \ ((pin) > 15 ? LAN8814_GPIO_DIR1 : LAN8814_GPIO_DIR2) #define LAN8814_GPIO_DIR_BIT(pin) BIT(pin) #define LAN8814_GPIO_BUF_ADDR(pin) \ ((pin) > 15 ? LAN8814_GPIO_BUF1 : LAN8814_GPIO_BUF2) #define LAN8814_GPIO_BUF_BIT(pin) BIT(pin) #define LAN8814_EVENT_A 0 #define LAN8814_EVENT_B 1 #define LAN8814_PTP_GENERAL_CONFIG 0x0201 #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event) \ ((event) ? GENMASK(11, 8) : GENMASK(7, 4)) #define LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, value) \ (((value) & GENMASK(3, 0)) << (4 + ((event) << 2))) #define LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event) \ ((event) ? BIT(2) : BIT(0)) #define LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event) \ ((event) ? BIT(3) : BIT(1)) #define LAN8814_PTP_CLOCK_TARGET_SEC_HI(event) ((event) ? 0x21F : 0x215) #define LAN8814_PTP_CLOCK_TARGET_SEC_LO(event) ((event) ? 0x220 : 0x216) #define LAN8814_PTP_CLOCK_TARGET_NS_HI(event) ((event) ? 0x221 : 0x217) #define LAN8814_PTP_CLOCK_TARGET_NS_LO(event) ((event) ? 0x222 : 0x218) #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event) ((event) ? 0x223 : 0x219) #define LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event) ((event) ? 0x224 : 0x21A) #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event) ((event) ? 0x225 : 0x21B) #define LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event) ((event) ? 0x226 : 0x21C) /* Delay used to get the second part from the LTC */ #define LAN8841_GET_SEC_LTC_DELAY (500 * NSEC_PER_MSEC) struct kszphy_hw_stat { const char *string; u8 reg; u8 bits; }; static struct kszphy_hw_stat kszphy_hw_stats[] = { { "phy_receive_errors", 21, 16}, { "phy_idle_errors", 10, 8 }, }; struct kszphy_type { u32 led_mode_reg; u16 interrupt_level_mask; u16 cable_diag_reg; unsigned long pair_mask; u16 disable_dll_tx_bit; u16 disable_dll_rx_bit; u16 disable_dll_mask; bool has_broadcast_disable; bool has_nand_tree_disable; bool has_rmii_ref_clk_sel; }; /* Shared structure between the PHYs of the same package. */ struct lan8814_shared_priv { struct phy_device *phydev; struct ptp_clock *ptp_clock; struct ptp_clock_info ptp_clock_info; struct ptp_pin_desc *pin_config; /* Lock for ptp_clock */ struct mutex shared_lock; }; struct lan8814_ptp_rx_ts { struct list_head list; u32 seconds; u32 nsec; u16 seq_id; }; struct kszphy_ptp_priv { struct mii_timestamper mii_ts; struct phy_device *phydev; struct sk_buff_head tx_queue; struct sk_buff_head rx_queue; struct list_head rx_ts_list; /* Lock for Rx ts fifo */ spinlock_t rx_ts_lock; int hwts_tx_type; enum hwtstamp_rx_filters rx_filter; int layer; int version; struct ptp_clock *ptp_clock; struct ptp_clock_info ptp_clock_info; /* Lock for ptp_clock */ struct mutex ptp_lock; struct ptp_pin_desc *pin_config; s64 seconds; /* Lock for accessing seconds */ spinlock_t seconds_lock; }; struct kszphy_priv { struct kszphy_ptp_priv ptp_priv; const struct kszphy_type *type; int led_mode; u16 vct_ctrl1000; bool rmii_ref_clk_sel; bool rmii_ref_clk_sel_val; u64 stats[ARRAY_SIZE(kszphy_hw_stats)]; }; static const struct kszphy_type lan8814_type = { .led_mode_reg = ~LAN8814_LED_CTRL_1, .cable_diag_reg = LAN8814_CABLE_DIAG, .pair_mask = LAN8814_WIRE_PAIR_MASK, }; static const struct kszphy_type ksz886x_type = { .cable_diag_reg = KSZ8081_LMD, .pair_mask = KSZPHY_WIRE_PAIR_MASK, }; static const struct kszphy_type ksz8021_type = { .led_mode_reg = MII_KSZPHY_CTRL_2, .has_broadcast_disable = true, .has_nand_tree_disable = true, .has_rmii_ref_clk_sel = true, }; static const struct kszphy_type ksz8041_type = { .led_mode_reg = MII_KSZPHY_CTRL_1, }; static const struct kszphy_type ksz8051_type = { .led_mode_reg = MII_KSZPHY_CTRL_2, .has_nand_tree_disable = true, }; static const struct kszphy_type ksz8081_type = { .led_mode_reg = MII_KSZPHY_CTRL_2, .has_broadcast_disable = true, .has_nand_tree_disable = true, .has_rmii_ref_clk_sel = true, }; static const struct kszphy_type ks8737_type = { .interrupt_level_mask = BIT(14), }; static const struct kszphy_type ksz9021_type = { .interrupt_level_mask = BIT(14), }; static const struct kszphy_type ksz9131_type = { .interrupt_level_mask = BIT(14), .disable_dll_tx_bit = BIT(12), .disable_dll_rx_bit = BIT(12), .disable_dll_mask = BIT_MASK(12), }; static const struct kszphy_type lan8841_type = { .disable_dll_tx_bit = BIT(14), .disable_dll_rx_bit = BIT(14), .disable_dll_mask = BIT_MASK(14), .cable_diag_reg = LAN8814_CABLE_DIAG, .pair_mask = LAN8814_WIRE_PAIR_MASK, }; static int kszphy_extended_write(struct phy_device *phydev, u32 regnum, u16 val) { phy_write(phydev, MII_KSZPHY_EXTREG, KSZPHY_EXTREG_WRITE | regnum); return phy_write(phydev, MII_KSZPHY_EXTREG_WRITE, val); } static int kszphy_extended_read(struct phy_device *phydev, u32 regnum) { phy_write(phydev, MII_KSZPHY_EXTREG, regnum); return phy_read(phydev, MII_KSZPHY_EXTREG_READ); } static int kszphy_ack_interrupt(struct phy_device *phydev) { /* bit[7..0] int status, which is a read and clear register. */ int rc; rc = phy_read(phydev, MII_KSZPHY_INTCS); return (rc < 0) ? rc : 0; } static int kszphy_config_intr(struct phy_device *phydev) { const struct kszphy_type *type = phydev->drv->driver_data; int temp, err; u16 mask; if (type && type->interrupt_level_mask) mask = type->interrupt_level_mask; else mask = KSZPHY_CTRL_INT_ACTIVE_HIGH; /* set the interrupt pin active low */ temp = phy_read(phydev, MII_KSZPHY_CTRL); if (temp < 0) return temp; temp &= ~mask; phy_write(phydev, MII_KSZPHY_CTRL, temp); /* enable / disable interrupts */ if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { err = kszphy_ack_interrupt(phydev); if (err) return err; err = phy_write(phydev, MII_KSZPHY_INTCS, KSZPHY_INTCS_ALL); } else { err = phy_write(phydev, MII_KSZPHY_INTCS, 0); if (err) return err; err = kszphy_ack_interrupt(phydev); } return err; } static irqreturn_t kszphy_handle_interrupt(struct phy_device *phydev) { int irq_status; irq_status = phy_read(phydev, MII_KSZPHY_INTCS); if (irq_status < 0) { phy_error(phydev); return IRQ_NONE; } if (!(irq_status & KSZPHY_INTCS_STATUS)) return IRQ_NONE; phy_trigger_machine(phydev); return IRQ_HANDLED; } static int kszphy_rmii_clk_sel(struct phy_device *phydev, bool val) { int ctrl; ctrl = phy_read(phydev, MII_KSZPHY_CTRL); if (ctrl < 0) return ctrl; if (val) ctrl |= KSZPHY_RMII_REF_CLK_SEL; else ctrl &= ~KSZPHY_RMII_REF_CLK_SEL; return phy_write(phydev, MII_KSZPHY_CTRL, ctrl); } static int kszphy_setup_led(struct phy_device *phydev, u32 reg, int val) { int rc, temp, shift; switch (reg) { case MII_KSZPHY_CTRL_1: shift = 14; break; case MII_KSZPHY_CTRL_2: shift = 4; break; default: return -EINVAL; } temp = phy_read(phydev, reg); if (temp < 0) { rc = temp; goto out; } temp &= ~(3 << shift); temp |= val << shift; rc = phy_write(phydev, reg, temp); out: if (rc < 0) phydev_err(phydev, "failed to set led mode\n"); return rc; } /* Disable PHY address 0 as the broadcast address, so that it can be used as a * unique (non-broadcast) address on a shared bus. */ static int kszphy_broadcast_disable(struct phy_device *phydev) { int ret; ret = phy_read(phydev, MII_KSZPHY_OMSO); if (ret < 0) goto out; ret = phy_write(phydev, MII_KSZPHY_OMSO, ret | KSZPHY_OMSO_B_CAST_OFF); out: if (ret) phydev_err(phydev, "failed to disable broadcast address\n"); return ret; } static int kszphy_nand_tree_disable(struct phy_device *phydev) { int ret; ret = phy_read(phydev, MII_KSZPHY_OMSO); if (ret < 0) goto out; if (!(ret & KSZPHY_OMSO_NAND_TREE_ON)) return 0; ret = phy_write(phydev, MII_KSZPHY_OMSO, ret & ~KSZPHY_OMSO_NAND_TREE_ON); out: if (ret) phydev_err(phydev, "failed to disable NAND tree mode\n"); return ret; } /* Some config bits need to be set again on resume, handle them here. */ static int kszphy_config_reset(struct phy_device *phydev) { struct kszphy_priv *priv = phydev->priv; int ret; if (priv->rmii_ref_clk_sel) { ret = kszphy_rmii_clk_sel(phydev, priv->rmii_ref_clk_sel_val); if (ret) { phydev_err(phydev, "failed to set rmii reference clock\n"); return ret; } } if (priv->type && priv->led_mode >= 0) kszphy_setup_led(phydev, priv->type->led_mode_reg, priv->led_mode); return 0; } static int kszphy_config_init(struct phy_device *phydev) { struct kszphy_priv *priv = phydev->priv; const struct kszphy_type *type; if (!priv) return 0; type = priv->type; if (type && type->has_broadcast_disable) kszphy_broadcast_disable(phydev); if (type && type->has_nand_tree_disable) kszphy_nand_tree_disable(phydev); return kszphy_config_reset(phydev); } static int ksz8041_fiber_mode(struct phy_device *phydev) { struct device_node *of_node = phydev->mdio.dev.of_node; return of_property_read_bool(of_node, "micrel,fiber-mode"); } static int ksz8041_config_init(struct phy_device *phydev) { __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; /* Limit supported and advertised modes in fiber mode */ if (ksz8041_fiber_mode(phydev)) { phydev->dev_flags |= MICREL_PHY_FXEN; linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT, mask); linkmode_set_bit(ETHTOOL_LINK_MODE_100baseT_Half_BIT, mask); linkmode_and(phydev->supported, phydev->supported, mask); linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, phydev->supported); linkmode_and(phydev->advertising, phydev->advertising, mask); linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, phydev->advertising); phydev->autoneg = AUTONEG_DISABLE; } return kszphy_config_init(phydev); } static int ksz8041_config_aneg(struct phy_device *phydev) { /* Skip auto-negotiation in fiber mode */ if (phydev->dev_flags & MICREL_PHY_FXEN) { phydev->speed = SPEED_100; return 0; } return genphy_config_aneg(phydev); } static int ksz8051_ksz8795_match_phy_device(struct phy_device *phydev, const bool ksz_8051) { int ret; if (!phy_id_compare(phydev->phy_id, PHY_ID_KSZ8051, MICREL_PHY_ID_MASK)) return 0; ret = phy_read(phydev, MII_BMSR); if (ret < 0) return ret; /* KSZ8051 PHY and KSZ8794/KSZ8795/KSZ8765 switch share the same * exact PHY ID. However, they can be told apart by the extended * capability registers presence. The KSZ8051 PHY has them while * the switch does not. */ ret &= BMSR_ERCAP; if (ksz_8051) return ret; else return !ret; } static int ksz8051_match_phy_device(struct phy_device *phydev) { return ksz8051_ksz8795_match_phy_device(phydev, true); } static int ksz8081_config_init(struct phy_device *phydev) { /* KSZPHY_OMSO_FACTORY_TEST is set at de-assertion of the reset line * based on the RXER (KSZ8081RNA/RND) or TXC (KSZ8081MNX/RNB) pin. If a * pull-down is missing, the factory test mode should be cleared by * manually writing a 0. */ phy_clear_bits(phydev, MII_KSZPHY_OMSO, KSZPHY_OMSO_FACTORY_TEST); return kszphy_config_init(phydev); } static int ksz8081_config_mdix(struct phy_device *phydev, u8 ctrl) { u16 val; switch (ctrl) { case ETH_TP_MDI: val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX; break; case ETH_TP_MDI_X: val = KSZ8081_CTRL2_DISABLE_AUTO_MDIX | KSZ8081_CTRL2_MDI_MDI_X_SELECT; break; case ETH_TP_MDI_AUTO: val = 0; break; default: return 0; } return phy_modify(phydev, MII_KSZPHY_CTRL_2, KSZ8081_CTRL2_HP_MDIX | KSZ8081_CTRL2_MDI_MDI_X_SELECT | KSZ8081_CTRL2_DISABLE_AUTO_MDIX, KSZ8081_CTRL2_HP_MDIX | val); } static int ksz8081_config_aneg(struct phy_device *phydev) { int ret; ret = genphy_config_aneg(phydev); if (ret) return ret; /* The MDI-X configuration is automatically changed by the PHY after * switching from autoneg off to on. So, take MDI-X configuration under * own control and set it after autoneg configuration was done. */ return ksz8081_config_mdix(phydev, phydev->mdix_ctrl); } static int ksz8081_mdix_update(struct phy_device *phydev) { int ret; ret = phy_read(phydev, MII_KSZPHY_CTRL_2); if (ret < 0) return ret; if (ret & KSZ8081_CTRL2_DISABLE_AUTO_MDIX) { if (ret & KSZ8081_CTRL2_MDI_MDI_X_SELECT) phydev->mdix_ctrl = ETH_TP_MDI_X; else phydev->mdix_ctrl = ETH_TP_MDI; } else { phydev->mdix_ctrl = ETH_TP_MDI_AUTO; } ret = phy_read(phydev, MII_KSZPHY_CTRL_1); if (ret < 0) return ret; if (ret & KSZ8081_CTRL1_MDIX_STAT) phydev->mdix = ETH_TP_MDI; else phydev->mdix = ETH_TP_MDI_X; return 0; } static int ksz8081_read_status(struct phy_device *phydev) { int ret; ret = ksz8081_mdix_update(phydev); if (ret < 0) return ret; return genphy_read_status(phydev); } static int ksz8061_config_init(struct phy_device *phydev) { int ret; /* Chip can be powered down by the bootstrap code. */ ret = phy_read(phydev, MII_BMCR); if (ret < 0) return ret; if (ret & BMCR_PDOWN) { ret = phy_write(phydev, MII_BMCR, ret & ~BMCR_PDOWN); if (ret < 0) return ret; usleep_range(1000, 2000); } ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); if (ret) return ret; return kszphy_config_init(phydev); } static int ksz8795_match_phy_device(struct phy_device *phydev) { return ksz8051_ksz8795_match_phy_device(phydev, false); } static int ksz9021_load_values_from_of(struct phy_device *phydev, const struct device_node *of_node, u16 reg, const char *field1, const char *field2, const char *field3, const char *field4) { int val1 = -1; int val2 = -2; int val3 = -3; int val4 = -4; int newval; int matches = 0; if (!of_property_read_u32(of_node, field1, &val1)) matches++; if (!of_property_read_u32(of_node, field2, &val2)) matches++; if (!of_property_read_u32(of_node, field3, &val3)) matches++; if (!of_property_read_u32(of_node, field4, &val4)) matches++; if (!matches) return 0; if (matches < 4) newval = kszphy_extended_read(phydev, reg); else newval = 0; if (val1 != -1) newval = ((newval & 0xfff0) | ((val1 / PS_TO_REG) & 0xf) << 0); if (val2 != -2) newval = ((newval & 0xff0f) | ((val2 / PS_TO_REG) & 0xf) << 4); if (val3 != -3) newval = ((newval & 0xf0ff) | ((val3 / PS_TO_REG) & 0xf) << 8); if (val4 != -4) newval = ((newval & 0x0fff) | ((val4 / PS_TO_REG) & 0xf) << 12); return kszphy_extended_write(phydev, reg, newval); } static int ksz9021_config_init(struct phy_device *phydev) { const struct device_node *of_node; const struct device *dev_walker; /* The Micrel driver has a deprecated option to place phy OF * properties in the MAC node. Walk up the tree of devices to * find a device with an OF node. */ dev_walker = &phydev->mdio.dev; do { of_node = dev_walker->of_node; dev_walker = dev_walker->parent; } while (!of_node && dev_walker); if (of_node) { ksz9021_load_values_from_of(phydev, of_node, MII_KSZPHY_CLK_CONTROL_PAD_SKEW, "txen-skew-ps", "txc-skew-ps", "rxdv-skew-ps", "rxc-skew-ps"); ksz9021_load_values_from_of(phydev, of_node, MII_KSZPHY_RX_DATA_PAD_SKEW, "rxd0-skew-ps", "rxd1-skew-ps", "rxd2-skew-ps", "rxd3-skew-ps"); ksz9021_load_values_from_of(phydev, of_node, MII_KSZPHY_TX_DATA_PAD_SKEW, "txd0-skew-ps", "txd1-skew-ps", "txd2-skew-ps", "txd3-skew-ps"); } return 0; } #define KSZ9031_PS_TO_REG 60 /* Extended registers */ /* MMD Address 0x0 */ #define MII_KSZ9031RN_FLP_BURST_TX_LO 3 #define MII_KSZ9031RN_FLP_BURST_TX_HI 4 /* MMD Address 0x2 */ #define MII_KSZ9031RN_CONTROL_PAD_SKEW 4 #define MII_KSZ9031RN_RX_CTL_M GENMASK(7, 4) #define MII_KSZ9031RN_TX_CTL_M GENMASK(3, 0) #define MII_KSZ9031RN_RX_DATA_PAD_SKEW 5 #define MII_KSZ9031RN_RXD3 GENMASK(15, 12) #define MII_KSZ9031RN_RXD2 GENMASK(11, 8) #define MII_KSZ9031RN_RXD1 GENMASK(7, 4) #define MII_KSZ9031RN_RXD0 GENMASK(3, 0) #define MII_KSZ9031RN_TX_DATA_PAD_SKEW 6 #define MII_KSZ9031RN_TXD3 GENMASK(15, 12) #define MII_KSZ9031RN_TXD2 GENMASK(11, 8) #define MII_KSZ9031RN_TXD1 GENMASK(7, 4) #define MII_KSZ9031RN_TXD0 GENMASK(3, 0) #define MII_KSZ9031RN_CLK_PAD_SKEW 8 #define MII_KSZ9031RN_GTX_CLK GENMASK(9, 5) #define MII_KSZ9031RN_RX_CLK GENMASK(4, 0) /* KSZ9031 has internal RGMII_IDRX = 1.2ns and RGMII_IDTX = 0ns. To * provide different RGMII options we need to configure delay offset * for each pad relative to build in delay. */ /* keep rx as "No delay adjustment" and set rx_clk to +0.60ns to get delays of * 1.80ns */ #define RX_ID 0x7 #define RX_CLK_ID 0x19 /* set rx to +0.30ns and rx_clk to -0.90ns to compensate the * internal 1.2ns delay. */ #define RX_ND 0xc #define RX_CLK_ND 0x0 /* set tx to -0.42ns and tx_clk to +0.96ns to get 1.38ns delay */ #define TX_ID 0x0 #define TX_CLK_ID 0x1f /* set tx and tx_clk to "No delay adjustment" to keep 0ns * dealy */ #define TX_ND 0x7 #define TX_CLK_ND 0xf /* MMD Address 0x1C */ #define MII_KSZ9031RN_EDPD 0x23 #define MII_KSZ9031RN_EDPD_ENABLE BIT(0) static int ksz9031_of_load_skew_values(struct phy_device *phydev, const struct device_node *of_node, u16 reg, size_t field_sz, const char *field[], u8 numfields, bool *update) { int val[4] = {-1, -2, -3, -4}; int matches = 0; u16 mask; u16 maxval; u16 newval; int i; for (i = 0; i < numfields; i++) if (!of_property_read_u32(of_node, field[i], val + i)) matches++; if (!matches) return 0; *update |= true; if (matches < numfields) newval = phy_read_mmd(phydev, 2, reg); else newval = 0; maxval = (field_sz == 4) ? 0xf : 0x1f; for (i = 0; i < numfields; i++) if (val[i] != -(i + 1)) { mask = 0xffff; mask ^= maxval << (field_sz * i); newval = (newval & mask) | (((val[i] / KSZ9031_PS_TO_REG) & maxval) << (field_sz * i)); } return phy_write_mmd(phydev, 2, reg, newval); } /* Center KSZ9031RNX FLP timing at 16ms. */ static int ksz9031_center_flp_timing(struct phy_device *phydev) { int result; result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_HI, 0x0006); if (result) return result; result = phy_write_mmd(phydev, 0, MII_KSZ9031RN_FLP_BURST_TX_LO, 0x1A80); if (result) return result; return genphy_restart_aneg(phydev); } /* Enable energy-detect power-down mode */ static int ksz9031_enable_edpd(struct phy_device *phydev) { int reg; reg = phy_read_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD); if (reg < 0) return reg; return phy_write_mmd(phydev, 0x1C, MII_KSZ9031RN_EDPD, reg | MII_KSZ9031RN_EDPD_ENABLE); } static int ksz9031_config_rgmii_delay(struct phy_device *phydev) { u16 rx, tx, rx_clk, tx_clk; int ret; switch (phydev->interface) { case PHY_INTERFACE_MODE_RGMII: tx = TX_ND; tx_clk = TX_CLK_ND; rx = RX_ND; rx_clk = RX_CLK_ND; break; case PHY_INTERFACE_MODE_RGMII_ID: tx = TX_ID; tx_clk = TX_CLK_ID; rx = RX_ID; rx_clk = RX_CLK_ID; break; case PHY_INTERFACE_MODE_RGMII_RXID: tx = TX_ND; tx_clk = TX_CLK_ND; rx = RX_ID; rx_clk = RX_CLK_ID; break; case PHY_INTERFACE_MODE_RGMII_TXID: tx = TX_ID; tx_clk = TX_CLK_ID; rx = RX_ND; rx_clk = RX_CLK_ND; break; default: return 0; } ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_CONTROL_PAD_SKEW, FIELD_PREP(MII_KSZ9031RN_RX_CTL_M, rx) | FIELD_PREP(MII_KSZ9031RN_TX_CTL_M, tx)); if (ret < 0) return ret; ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_RX_DATA_PAD_SKEW, FIELD_PREP(MII_KSZ9031RN_RXD3, rx) | FIELD_PREP(MII_KSZ9031RN_RXD2, rx) | FIELD_PREP(MII_KSZ9031RN_RXD1, rx) | FIELD_PREP(MII_KSZ9031RN_RXD0, rx)); if (ret < 0) return ret; ret = phy_write_mmd(phydev, 2, MII_KSZ9031RN_TX_DATA_PAD_SKEW, FIELD_PREP(MII_KSZ9031RN_TXD3, tx) | FIELD_PREP(MII_KSZ9031RN_TXD2, tx) | FIELD_PREP(MII_KSZ9031RN_TXD1, tx) | FIELD_PREP(MII_KSZ9031RN_TXD0, tx)); if (ret < 0) return ret; return phy_write_mmd(phydev, 2, MII_KSZ9031RN_CLK_PAD_SKEW, FIELD_PREP(MII_KSZ9031RN_GTX_CLK, tx_clk) | FIELD_PREP(MII_KSZ9031RN_RX_CLK, rx_clk)); } static int ksz9031_config_init(struct phy_device *phydev) { const struct device_node *of_node; static const char *clk_skews[2] = {"rxc-skew-ps", "txc-skew-ps"}; static const char *rx_data_skews[4] = { "rxd0-skew-ps", "rxd1-skew-ps", "rxd2-skew-ps", "rxd3-skew-ps" }; static const char *tx_data_skews[4] = { "txd0-skew-ps", "txd1-skew-ps", "txd2-skew-ps", "txd3-skew-ps" }; static const char *control_skews[2] = {"txen-skew-ps", "rxdv-skew-ps"}; const struct device *dev_walker; int result; result = ksz9031_enable_edpd(phydev); if (result < 0) return result; /* The Micrel driver has a deprecated option to place phy OF * properties in the MAC node. Walk up the tree of devices to * find a device with an OF node. */ dev_walker = &phydev->mdio.dev; do { of_node = dev_walker->of_node; dev_walker = dev_walker->parent; } while (!of_node && dev_walker); if (of_node) { bool update = false; if (phy_interface_is_rgmii(phydev)) { result = ksz9031_config_rgmii_delay(phydev); if (result < 0) return result; } ksz9031_of_load_skew_values(phydev, of_node, MII_KSZ9031RN_CLK_PAD_SKEW, 5, clk_skews, 2, &update); ksz9031_of_load_skew_values(phydev, of_node, MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, control_skews, 2, &update); ksz9031_of_load_skew_values(phydev, of_node, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, rx_data_skews, 4, &update); ksz9031_of_load_skew_values(phydev, of_node, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, tx_data_skews, 4, &update); if (update && !phy_interface_is_rgmii(phydev)) phydev_warn(phydev, "*-skew-ps values should be used only with RGMII PHY modes\n"); /* Silicon Errata Sheet (DS80000691D or DS80000692D): * When the device links in the 1000BASE-T slave mode only, * the optional 125MHz reference output clock (CLK125_NDO) * has wide duty cycle variation. * * The optional CLK125_NDO clock does not meet the RGMII * 45/55 percent (min/max) duty cycle requirement and therefore * cannot be used directly by the MAC side for clocking * applications that have setup/hold time requirements on * rising and falling clock edges. * * Workaround: * Force the phy to be the master to receive a stable clock * which meets the duty cycle requirement. */ if (of_property_read_bool(of_node, "micrel,force-master")) { result = phy_read(phydev, MII_CTRL1000); if (result < 0) goto err_force_master; /* enable master mode, config & prefer master */ result |= CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER; result = phy_write(phydev, MII_CTRL1000, result); if (result < 0) goto err_force_master; } } return ksz9031_center_flp_timing(phydev); err_force_master: phydev_err(phydev, "failed to force the phy to master mode\n"); return result; } #define KSZ9131_SKEW_5BIT_MAX 2400 #define KSZ9131_SKEW_4BIT_MAX 800 #define KSZ9131_OFFSET 700 #define KSZ9131_STEP 100 static int ksz9131_of_load_skew_values(struct phy_device *phydev, struct device_node *of_node, u16 reg, size_t field_sz, char *field[], u8 numfields) { int val[4] = {-(1 + KSZ9131_OFFSET), -(2 + KSZ9131_OFFSET), -(3 + KSZ9131_OFFSET), -(4 + KSZ9131_OFFSET)}; int skewval, skewmax = 0; int matches = 0; u16 maxval; u16 newval; u16 mask; int i; /* psec properties in dts should mean x pico seconds */ if (field_sz == 5) skewmax = KSZ9131_SKEW_5BIT_MAX; else skewmax = KSZ9131_SKEW_4BIT_MAX; for (i = 0; i < numfields; i++) if (!of_property_read_s32(of_node, field[i], &skewval)) { if (skewval < -KSZ9131_OFFSET) skewval = -KSZ9131_OFFSET; else if (skewval > skewmax) skewval = skewmax; val[i] = skewval + KSZ9131_OFFSET; matches++; } if (!matches) return 0; if (matches < numfields) newval = phy_read_mmd(phydev, 2, reg); else newval = 0; maxval = (field_sz == 4) ? 0xf : 0x1f; for (i = 0; i < numfields; i++) if (val[i] != -(i + 1 + KSZ9131_OFFSET)) { mask = 0xffff; mask ^= maxval << (field_sz * i); newval = (newval & mask) | (((val[i] / KSZ9131_STEP) & maxval) << (field_sz * i)); } return phy_write_mmd(phydev, 2, reg, newval); } #define KSZ9131RN_MMD_COMMON_CTRL_REG 2 #define KSZ9131RN_RXC_DLL_CTRL 76 #define KSZ9131RN_TXC_DLL_CTRL 77 #define KSZ9131RN_DLL_ENABLE_DELAY 0 static int ksz9131_config_rgmii_delay(struct phy_device *phydev) { const struct kszphy_type *type = phydev->drv->driver_data; u16 rxcdll_val, txcdll_val; int ret; switch (phydev->interface) { case PHY_INTERFACE_MODE_RGMII: rxcdll_val = type->disable_dll_rx_bit; txcdll_val = type->disable_dll_tx_bit; break; case PHY_INTERFACE_MODE_RGMII_ID: rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; break; case PHY_INTERFACE_MODE_RGMII_RXID: rxcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; txcdll_val = type->disable_dll_tx_bit; break; case PHY_INTERFACE_MODE_RGMII_TXID: rxcdll_val = type->disable_dll_rx_bit; txcdll_val = KSZ9131RN_DLL_ENABLE_DELAY; break; default: return 0; } ret = phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, KSZ9131RN_RXC_DLL_CTRL, type->disable_dll_mask, rxcdll_val); if (ret < 0) return ret; return phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, KSZ9131RN_TXC_DLL_CTRL, type->disable_dll_mask, txcdll_val); } /* Silicon Errata DS80000693B * * When LEDs are configured in Individual Mode, LED1 is ON in a no-link * condition. Workaround is to set register 0x1e, bit 9, this way LED1 behaves * according to the datasheet (off if there is no link). */ static int ksz9131_led_errata(struct phy_device *phydev) { int reg; reg = phy_read_mmd(phydev, 2, 0); if (reg < 0) return reg; if (!(reg & BIT(4))) return 0; return phy_set_bits(phydev, 0x1e, BIT(9)); } static int ksz9131_config_init(struct phy_device *phydev) { struct device_node *of_node; char *clk_skews[2] = {"rxc-skew-psec", "txc-skew-psec"}; char *rx_data_skews[4] = { "rxd0-skew-psec", "rxd1-skew-psec", "rxd2-skew-psec", "rxd3-skew-psec" }; char *tx_data_skews[4] = { "txd0-skew-psec", "txd1-skew-psec", "txd2-skew-psec", "txd3-skew-psec" }; char *control_skews[2] = {"txen-skew-psec", "rxdv-skew-psec"}; const struct device *dev_walker; int ret; dev_walker = &phydev->mdio.dev; do { of_node = dev_walker->of_node; dev_walker = dev_walker->parent; } while (!of_node && dev_walker); if (!of_node) return 0; if (phy_interface_is_rgmii(phydev)) { ret = ksz9131_config_rgmii_delay(phydev); if (ret < 0) return ret; } ret = ksz9131_of_load_skew_values(phydev, of_node, MII_KSZ9031RN_CLK_PAD_SKEW, 5, clk_skews, 2); if (ret < 0) return ret; ret = ksz9131_of_load_skew_values(phydev, of_node, MII_KSZ9031RN_CONTROL_PAD_SKEW, 4, control_skews, 2); if (ret < 0) return ret; ret = ksz9131_of_load_skew_values(phydev, of_node, MII_KSZ9031RN_RX_DATA_PAD_SKEW, 4, rx_data_skews, 4); if (ret < 0) return ret; ret = ksz9131_of_load_skew_values(phydev, of_node, MII_KSZ9031RN_TX_DATA_PAD_SKEW, 4, tx_data_skews, 4); if (ret < 0) return ret; ret = ksz9131_led_errata(phydev); if (ret < 0) return ret; return 0; } #define MII_KSZ9131_AUTO_MDIX 0x1C #define MII_KSZ9131_AUTO_MDI_SET BIT(7) #define MII_KSZ9131_AUTO_MDIX_SWAP_OFF BIT(6) static int ksz9131_mdix_update(struct phy_device *phydev) { int ret; ret = phy_read(phydev, MII_KSZ9131_AUTO_MDIX); if (ret < 0) return ret; if (ret & MII_KSZ9131_AUTO_MDIX_SWAP_OFF) { if (ret & MII_KSZ9131_AUTO_MDI_SET) phydev->mdix_ctrl = ETH_TP_MDI; else phydev->mdix_ctrl = ETH_TP_MDI_X; } else { phydev->mdix_ctrl = ETH_TP_MDI_AUTO; } if (ret & MII_KSZ9131_AUTO_MDI_SET) phydev->mdix = ETH_TP_MDI; else phydev->mdix = ETH_TP_MDI_X; return 0; } static int ksz9131_config_mdix(struct phy_device *phydev, u8 ctrl) { u16 val; switch (ctrl) { case ETH_TP_MDI: val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF | MII_KSZ9131_AUTO_MDI_SET; break; case ETH_TP_MDI_X: val = MII_KSZ9131_AUTO_MDIX_SWAP_OFF; break; case ETH_TP_MDI_AUTO: val = 0; break; default: return 0; } return phy_modify(phydev, MII_KSZ9131_AUTO_MDIX, MII_KSZ9131_AUTO_MDIX_SWAP_OFF | MII_KSZ9131_AUTO_MDI_SET, val); } static int ksz9131_read_status(struct phy_device *phydev) { int ret; ret = ksz9131_mdix_update(phydev); if (ret < 0) return ret; return genphy_read_status(phydev); } static int ksz9131_config_aneg(struct phy_device *phydev) { int ret; ret = ksz9131_config_mdix(phydev, phydev->mdix_ctrl); if (ret) return ret; return genphy_config_aneg(phydev); } static int ksz9477_get_features(struct phy_device *phydev) { int ret; ret = genphy_read_abilities(phydev); if (ret) return ret; /* The "EEE control and capability 1" (Register 3.20) seems to be * influenced by the "EEE advertisement 1" (Register 7.60). Changes * on the 7.60 will affect 3.20. So, we need to construct our own list * of caps. * KSZ8563R should have 100BaseTX/Full only. */ linkmode_and(phydev->supported_eee, phydev->supported, PHY_EEE_CAP1_FEATURES); return 0; } #define KSZ8873MLL_GLOBAL_CONTROL_4 0x06 #define KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX BIT(6) #define KSZ8873MLL_GLOBAL_CONTROL_4_SPEED BIT(4) static int ksz8873mll_read_status(struct phy_device *phydev) { int regval; /* dummy read */ regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); regval = phy_read(phydev, KSZ8873MLL_GLOBAL_CONTROL_4); if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_DUPLEX) phydev->duplex = DUPLEX_HALF; else phydev->duplex = DUPLEX_FULL; if (regval & KSZ8873MLL_GLOBAL_CONTROL_4_SPEED) phydev->speed = SPEED_10; else phydev->speed = SPEED_100; phydev->link = 1; phydev->pause = phydev->asym_pause = 0; return 0; } static int ksz9031_get_features(struct phy_device *phydev) { int ret; ret = genphy_read_abilities(phydev); if (ret < 0) return ret; /* Silicon Errata Sheet (DS80000691D or DS80000692D): * Whenever the device's Asymmetric Pause capability is set to 1, * link-up may fail after a link-up to link-down transition. * * The Errata Sheet is for ksz9031, but ksz9021 has the same issue * * Workaround: * Do not enable the Asymmetric Pause capability bit. */ linkmode_clear_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->supported); /* We force setting the Pause capability as the core will force the * Asymmetric Pause capability to 1 otherwise. */ linkmode_set_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->supported); return 0; } static int ksz9031_read_status(struct phy_device *phydev) { int err; int regval; err = genphy_read_status(phydev); if (err) return err; /* Make sure the PHY is not broken. Read idle error count, * and reset the PHY if it is maxed out. */ regval = phy_read(phydev, MII_STAT1000); if ((regval & 0xFF) == 0xFF) { phy_init_hw(phydev); phydev->link = 0; if (phydev->drv->config_intr && phy_interrupt_is_valid(phydev)) phydev->drv->config_intr(phydev); return genphy_config_aneg(phydev); } return 0; } static int ksz9x31_cable_test_start(struct phy_device *phydev) { struct kszphy_priv *priv = phydev->priv; int ret; /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic * Prior to running the cable diagnostics, Auto-negotiation should * be disabled, full duplex set and the link speed set to 1000Mbps * via the Basic Control Register. */ ret = phy_modify(phydev, MII_BMCR, BMCR_SPEED1000 | BMCR_FULLDPLX | BMCR_ANENABLE | BMCR_SPEED100, BMCR_SPEED1000 | BMCR_FULLDPLX); if (ret) return ret; /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic * The Master-Slave configuration should be set to Slave by writing * a value of 0x1000 to the Auto-Negotiation Master Slave Control * Register. */ ret = phy_read(phydev, MII_CTRL1000); if (ret < 0) return ret; /* Cache these bits, they need to be restored once LinkMD finishes. */ priv->vct_ctrl1000 = ret & (CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); ret &= ~(CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER); ret |= CTL1000_ENABLE_MASTER; return phy_write(phydev, MII_CTRL1000, ret); } static int ksz9x31_cable_test_result_trans(u16 status) { switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { case KSZ9x31_LMD_VCT_ST_NORMAL: return ETHTOOL_A_CABLE_RESULT_CODE_OK; case KSZ9x31_LMD_VCT_ST_OPEN: return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; case KSZ9x31_LMD_VCT_ST_SHORT: return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; case KSZ9x31_LMD_VCT_ST_FAIL: fallthrough; default: return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; } } static bool ksz9x31_cable_test_failed(u16 status) { int stat = FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status); return stat == KSZ9x31_LMD_VCT_ST_FAIL; } static bool ksz9x31_cable_test_fault_length_valid(u16 status) { switch (FIELD_GET(KSZ9x31_LMD_VCT_ST_MASK, status)) { case KSZ9x31_LMD_VCT_ST_OPEN: fallthrough; case KSZ9x31_LMD_VCT_ST_SHORT: return true; } return false; } static int ksz9x31_cable_test_fault_length(struct phy_device *phydev, u16 stat) { int dt = FIELD_GET(KSZ9x31_LMD_VCT_DATA_MASK, stat); /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic * * distance to fault = (VCT_DATA - 22) * 4 / cable propagation velocity */ if (phydev_id_compare(phydev, PHY_ID_KSZ9131)) dt = clamp(dt - 22, 0, 255); return (dt * 400) / 10; } static int ksz9x31_cable_test_wait_for_completion(struct phy_device *phydev) { int val, ret; ret = phy_read_poll_timeout(phydev, KSZ9x31_LMD, val, !(val & KSZ9x31_LMD_VCT_EN), 30000, 100000, true); return ret < 0 ? ret : 0; } static int ksz9x31_cable_test_get_pair(int pair) { static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, ETHTOOL_A_CABLE_PAIR_B, ETHTOOL_A_CABLE_PAIR_C, ETHTOOL_A_CABLE_PAIR_D, }; return ethtool_pair[pair]; } static int ksz9x31_cable_test_one_pair(struct phy_device *phydev, int pair) { int ret, val; /* KSZ9131RNX, DS00002841B-page 38, 4.14 LinkMD (R) Cable Diagnostic * To test each individual cable pair, set the cable pair in the Cable * Diagnostics Test Pair (VCT_PAIR[1:0]) field of the LinkMD Cable * Diagnostic Register, along with setting the Cable Diagnostics Test * Enable (VCT_EN) bit. The Cable Diagnostics Test Enable (VCT_EN) bit * will self clear when the test is concluded. */ ret = phy_write(phydev, KSZ9x31_LMD, KSZ9x31_LMD_VCT_EN | KSZ9x31_LMD_VCT_PAIR(pair)); if (ret) return ret; ret = ksz9x31_cable_test_wait_for_completion(phydev); if (ret) return ret; val = phy_read(phydev, KSZ9x31_LMD); if (val < 0) return val; if (ksz9x31_cable_test_failed(val)) return -EAGAIN; ret = ethnl_cable_test_result(phydev, ksz9x31_cable_test_get_pair(pair), ksz9x31_cable_test_result_trans(val)); if (ret) return ret; if (!ksz9x31_cable_test_fault_length_valid(val)) return 0; return ethnl_cable_test_fault_length(phydev, ksz9x31_cable_test_get_pair(pair), ksz9x31_cable_test_fault_length(phydev, val)); } static int ksz9x31_cable_test_get_status(struct phy_device *phydev, bool *finished) { struct kszphy_priv *priv = phydev->priv; unsigned long pair_mask = 0xf; int retries = 20; int pair, ret, rv; *finished = false; /* Try harder if link partner is active */ while (pair_mask && retries--) { for_each_set_bit(pair, &pair_mask, 4) { ret = ksz9x31_cable_test_one_pair(phydev, pair); if (ret == -EAGAIN) continue; if (ret < 0) return ret; clear_bit(pair, &pair_mask); } /* If link partner is in autonegotiation mode it will send 2ms * of FLPs with at least 6ms of silence. * Add 2ms sleep to have better chances to hit this silence. */ if (pair_mask) usleep_range(2000, 3000); } /* Report remaining unfinished pair result as unknown. */ for_each_set_bit(pair, &pair_mask, 4) { ret = ethnl_cable_test_result(phydev, ksz9x31_cable_test_get_pair(pair), ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC); } *finished = true; /* Restore cached bits from before LinkMD got started. */ rv = phy_modify(phydev, MII_CTRL1000, CTL1000_ENABLE_MASTER | CTL1000_AS_MASTER, priv->vct_ctrl1000); if (rv) return rv; return ret; } static int ksz8873mll_config_aneg(struct phy_device *phydev) { return 0; } static int ksz886x_config_mdix(struct phy_device *phydev, u8 ctrl) { u16 val; switch (ctrl) { case ETH_TP_MDI: val = KSZ886X_BMCR_DISABLE_AUTO_MDIX; break; case ETH_TP_MDI_X: /* Note: The naming of the bit KSZ886X_BMCR_FORCE_MDI is bit * counter intuitive, the "-X" in "1 = Force MDI" in the data * sheet seems to be missing: * 1 = Force MDI (sic!) (transmit on RX+/RX- pins) * 0 = Normal operation (transmit on TX+/TX- pins) */ val = KSZ886X_BMCR_DISABLE_AUTO_MDIX | KSZ886X_BMCR_FORCE_MDI; break; case ETH_TP_MDI_AUTO: val = 0; break; default: return 0; } return phy_modify(phydev, MII_BMCR, KSZ886X_BMCR_HP_MDIX | KSZ886X_BMCR_FORCE_MDI | KSZ886X_BMCR_DISABLE_AUTO_MDIX, KSZ886X_BMCR_HP_MDIX | val); } static int ksz886x_config_aneg(struct phy_device *phydev) { int ret; ret = genphy_config_aneg(phydev); if (ret) return ret; if (phydev->autoneg != AUTONEG_ENABLE) { /* When autonegotation is disabled, we need to manually force * the link state. If we don't do this, the PHY will keep * sending Fast Link Pulses (FLPs) which are part of the * autonegotiation process. This is not desired when * autonegotiation is off. */ ret = phy_set_bits(phydev, MII_KSZPHY_CTRL, KSZ886X_CTRL_FORCE_LINK); if (ret) return ret; } else { /* If we had previously forced the link state, we need to * clear KSZ886X_CTRL_FORCE_LINK bit now. Otherwise, the PHY * will not perform autonegotiation. */ ret = phy_clear_bits(phydev, MII_KSZPHY_CTRL, KSZ886X_CTRL_FORCE_LINK); if (ret) return ret; } /* The MDI-X configuration is automatically changed by the PHY after * switching from autoneg off to on. So, take MDI-X configuration under * own control and set it after autoneg configuration was done. */ return ksz886x_config_mdix(phydev, phydev->mdix_ctrl); } static int ksz886x_mdix_update(struct phy_device *phydev) { int ret; ret = phy_read(phydev, MII_BMCR); if (ret < 0) return ret; if (ret & KSZ886X_BMCR_DISABLE_AUTO_MDIX) { if (ret & KSZ886X_BMCR_FORCE_MDI) phydev->mdix_ctrl = ETH_TP_MDI_X; else phydev->mdix_ctrl = ETH_TP_MDI; } else { phydev->mdix_ctrl = ETH_TP_MDI_AUTO; } ret = phy_read(phydev, MII_KSZPHY_CTRL); if (ret < 0) return ret; /* Same reverse logic as KSZ886X_BMCR_FORCE_MDI */ if (ret & KSZ886X_CTRL_MDIX_STAT) phydev->mdix = ETH_TP_MDI_X; else phydev->mdix = ETH_TP_MDI; return 0; } static int ksz886x_read_status(struct phy_device *phydev) { int ret; ret = ksz886x_mdix_update(phydev); if (ret < 0) return ret; return genphy_read_status(phydev); } struct ksz9477_errata_write { u8 dev_addr; u8 reg_addr; u16 val; }; static const struct ksz9477_errata_write ksz9477_errata_writes[] = { /* Register settings are needed to improve PHY receive performance */ {0x01, 0x6f, 0xdd0b}, {0x01, 0x8f, 0x6032}, {0x01, 0x9d, 0x248c}, {0x01, 0x75, 0x0060}, {0x01, 0xd3, 0x7777}, {0x1c, 0x06, 0x3008}, {0x1c, 0x08, 0x2000}, /* Transmit waveform amplitude can be improved (1000BASE-T, 100BASE-TX, 10BASE-Te) */ {0x1c, 0x04, 0x00d0}, /* Register settings are required to meet data sheet supply current specifications */ {0x1c, 0x13, 0x6eff}, {0x1c, 0x14, 0xe6ff}, {0x1c, 0x15, 0x6eff}, {0x1c, 0x16, 0xe6ff}, {0x1c, 0x17, 0x00ff}, {0x1c, 0x18, 0x43ff}, {0x1c, 0x19, 0xc3ff}, {0x1c, 0x1a, 0x6fff}, {0x1c, 0x1b, 0x07ff}, {0x1c, 0x1c, 0x0fff}, {0x1c, 0x1d, 0xe7ff}, {0x1c, 0x1e, 0xefff}, {0x1c, 0x20, 0xeeee}, }; static int ksz9477_phy_errata(struct phy_device *phydev) { int err; int i; /* Apply PHY settings to address errata listed in * KSZ9477, KSZ9897, KSZ9896, KSZ9567, KSZ8565 * Silicon Errata and Data Sheet Clarification documents. * * Document notes: Before configuring the PHY MMD registers, it is * necessary to set the PHY to 100 Mbps speed with auto-negotiation * disabled by writing to register 0xN100-0xN101. After writing the * MMD registers, and after all errata workarounds that involve PHY * register settings, write register 0xN100-0xN101 again to enable * and restart auto-negotiation. */ err = phy_write(phydev, MII_BMCR, BMCR_SPEED100 | BMCR_FULLDPLX); if (err) return err; for (i = 0; i < ARRAY_SIZE(ksz9477_errata_writes); ++i) { const struct ksz9477_errata_write *errata = &ksz9477_errata_writes[i]; err = phy_write_mmd(phydev, errata->dev_addr, errata->reg_addr, errata->val); if (err) return err; } err = genphy_restart_aneg(phydev); if (err) return err; return err; } static int ksz9477_config_init(struct phy_device *phydev) { int err; /* Only KSZ9897 family of switches needs this fix. */ if ((phydev->phy_id & 0xf) == 1) { err = ksz9477_phy_errata(phydev); if (err) return err; } /* According to KSZ9477 Errata DS80000754C (Module 4) all EEE modes * in this switch shall be regarded as broken. */ if (phydev->dev_flags & MICREL_NO_EEE) phydev->eee_broken_modes = -1; return kszphy_config_init(phydev); } static int kszphy_get_sset_count(struct phy_device *phydev) { return ARRAY_SIZE(kszphy_hw_stats); } static void kszphy_get_strings(struct phy_device *phydev, u8 *data) { int i; for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) { strscpy(data + i * ETH_GSTRING_LEN, kszphy_hw_stats[i].string, ETH_GSTRING_LEN); } } static u64 kszphy_get_stat(struct phy_device *phydev, int i) { struct kszphy_hw_stat stat = kszphy_hw_stats[i]; struct kszphy_priv *priv = phydev->priv; int val; u64 ret; val = phy_read(phydev, stat.reg); if (val < 0) { ret = U64_MAX; } else { val = val & ((1 << stat.bits) - 1); priv->stats[i] += val; ret = priv->stats[i]; } return ret; } static void kszphy_get_stats(struct phy_device *phydev, struct ethtool_stats *stats, u64 *data) { int i; for (i = 0; i < ARRAY_SIZE(kszphy_hw_stats); i++) data[i] = kszphy_get_stat(phydev, i); } static int kszphy_suspend(struct phy_device *phydev) { /* Disable PHY Interrupts */ if (phy_interrupt_is_valid(phydev)) { phydev->interrupts = PHY_INTERRUPT_DISABLED; if (phydev->drv->config_intr) phydev->drv->config_intr(phydev); } return genphy_suspend(phydev); } static void kszphy_parse_led_mode(struct phy_device *phydev) { const struct kszphy_type *type = phydev->drv->driver_data; const struct device_node *np = phydev->mdio.dev.of_node; struct kszphy_priv *priv = phydev->priv; int ret; if (type && type->led_mode_reg) { ret = of_property_read_u32(np, "micrel,led-mode", &priv->led_mode); if (ret) priv->led_mode = -1; if (priv->led_mode > 3) { phydev_err(phydev, "invalid led mode: 0x%02x\n", priv->led_mode); priv->led_mode = -1; } } else { priv->led_mode = -1; } } static int kszphy_resume(struct phy_device *phydev) { int ret; genphy_resume(phydev); /* After switching from power-down to normal mode, an internal global * reset is automatically generated. Wait a minimum of 1 ms before * read/write access to the PHY registers. */ usleep_range(1000, 2000); ret = kszphy_config_reset(phydev); if (ret) return ret; /* Enable PHY Interrupts */ if (phy_interrupt_is_valid(phydev)) { phydev->interrupts = PHY_INTERRUPT_ENABLED; if (phydev->drv->config_intr) phydev->drv->config_intr(phydev); } return 0; } static int ksz9477_resume(struct phy_device *phydev) { int ret; /* No need to initialize registers if not powered down. */ ret = phy_read(phydev, MII_BMCR); if (ret < 0) return ret; if (!(ret & BMCR_PDOWN)) return 0; genphy_resume(phydev); /* After switching from power-down to normal mode, an internal global * reset is automatically generated. Wait a minimum of 1 ms before * read/write access to the PHY registers. */ usleep_range(1000, 2000); /* Only KSZ9897 family of switches needs this fix. */ if ((phydev->phy_id & 0xf) == 1) { ret = ksz9477_phy_errata(phydev); if (ret) return ret; } /* Enable PHY Interrupts */ if (phy_interrupt_is_valid(phydev)) { phydev->interrupts = PHY_INTERRUPT_ENABLED; if (phydev->drv->config_intr) phydev->drv->config_intr(phydev); } return 0; } static int ksz8061_resume(struct phy_device *phydev) { int ret; /* This function can be called twice when the Ethernet device is on. */ ret = phy_read(phydev, MII_BMCR); if (ret < 0) return ret; if (!(ret & BMCR_PDOWN)) return 0; genphy_resume(phydev); usleep_range(1000, 2000); /* Re-program the value after chip is reset. */ ret = phy_write_mmd(phydev, MDIO_MMD_PMAPMD, MDIO_DEVID1, 0xB61A); if (ret) return ret; /* Enable PHY Interrupts */ if (phy_interrupt_is_valid(phydev)) { phydev->interrupts = PHY_INTERRUPT_ENABLED; if (phydev->drv->config_intr) phydev->drv->config_intr(phydev); } return 0; } static int kszphy_probe(struct phy_device *phydev) { const struct kszphy_type *type = phydev->drv->driver_data; const struct device_node *np = phydev->mdio.dev.of_node; struct kszphy_priv *priv; struct clk *clk; priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; phydev->priv = priv; priv->type = type; kszphy_parse_led_mode(phydev); clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, "rmii-ref"); /* NOTE: clk may be NULL if building without CONFIG_HAVE_CLK */ if (!IS_ERR_OR_NULL(clk)) { unsigned long rate = clk_get_rate(clk); bool rmii_ref_clk_sel_25_mhz; if (type) priv->rmii_ref_clk_sel = type->has_rmii_ref_clk_sel; rmii_ref_clk_sel_25_mhz = of_property_read_bool(np, "micrel,rmii-reference-clock-select-25-mhz"); if (rate > 24500000 && rate < 25500000) { priv->rmii_ref_clk_sel_val = rmii_ref_clk_sel_25_mhz; } else if (rate > 49500000 && rate < 50500000) { priv->rmii_ref_clk_sel_val = !rmii_ref_clk_sel_25_mhz; } else { phydev_err(phydev, "Clock rate out of range: %ld\n", rate); return -EINVAL; } } else if (!clk) { /* unnamed clock from the generic ethernet-phy binding */ clk = devm_clk_get_optional_enabled(&phydev->mdio.dev, NULL); if (IS_ERR(clk)) return PTR_ERR(clk); } if (ksz8041_fiber_mode(phydev)) phydev->port = PORT_FIBRE; /* Support legacy board-file configuration */ if (phydev->dev_flags & MICREL_PHY_50MHZ_CLK) { priv->rmii_ref_clk_sel = true; priv->rmii_ref_clk_sel_val = true; } return 0; } static int lan8814_cable_test_start(struct phy_device *phydev) { /* If autoneg is enabled, we won't be able to test cross pair * short. In this case, the PHY will "detect" a link and * confuse the internal state machine - disable auto neg here. * Set the speed to 1000mbit and full duplex. */ return phy_modify(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100, BMCR_SPEED1000 | BMCR_FULLDPLX); } static int ksz886x_cable_test_start(struct phy_device *phydev) { if (phydev->dev_flags & MICREL_KSZ8_P1_ERRATA) return -EOPNOTSUPP; /* If autoneg is enabled, we won't be able to test cross pair * short. In this case, the PHY will "detect" a link and * confuse the internal state machine - disable auto neg here. * If autoneg is disabled, we should set the speed to 10mbit. */ return phy_clear_bits(phydev, MII_BMCR, BMCR_ANENABLE | BMCR_SPEED100); } static __always_inline int ksz886x_cable_test_result_trans(u16 status, u16 mask) { switch (FIELD_GET(mask, status)) { case KSZ8081_LMD_STAT_NORMAL: return ETHTOOL_A_CABLE_RESULT_CODE_OK; case KSZ8081_LMD_STAT_SHORT: return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; case KSZ8081_LMD_STAT_OPEN: return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; case KSZ8081_LMD_STAT_FAIL: fallthrough; default: return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; } } static __always_inline bool ksz886x_cable_test_failed(u16 status, u16 mask) { return FIELD_GET(mask, status) == KSZ8081_LMD_STAT_FAIL; } static __always_inline bool ksz886x_cable_test_fault_length_valid(u16 status, u16 mask) { switch (FIELD_GET(mask, status)) { case KSZ8081_LMD_STAT_OPEN: fallthrough; case KSZ8081_LMD_STAT_SHORT: return true; } return false; } static __always_inline int ksz886x_cable_test_fault_length(struct phy_device *phydev, u16 status, u16 data_mask) { int dt; /* According to the data sheet the distance to the fault is * DELTA_TIME * 0.4 meters for ksz phys. * (DELTA_TIME - 22) * 0.8 for lan8814 phy. */ dt = FIELD_GET(data_mask, status); if (phydev_id_compare(phydev, PHY_ID_LAN8814)) return ((dt - 22) * 800) / 10; else return (dt * 400) / 10; } static int ksz886x_cable_test_wait_for_completion(struct phy_device *phydev) { const struct kszphy_type *type = phydev->drv->driver_data; int val, ret; ret = phy_read_poll_timeout(phydev, type->cable_diag_reg, val, !(val & KSZ8081_LMD_ENABLE_TEST), 30000, 100000, true); return ret < 0 ? ret : 0; } static int lan8814_cable_test_one_pair(struct phy_device *phydev, int pair) { static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, ETHTOOL_A_CABLE_PAIR_B, ETHTOOL_A_CABLE_PAIR_C, ETHTOOL_A_CABLE_PAIR_D, }; u32 fault_length; int ret; int val; val = KSZ8081_LMD_ENABLE_TEST; val = val | (pair << LAN8814_PAIR_BIT_SHIFT); ret = phy_write(phydev, LAN8814_CABLE_DIAG, val); if (ret < 0) return ret; ret = ksz886x_cable_test_wait_for_completion(phydev); if (ret) return ret; val = phy_read(phydev, LAN8814_CABLE_DIAG); if (val < 0) return val; if (ksz886x_cable_test_failed(val, LAN8814_CABLE_DIAG_STAT_MASK)) return -EAGAIN; ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], ksz886x_cable_test_result_trans(val, LAN8814_CABLE_DIAG_STAT_MASK )); if (ret) return ret; if (!ksz886x_cable_test_fault_length_valid(val, LAN8814_CABLE_DIAG_STAT_MASK)) return 0; fault_length = ksz886x_cable_test_fault_length(phydev, val, LAN8814_CABLE_DIAG_VCT_DATA_MASK); return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); } static int ksz886x_cable_test_one_pair(struct phy_device *phydev, int pair) { static const int ethtool_pair[] = { ETHTOOL_A_CABLE_PAIR_A, ETHTOOL_A_CABLE_PAIR_B, }; int ret, val, mdix; u32 fault_length; /* There is no way to choice the pair, like we do one ksz9031. * We can workaround this limitation by using the MDI-X functionality. */ if (pair == 0) mdix = ETH_TP_MDI; else mdix = ETH_TP_MDI_X; switch (phydev->phy_id & MICREL_PHY_ID_MASK) { case PHY_ID_KSZ8081: ret = ksz8081_config_mdix(phydev, mdix); break; case PHY_ID_KSZ886X: ret = ksz886x_config_mdix(phydev, mdix); break; default: ret = -ENODEV; } if (ret) return ret; /* Now we are ready to fire. This command will send a 100ns pulse * to the pair. */ ret = phy_write(phydev, KSZ8081_LMD, KSZ8081_LMD_ENABLE_TEST); if (ret) return ret; ret = ksz886x_cable_test_wait_for_completion(phydev); if (ret) return ret; val = phy_read(phydev, KSZ8081_LMD); if (val < 0) return val; if (ksz886x_cable_test_failed(val, KSZ8081_LMD_STAT_MASK)) return -EAGAIN; ret = ethnl_cable_test_result(phydev, ethtool_pair[pair], ksz886x_cable_test_result_trans(val, KSZ8081_LMD_STAT_MASK)); if (ret) return ret; if (!ksz886x_cable_test_fault_length_valid(val, KSZ8081_LMD_STAT_MASK)) return 0; fault_length = ksz886x_cable_test_fault_length(phydev, val, KSZ8081_LMD_DELTA_TIME_MASK); return ethnl_cable_test_fault_length(phydev, ethtool_pair[pair], fault_length); } static int ksz886x_cable_test_get_status(struct phy_device *phydev, bool *finished) { const struct kszphy_type *type = phydev->drv->driver_data; unsigned long pair_mask = type->pair_mask; int retries = 20; int ret = 0; int pair; *finished = false; /* Try harder if link partner is active */ while (pair_mask && retries--) { for_each_set_bit(pair, &pair_mask, 4) { if (type->cable_diag_reg == LAN8814_CABLE_DIAG) ret = lan8814_cable_test_one_pair(phydev, pair); else ret = ksz886x_cable_test_one_pair(phydev, pair); if (ret == -EAGAIN) continue; if (ret < 0) return ret; clear_bit(pair, &pair_mask); } /* If link partner is in autonegotiation mode it will send 2ms * of FLPs with at least 6ms of silence. * Add 2ms sleep to have better chances to hit this silence. */ if (pair_mask) msleep(2); } *finished = true; return ret; } #define LAN_EXT_PAGE_ACCESS_CONTROL 0x16 #define LAN_EXT_PAGE_ACCESS_ADDRESS_DATA 0x17 #define LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC 0x4000 #define LAN8814_QSGMII_SOFT_RESET 0x43 #define LAN8814_QSGMII_SOFT_RESET_BIT BIT(0) #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG 0x13 #define LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA BIT(3) #define LAN8814_ALIGN_SWAP 0x4a #define LAN8814_ALIGN_TX_A_B_SWAP 0x1 #define LAN8814_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) #define LAN8804_ALIGN_SWAP 0x4a #define LAN8804_ALIGN_TX_A_B_SWAP 0x1 #define LAN8804_ALIGN_TX_A_B_SWAP_MASK GENMASK(2, 0) #define LAN8814_CLOCK_MANAGEMENT 0xd #define LAN8814_LINK_QUALITY 0x8e static int lanphy_read_page_reg(struct phy_device *phydev, int page, u32 addr) { int data; phy_lock_mdio_bus(phydev); __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, (page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC)); data = __phy_read(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA); phy_unlock_mdio_bus(phydev); return data; } static int lanphy_write_page_reg(struct phy_device *phydev, int page, u16 addr, u16 val) { phy_lock_mdio_bus(phydev); __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page); __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, addr); __phy_write(phydev, LAN_EXT_PAGE_ACCESS_CONTROL, page | LAN_EXT_PAGE_ACCESS_CTRL_EP_FUNC); val = __phy_write(phydev, LAN_EXT_PAGE_ACCESS_ADDRESS_DATA, val); if (val != 0) phydev_err(phydev, "Error: phy_write has returned error %d\n", val); phy_unlock_mdio_bus(phydev); return val; } static int lan8814_config_ts_intr(struct phy_device *phydev, bool enable) { u16 val = 0; if (enable) val = PTP_TSU_INT_EN_PTP_TX_TS_EN_ | PTP_TSU_INT_EN_PTP_TX_TS_OVRFL_EN_ | PTP_TSU_INT_EN_PTP_RX_TS_EN_ | PTP_TSU_INT_EN_PTP_RX_TS_OVRFL_EN_; return lanphy_write_page_reg(phydev, 5, PTP_TSU_INT_EN, val); } static void lan8814_ptp_rx_ts_get(struct phy_device *phydev, u32 *seconds, u32 *nano_seconds, u16 *seq_id) { *seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_HI); *seconds = (*seconds << 16) | lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_SEC_LO); *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_HI); *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | lanphy_read_page_reg(phydev, 5, PTP_RX_INGRESS_NS_LO); *seq_id = lanphy_read_page_reg(phydev, 5, PTP_RX_MSG_HEADER2); } static void lan8814_ptp_tx_ts_get(struct phy_device *phydev, u32 *seconds, u32 *nano_seconds, u16 *seq_id) { *seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_HI); *seconds = *seconds << 16 | lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_SEC_LO); *nano_seconds = lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_HI); *nano_seconds = ((*nano_seconds & 0x3fff) << 16) | lanphy_read_page_reg(phydev, 5, PTP_TX_EGRESS_NS_LO); *seq_id = lanphy_read_page_reg(phydev, 5, PTP_TX_MSG_HEADER2); } static int lan8814_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info) { struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); struct phy_device *phydev = ptp_priv->phydev; struct lan8814_shared_priv *shared = phydev->shared->priv; info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; info->phc_index = ptp_clock_index(shared->ptp_clock); info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON) | (1 << HWTSTAMP_TX_ONESTEP_SYNC); info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | (1 << HWTSTAMP_FILTER_PTP_V1_L4_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); return 0; } static void lan8814_flush_fifo(struct phy_device *phydev, bool egress) { int i; for (i = 0; i < FIFO_SIZE; ++i) lanphy_read_page_reg(phydev, 5, egress ? PTP_TX_MSG_HEADER2 : PTP_RX_MSG_HEADER2); /* Read to clear overflow status bit */ lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); } static int lan8814_hwtstamp(struct mii_timestamper *mii_ts, struct kernel_hwtstamp_config *config, struct netlink_ext_ack *extack) { struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); struct lan8814_ptp_rx_ts *rx_ts, *tmp; int txcfg = 0, rxcfg = 0; int pkt_ts_enable; int tx_mod; ptp_priv->hwts_tx_type = config->tx_type; ptp_priv->rx_filter = config->rx_filter; switch (config->rx_filter) { case HWTSTAMP_FILTER_NONE: ptp_priv->layer = 0; ptp_priv->version = 0; break; case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: ptp_priv->layer = PTP_CLASS_L4; ptp_priv->version = PTP_CLASS_V2; break; case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: ptp_priv->layer = PTP_CLASS_L2; ptp_priv->version = PTP_CLASS_V2; break; case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; ptp_priv->version = PTP_CLASS_V2; break; default: return -ERANGE; } if (ptp_priv->layer & PTP_CLASS_L2) { rxcfg = PTP_RX_PARSE_CONFIG_LAYER2_EN_; txcfg = PTP_TX_PARSE_CONFIG_LAYER2_EN_; } else if (ptp_priv->layer & PTP_CLASS_L4) { rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; } lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_PARSE_CONFIG, rxcfg); lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_PARSE_CONFIG, txcfg); pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_RX_TIMESTAMP_EN, pkt_ts_enable); lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_TIMESTAMP_EN, pkt_ts_enable); tx_mod = lanphy_read_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD); if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC) { lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, tx_mod | PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); } else if (ptp_priv->hwts_tx_type == HWTSTAMP_TX_ON) { lanphy_write_page_reg(ptp_priv->phydev, 5, PTP_TX_MOD, tx_mod & ~PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_); } if (config->rx_filter != HWTSTAMP_FILTER_NONE) lan8814_config_ts_intr(ptp_priv->phydev, true); else lan8814_config_ts_intr(ptp_priv->phydev, false); /* In case of multiple starts and stops, these needs to be cleared */ list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { list_del(&rx_ts->list); kfree(rx_ts); } skb_queue_purge(&ptp_priv->rx_queue); skb_queue_purge(&ptp_priv->tx_queue); lan8814_flush_fifo(ptp_priv->phydev, false); lan8814_flush_fifo(ptp_priv->phydev, true); return 0; } static void lan8814_txtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) { struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); switch (ptp_priv->hwts_tx_type) { case HWTSTAMP_TX_ONESTEP_SYNC: if (ptp_msg_is_sync(skb, type)) { kfree_skb(skb); return; } fallthrough; case HWTSTAMP_TX_ON: skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS; skb_queue_tail(&ptp_priv->tx_queue, skb); break; case HWTSTAMP_TX_OFF: default: kfree_skb(skb); break; } } static bool lan8814_get_sig_rx(struct sk_buff *skb, u16 *sig) { struct ptp_header *ptp_header; u32 type; skb_push(skb, ETH_HLEN); type = ptp_classify_raw(skb); ptp_header = ptp_parse_header(skb, type); skb_pull_inline(skb, ETH_HLEN); if (!ptp_header) return false; *sig = (__force u16)(ntohs(ptp_header->sequence_id)); return true; } static bool lan8814_match_rx_skb(struct kszphy_ptp_priv *ptp_priv, struct sk_buff *skb) { struct skb_shared_hwtstamps *shhwtstamps; struct lan8814_ptp_rx_ts *rx_ts, *tmp; unsigned long flags; bool ret = false; u16 skb_sig; if (!lan8814_get_sig_rx(skb, &skb_sig)) return ret; /* Iterate over all RX timestamps and match it with the received skbs */ spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); list_for_each_entry_safe(rx_ts, tmp, &ptp_priv->rx_ts_list, list) { /* Check if we found the signature we were looking for. */ if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) continue; shhwtstamps = skb_hwtstamps(skb); memset(shhwtstamps, 0, sizeof(*shhwtstamps)); shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); list_del(&rx_ts->list); kfree(rx_ts); ret = true; break; } spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); if (ret) netif_rx(skb); return ret; } static bool lan8814_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) { struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || type == PTP_CLASS_NONE) return false; if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) return false; /* If we failed to match then add it to the queue for when the timestamp * will come */ if (!lan8814_match_rx_skb(ptp_priv, skb)) skb_queue_tail(&ptp_priv->rx_queue, skb); return true; } static void lan8814_ptp_clock_set(struct phy_device *phydev, time64_t sec, u32 nsec) { lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_LO, lower_16_bits(sec)); lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_MID, upper_16_bits(sec)); lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_SEC_HI, upper_32_bits(sec)); lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_LO, lower_16_bits(nsec)); lanphy_write_page_reg(phydev, 4, PTP_CLOCK_SET_NS_HI, upper_16_bits(nsec)); lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_LOAD_); } static void lan8814_ptp_clock_get(struct phy_device *phydev, time64_t *sec, u32 *nsec) { lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_CLOCK_READ_); *sec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_HI); *sec <<= 16; *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_MID); *sec <<= 16; *sec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_SEC_LO); *nsec = lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_HI); *nsec <<= 16; *nsec |= lanphy_read_page_reg(phydev, 4, PTP_CLOCK_READ_NS_LO); } static int lan8814_ptpci_gettime64(struct ptp_clock_info *ptpci, struct timespec64 *ts) { struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, ptp_clock_info); struct phy_device *phydev = shared->phydev; u32 nano_seconds; time64_t seconds; mutex_lock(&shared->shared_lock); lan8814_ptp_clock_get(phydev, &seconds, &nano_seconds); mutex_unlock(&shared->shared_lock); ts->tv_sec = seconds; ts->tv_nsec = nano_seconds; return 0; } static int lan8814_ptpci_settime64(struct ptp_clock_info *ptpci, const struct timespec64 *ts) { struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, ptp_clock_info); struct phy_device *phydev = shared->phydev; mutex_lock(&shared->shared_lock); lan8814_ptp_clock_set(phydev, ts->tv_sec, ts->tv_nsec); mutex_unlock(&shared->shared_lock); return 0; } static void lan8814_ptp_set_target(struct phy_device *phydev, int event, s64 start_sec, u32 start_nsec) { /* Set the start time */ lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_LO(event), lower_16_bits(start_sec)); lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_SEC_HI(event), upper_16_bits(start_sec)); lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_LO(event), lower_16_bits(start_nsec)); lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_NS_HI(event), upper_16_bits(start_nsec) & 0x3fff); } static void lan8814_ptp_update_target(struct phy_device *phydev, time64_t sec) { lan8814_ptp_set_target(phydev, LAN8814_EVENT_A, sec + LAN8814_BUFFER_TIME, 0); lan8814_ptp_set_target(phydev, LAN8814_EVENT_B, sec + LAN8814_BUFFER_TIME, 0); } static void lan8814_ptp_clock_step(struct phy_device *phydev, s64 time_step_ns) { u32 nano_seconds_step; u64 abs_time_step_ns; time64_t set_seconds; u32 nano_seconds; u32 remainder; s32 seconds; if (time_step_ns > 15000000000LL) { /* convert to clock set */ lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); set_seconds += div_u64_rem(time_step_ns, 1000000000LL, &remainder); nano_seconds += remainder; if (nano_seconds >= 1000000000) { set_seconds++; nano_seconds -= 1000000000; } lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); lan8814_ptp_update_target(phydev, set_seconds); return; } else if (time_step_ns < -15000000000LL) { /* convert to clock set */ time_step_ns = -time_step_ns; lan8814_ptp_clock_get(phydev, &set_seconds, &nano_seconds); set_seconds -= div_u64_rem(time_step_ns, 1000000000LL, &remainder); nano_seconds_step = remainder; if (nano_seconds < nano_seconds_step) { set_seconds--; nano_seconds += 1000000000; } nano_seconds -= nano_seconds_step; lan8814_ptp_clock_set(phydev, set_seconds, nano_seconds); lan8814_ptp_update_target(phydev, set_seconds); return; } /* do clock step */ if (time_step_ns >= 0) { abs_time_step_ns = (u64)time_step_ns; seconds = (s32)div_u64_rem(abs_time_step_ns, 1000000000, &remainder); nano_seconds = remainder; } else { abs_time_step_ns = (u64)(-time_step_ns); seconds = -((s32)div_u64_rem(abs_time_step_ns, 1000000000, &remainder)); nano_seconds = remainder; if (nano_seconds > 0) { /* subtracting nano seconds is not allowed * convert to subtracting from seconds, * and adding to nanoseconds */ seconds--; nano_seconds = (1000000000 - nano_seconds); } } if (nano_seconds > 0) { /* add 8 ns to cover the likely normal increment */ nano_seconds += 8; } if (nano_seconds >= 1000000000) { /* carry into seconds */ seconds++; nano_seconds -= 1000000000; } while (seconds) { u32 nsec; if (seconds > 0) { u32 adjustment_value = (u32)seconds; u16 adjustment_value_lo, adjustment_value_hi; if (adjustment_value > 0xF) adjustment_value = 0xF; adjustment_value_lo = adjustment_value & 0xffff; adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, adjustment_value_lo); lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, PTP_LTC_STEP_ADJ_DIR_ | adjustment_value_hi); seconds -= ((s32)adjustment_value); lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); set_seconds -= adjustment_value; lan8814_ptp_update_target(phydev, set_seconds); } else { u32 adjustment_value = (u32)(-seconds); u16 adjustment_value_lo, adjustment_value_hi; if (adjustment_value > 0xF) adjustment_value = 0xF; adjustment_value_lo = adjustment_value & 0xffff; adjustment_value_hi = (adjustment_value >> 16) & 0x3fff; lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, adjustment_value_lo); lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, adjustment_value_hi); seconds += ((s32)adjustment_value); lan8814_ptp_clock_get(phydev, &set_seconds, &nsec); set_seconds += adjustment_value; lan8814_ptp_update_target(phydev, set_seconds); } lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_LTC_STEP_SEC_); } if (nano_seconds) { u16 nano_seconds_lo; u16 nano_seconds_hi; nano_seconds_lo = nano_seconds & 0xffff; nano_seconds_hi = (nano_seconds >> 16) & 0x3fff; lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_LO, nano_seconds_lo); lanphy_write_page_reg(phydev, 4, PTP_LTC_STEP_ADJ_HI, PTP_LTC_STEP_ADJ_DIR_ | nano_seconds_hi); lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_LTC_STEP_NSEC_); } } static int lan8814_ptpci_adjtime(struct ptp_clock_info *ptpci, s64 delta) { struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, ptp_clock_info); struct phy_device *phydev = shared->phydev; mutex_lock(&shared->shared_lock); lan8814_ptp_clock_step(phydev, delta); mutex_unlock(&shared->shared_lock); return 0; } static int lan8814_ptpci_adjfine(struct ptp_clock_info *ptpci, long scaled_ppm) { struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, ptp_clock_info); struct phy_device *phydev = shared->phydev; u16 kszphy_rate_adj_lo, kszphy_rate_adj_hi; bool positive = true; u32 kszphy_rate_adj; if (scaled_ppm < 0) { scaled_ppm = -scaled_ppm; positive = false; } kszphy_rate_adj = LAN8814_1PPM_FORMAT * (scaled_ppm >> 16); kszphy_rate_adj += (LAN8814_1PPM_FORMAT * (0xffff & scaled_ppm)) >> 16; kszphy_rate_adj_lo = kszphy_rate_adj & 0xffff; kszphy_rate_adj_hi = (kszphy_rate_adj >> 16) & 0x3fff; if (positive) kszphy_rate_adj_hi |= PTP_CLOCK_RATE_ADJ_DIR_; mutex_lock(&shared->shared_lock); lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_HI, kszphy_rate_adj_hi); lanphy_write_page_reg(phydev, 4, PTP_CLOCK_RATE_ADJ_LO, kszphy_rate_adj_lo); mutex_unlock(&shared->shared_lock); return 0; } static void lan8814_ptp_set_reload(struct phy_device *phydev, int event, s64 period_sec, u32 period_nsec) { lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_LO(event), lower_16_bits(period_sec)); lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_RELOAD_SEC_HI(event), upper_16_bits(period_sec)); lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_LO(event), lower_16_bits(period_nsec)); lanphy_write_page_reg(phydev, 4, LAN8814_PTP_CLOCK_TARGET_RELOAD_NS_HI(event), upper_16_bits(period_nsec) & 0x3fff); } static void lan8814_ptp_enable_event(struct phy_device *phydev, int event, int pulse_width) { u16 val; val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG); /* Set the pulse width of the event */ val &= ~(LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_MASK(event)); /* Make sure that the target clock will be incremented each time when * local time reaches or pass it */ val |= LAN8814_PTP_GENERAL_CONFIG_LTC_EVENT_SET(event, pulse_width); val &= ~(LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event)); /* Set the polarity high */ val |= LAN8814_PTP_GENERAL_CONFIG_POLARITY_X(event); lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val); } static void lan8814_ptp_disable_event(struct phy_device *phydev, int event) { u16 val; /* Set target to too far in the future, effectively disabling it */ lan8814_ptp_set_target(phydev, event, 0xFFFFFFFF, 0); /* And then reload once it recheas the target */ val = lanphy_read_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG); val |= LAN8814_PTP_GENERAL_CONFIG_RELOAD_ADD_X(event); lanphy_write_page_reg(phydev, 4, LAN8814_PTP_GENERAL_CONFIG, val); } static void lan8814_ptp_perout_off(struct phy_device *phydev, int pin) { u16 val; /* Disable gpio alternate function, * 1: select as gpio, * 0: select alt func */ val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); val |= LAN8814_GPIO_EN_BIT(pin); lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val); val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); val &= ~LAN8814_GPIO_DIR_BIT(pin); lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val); val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin)); val &= ~LAN8814_GPIO_BUF_BIT(pin); lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val); } static void lan8814_ptp_perout_on(struct phy_device *phydev, int pin) { int val; /* Set as gpio output */ val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); val |= LAN8814_GPIO_DIR_BIT(pin); lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), val); /* Enable gpio 0:for alternate function, 1:gpio */ val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); val &= ~LAN8814_GPIO_EN_BIT(pin); lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), val); /* Set buffer type to push pull */ val = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin)); val |= LAN8814_GPIO_BUF_BIT(pin); lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_BUF_ADDR(pin), val); } static int lan8814_ptp_perout(struct ptp_clock_info *ptpci, struct ptp_clock_request *rq, int on) { struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, ptp_clock_info); struct phy_device *phydev = shared->phydev; struct timespec64 ts_on, ts_period; s64 on_nsec, period_nsec; int pulse_width; int pin, event; /* Reject requests with unsupported flags */ if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE) return -EOPNOTSUPP; mutex_lock(&shared->shared_lock); event = rq->perout.index; pin = ptp_find_pin(shared->ptp_clock, PTP_PF_PEROUT, event); if (pin < 0 || pin >= LAN8814_PTP_PEROUT_NUM) { mutex_unlock(&shared->shared_lock); return -EBUSY; } if (!on) { lan8814_ptp_perout_off(phydev, pin); lan8814_ptp_disable_event(phydev, event); mutex_unlock(&shared->shared_lock); return 0; } ts_on.tv_sec = rq->perout.on.sec; ts_on.tv_nsec = rq->perout.on.nsec; on_nsec = timespec64_to_ns(&ts_on); ts_period.tv_sec = rq->perout.period.sec; ts_period.tv_nsec = rq->perout.period.nsec; period_nsec = timespec64_to_ns(&ts_period); if (period_nsec < 200) { pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", phydev_name(phydev)); mutex_unlock(&shared->shared_lock); return -EOPNOTSUPP; } if (on_nsec >= period_nsec) { pr_warn_ratelimited("%s: pulse width must be smaller than period\n", phydev_name(phydev)); mutex_unlock(&shared->shared_lock); return -EINVAL; } switch (on_nsec) { case 200000000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; break; case 100000000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; break; case 50000000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; break; case 10000000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; break; case 5000000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; break; case 1000000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; break; case 500000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; break; case 100000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; break; case 50000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; break; case 10000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; break; case 5000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; break; case 1000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; break; case 500: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; break; case 100: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; break; default: pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", phydev_name(phydev)); pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; break; } /* Configure to pulse every period */ lan8814_ptp_enable_event(phydev, event, pulse_width); lan8814_ptp_set_target(phydev, event, rq->perout.start.sec, rq->perout.start.nsec); lan8814_ptp_set_reload(phydev, event, rq->perout.period.sec, rq->perout.period.nsec); lan8814_ptp_perout_on(phydev, pin); mutex_unlock(&shared->shared_lock); return 0; } static void lan8814_ptp_extts_on(struct phy_device *phydev, int pin, u32 flags) { u16 tmp; /* Set as gpio input */ tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); tmp &= ~LAN8814_GPIO_DIR_BIT(pin); lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp); /* Map the pin to ltc pin 0 of the capture map registers */ tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO); tmp |= pin; lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp); /* Enable capture on the edges of the ltc pin */ tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN); if (flags & PTP_RISING_EDGE) tmp |= PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(0); if (flags & PTP_FALLING_EDGE) tmp |= PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(0); lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp); /* Enable interrupt top interrupt */ tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA); tmp |= PTP_COMMON_INT_ENA_GPIO_CAP_EN; lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp); } static void lan8814_ptp_extts_off(struct phy_device *phydev, int pin) { u16 tmp; /* Set as gpio out */ tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin)); tmp |= LAN8814_GPIO_DIR_BIT(pin); lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_DIR_ADDR(pin), tmp); /* Enable alternate, 0:for alternate function, 1:gpio */ tmp = lanphy_read_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin)); tmp &= ~LAN8814_GPIO_EN_BIT(pin); lanphy_write_page_reg(phydev, 4, LAN8814_GPIO_EN_ADDR(pin), tmp); /* Clear the mapping of pin to registers 0 of the capture registers */ tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO); tmp &= ~GENMASK(3, 0); lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_MAP_LO, tmp); /* Disable capture on both of the edges */ tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_EN); tmp &= ~PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); tmp &= ~PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); lanphy_write_page_reg(phydev, 4, PTP_GPIO_CAP_EN, tmp); /* Disable interrupt top interrupt */ tmp = lanphy_read_page_reg(phydev, 4, PTP_COMMON_INT_ENA); tmp &= ~PTP_COMMON_INT_ENA_GPIO_CAP_EN; lanphy_write_page_reg(phydev, 4, PTP_COMMON_INT_ENA, tmp); } static int lan8814_ptp_extts(struct ptp_clock_info *ptpci, struct ptp_clock_request *rq, int on) { struct lan8814_shared_priv *shared = container_of(ptpci, struct lan8814_shared_priv, ptp_clock_info); struct phy_device *phydev = shared->phydev; int pin; if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | PTP_EXTTS_EDGES | PTP_STRICT_FLAGS)) return -EOPNOTSUPP; pin = ptp_find_pin(shared->ptp_clock, PTP_PF_EXTTS, rq->extts.index); if (pin == -1 || pin != LAN8814_PTP_EXTTS_NUM) return -EINVAL; mutex_lock(&shared->shared_lock); if (on) lan8814_ptp_extts_on(phydev, pin, rq->extts.flags); else lan8814_ptp_extts_off(phydev, pin); mutex_unlock(&shared->shared_lock); return 0; } static int lan8814_ptpci_enable(struct ptp_clock_info *ptpci, struct ptp_clock_request *rq, int on) { switch (rq->type) { case PTP_CLK_REQ_PEROUT: return lan8814_ptp_perout(ptpci, rq, on); case PTP_CLK_REQ_EXTTS: return lan8814_ptp_extts(ptpci, rq, on); default: return -EINVAL; } } static int lan8814_ptpci_verify(struct ptp_clock_info *ptp, unsigned int pin, enum ptp_pin_function func, unsigned int chan) { switch (func) { case PTP_PF_NONE: case PTP_PF_PEROUT: /* Only pins 0 and 1 can generate perout signals. And for pin 0 * there is only chan 0 (event A) and for pin 1 there is only * chan 1 (event B) */ if (pin >= LAN8814_PTP_PEROUT_NUM || pin != chan) return -1; break; case PTP_PF_EXTTS: if (pin != LAN8814_PTP_EXTTS_NUM) return -1; break; default: return -1; } return 0; } static bool lan8814_get_sig_tx(struct sk_buff *skb, u16 *sig) { struct ptp_header *ptp_header; u32 type; type = ptp_classify_raw(skb); ptp_header = ptp_parse_header(skb, type); if (!ptp_header) return false; *sig = (__force u16)(ntohs(ptp_header->sequence_id)); return true; } static void lan8814_match_tx_skb(struct kszphy_ptp_priv *ptp_priv, u32 seconds, u32 nsec, u16 seq_id) { struct skb_shared_hwtstamps shhwtstamps; struct sk_buff *skb, *skb_tmp; unsigned long flags; bool ret = false; u16 skb_sig; spin_lock_irqsave(&ptp_priv->tx_queue.lock, flags); skb_queue_walk_safe(&ptp_priv->tx_queue, skb, skb_tmp) { if (!lan8814_get_sig_tx(skb, &skb_sig)) continue; if (memcmp(&skb_sig, &seq_id, sizeof(seq_id))) continue; __skb_unlink(skb, &ptp_priv->tx_queue); ret = true; break; } spin_unlock_irqrestore(&ptp_priv->tx_queue.lock, flags); if (ret) { memset(&shhwtstamps, 0, sizeof(shhwtstamps)); shhwtstamps.hwtstamp = ktime_set(seconds, nsec); skb_complete_tx_timestamp(skb, &shhwtstamps); } } static void lan8814_dequeue_tx_skb(struct kszphy_ptp_priv *ptp_priv) { struct phy_device *phydev = ptp_priv->phydev; u32 seconds, nsec; u16 seq_id; lan8814_ptp_tx_ts_get(phydev, &seconds, &nsec, &seq_id); lan8814_match_tx_skb(ptp_priv, seconds, nsec, seq_id); } static void lan8814_get_tx_ts(struct kszphy_ptp_priv *ptp_priv) { struct phy_device *phydev = ptp_priv->phydev; u32 reg; do { lan8814_dequeue_tx_skb(ptp_priv); /* If other timestamps are available in the FIFO, * process them. */ reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); } while (PTP_CAP_INFO_TX_TS_CNT_GET_(reg) > 0); } static bool lan8814_match_skb(struct kszphy_ptp_priv *ptp_priv, struct lan8814_ptp_rx_ts *rx_ts) { struct skb_shared_hwtstamps *shhwtstamps; struct sk_buff *skb, *skb_tmp; unsigned long flags; bool ret = false; u16 skb_sig; spin_lock_irqsave(&ptp_priv->rx_queue.lock, flags); skb_queue_walk_safe(&ptp_priv->rx_queue, skb, skb_tmp) { if (!lan8814_get_sig_rx(skb, &skb_sig)) continue; if (memcmp(&skb_sig, &rx_ts->seq_id, sizeof(rx_ts->seq_id))) continue; __skb_unlink(skb, &ptp_priv->rx_queue); ret = true; break; } spin_unlock_irqrestore(&ptp_priv->rx_queue.lock, flags); if (ret) { shhwtstamps = skb_hwtstamps(skb); memset(shhwtstamps, 0, sizeof(*shhwtstamps)); shhwtstamps->hwtstamp = ktime_set(rx_ts->seconds, rx_ts->nsec); netif_rx(skb); } return ret; } static void lan8814_match_rx_ts(struct kszphy_ptp_priv *ptp_priv, struct lan8814_ptp_rx_ts *rx_ts) { unsigned long flags; /* If we failed to match the skb add it to the queue for when * the frame will come */ if (!lan8814_match_skb(ptp_priv, rx_ts)) { spin_lock_irqsave(&ptp_priv->rx_ts_lock, flags); list_add(&rx_ts->list, &ptp_priv->rx_ts_list); spin_unlock_irqrestore(&ptp_priv->rx_ts_lock, flags); } else { kfree(rx_ts); } } static void lan8814_get_rx_ts(struct kszphy_ptp_priv *ptp_priv) { struct phy_device *phydev = ptp_priv->phydev; struct lan8814_ptp_rx_ts *rx_ts; u32 reg; do { rx_ts = kzalloc(sizeof(*rx_ts), GFP_KERNEL); if (!rx_ts) return; lan8814_ptp_rx_ts_get(phydev, &rx_ts->seconds, &rx_ts->nsec, &rx_ts->seq_id); lan8814_match_rx_ts(ptp_priv, rx_ts); /* If other timestamps are available in the FIFO, * process them. */ reg = lanphy_read_page_reg(phydev, 5, PTP_CAP_INFO); } while (PTP_CAP_INFO_RX_TS_CNT_GET_(reg) > 0); } static void lan8814_handle_ptp_interrupt(struct phy_device *phydev, u16 status) { struct kszphy_priv *priv = phydev->priv; struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; if (status & PTP_TSU_INT_STS_PTP_TX_TS_EN_) lan8814_get_tx_ts(ptp_priv); if (status & PTP_TSU_INT_STS_PTP_RX_TS_EN_) lan8814_get_rx_ts(ptp_priv); if (status & PTP_TSU_INT_STS_PTP_TX_TS_OVRFL_INT_) { lan8814_flush_fifo(phydev, true); skb_queue_purge(&ptp_priv->tx_queue); } if (status & PTP_TSU_INT_STS_PTP_RX_TS_OVRFL_INT_) { lan8814_flush_fifo(phydev, false); skb_queue_purge(&ptp_priv->rx_queue); } } static int lan8814_gpio_process_cap(struct lan8814_shared_priv *shared) { struct phy_device *phydev = shared->phydev; struct ptp_clock_event ptp_event = {0}; unsigned long nsec; s64 sec; u16 tmp; /* This is 0 because whatever was the input pin it was mapped it to * ltc gpio pin 0 */ tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_SEL); tmp |= PTP_GPIO_SEL_GPIO_SEL(0); lanphy_write_page_reg(phydev, 4, PTP_GPIO_SEL, tmp); tmp = lanphy_read_page_reg(phydev, 4, PTP_GPIO_CAP_STS); if (!(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_RE_STS(0)) && !(tmp & PTP_GPIO_CAP_STS_PTP_GPIO_FE_STS(0))) return -1; if (tmp & BIT(0)) { sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_HI_CAP); sec <<= 16; sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_SEC_LO_CAP); nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; nsec <<= 16; nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP); } else { sec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_HI_CAP); sec <<= 16; sec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_SEC_LO_CAP); nsec = lanphy_read_page_reg(phydev, 4, PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; nsec <<= 16; nsec |= lanphy_read_page_reg(phydev, 4, PTP_GPIO_RE_LTC_NS_LO_CAP); } ptp_event.index = 0; ptp_event.timestamp = ktime_set(sec, nsec); ptp_event.type = PTP_CLOCK_EXTTS; ptp_clock_event(shared->ptp_clock, &ptp_event); return 0; } static int lan8814_handle_gpio_interrupt(struct phy_device *phydev, u16 status) { struct lan8814_shared_priv *shared = phydev->shared->priv; int ret; mutex_lock(&shared->shared_lock); ret = lan8814_gpio_process_cap(shared); mutex_unlock(&shared->shared_lock); return ret; } static int lan8804_config_init(struct phy_device *phydev) { int val; /* MDI-X setting for swap A,B transmit */ val = lanphy_read_page_reg(phydev, 2, LAN8804_ALIGN_SWAP); val &= ~LAN8804_ALIGN_TX_A_B_SWAP_MASK; val |= LAN8804_ALIGN_TX_A_B_SWAP; lanphy_write_page_reg(phydev, 2, LAN8804_ALIGN_SWAP, val); /* Make sure that the PHY will not stop generating the clock when the * link partner goes down */ lanphy_write_page_reg(phydev, 31, LAN8814_CLOCK_MANAGEMENT, 0x27e); lanphy_read_page_reg(phydev, 1, LAN8814_LINK_QUALITY); return 0; } static irqreturn_t lan8804_handle_interrupt(struct phy_device *phydev) { int status; status = phy_read(phydev, LAN8814_INTS); if (status < 0) { phy_error(phydev); return IRQ_NONE; } if (status > 0) phy_trigger_machine(phydev); return IRQ_HANDLED; } #define LAN8804_OUTPUT_CONTROL 25 #define LAN8804_OUTPUT_CONTROL_INTR_BUFFER BIT(14) #define LAN8804_CONTROL 31 #define LAN8804_CONTROL_INTR_POLARITY BIT(14) static int lan8804_config_intr(struct phy_device *phydev) { int err; /* This is an internal PHY of lan966x and is not possible to change the * polarity on the GIC found in lan966x, therefore change the polarity * of the interrupt in the PHY from being active low instead of active * high. */ phy_write(phydev, LAN8804_CONTROL, LAN8804_CONTROL_INTR_POLARITY); /* By default interrupt buffer is open-drain in which case the interrupt * can be active only low. Therefore change the interrupt buffer to be * push-pull to be able to change interrupt polarity */ phy_write(phydev, LAN8804_OUTPUT_CONTROL, LAN8804_OUTPUT_CONTROL_INTR_BUFFER); if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { err = phy_read(phydev, LAN8814_INTS); if (err < 0) return err; err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); if (err) return err; } else { err = phy_write(phydev, LAN8814_INTC, 0); if (err) return err; err = phy_read(phydev, LAN8814_INTS); if (err < 0) return err; } return 0; } static irqreturn_t lan8814_handle_interrupt(struct phy_device *phydev) { int ret = IRQ_NONE; int irq_status; irq_status = phy_read(phydev, LAN8814_INTS); if (irq_status < 0) { phy_error(phydev); return IRQ_NONE; } if (irq_status & LAN8814_INT_LINK) { phy_trigger_machine(phydev); ret = IRQ_HANDLED; } while (true) { irq_status = lanphy_read_page_reg(phydev, 5, PTP_TSU_INT_STS); if (!irq_status) break; lan8814_handle_ptp_interrupt(phydev, irq_status); ret = IRQ_HANDLED; } if (!lan8814_handle_gpio_interrupt(phydev, irq_status)) ret = IRQ_HANDLED; return ret; } static int lan8814_ack_interrupt(struct phy_device *phydev) { /* bit[12..0] int status, which is a read and clear register. */ int rc; rc = phy_read(phydev, LAN8814_INTS); return (rc < 0) ? rc : 0; } static int lan8814_config_intr(struct phy_device *phydev) { int err; lanphy_write_page_reg(phydev, 4, LAN8814_INTR_CTRL_REG, LAN8814_INTR_CTRL_REG_POLARITY | LAN8814_INTR_CTRL_REG_INTR_ENABLE); /* enable / disable interrupts */ if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { err = lan8814_ack_interrupt(phydev); if (err) return err; err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK); } else { err = phy_write(phydev, LAN8814_INTC, 0); if (err) return err; err = lan8814_ack_interrupt(phydev); } return err; } static void lan8814_ptp_init(struct phy_device *phydev) { struct kszphy_priv *priv = phydev->priv; struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; u32 temp; if (!IS_ENABLED(CONFIG_PTP_1588_CLOCK) || !IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) return; lanphy_write_page_reg(phydev, 5, TSU_HARD_RESET, TSU_HARD_RESET_); temp = lanphy_read_page_reg(phydev, 5, PTP_TX_MOD); temp |= PTP_TX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; lanphy_write_page_reg(phydev, 5, PTP_TX_MOD, temp); temp = lanphy_read_page_reg(phydev, 5, PTP_RX_MOD); temp |= PTP_RX_MOD_BAD_UDPV4_CHKSUM_FORCE_FCS_DIS_; lanphy_write_page_reg(phydev, 5, PTP_RX_MOD, temp); lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_CONFIG, 0); lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_CONFIG, 0); /* Removing default registers configs related to L2 and IP */ lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_L2_ADDR_EN, 0); lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_L2_ADDR_EN, 0); lanphy_write_page_reg(phydev, 5, PTP_TX_PARSE_IP_ADDR_EN, 0); lanphy_write_page_reg(phydev, 5, PTP_RX_PARSE_IP_ADDR_EN, 0); /* Disable checking for minorVersionPTP field */ lanphy_write_page_reg(phydev, 5, PTP_RX_VERSION, PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); lanphy_write_page_reg(phydev, 5, PTP_TX_VERSION, PTP_MAX_VERSION(0xff) | PTP_MIN_VERSION(0x0)); skb_queue_head_init(&ptp_priv->tx_queue); skb_queue_head_init(&ptp_priv->rx_queue); INIT_LIST_HEAD(&ptp_priv->rx_ts_list); spin_lock_init(&ptp_priv->rx_ts_lock); ptp_priv->phydev = phydev; ptp_priv->mii_ts.rxtstamp = lan8814_rxtstamp; ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; ptp_priv->mii_ts.hwtstamp = lan8814_hwtstamp; ptp_priv->mii_ts.ts_info = lan8814_ts_info; phydev->mii_ts = &ptp_priv->mii_ts; } static int lan8814_ptp_probe_once(struct phy_device *phydev) { struct lan8814_shared_priv *shared = phydev->shared->priv; /* Initialise shared lock for clock*/ mutex_init(&shared->shared_lock); shared->pin_config = devm_kmalloc_array(&phydev->mdio.dev, LAN8814_PTP_GPIO_NUM, sizeof(*shared->pin_config), GFP_KERNEL); if (!shared->pin_config) return -ENOMEM; for (int i = 0; i < LAN8814_PTP_GPIO_NUM; i++) { struct ptp_pin_desc *ptp_pin = &shared->pin_config[i]; memset(ptp_pin, 0, sizeof(*ptp_pin)); snprintf(ptp_pin->name, sizeof(ptp_pin->name), "lan8814_ptp_pin_%02d", i); ptp_pin->index = i; ptp_pin->func = PTP_PF_NONE; } shared->ptp_clock_info.owner = THIS_MODULE; snprintf(shared->ptp_clock_info.name, 30, "%s", phydev->drv->name); shared->ptp_clock_info.max_adj = 31249999; shared->ptp_clock_info.n_alarm = 0; shared->ptp_clock_info.n_ext_ts = LAN8814_PTP_EXTTS_NUM; shared->ptp_clock_info.n_pins = LAN8814_PTP_GPIO_NUM; shared->ptp_clock_info.pps = 0; shared->ptp_clock_info.pin_config = shared->pin_config; shared->ptp_clock_info.n_per_out = LAN8814_PTP_PEROUT_NUM; shared->ptp_clock_info.adjfine = lan8814_ptpci_adjfine; shared->ptp_clock_info.adjtime = lan8814_ptpci_adjtime; shared->ptp_clock_info.gettime64 = lan8814_ptpci_gettime64; shared->ptp_clock_info.settime64 = lan8814_ptpci_settime64; shared->ptp_clock_info.getcrosststamp = NULL; shared->ptp_clock_info.enable = lan8814_ptpci_enable; shared->ptp_clock_info.verify = lan8814_ptpci_verify; shared->ptp_clock = ptp_clock_register(&shared->ptp_clock_info, &phydev->mdio.dev); if (IS_ERR(shared->ptp_clock)) { phydev_err(phydev, "ptp_clock_register failed %lu\n", PTR_ERR(shared->ptp_clock)); return -EINVAL; } /* Check if PHC support is missing at the configuration level */ if (!shared->ptp_clock) return 0; phydev_dbg(phydev, "successfully registered ptp clock\n"); shared->phydev = phydev; /* The EP.4 is shared between all the PHYs in the package and also it * can be accessed by any of the PHYs */ lanphy_write_page_reg(phydev, 4, LTC_HARD_RESET, LTC_HARD_RESET_); lanphy_write_page_reg(phydev, 4, PTP_OPERATING_MODE, PTP_OPERATING_MODE_STANDALONE_); /* Enable ptp to run LTC clock for ptp and gpio 1PPS operation */ lanphy_write_page_reg(phydev, 4, PTP_CMD_CTL, PTP_CMD_CTL_PTP_ENABLE_); return 0; } static void lan8814_setup_led(struct phy_device *phydev, int val) { int temp; temp = lanphy_read_page_reg(phydev, 5, LAN8814_LED_CTRL_1); if (val) temp |= LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; else temp &= ~LAN8814_LED_CTRL_1_KSZ9031_LED_MODE_; lanphy_write_page_reg(phydev, 5, LAN8814_LED_CTRL_1, temp); } static int lan8814_config_init(struct phy_device *phydev) { struct kszphy_priv *lan8814 = phydev->priv; int val; /* Reset the PHY */ val = lanphy_read_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET); val |= LAN8814_QSGMII_SOFT_RESET_BIT; lanphy_write_page_reg(phydev, 4, LAN8814_QSGMII_SOFT_RESET, val); /* Disable ANEG with QSGMII PCS Host side */ val = lanphy_read_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG); val &= ~LAN8814_QSGMII_PCS1G_ANEG_CONFIG_ANEG_ENA; lanphy_write_page_reg(phydev, 5, LAN8814_QSGMII_PCS1G_ANEG_CONFIG, val); /* MDI-X setting for swap A,B transmit */ val = lanphy_read_page_reg(phydev, 2, LAN8814_ALIGN_SWAP); val &= ~LAN8814_ALIGN_TX_A_B_SWAP_MASK; val |= LAN8814_ALIGN_TX_A_B_SWAP; lanphy_write_page_reg(phydev, 2, LAN8814_ALIGN_SWAP, val); if (lan8814->led_mode >= 0) lan8814_setup_led(phydev, lan8814->led_mode); return 0; } /* It is expected that there will not be any 'lan8814_take_coma_mode' * function called in suspend. Because the GPIO line can be shared, so if one of * the phys goes back in coma mode, then all the other PHYs will go, which is * wrong. */ static int lan8814_release_coma_mode(struct phy_device *phydev) { struct gpio_desc *gpiod; gpiod = devm_gpiod_get_optional(&phydev->mdio.dev, "coma-mode", GPIOD_OUT_HIGH_OPEN_DRAIN | GPIOD_FLAGS_BIT_NONEXCLUSIVE); if (IS_ERR(gpiod)) return PTR_ERR(gpiod); gpiod_set_consumer_name(gpiod, "LAN8814 coma mode"); gpiod_set_value_cansleep(gpiod, 0); return 0; } static void lan8814_clear_2psp_bit(struct phy_device *phydev) { u16 val; /* It was noticed that when traffic is passing through the PHY and the * cable is removed then the LED was still one even though there is no * link */ val = lanphy_read_page_reg(phydev, 2, LAN8814_EEE_STATE); val &= ~LAN8814_EEE_STATE_MASK2P5P; lanphy_write_page_reg(phydev, 2, LAN8814_EEE_STATE, val); } static void lan8814_update_meas_time(struct phy_device *phydev) { u16 val; /* By setting the measure time to a value of 0xb this will allow cables * longer than 100m to be used. This configuration can be used * regardless of the mode of operation of the PHY */ val = lanphy_read_page_reg(phydev, 1, LAN8814_PD_CONTROLS); val &= ~LAN8814_PD_CONTROLS_PD_MEAS_TIME_MASK; val |= LAN8814_PD_CONTROLS_PD_MEAS_TIME_VAL; lanphy_write_page_reg(phydev, 1, LAN8814_PD_CONTROLS, val); } static int lan8814_probe(struct phy_device *phydev) { const struct kszphy_type *type = phydev->drv->driver_data; struct kszphy_priv *priv; u16 addr; int err; priv = devm_kzalloc(&phydev->mdio.dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; phydev->priv = priv; priv->type = type; kszphy_parse_led_mode(phydev); /* Strap-in value for PHY address, below register read gives starting * phy address value */ addr = lanphy_read_page_reg(phydev, 4, 0) & 0x1F; devm_phy_package_join(&phydev->mdio.dev, phydev, addr, sizeof(struct lan8814_shared_priv)); if (phy_package_init_once(phydev)) { err = lan8814_release_coma_mode(phydev); if (err) return err; err = lan8814_ptp_probe_once(phydev); if (err) return err; } lan8814_ptp_init(phydev); /* Errata workarounds */ lan8814_clear_2psp_bit(phydev); lan8814_update_meas_time(phydev); return 0; } #define LAN8841_MMD_TIMER_REG 0 #define LAN8841_MMD0_REGISTER_17 17 #define LAN8841_MMD0_REGISTER_17_DROP_OPT(x) ((x) & 0x3) #define LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS BIT(3) #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG 2 #define LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK BIT(14) #define LAN8841_MMD_ANALOG_REG 28 #define LAN8841_ANALOG_CONTROL_1 1 #define LAN8841_ANALOG_CONTROL_1_PLL_TRIM(x) (((x) & 0x3) << 5) #define LAN8841_ANALOG_CONTROL_10 13 #define LAN8841_ANALOG_CONTROL_10_PLL_DIV(x) ((x) & 0x3) #define LAN8841_ANALOG_CONTROL_11 14 #define LAN8841_ANALOG_CONTROL_11_LDO_REF(x) (((x) & 0x7) << 12) #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT 69 #define LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL 0xbffc #define LAN8841_BTRX_POWER_DOWN 70 #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A BIT(0) #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_A BIT(1) #define LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B BIT(2) #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_B BIT(3) #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_C BIT(5) #define LAN8841_BTRX_POWER_DOWN_BTRX_CH_D BIT(7) #define LAN8841_ADC_CHANNEL_MASK 198 #define LAN8841_PTP_RX_PARSE_L2_ADDR_EN 370 #define LAN8841_PTP_RX_PARSE_IP_ADDR_EN 371 #define LAN8841_PTP_RX_VERSION 374 #define LAN8841_PTP_TX_PARSE_L2_ADDR_EN 434 #define LAN8841_PTP_TX_PARSE_IP_ADDR_EN 435 #define LAN8841_PTP_TX_VERSION 438 #define LAN8841_PTP_CMD_CTL 256 #define LAN8841_PTP_CMD_CTL_PTP_ENABLE BIT(2) #define LAN8841_PTP_CMD_CTL_PTP_DISABLE BIT(1) #define LAN8841_PTP_CMD_CTL_PTP_RESET BIT(0) #define LAN8841_PTP_RX_PARSE_CONFIG 368 #define LAN8841_PTP_TX_PARSE_CONFIG 432 #define LAN8841_PTP_RX_MODE 381 #define LAN8841_PTP_INSERT_TS_EN BIT(0) #define LAN8841_PTP_INSERT_TS_32BIT BIT(1) static int lan8841_config_init(struct phy_device *phydev) { int ret; ret = ksz9131_config_init(phydev); if (ret) return ret; /* Initialize the HW by resetting everything */ phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, LAN8841_PTP_CMD_CTL, LAN8841_PTP_CMD_CTL_PTP_RESET, LAN8841_PTP_CMD_CTL_PTP_RESET); phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, LAN8841_PTP_CMD_CTL, LAN8841_PTP_CMD_CTL_PTP_ENABLE, LAN8841_PTP_CMD_CTL_PTP_ENABLE); /* Don't process any frames */ phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, LAN8841_PTP_RX_PARSE_CONFIG, 0); phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, LAN8841_PTP_TX_PARSE_CONFIG, 0); phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, LAN8841_PTP_TX_PARSE_L2_ADDR_EN, 0); phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, LAN8841_PTP_RX_PARSE_L2_ADDR_EN, 0); phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, LAN8841_PTP_TX_PARSE_IP_ADDR_EN, 0); phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, LAN8841_PTP_RX_PARSE_IP_ADDR_EN, 0); /* Disable checking for minorVersionPTP field */ phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, LAN8841_PTP_RX_VERSION, 0xff00); phy_write_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, LAN8841_PTP_TX_VERSION, 0xff00); /* 100BT Clause 40 improvenent errata */ phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, LAN8841_ANALOG_CONTROL_1, LAN8841_ANALOG_CONTROL_1_PLL_TRIM(0x2)); phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, LAN8841_ANALOG_CONTROL_10, LAN8841_ANALOG_CONTROL_10_PLL_DIV(0x1)); /* 10M/100M Ethernet Signal Tuning Errata for Shorted-Center Tap * Magnetics */ ret = phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG); if (ret & LAN8841_OPERATION_MODE_STRAP_OVERRIDE_LOW_REG_MAGJACK) { phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT, LAN8841_TX_LOW_I_CH_C_D_POWER_MANAGMENT_VAL); phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, LAN8841_BTRX_POWER_DOWN, LAN8841_BTRX_POWER_DOWN_QBIAS_CH_A | LAN8841_BTRX_POWER_DOWN_BTRX_CH_A | LAN8841_BTRX_POWER_DOWN_QBIAS_CH_B | LAN8841_BTRX_POWER_DOWN_BTRX_CH_B | LAN8841_BTRX_POWER_DOWN_BTRX_CH_C | LAN8841_BTRX_POWER_DOWN_BTRX_CH_D); } /* LDO Adjustment errata */ phy_write_mmd(phydev, LAN8841_MMD_ANALOG_REG, LAN8841_ANALOG_CONTROL_11, LAN8841_ANALOG_CONTROL_11_LDO_REF(1)); /* 100BT RGMII latency tuning errata */ phy_write_mmd(phydev, MDIO_MMD_PMAPMD, LAN8841_ADC_CHANNEL_MASK, 0x0); phy_write_mmd(phydev, LAN8841_MMD_TIMER_REG, LAN8841_MMD0_REGISTER_17, LAN8841_MMD0_REGISTER_17_DROP_OPT(2) | LAN8841_MMD0_REGISTER_17_XMIT_TOG_TX_DIS); return 0; } #define LAN8841_OUTPUT_CTRL 25 #define LAN8841_OUTPUT_CTRL_INT_BUFFER BIT(14) #define LAN8841_INT_PTP BIT(9) static int lan8841_config_intr(struct phy_device *phydev) { int err; phy_modify(phydev, LAN8841_OUTPUT_CTRL, LAN8841_OUTPUT_CTRL_INT_BUFFER, 0); if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { err = phy_read(phydev, LAN8814_INTS); if (err < 0) return err; /* Enable / disable interrupts. It is OK to enable PTP interrupt * even if it PTP is not enabled. Because the underneath blocks * will not enable the PTP so we will never get the PTP * interrupt. */ err = phy_write(phydev, LAN8814_INTC, LAN8814_INT_LINK | LAN8841_INT_PTP); } else { err = phy_write(phydev, LAN8814_INTC, 0); if (err) return err; err = phy_read(phydev, LAN8814_INTS); if (err < 0) return err; /* Getting a positive value doesn't mean that is an error, it * just indicates what was the status. Therefore make sure to * clear the value and say that there is no error. */ err = 0; } return err; } #define LAN8841_PTP_TX_EGRESS_SEC_LO 453 #define LAN8841_PTP_TX_EGRESS_SEC_HI 452 #define LAN8841_PTP_TX_EGRESS_NS_LO 451 #define LAN8841_PTP_TX_EGRESS_NS_HI 450 #define LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID BIT(15) #define LAN8841_PTP_TX_MSG_HEADER2 455 static bool lan8841_ptp_get_tx_ts(struct kszphy_ptp_priv *ptp_priv, u32 *sec, u32 *nsec, u16 *seq) { struct phy_device *phydev = ptp_priv->phydev; *nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_HI); if (!(*nsec & LAN8841_PTP_TX_EGRESS_NSEC_HI_VALID)) return false; *nsec = ((*nsec & 0x3fff) << 16); *nsec = *nsec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_NS_LO); *sec = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_HI); *sec = *sec << 16; *sec = *sec | phy_read_mmd(phydev, 2, LAN8841_PTP_TX_EGRESS_SEC_LO); *seq = phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); return true; } static void lan8841_ptp_process_tx_ts(struct kszphy_ptp_priv *ptp_priv) { u32 sec, nsec; u16 seq; while (lan8841_ptp_get_tx_ts(ptp_priv, &sec, &nsec, &seq)) lan8814_match_tx_skb(ptp_priv, sec, nsec, seq); } #define LAN8841_PTP_INT_STS 259 #define LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT BIT(13) #define LAN8841_PTP_INT_STS_PTP_TX_TS_INT BIT(12) #define LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT BIT(2) static void lan8841_ptp_flush_fifo(struct kszphy_ptp_priv *ptp_priv) { struct phy_device *phydev = ptp_priv->phydev; int i; for (i = 0; i < FIFO_SIZE; ++i) phy_read_mmd(phydev, 2, LAN8841_PTP_TX_MSG_HEADER2); phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); } #define LAN8841_PTP_GPIO_CAP_STS 506 #define LAN8841_PTP_GPIO_SEL 327 #define LAN8841_PTP_GPIO_SEL_GPIO_SEL(gpio) ((gpio) << 8) #define LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP 498 #define LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP 499 #define LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP 500 #define LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP 501 #define LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP 502 #define LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP 503 #define LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP 504 #define LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP 505 static void lan8841_gpio_process_cap(struct kszphy_ptp_priv *ptp_priv) { struct phy_device *phydev = ptp_priv->phydev; struct ptp_clock_event ptp_event = {0}; int pin, ret, tmp; s32 sec, nsec; pin = ptp_find_pin_unlocked(ptp_priv->ptp_clock, PTP_PF_EXTTS, 0); if (pin == -1) return; tmp = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_STS); if (tmp < 0) return; ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, LAN8841_PTP_GPIO_SEL_GPIO_SEL(pin)); if (ret) return; mutex_lock(&ptp_priv->ptp_lock); if (tmp & BIT(pin)) { sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_HI_CAP); sec <<= 16; sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_SEC_LO_CAP); nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_HI_CAP) & 0x3fff; nsec <<= 16; nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_RE_LTC_NS_LO_CAP); } else { sec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_HI_CAP); sec <<= 16; sec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_SEC_LO_CAP); nsec = phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_HI_CAP) & 0x3fff; nsec <<= 16; nsec |= phy_read_mmd(phydev, 2, LAN8841_PTP_GPIO_FE_LTC_NS_LO_CAP); } mutex_unlock(&ptp_priv->ptp_lock); ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_SEL, 0); if (ret) return; ptp_event.index = 0; ptp_event.timestamp = ktime_set(sec, nsec); ptp_event.type = PTP_CLOCK_EXTTS; ptp_clock_event(ptp_priv->ptp_clock, &ptp_event); } static void lan8841_handle_ptp_interrupt(struct phy_device *phydev) { struct kszphy_priv *priv = phydev->priv; struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; u16 status; do { status = phy_read_mmd(phydev, 2, LAN8841_PTP_INT_STS); if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_INT) lan8841_ptp_process_tx_ts(ptp_priv); if (status & LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT) lan8841_gpio_process_cap(ptp_priv); if (status & LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT) { lan8841_ptp_flush_fifo(ptp_priv); skb_queue_purge(&ptp_priv->tx_queue); } } while (status & (LAN8841_PTP_INT_STS_PTP_TX_TS_INT | LAN8841_PTP_INT_STS_PTP_GPIO_CAP_INT | LAN8841_PTP_INT_STS_PTP_TX_TS_OVRFL_INT)); } #define LAN8841_INTS_PTP BIT(9) static irqreturn_t lan8841_handle_interrupt(struct phy_device *phydev) { irqreturn_t ret = IRQ_NONE; int irq_status; irq_status = phy_read(phydev, LAN8814_INTS); if (irq_status < 0) { phy_error(phydev); return IRQ_NONE; } if (irq_status & LAN8814_INT_LINK) { phy_trigger_machine(phydev); ret = IRQ_HANDLED; } if (irq_status & LAN8841_INTS_PTP) { lan8841_handle_ptp_interrupt(phydev); ret = IRQ_HANDLED; } return ret; } static int lan8841_ts_info(struct mii_timestamper *mii_ts, struct ethtool_ts_info *info) { struct kszphy_ptp_priv *ptp_priv; ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); info->phc_index = ptp_priv->ptp_clock ? ptp_clock_index(ptp_priv->ptp_clock) : -1; if (info->phc_index == -1) return 0; info->so_timestamping = SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_RX_HARDWARE | SOF_TIMESTAMPING_RAW_HARDWARE; info->tx_types = (1 << HWTSTAMP_TX_OFF) | (1 << HWTSTAMP_TX_ON) | (1 << HWTSTAMP_TX_ONESTEP_SYNC); info->rx_filters = (1 << HWTSTAMP_FILTER_NONE) | (1 << HWTSTAMP_FILTER_PTP_V2_L4_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_L2_EVENT) | (1 << HWTSTAMP_FILTER_PTP_V2_EVENT); return 0; } #define LAN8841_PTP_INT_EN 260 #define LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN BIT(13) #define LAN8841_PTP_INT_EN_PTP_TX_TS_EN BIT(12) static void lan8841_ptp_enable_processing(struct kszphy_ptp_priv *ptp_priv, bool enable) { struct phy_device *phydev = ptp_priv->phydev; if (enable) { /* Enable interrupts on the TX side */ phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | LAN8841_PTP_INT_EN_PTP_TX_TS_EN, LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | LAN8841_PTP_INT_EN_PTP_TX_TS_EN); /* Enable the modification of the frame on RX side, * this will add the ns and 2 bits of sec in the reserved field * of the PTP header */ phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, LAN8841_PTP_RX_MODE, LAN8841_PTP_INSERT_TS_EN | LAN8841_PTP_INSERT_TS_32BIT, LAN8841_PTP_INSERT_TS_EN | LAN8841_PTP_INSERT_TS_32BIT); ptp_schedule_worker(ptp_priv->ptp_clock, 0); } else { /* Disable interrupts on the TX side */ phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, LAN8841_PTP_INT_EN_PTP_TX_TS_OVRFL_EN | LAN8841_PTP_INT_EN_PTP_TX_TS_EN, 0); /* Disable modification of the RX frames */ phy_modify_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, LAN8841_PTP_RX_MODE, LAN8841_PTP_INSERT_TS_EN | LAN8841_PTP_INSERT_TS_32BIT, 0); ptp_cancel_worker_sync(ptp_priv->ptp_clock); } } #define LAN8841_PTP_RX_TIMESTAMP_EN 379 #define LAN8841_PTP_TX_TIMESTAMP_EN 443 #define LAN8841_PTP_TX_MOD 445 static int lan8841_hwtstamp(struct mii_timestamper *mii_ts, struct kernel_hwtstamp_config *config, struct netlink_ext_ack *extack) { struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); struct phy_device *phydev = ptp_priv->phydev; int txcfg = 0, rxcfg = 0; int pkt_ts_enable; ptp_priv->hwts_tx_type = config->tx_type; ptp_priv->rx_filter = config->rx_filter; switch (config->rx_filter) { case HWTSTAMP_FILTER_NONE: ptp_priv->layer = 0; ptp_priv->version = 0; break; case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: ptp_priv->layer = PTP_CLASS_L4; ptp_priv->version = PTP_CLASS_V2; break; case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: ptp_priv->layer = PTP_CLASS_L2; ptp_priv->version = PTP_CLASS_V2; break; case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: ptp_priv->layer = PTP_CLASS_L4 | PTP_CLASS_L2; ptp_priv->version = PTP_CLASS_V2; break; default: return -ERANGE; } /* Setup parsing of the frames and enable the timestamping for ptp * frames */ if (ptp_priv->layer & PTP_CLASS_L2) { rxcfg |= PTP_RX_PARSE_CONFIG_LAYER2_EN_; txcfg |= PTP_TX_PARSE_CONFIG_LAYER2_EN_; } else if (ptp_priv->layer & PTP_CLASS_L4) { rxcfg |= PTP_RX_PARSE_CONFIG_IPV4_EN_ | PTP_RX_PARSE_CONFIG_IPV6_EN_; txcfg |= PTP_TX_PARSE_CONFIG_IPV4_EN_ | PTP_TX_PARSE_CONFIG_IPV6_EN_; } phy_write_mmd(phydev, 2, LAN8841_PTP_RX_PARSE_CONFIG, rxcfg); phy_write_mmd(phydev, 2, LAN8841_PTP_TX_PARSE_CONFIG, txcfg); pkt_ts_enable = PTP_TIMESTAMP_EN_SYNC_ | PTP_TIMESTAMP_EN_DREQ_ | PTP_TIMESTAMP_EN_PDREQ_ | PTP_TIMESTAMP_EN_PDRES_; phy_write_mmd(phydev, 2, LAN8841_PTP_RX_TIMESTAMP_EN, pkt_ts_enable); phy_write_mmd(phydev, 2, LAN8841_PTP_TX_TIMESTAMP_EN, pkt_ts_enable); /* Enable / disable of the TX timestamp in the SYNC frames */ phy_modify_mmd(phydev, 2, LAN8841_PTP_TX_MOD, PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_, ptp_priv->hwts_tx_type == HWTSTAMP_TX_ONESTEP_SYNC ? PTP_TX_MOD_TX_PTP_SYNC_TS_INSERT_ : 0); /* Now enable/disable the timestamping */ lan8841_ptp_enable_processing(ptp_priv, config->rx_filter != HWTSTAMP_FILTER_NONE); skb_queue_purge(&ptp_priv->tx_queue); lan8841_ptp_flush_fifo(ptp_priv); return 0; } static bool lan8841_rxtstamp(struct mii_timestamper *mii_ts, struct sk_buff *skb, int type) { struct kszphy_ptp_priv *ptp_priv = container_of(mii_ts, struct kszphy_ptp_priv, mii_ts); struct ptp_header *header = ptp_parse_header(skb, type); struct skb_shared_hwtstamps *shhwtstamps; struct timespec64 ts; unsigned long flags; u32 ts_header; if (!header) return false; if (ptp_priv->rx_filter == HWTSTAMP_FILTER_NONE || type == PTP_CLASS_NONE) return false; if ((type & ptp_priv->version) == 0 || (type & ptp_priv->layer) == 0) return false; spin_lock_irqsave(&ptp_priv->seconds_lock, flags); ts.tv_sec = ptp_priv->seconds; spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); ts_header = __be32_to_cpu(header->reserved2); shhwtstamps = skb_hwtstamps(skb); memset(shhwtstamps, 0, sizeof(*shhwtstamps)); /* Check for any wrap arounds for the second part */ if ((ts.tv_sec & GENMASK(1, 0)) == 0 && (ts_header >> 30) == 3) ts.tv_sec -= GENMASK(1, 0) + 1; else if ((ts.tv_sec & GENMASK(1, 0)) == 3 && (ts_header >> 30) == 0) ts.tv_sec += 1; shhwtstamps->hwtstamp = ktime_set((ts.tv_sec & ~(GENMASK(1, 0))) | ts_header >> 30, ts_header & GENMASK(29, 0)); header->reserved2 = 0; netif_rx(skb); return true; } #define LAN8841_EVENT_A 0 #define LAN8841_EVENT_B 1 #define LAN8841_PTP_LTC_TARGET_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 278 : 288) #define LAN8841_PTP_LTC_TARGET_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 279 : 289) #define LAN8841_PTP_LTC_TARGET_NS_HI(event) ((event) == LAN8841_EVENT_A ? 280 : 290) #define LAN8841_PTP_LTC_TARGET_NS_LO(event) ((event) == LAN8841_EVENT_A ? 281 : 291) static int lan8841_ptp_set_target(struct kszphy_ptp_priv *ptp_priv, u8 event, s64 sec, u32 nsec) { struct phy_device *phydev = ptp_priv->phydev; int ret; ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_HI(event), upper_16_bits(sec)); if (ret) return ret; ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_SEC_LO(event), lower_16_bits(sec)); if (ret) return ret; ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_HI(event) & 0x3fff, upper_16_bits(nsec)); if (ret) return ret; return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_NS_LO(event), lower_16_bits(nsec)); } #define LAN8841_BUFFER_TIME 2 static int lan8841_ptp_update_target(struct kszphy_ptp_priv *ptp_priv, const struct timespec64 *ts) { return lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, ts->tv_sec + LAN8841_BUFFER_TIME, 0); } #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event) ((event) == LAN8841_EVENT_A ? 282 : 292) #define LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event) ((event) == LAN8841_EVENT_A ? 283 : 293) #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) ((event) == LAN8841_EVENT_A ? 284 : 294) #define LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event) ((event) == LAN8841_EVENT_A ? 285 : 295) static int lan8841_ptp_set_reload(struct kszphy_ptp_priv *ptp_priv, u8 event, s64 sec, u32 nsec) { struct phy_device *phydev = ptp_priv->phydev; int ret; ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_HI(event), upper_16_bits(sec)); if (ret) return ret; ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_SEC_LO(event), lower_16_bits(sec)); if (ret) return ret; ret = phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_HI(event) & 0x3fff, upper_16_bits(nsec)); if (ret) return ret; return phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_TARGET_RELOAD_NS_LO(event), lower_16_bits(nsec)); } #define LAN8841_PTP_LTC_SET_SEC_HI 262 #define LAN8841_PTP_LTC_SET_SEC_MID 263 #define LAN8841_PTP_LTC_SET_SEC_LO 264 #define LAN8841_PTP_LTC_SET_NS_HI 265 #define LAN8841_PTP_LTC_SET_NS_LO 266 #define LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD BIT(4) static int lan8841_ptp_settime64(struct ptp_clock_info *ptp, const struct timespec64 *ts) { struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, ptp_clock_info); struct phy_device *phydev = ptp_priv->phydev; unsigned long flags; int ret; /* Set the value to be stored */ mutex_lock(&ptp_priv->ptp_lock); phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_LO, lower_16_bits(ts->tv_sec)); phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_MID, upper_16_bits(ts->tv_sec)); phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_SEC_HI, upper_32_bits(ts->tv_sec) & 0xffff); phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_LO, lower_16_bits(ts->tv_nsec)); phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_SET_NS_HI, upper_16_bits(ts->tv_nsec) & 0x3fff); /* Set the command to load the LTC */ phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, LAN8841_PTP_CMD_CTL_PTP_LTC_LOAD); ret = lan8841_ptp_update_target(ptp_priv, ts); mutex_unlock(&ptp_priv->ptp_lock); spin_lock_irqsave(&ptp_priv->seconds_lock, flags); ptp_priv->seconds = ts->tv_sec; spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); return ret; } #define LAN8841_PTP_LTC_RD_SEC_HI 358 #define LAN8841_PTP_LTC_RD_SEC_MID 359 #define LAN8841_PTP_LTC_RD_SEC_LO 360 #define LAN8841_PTP_LTC_RD_NS_HI 361 #define LAN8841_PTP_LTC_RD_NS_LO 362 #define LAN8841_PTP_CMD_CTL_PTP_LTC_READ BIT(3) static int lan8841_ptp_gettime64(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, ptp_clock_info); struct phy_device *phydev = ptp_priv->phydev; time64_t s; s64 ns; mutex_lock(&ptp_priv->ptp_lock); /* Issue the command to read the LTC */ phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, LAN8841_PTP_CMD_CTL_PTP_LTC_READ); /* Read the LTC */ s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); s <<= 16; s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); s <<= 16; s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); ns = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_HI) & 0x3fff; ns <<= 16; ns |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_NS_LO); mutex_unlock(&ptp_priv->ptp_lock); set_normalized_timespec64(ts, s, ns); return 0; } static void lan8841_ptp_getseconds(struct ptp_clock_info *ptp, struct timespec64 *ts) { struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, ptp_clock_info); struct phy_device *phydev = ptp_priv->phydev; time64_t s; mutex_lock(&ptp_priv->ptp_lock); /* Issue the command to read the LTC */ phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, LAN8841_PTP_CMD_CTL_PTP_LTC_READ); /* Read the LTC */ s = phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_HI); s <<= 16; s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_MID); s <<= 16; s |= phy_read_mmd(phydev, 2, LAN8841_PTP_LTC_RD_SEC_LO); mutex_unlock(&ptp_priv->ptp_lock); set_normalized_timespec64(ts, s, 0); } #define LAN8841_PTP_LTC_STEP_ADJ_LO 276 #define LAN8841_PTP_LTC_STEP_ADJ_HI 275 #define LAN8841_PTP_LTC_STEP_ADJ_DIR BIT(15) #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS BIT(5) #define LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS BIT(6) static int lan8841_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta) { struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, ptp_clock_info); struct phy_device *phydev = ptp_priv->phydev; struct timespec64 ts; bool add = true; u32 nsec; s32 sec; int ret; /* The HW allows up to 15 sec to adjust the time, but here we limit to * 10 sec the adjustment. The reason is, in case the adjustment is 14 * sec and 999999999 nsec, then we add 8ns to compansate the actual * increment so the value can be bigger than 15 sec. Therefore limit the * possible adjustments so we will not have these corner cases */ if (delta > 10000000000LL || delta < -10000000000LL) { /* The timeadjustment is too big, so fall back using set time */ u64 now; ptp->gettime64(ptp, &ts); now = ktime_to_ns(timespec64_to_ktime(ts)); ts = ns_to_timespec64(now + delta); ptp->settime64(ptp, &ts); return 0; } sec = div_u64_rem(delta < 0 ? -delta : delta, NSEC_PER_SEC, &nsec); if (delta < 0 && nsec != 0) { /* It is not allowed to adjust low the nsec part, therefore * subtract more from second part and add to nanosecond such * that would roll over, so the second part will increase */ sec--; nsec = NSEC_PER_SEC - nsec; } /* Calculate the adjustments and the direction */ if (delta < 0) add = false; if (nsec > 0) /* add 8 ns to cover the likely normal increment */ nsec += 8; if (nsec >= NSEC_PER_SEC) { /* carry into seconds */ sec++; nsec -= NSEC_PER_SEC; } mutex_lock(&ptp_priv->ptp_lock); if (sec) { phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, sec); phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, add ? LAN8841_PTP_LTC_STEP_ADJ_DIR : 0); phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_SECONDS); } if (nsec) { phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_LO, nsec & 0xffff); phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_STEP_ADJ_HI, (nsec >> 16) & 0x3fff); phy_write_mmd(phydev, 2, LAN8841_PTP_CMD_CTL, LAN8841_PTP_CMD_CTL_PTP_LTC_STEP_NANOSECONDS); } mutex_unlock(&ptp_priv->ptp_lock); /* Update the target clock */ ptp->gettime64(ptp, &ts); mutex_lock(&ptp_priv->ptp_lock); ret = lan8841_ptp_update_target(ptp_priv, &ts); mutex_unlock(&ptp_priv->ptp_lock); return ret; } #define LAN8841_PTP_LTC_RATE_ADJ_HI 269 #define LAN8841_PTP_LTC_RATE_ADJ_HI_DIR BIT(15) #define LAN8841_PTP_LTC_RATE_ADJ_LO 270 static int lan8841_ptp_adjfine(struct ptp_clock_info *ptp, long scaled_ppm) { struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, ptp_clock_info); struct phy_device *phydev = ptp_priv->phydev; bool faster = true; u32 rate; if (!scaled_ppm) return 0; if (scaled_ppm < 0) { scaled_ppm = -scaled_ppm; faster = false; } rate = LAN8841_1PPM_FORMAT * (upper_16_bits(scaled_ppm)); rate += (LAN8841_1PPM_FORMAT * (lower_16_bits(scaled_ppm))) >> 16; mutex_lock(&ptp_priv->ptp_lock); phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_HI, faster ? LAN8841_PTP_LTC_RATE_ADJ_HI_DIR | (upper_16_bits(rate) & 0x3fff) : upper_16_bits(rate) & 0x3fff); phy_write_mmd(phydev, 2, LAN8841_PTP_LTC_RATE_ADJ_LO, lower_16_bits(rate)); mutex_unlock(&ptp_priv->ptp_lock); return 0; } static int lan8841_ptp_verify(struct ptp_clock_info *ptp, unsigned int pin, enum ptp_pin_function func, unsigned int chan) { switch (func) { case PTP_PF_NONE: case PTP_PF_PEROUT: case PTP_PF_EXTTS: break; default: return -1; } return 0; } #define LAN8841_PTP_GPIO_NUM 10 #define LAN8841_GPIO_EN 128 #define LAN8841_GPIO_DIR 129 #define LAN8841_GPIO_BUF 130 static int lan8841_ptp_perout_off(struct kszphy_ptp_priv *ptp_priv, int pin) { struct phy_device *phydev = ptp_priv->phydev; int ret; ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); if (ret) return ret; ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); if (ret) return ret; return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); } static int lan8841_ptp_perout_on(struct kszphy_ptp_priv *ptp_priv, int pin) { struct phy_device *phydev = ptp_priv->phydev; int ret; ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); if (ret) return ret; ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DIR, BIT(pin)); if (ret) return ret; return phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); } #define LAN8841_GPIO_DATA_SEL1 131 #define LAN8841_GPIO_DATA_SEL2 132 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK GENMASK(2, 0) #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A 1 #define LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B 2 #define LAN8841_PTP_GENERAL_CONFIG 257 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A BIT(1) #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B BIT(3) #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK GENMASK(7, 4) #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK GENMASK(11, 8) #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A 4 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B 7 static int lan8841_ptp_remove_event(struct kszphy_ptp_priv *ptp_priv, int pin, u8 event) { struct phy_device *phydev = ptp_priv->phydev; u16 tmp; int ret; /* Now remove pin from the event. GPIO_DATA_SEL1 contains the GPIO * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore * depending on the pin, it requires to read a different register */ if (pin < 5) { tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * pin); ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp); } else { tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_MASK << (3 * (pin - 5)); ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp); } if (ret) return ret; /* Disable the event */ if (event == LAN8841_EVENT_A) tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK; else tmp = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK; return phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, tmp); } static int lan8841_ptp_enable_event(struct kszphy_ptp_priv *ptp_priv, int pin, u8 event, int pulse_width) { struct phy_device *phydev = ptp_priv->phydev; u16 tmp; int ret; /* Enable the event */ if (event == LAN8841_EVENT_A) ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A_MASK, LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_A | pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_A); else ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GENERAL_CONFIG, LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B_MASK, LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_POL_B | pulse_width << LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_B); if (ret) return ret; /* Now connect the pin to the event. GPIO_DATA_SEL1 contains the GPIO * pins 0-4 while GPIO_DATA_SEL2 contains GPIO pins 5-9, therefore * depending on the pin, it requires to read a different register */ if (event == LAN8841_EVENT_A) tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_A; else tmp = LAN8841_GPIO_DATA_SEL_GPIO_DATA_SEL_EVENT_B; if (pin < 5) ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL1, tmp << (3 * pin)); else ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_DATA_SEL2, tmp << (3 * (pin - 5))); return ret; } #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS 13 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS 12 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS 11 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS 10 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS 9 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS 8 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US 7 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US 6 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US 5 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US 4 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US 3 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US 2 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS 1 #define LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS 0 static int lan8841_ptp_perout(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, ptp_clock_info); struct phy_device *phydev = ptp_priv->phydev; struct timespec64 ts_on, ts_period; s64 on_nsec, period_nsec; int pulse_width; int pin; int ret; if (rq->perout.flags & ~PTP_PEROUT_DUTY_CYCLE) return -EOPNOTSUPP; pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_PEROUT, rq->perout.index); if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) return -EINVAL; if (!on) { ret = lan8841_ptp_perout_off(ptp_priv, pin); if (ret) return ret; return lan8841_ptp_remove_event(ptp_priv, LAN8841_EVENT_A, pin); } ts_on.tv_sec = rq->perout.on.sec; ts_on.tv_nsec = rq->perout.on.nsec; on_nsec = timespec64_to_ns(&ts_on); ts_period.tv_sec = rq->perout.period.sec; ts_period.tv_nsec = rq->perout.period.nsec; period_nsec = timespec64_to_ns(&ts_period); if (period_nsec < 200) { pr_warn_ratelimited("%s: perout period too small, minimum is 200 nsec\n", phydev_name(phydev)); return -EOPNOTSUPP; } if (on_nsec >= period_nsec) { pr_warn_ratelimited("%s: pulse width must be smaller than period\n", phydev_name(phydev)); return -EINVAL; } switch (on_nsec) { case 200000000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_200MS; break; case 100000000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100MS; break; case 50000000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50MS; break; case 10000000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10MS; break; case 5000000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5MS; break; case 1000000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1MS; break; case 500000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500US; break; case 100000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100US; break; case 50000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_50US; break; case 10000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_10US; break; case 5000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_5US; break; case 1000: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_1US; break; case 500: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_500NS; break; case 100: pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; break; default: pr_warn_ratelimited("%s: Use default duty cycle of 100ns\n", phydev_name(phydev)); pulse_width = LAN8841_PTP_GENERAL_CONFIG_LTC_EVENT_100NS; break; } mutex_lock(&ptp_priv->ptp_lock); ret = lan8841_ptp_set_target(ptp_priv, LAN8841_EVENT_A, rq->perout.start.sec, rq->perout.start.nsec); mutex_unlock(&ptp_priv->ptp_lock); if (ret) return ret; ret = lan8841_ptp_set_reload(ptp_priv, LAN8841_EVENT_A, rq->perout.period.sec, rq->perout.period.nsec); if (ret) return ret; ret = lan8841_ptp_enable_event(ptp_priv, pin, LAN8841_EVENT_A, pulse_width); if (ret) return ret; ret = lan8841_ptp_perout_on(ptp_priv, pin); if (ret) lan8841_ptp_remove_event(ptp_priv, pin, LAN8841_EVENT_A); return ret; } #define LAN8841_PTP_GPIO_CAP_EN 496 #define LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(gpio) (BIT(gpio)) #define LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(gpio) (BIT(gpio) << 8) #define LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN BIT(2) static int lan8841_ptp_extts_on(struct kszphy_ptp_priv *ptp_priv, int pin, u32 flags) { struct phy_device *phydev = ptp_priv->phydev; u16 tmp = 0; int ret; /* Set GPIO to be intput */ ret = phy_set_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); if (ret) return ret; ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); if (ret) return ret; /* Enable capture on the edges of the pin */ if (flags & PTP_RISING_EDGE) tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin); if (flags & PTP_FALLING_EDGE) tmp |= LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin); ret = phy_write_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, tmp); if (ret) return ret; /* Enable interrupt */ return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN); } static int lan8841_ptp_extts_off(struct kszphy_ptp_priv *ptp_priv, int pin) { struct phy_device *phydev = ptp_priv->phydev; int ret; /* Set GPIO to be output */ ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_EN, BIT(pin)); if (ret) return ret; ret = phy_clear_bits_mmd(phydev, 2, LAN8841_GPIO_BUF, BIT(pin)); if (ret) return ret; /* Disable capture on both of the edges */ ret = phy_modify_mmd(phydev, 2, LAN8841_PTP_GPIO_CAP_EN, LAN8841_PTP_GPIO_CAP_EN_GPIO_RE_CAPTURE_ENABLE(pin) | LAN8841_PTP_GPIO_CAP_EN_GPIO_FE_CAPTURE_ENABLE(pin), 0); if (ret) return ret; /* Disable interrupt */ return phy_modify_mmd(phydev, 2, LAN8841_PTP_INT_EN, LAN8841_PTP_INT_EN_PTP_GPIO_CAP_EN, 0); } static int lan8841_ptp_extts(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, ptp_clock_info); int pin; int ret; /* Reject requests with unsupported flags */ if (rq->extts.flags & ~(PTP_ENABLE_FEATURE | PTP_EXTTS_EDGES | PTP_STRICT_FLAGS)) return -EOPNOTSUPP; pin = ptp_find_pin(ptp_priv->ptp_clock, PTP_PF_EXTTS, rq->extts.index); if (pin == -1 || pin >= LAN8841_PTP_GPIO_NUM) return -EINVAL; mutex_lock(&ptp_priv->ptp_lock); if (on) ret = lan8841_ptp_extts_on(ptp_priv, pin, rq->extts.flags); else ret = lan8841_ptp_extts_off(ptp_priv, pin); mutex_unlock(&ptp_priv->ptp_lock); return ret; } static int lan8841_ptp_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { switch (rq->type) { case PTP_CLK_REQ_EXTTS: return lan8841_ptp_extts(ptp, rq, on); case PTP_CLK_REQ_PEROUT: return lan8841_ptp_perout(ptp, rq, on); default: return -EOPNOTSUPP; } return 0; } static long lan8841_ptp_do_aux_work(struct ptp_clock_info *ptp) { struct kszphy_ptp_priv *ptp_priv = container_of(ptp, struct kszphy_ptp_priv, ptp_clock_info); struct timespec64 ts; unsigned long flags; lan8841_ptp_getseconds(&ptp_priv->ptp_clock_info, &ts); spin_lock_irqsave(&ptp_priv->seconds_lock, flags); ptp_priv->seconds = ts.tv_sec; spin_unlock_irqrestore(&ptp_priv->seconds_lock, flags); return nsecs_to_jiffies(LAN8841_GET_SEC_LTC_DELAY); } static struct ptp_clock_info lan8841_ptp_clock_info = { .owner = THIS_MODULE, .name = "lan8841 ptp", .max_adj = 31249999, .gettime64 = lan8841_ptp_gettime64, .settime64 = lan8841_ptp_settime64, .adjtime = lan8841_ptp_adjtime, .adjfine = lan8841_ptp_adjfine, .verify = lan8841_ptp_verify, .enable = lan8841_ptp_enable, .do_aux_work = lan8841_ptp_do_aux_work, .n_per_out = LAN8841_PTP_GPIO_NUM, .n_ext_ts = LAN8841_PTP_GPIO_NUM, .n_pins = LAN8841_PTP_GPIO_NUM, }; #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER 3 #define LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN BIT(0) static int lan8841_probe(struct phy_device *phydev) { struct kszphy_ptp_priv *ptp_priv; struct kszphy_priv *priv; int err; err = kszphy_probe(phydev); if (err) return err; if (phy_read_mmd(phydev, KSZ9131RN_MMD_COMMON_CTRL_REG, LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER) & LAN8841_OPERATION_MODE_STRAP_LOW_REGISTER_STRAP_RGMII_EN) phydev->interface = PHY_INTERFACE_MODE_RGMII_RXID; /* Register the clock */ if (!IS_ENABLED(CONFIG_NETWORK_PHY_TIMESTAMPING)) return 0; priv = phydev->priv; ptp_priv = &priv->ptp_priv; ptp_priv->pin_config = devm_kcalloc(&phydev->mdio.dev, LAN8841_PTP_GPIO_NUM, sizeof(*ptp_priv->pin_config), GFP_KERNEL); if (!ptp_priv->pin_config) return -ENOMEM; for (int i = 0; i < LAN8841_PTP_GPIO_NUM; ++i) { struct ptp_pin_desc *p = &ptp_priv->pin_config[i]; snprintf(p->name, sizeof(p->name), "pin%d", i); p->index = i; p->func = PTP_PF_NONE; } ptp_priv->ptp_clock_info = lan8841_ptp_clock_info; ptp_priv->ptp_clock_info.pin_config = ptp_priv->pin_config; ptp_priv->ptp_clock = ptp_clock_register(&ptp_priv->ptp_clock_info, &phydev->mdio.dev); if (IS_ERR(ptp_priv->ptp_clock)) { phydev_err(phydev, "ptp_clock_register failed: %lu\n", PTR_ERR(ptp_priv->ptp_clock)); return -EINVAL; } if (!ptp_priv->ptp_clock) return 0; /* Initialize the SW */ skb_queue_head_init(&ptp_priv->tx_queue); ptp_priv->phydev = phydev; mutex_init(&ptp_priv->ptp_lock); spin_lock_init(&ptp_priv->seconds_lock); ptp_priv->mii_ts.rxtstamp = lan8841_rxtstamp; ptp_priv->mii_ts.txtstamp = lan8814_txtstamp; ptp_priv->mii_ts.hwtstamp = lan8841_hwtstamp; ptp_priv->mii_ts.ts_info = lan8841_ts_info; phydev->mii_ts = &ptp_priv->mii_ts; return 0; } static int lan8841_suspend(struct phy_device *phydev) { struct kszphy_priv *priv = phydev->priv; struct kszphy_ptp_priv *ptp_priv = &priv->ptp_priv; if (ptp_priv->ptp_clock) ptp_cancel_worker_sync(ptp_priv->ptp_clock); return genphy_suspend(phydev); } static struct phy_driver ksphy_driver[] = { { .phy_id = PHY_ID_KS8737, .phy_id_mask = MICREL_PHY_ID_MASK, .name = "Micrel KS8737", /* PHY_BASIC_FEATURES */ .driver_data = &ks8737_type, .probe = kszphy_probe, .config_init = kszphy_config_init, .config_intr = kszphy_config_intr, .handle_interrupt = kszphy_handle_interrupt, .suspend = kszphy_suspend, .resume = kszphy_resume, }, { .phy_id = PHY_ID_KSZ8021, .phy_id_mask = 0x00ffffff, .name = "Micrel KSZ8021 or KSZ8031", /* PHY_BASIC_FEATURES */ .driver_data = &ksz8021_type, .probe = kszphy_probe, .config_init = kszphy_config_init, .config_intr = kszphy_config_intr, .handle_interrupt = kszphy_handle_interrupt, .get_sset_count = kszphy_get_sset_count, .get_strings = kszphy_get_strings, .get_stats = kszphy_get_stats, .suspend = kszphy_suspend, .resume = kszphy_resume, }, { .phy_id = PHY_ID_KSZ8031, .phy_id_mask = 0x00ffffff, .name = "Micrel KSZ8031", /* PHY_BASIC_FEATURES */ .driver_data = &ksz8021_type, .probe = kszphy_probe, .config_init = kszphy_config_init, .config_intr = kszphy_config_intr, .handle_interrupt = kszphy_handle_interrupt, .get_sset_count = kszphy_get_sset_count, .get_strings = kszphy_get_strings, .get_stats = kszphy_get_stats, .suspend = kszphy_suspend, .resume = kszphy_resume, }, { .phy_id = PHY_ID_KSZ8041, .phy_id_mask = MICREL_PHY_ID_MASK, .name = "Micrel KSZ8041", /* PHY_BASIC_FEATURES */ .driver_data = &ksz8041_type, .probe = kszphy_probe, .config_init = ksz8041_config_init, .config_aneg = ksz8041_config_aneg, .config_intr = kszphy_config_intr, .handle_interrupt = kszphy_handle_interrupt, .get_sset_count = kszphy_get_sset_count, .get_strings = kszphy_get_strings, .get_stats = kszphy_get_stats, /* No suspend/resume callbacks because of errata DS80000700A, * receiver error following software power down. */ }, { .phy_id = PHY_ID_KSZ8041RNLI, .phy_id_mask = MICREL_PHY_ID_MASK, .name = "Micrel KSZ8041RNLI", /* PHY_BASIC_FEATURES */ .driver_data = &ksz8041_type, .probe = kszphy_probe, .config_init = kszphy_config_init, .config_intr = kszphy_config_intr, .handle_interrupt = kszphy_handle_interrupt, .get_sset_count = kszphy_get_sset_count, .get_strings = kszphy_get_strings, .get_stats = kszphy_get_stats, .suspend = kszphy_suspend, .resume = kszphy_resume, }, { .name = "Micrel KSZ8051", /* PHY_BASIC_FEATURES */ .driver_data = &ksz8051_type, .probe = kszphy_probe, .config_init = kszphy_config_init, .config_intr = kszphy_config_intr, .handle_interrupt = kszphy_handle_interrupt, .get_sset_count = kszphy_get_sset_count, .get_strings = kszphy_get_strings, .get_stats = kszphy_get_stats, .match_phy_device = ksz8051_match_phy_device, .suspend = kszphy_suspend, .resume = kszphy_resume, }, { .phy_id = PHY_ID_KSZ8001, .name = "Micrel KSZ8001 or KS8721", .phy_id_mask = 0x00fffffc, /* PHY_BASIC_FEATURES */ .driver_data = &ksz8041_type, .probe = kszphy_probe, .config_init = kszphy_config_init, .config_intr = kszphy_config_intr, .handle_interrupt = kszphy_handle_interrupt, .get_sset_count = kszphy_get_sset_count, .get_strings = kszphy_get_strings, .get_stats = kszphy_get_stats, .suspend = kszphy_suspend, .resume = kszphy_resume, }, { .phy_id = PHY_ID_KSZ8081, .name = "Micrel KSZ8081 or KSZ8091", .phy_id_mask = MICREL_PHY_ID_MASK, .flags = PHY_POLL_CABLE_TEST, /* PHY_BASIC_FEATURES */ .driver_data = &ksz8081_type, .probe = kszphy_probe, .config_init = ksz8081_config_init, .soft_reset = genphy_soft_reset, .config_aneg = ksz8081_config_aneg, .read_status = ksz8081_read_status, .config_intr = kszphy_config_intr, .handle_interrupt = kszphy_handle_interrupt, .get_sset_count = kszphy_get_sset_count, .get_strings = kszphy_get_strings, .get_stats = kszphy_get_stats, .suspend = kszphy_suspend, .resume = kszphy_resume, .cable_test_start = ksz886x_cable_test_start, .cable_test_get_status = ksz886x_cable_test_get_status, }, { .phy_id = PHY_ID_KSZ8061, .name = "Micrel KSZ8061", .phy_id_mask = MICREL_PHY_ID_MASK, /* PHY_BASIC_FEATURES */ .probe = kszphy_probe, .config_init = ksz8061_config_init, .soft_reset = genphy_soft_reset, .config_intr = kszphy_config_intr, .handle_interrupt = kszphy_handle_interrupt, .suspend = kszphy_suspend, .resume = ksz8061_resume, }, { .phy_id = PHY_ID_KSZ9021, .phy_id_mask = 0x000ffffe, .name = "Micrel KSZ9021 Gigabit PHY", /* PHY_GBIT_FEATURES */ .driver_data = &ksz9021_type, .probe = kszphy_probe, .get_features = ksz9031_get_features, .config_init = ksz9021_config_init, .config_intr = kszphy_config_intr, .handle_interrupt = kszphy_handle_interrupt, .get_sset_count = kszphy_get_sset_count, .get_strings = kszphy_get_strings, .get_stats = kszphy_get_stats, .suspend = kszphy_suspend, .resume = kszphy_resume, .read_mmd = genphy_read_mmd_unsupported, .write_mmd = genphy_write_mmd_unsupported, }, { .phy_id = PHY_ID_KSZ9031, .phy_id_mask = MICREL_PHY_ID_MASK, .name = "Micrel KSZ9031 Gigabit PHY", .flags = PHY_POLL_CABLE_TEST, .driver_data = &ksz9021_type, .probe = kszphy_probe, .get_features = ksz9031_get_features, .config_init = ksz9031_config_init, .soft_reset = genphy_soft_reset, .read_status = ksz9031_read_status, .config_intr = kszphy_config_intr, .handle_interrupt = kszphy_handle_interrupt, .get_sset_count = kszphy_get_sset_count, .get_strings = kszphy_get_strings, .get_stats = kszphy_get_stats, .suspend = kszphy_suspend, .resume = kszphy_resume, .cable_test_start = ksz9x31_cable_test_start, .cable_test_get_status = ksz9x31_cable_test_get_status, }, { .phy_id = PHY_ID_LAN8814, .phy_id_mask = MICREL_PHY_ID_MASK, .name = "Microchip INDY Gigabit Quad PHY", .flags = PHY_POLL_CABLE_TEST, .config_init = lan8814_config_init, .driver_data = &lan8814_type, .probe = lan8814_probe, .soft_reset = genphy_soft_reset, .read_status = ksz9031_read_status, .get_sset_count = kszphy_get_sset_count, .get_strings = kszphy_get_strings, .get_stats = kszphy_get_stats, .suspend = genphy_suspend, .resume = kszphy_resume, .config_intr = lan8814_config_intr, .handle_interrupt = lan8814_handle_interrupt, .cable_test_start = lan8814_cable_test_start, .cable_test_get_status = ksz886x_cable_test_get_status, }, { .phy_id = PHY_ID_LAN8804, .phy_id_mask = MICREL_PHY_ID_MASK, .name = "Microchip LAN966X Gigabit PHY", .config_init = lan8804_config_init, .driver_data = &ksz9021_type, .probe = kszphy_probe, .soft_reset = genphy_soft_reset, .read_status = ksz9031_read_status, .get_sset_count = kszphy_get_sset_count, .get_strings = kszphy_get_strings, .get_stats = kszphy_get_stats, .suspend = genphy_suspend, .resume = kszphy_resume, .config_intr = lan8804_config_intr, .handle_interrupt = lan8804_handle_interrupt, }, { .phy_id = PHY_ID_LAN8841, .phy_id_mask = MICREL_PHY_ID_MASK, .name = "Microchip LAN8841 Gigabit PHY", .flags = PHY_POLL_CABLE_TEST, .driver_data = &lan8841_type, .config_init = lan8841_config_init, .probe = lan8841_probe, .soft_reset = genphy_soft_reset, .config_intr = lan8841_config_intr, .handle_interrupt = lan8841_handle_interrupt, .get_sset_count = kszphy_get_sset_count, .get_strings = kszphy_get_strings, .get_stats = kszphy_get_stats, .suspend = lan8841_suspend, .resume = genphy_resume, .cable_test_start = lan8814_cable_test_start, .cable_test_get_status = ksz886x_cable_test_get_status, }, { .phy_id = PHY_ID_KSZ9131, .phy_id_mask = MICREL_PHY_ID_MASK, .name = "Microchip KSZ9131 Gigabit PHY", /* PHY_GBIT_FEATURES */ .flags = PHY_POLL_CABLE_TEST, .driver_data = &ksz9131_type, .probe = kszphy_probe, .soft_reset = genphy_soft_reset, .config_init = ksz9131_config_init, .config_intr = kszphy_config_intr, .config_aneg = ksz9131_config_aneg, .read_status = ksz9131_read_status, .handle_interrupt = kszphy_handle_interrupt, .get_sset_count = kszphy_get_sset_count, .get_strings = kszphy_get_strings, .get_stats = kszphy_get_stats, .suspend = kszphy_suspend, .resume = kszphy_resume, .cable_test_start = ksz9x31_cable_test_start, .cable_test_get_status = ksz9x31_cable_test_get_status, .get_features = ksz9477_get_features, }, { .phy_id = PHY_ID_KSZ8873MLL, .phy_id_mask = MICREL_PHY_ID_MASK, .name = "Micrel KSZ8873MLL Switch", /* PHY_BASIC_FEATURES */ .config_init = kszphy_config_init, .config_aneg = ksz8873mll_config_aneg, .read_status = ksz8873mll_read_status, .suspend = genphy_suspend, .resume = genphy_resume, }, { .phy_id = PHY_ID_KSZ886X, .phy_id_mask = MICREL_PHY_ID_MASK, .name = "Micrel KSZ8851 Ethernet MAC or KSZ886X Switch", .driver_data = &ksz886x_type, /* PHY_BASIC_FEATURES */ .flags = PHY_POLL_CABLE_TEST, .config_init = kszphy_config_init, .config_aneg = ksz886x_config_aneg, .read_status = ksz886x_read_status, .suspend = genphy_suspend, .resume = genphy_resume, .cable_test_start = ksz886x_cable_test_start, .cable_test_get_status = ksz886x_cable_test_get_status, }, { .name = "Micrel KSZ87XX Switch", /* PHY_BASIC_FEATURES */ .config_init = kszphy_config_init, .match_phy_device = ksz8795_match_phy_device, .suspend = genphy_suspend, .resume = genphy_resume, }, { .phy_id = PHY_ID_KSZ9477, .phy_id_mask = MICREL_PHY_ID_MASK, .name = "Microchip KSZ9477", /* PHY_GBIT_FEATURES */ .config_init = ksz9477_config_init, .config_intr = kszphy_config_intr, .handle_interrupt = kszphy_handle_interrupt, .suspend = genphy_suspend, .resume = ksz9477_resume, .get_features = ksz9477_get_features, } }; module_phy_driver(ksphy_driver); MODULE_DESCRIPTION("Micrel PHY driver"); MODULE_AUTHOR("David J. Choi"); MODULE_LICENSE("GPL"); static struct mdio_device_id __maybe_unused micrel_tbl[] = { { PHY_ID_KSZ9021, 0x000ffffe }, { PHY_ID_KSZ9031, MICREL_PHY_ID_MASK }, { PHY_ID_KSZ9131, MICREL_PHY_ID_MASK }, { PHY_ID_KSZ8001, 0x00fffffc }, { PHY_ID_KS8737, MICREL_PHY_ID_MASK }, { PHY_ID_KSZ8021, 0x00ffffff }, { PHY_ID_KSZ8031, 0x00ffffff }, { PHY_ID_KSZ8041, MICREL_PHY_ID_MASK }, { PHY_ID_KSZ8051, MICREL_PHY_ID_MASK }, { PHY_ID_KSZ8061, MICREL_PHY_ID_MASK }, { PHY_ID_KSZ8081, MICREL_PHY_ID_MASK }, { PHY_ID_KSZ8873MLL, MICREL_PHY_ID_MASK }, { PHY_ID_KSZ886X, MICREL_PHY_ID_MASK }, { PHY_ID_KSZ9477, MICREL_PHY_ID_MASK }, { PHY_ID_LAN8814, MICREL_PHY_ID_MASK }, { PHY_ID_LAN8804, MICREL_PHY_ID_MASK }, { PHY_ID_LAN8841, MICREL_PHY_ID_MASK }, { } }; MODULE_DEVICE_TABLE(mdio, micrel_tbl);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1